Datasets:
David Kagramanyan
commited on
Commit
·
9082623
1
Parent(s):
24e5fc7
added notebook
Browse files- label_studio2yolo.ipynb +112 -0
label_studio2yolo.ipynb
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "1bba141c-5345-4833-960e-59a5e65f08b8",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"import shutil\n",
|
12 |
+
"import random"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"id": "57ee26a6-ba9b-4228-847a-8fdb9dca42bd",
|
18 |
+
"metadata": {
|
19 |
+
"tags": []
|
20 |
+
},
|
21 |
+
"source": [
|
22 |
+
"https://harminder.dev/projects/ai-powered-property-surveillance/training/#create-a-data-configuration-file"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 2,
|
28 |
+
"id": "f4ee3ad6-2555-403f-a68b-c2a102649fe0",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"Dataset successfully split into train, val, and test sets.\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"# Set the seed for reproducibility\n",
|
41 |
+
"\n",
|
42 |
+
"random.seed(42)\n",
|
43 |
+
"\n",
|
44 |
+
"# Paths\n",
|
45 |
+
"\n",
|
46 |
+
"base_path = 'yolo'\n",
|
47 |
+
"images_path = os.path.join(base_path, 'images')\n",
|
48 |
+
"labels_path = os.path.join(base_path, 'labels')\n",
|
49 |
+
"\n",
|
50 |
+
"# Split Ratios\n",
|
51 |
+
"test_ratio = 0.20\n",
|
52 |
+
"\n",
|
53 |
+
"# Create directories for train, val, and test sets\n",
|
54 |
+
"\n",
|
55 |
+
"for set_type in ['train', 'test']:\n",
|
56 |
+
" for content_type in ['images', 'labels']:\n",
|
57 |
+
" os.makedirs(os.path.join(base_path, set_type, content_type), exist_ok=True)\n",
|
58 |
+
"\n",
|
59 |
+
"# Get all image filenames\n",
|
60 |
+
"\n",
|
61 |
+
"all_files = [f for f in os.listdir(images_path) if os.path.isfile(os.path.join(images_path, f))]\n",
|
62 |
+
"random.shuffle(all_files)\n",
|
63 |
+
"\n",
|
64 |
+
"# Calculate split indices\n",
|
65 |
+
"\n",
|
66 |
+
"total_files = len(all_files)\n",
|
67 |
+
"train_end = int(total_files*test_ratio)\n",
|
68 |
+
"\n",
|
69 |
+
"# Split files\n",
|
70 |
+
"\n",
|
71 |
+
"test_files = all_files[:train_end]\n",
|
72 |
+
"train_files = all_files[train_end:]\n",
|
73 |
+
"\n",
|
74 |
+
"# Function to copy files\n",
|
75 |
+
"\n",
|
76 |
+
"def copy_files(files, set_type):\n",
|
77 |
+
" for file in files: # Copy image\n",
|
78 |
+
" shutil.copy(os.path.join(images_path, file), os.path.join(base_path, set_type, 'images')) # Copy corresponding label\n",
|
79 |
+
" label_file = file.rsplit('.', 1)[0] + '.txt'\n",
|
80 |
+
" shutil.copy(os.path.join(labels_path, label_file), os.path.join(base_path, set_type, 'labels'))\n",
|
81 |
+
"\n",
|
82 |
+
"# Copy files to respective directories\n",
|
83 |
+
"\n",
|
84 |
+
"copy_files(train_files, 'train')\n",
|
85 |
+
"copy_files(test_files, 'test')\n",
|
86 |
+
"\n",
|
87 |
+
"print(\"Dataset successfully split into train, val, and test sets.\")"
|
88 |
+
]
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"metadata": {
|
92 |
+
"kernelspec": {
|
93 |
+
"display_name": "torch",
|
94 |
+
"language": "python",
|
95 |
+
"name": "torch"
|
96 |
+
},
|
97 |
+
"language_info": {
|
98 |
+
"codemirror_mode": {
|
99 |
+
"name": "ipython",
|
100 |
+
"version": 3
|
101 |
+
},
|
102 |
+
"file_extension": ".py",
|
103 |
+
"mimetype": "text/x-python",
|
104 |
+
"name": "python",
|
105 |
+
"nbconvert_exporter": "python",
|
106 |
+
"pygments_lexer": "ipython3",
|
107 |
+
"version": "3.11.5"
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"nbformat": 4,
|
111 |
+
"nbformat_minor": 5
|
112 |
+
}
|