ArielleE commited on
Commit
32c59c6
·
1 Parent(s): e505874

Upload 3 files

Browse files
Realistic-Occlusion-Dataset.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import datasets
4
+ from datasets.tasks import ImageClassification
5
+
6
+ from .classes_rod import ROD_CLASSES
7
+
8
+
9
+ _CITATION = """\
10
+ @article{BibTeX
11
+ }
12
+ """
13
+
14
+ _HOMEPAGE = "https://arielnlee.github.io/PatchMixing/"
15
+
16
+ _DESCRIPTION = """\
17
+ ROD is meant to serve as a metric for evaluating models' robustness to occlusion. It is the product of a meticulous object collection protocol aimed at collecting and capturing 40+ distinct, real-world objects from 16 classes.
18
+ """
19
+
20
+ _DATA_URL = {
21
+ "rod": [
22
+ f"https://huggingface.co/datasets/ariellee/Realistic-Occlusion-Dataset/resolve/main/rod_{i}.tar.gz"
23
+ for i in range(2)
24
+ ]
25
+ }
26
+
27
+
28
+ class ROD(datasets.GeneratorBasedBuilder):
29
+ VERSION = datasets.Version("1.0.0")
30
+
31
+ DEFAULT_WRITER_BATCH_SIZE = 16
32
+
33
+ def _info(self):
34
+ assert len(ROD_CLASSES) == 16
35
+ return datasets.DatasetInfo(
36
+ description=_DESCRIPTION,
37
+ features=datasets.Features(
38
+ {
39
+ "image": datasets.Image(),
40
+ "label": datasets.ClassLabel(names=list(ROD_CLASSES.values())),
41
+ }
42
+ ),
43
+ homepage=_HOMEPAGE,
44
+ citation=_CITATION,
45
+ task_templates=[ImageClassification(image_column="image", label_column="label")],
46
+ )
47
+
48
+ def _split_generators(self, dl_manager):
49
+ """Returns SplitGenerators."""
50
+ archives = dl_manager.download(_DATA_URL)
51
+
52
+ return [
53
+ datasets.SplitGenerator(
54
+ name="ROD",
55
+ gen_kwargs={
56
+ "archives": [dl_manager.iter_archive(archive) for archive in archives["rod"]],
57
+ },
58
+ ),
59
+ ]
60
+
61
+ def _generate_examples(self, archives):
62
+ """Yields examples."""
63
+ idx = 0
64
+ for archive in archives:
65
+ for path, file in archive:
66
+ if path.endswith(".jpg"):
67
+ synset_id = os.path.basename(os.path.dirname(path))
68
+ ex = {"image": {"path": path, "bytes": file.read()}, "label": synset_id}
69
+ yield idx, ex
70
+ idx += 1
classes_rod.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+
3
+
4
+ ROD_CLASSES = OrderedDict(
5
+ {
6
+ 1: "banana",
7
+ 2: "baseball",
8
+ 3: "cowboy hat",
9
+ 4: "cup",
10
+ 5: "dumbbell",
11
+ 6: "hammer",
12
+ 7: "laptop",
13
+ 8: "microwave",
14
+ 9: "mouse",
15
+ 10: "orange",
16
+ 11: "pillow",
17
+ 12: "plate",
18
+ 13: "screwdriver",
19
+ 14: "skillet",
20
+ 15: "spatula",
21
+ 16: "vase",
22
+ }
23
+ )
dataset_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"description": "ROD is meant to serve as a metric for evaluating models' robustness to occlusion. It is the product of a meticulous object collection protocol aimed at collecting and capturing 40+ distinct, real-world objects from 16 classes.\n", "citation": "@article{BibTeX\n}\n", "homepage": "https://arielnlee.github.io/PatchMixing/", "license": "", "features": {"image": {"_type": "Image"}, "label": {"names": ["banana", "baseball", "cowboy hat", "cup", "dumbbell", "hammer", "laptop", "microwave", "mouse", "orange", "pillow", "plate", "screwdriver", "skillet", "spatula", "vase"], "_type": "ClassLabel"}}, "task_templates": [{"task": "image-classification", "label_column": "label"}], "builder_name": "realistic-occlusion-dataset", "config_name": "default", "version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0}, "splits": {"ROD": {"name": "ROD", "num_bytes": 3306212413, "num_examples": 1231, "shard_lengths": [272, 192, 144, 192, 224, 144, 63], "dataset_name": "realistic-occlusion-dataset"}}, "download_checksums": {"https://huggingface.co/datasets/ariellee/Realistic-Occlusion-Dataset/resolve/main/rod_0.tar.gz": {"num_bytes": 1350865094, "checksum": null}, "https://huggingface.co/datasets/ariellee/Realistic-Occlusion-Dataset/resolve/main/rod_1.tar.gz": {"num_bytes": 1934272362, "checksum": null}}, "download_size": 3285137456, "dataset_size": 3306212413, "size_in_bytes": 6591349869}