dgcnz commited on
Commit
4e326fe
1 Parent(s): 3a76873

feat: add generate scripts for survey

Browse files
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ .venv
2
+ .python-version
3
+ **/__pycache__
4
+ .DS_Store
configs/generate.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tasks:
2
+ - name: task_abcck_u
3
+ seed: 42
4
+ num_images_per_class_train: 30
5
+ num_images_per_class_test: 5
6
+ selected_classes:
7
+ - airplane
8
+ - bed
9
+ - car
10
+ - cow
11
+ - keyboard
12
+ experiments:
13
+ - name: bed_dog_dog
14
+ spurious_class: bed
15
+ train_context: dog
16
+ test_context: dog
17
+ - name: task_bbakb_u
18
+ seed: 42
19
+ num_images_per_class_train: 50
20
+ num_images_per_class_test: 50
21
+ selected_classes:
22
+ - beach
23
+ - bus
24
+ - airplane
25
+ - keyboard
26
+ - bird
27
+ experiments:
28
+ - name: keyboard_cat_cat
29
+ spurious_class: keyboard
30
+ train_context: cat
31
+ test_context: cat
pcbm_metashift.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import json
3
+ from string import Template
4
+ from pathlib import Path
5
+
6
+ _HOMEPAGE = ""
7
+ _CITATION = ""
8
+ _LICENSE = ""
9
+ _DESCRIPTION_TEMPLATE = Template(
10
+ "$num_classes-way image classification task "
11
+ "to test domain shift of class $spurious_class from "
12
+ "context $source_context to $target_context. "
13
+ "Selected classes: $selected_classes"
14
+ )
15
+ _REPO = "https://huggingface.co/datasets/dgcnz/pcbm-metashift/resolve/main"
16
+ _IMAGES_DIR = Path("data")
17
+
18
+
19
+ class PCBMMetashiftConfig(datasets.BuilderConfig):
20
+ """Builder Config for Food-101"""
21
+
22
+ def __init__(
23
+ self,
24
+ metadata_path: str,
25
+ selected_classes: list[str],
26
+ spurious_class: str,
27
+ source_context: str,
28
+ target_context: str,
29
+ **kwargs,
30
+ ):
31
+ """BuilderConfig for Food-101.
32
+ Args:
33
+ data_url: `string`, url to download the zip file from.
34
+ metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
35
+ **kwargs: keyword arguments forwarded to super.
36
+ """
37
+ super(PCBMMetashiftConfig, self).__init__(
38
+ version=datasets.Version("1.0.0"), **kwargs
39
+ )
40
+ self.metadata_path = metadata_path
41
+ self.selected_classes = selected_classes
42
+ self.spurious_class = spurious_class
43
+ self.source_context = source_context
44
+ self.target_context = target_context
45
+
46
+
47
+ class PCBMMetashift(datasets.GeneratorBasedBuilder):
48
+ """Food-101 Images dataset"""
49
+
50
+ BUILDER_CONFIGS = [
51
+ PCBMMetashiftConfig(
52
+ name="task_abcck_bed_cat_dog",
53
+ description="Task 1: bed(cat) -> bed(dog)",
54
+ metadata_path="configs/task_abcck_bed_cat_dog.json",
55
+ selected_classes=["airplane", "bed", "car", "cow", "keyboard"],
56
+ spurious_class="bed",
57
+ source_context="cat",
58
+ target_context="dog",
59
+ ),
60
+ PCBMMetashiftConfig(
61
+ name="task_abcck_bed_dog_cat",
62
+ description="Task 1: bed(dog) -> bed(cat)",
63
+ metadata_path="configs/task_abcck_bed_dog_cat.json",
64
+ selected_classes=["airplane", "bed", "car", "cow", "keyboard"],
65
+ spurious_class="bed",
66
+ source_context="dog",
67
+ target_context="cat",
68
+ ),
69
+ PCBMMetashiftConfig(
70
+ name="task_abcck_car_cat_dog",
71
+ description="Task 1: car(cat) -> car(dog)",
72
+ metadata_path="configs/task_abcck_car_cat_dog.json",
73
+ selected_classes=["airplane", "bed", "car", "cow", "keyboard"],
74
+ spurious_class="car",
75
+ source_context="cat",
76
+ target_context="dog",
77
+ ),
78
+ PCBMMetashiftConfig(
79
+ name="task_abcck_car_dog_cat",
80
+ description="Task 1: car(dog) -> car(cat)",
81
+ metadata_path="configs/task_abcck_car_dog_cat.json",
82
+ selected_classes=["airplane", "bed", "car", "cow", "keyboard"],
83
+ spurious_class="car",
84
+ source_context="dog",
85
+ target_context="cat",
86
+ ),
87
+ PCBMMetashiftConfig(
88
+ name="task_bcmst_table_books_cat",
89
+ description="Task 2: table(books) -> table(cat)",
90
+ metadata_path="configs/task_bcmst_table_books_cat.json",
91
+ selected_classes=["beach", "computer", "motorcycle", "stove", "table"],
92
+ spurious_class="table",
93
+ source_context="books",
94
+ target_context="cat",
95
+ ),
96
+ PCBMMetashiftConfig(
97
+ name="task_bcmst_table_books_dog",
98
+ description="Task 2: table(books) -> table(dog)",
99
+ metadata_path="configs/task_bcmst_table_books_dog.json",
100
+ selected_classes=["beach", "computer", "motorcycle", "stove", "table"],
101
+ spurious_class="table",
102
+ source_context="books",
103
+ target_context="dog",
104
+ ),
105
+ PCBMMetashiftConfig(
106
+ name="task_bcmst_table_cat_dog",
107
+ description="Task 2: table(cat) -> table(dog)",
108
+ metadata_path="configs/task_bcmst_table_cat_dog.json",
109
+ selected_classes=["beach", "computer", "motorcycle", "stove", "table"],
110
+ spurious_class="table",
111
+ source_context="cat",
112
+ target_context="dog",
113
+ ),
114
+ PCBMMetashiftConfig(
115
+ name="task_bcmst_table_dog_cat",
116
+ description="Task 2: table(dog) -> table(cat)",
117
+ metadata_path="configs/task_bcmst_table_dog_cat.json",
118
+ selected_classes=["beach", "computer", "motorcycle", "stove", "table"],
119
+ spurious_class="table",
120
+ source_context="dog",
121
+ target_context="cat",
122
+ ),
123
+ ]
124
+
125
+ def _info(self):
126
+ return datasets.DatasetInfo(
127
+ description=_DESCRIPTION_TEMPLATE.substitute(
128
+ num_classes=len(self.config.selected_classes),
129
+ spurious_class=self.config.spurious_class,
130
+ source_context=self.config.source_context,
131
+ target_context=self.config.target_context,
132
+ selected_classes=", ".join(self.config.selected_classes),
133
+ ),
134
+ features=datasets.Features(
135
+ {
136
+ "image": datasets.Image(),
137
+ "label": datasets.ClassLabel(names=self.config.selected_classes),
138
+ }
139
+ ),
140
+ supervised_keys=("image", "label"),
141
+ homepage=_HOMEPAGE,
142
+ citation=_CITATION,
143
+ license=_LICENSE,
144
+ task_templates=[
145
+ datasets.ImageClassification(image_column="image", label_column="label")
146
+ ],
147
+ )
148
+
149
+ def _split_generators(self, dl_manager):
150
+ archive_path = dl_manager.download(f"{_REPO}/data/images.tar.gz")
151
+ metadata_path = dl_manager.download(f"{_REPO}/{self.config.metadata_path}")
152
+ return [
153
+ datasets.SplitGenerator(
154
+ name=datasets.Split.TRAIN,
155
+ gen_kwargs={
156
+ "images": dl_manager.iter_archive(archive_path),
157
+ "metadata_path": metadata_path,
158
+ "split": "train",
159
+ },
160
+ ),
161
+ datasets.SplitGenerator(
162
+ name=datasets.Split.TEST,
163
+ gen_kwargs={
164
+ "images": dl_manager.iter_archive(archive_path),
165
+ "metadata_path": metadata_path,
166
+ "split": "test",
167
+ },
168
+ ),
169
+ ]
170
+
171
+ def _generate_examples(self, images, metadata_path: str, split: str):
172
+ """Generate images and labels for splits."""
173
+ with open(metadata_path, encoding="utf-8") as f:
174
+ metadata = json.load(f)
175
+ split_data = metadata["data_splits"][split]
176
+ ids_to_keep = set()
177
+ for _, ids in split_data.items():
178
+ ids_to_keep.update([Path(id).stem for id in ids])
179
+
180
+ files = dict()
181
+ for file_path, file_obj in images:
182
+ image_id = Path(file_path).stem
183
+ if image_id in ids_to_keep:
184
+ files[image_id] = (file_obj.read(), file_path)
185
+
186
+ for cls, ids in split_data.items():
187
+ for image_id in ids:
188
+ image_id = Path(image_id).stem
189
+ file_obj, file_path = files[image_id]
190
+ yield f"{cls}_{image_id}", {
191
+ "image": {"path": file_path, "bytes": file_obj},
192
+ "label": cls,
193
+ }
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "pcbm-metashift"
3
+ version = "0.1.0"
4
+ description = ""
5
+ authors = ["Your Name <[email protected]>"]
6
+
7
+ readme = "README.md"
8
+
9
+ [tool.poetry.dependencies]
10
+ python = "^3.9"
11
+ datasets = "^2.16.1"
12
+ pillow = "^10.2.0"
13
+
14
+
15
+ [tool.poetry.group.dev.dependencies]
16
+ omegaconf = "^2.3.0"
17
+ pydantic = "^2.5.3"
18
+ pytest = "^7.4.4"
19
+
20
+ [build-system]
21
+ requires = ["poetry-core"]
22
+ build-backend = "poetry.core.masonry.api"
scripts/__init__.py ADDED
File without changes
scripts/generate.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import shutil
3
+ import pickle
4
+ import logging
5
+ from omegaconf import OmegaConf
6
+ import re
7
+ import random
8
+ import tarfile
9
+ from pydantic import BaseModel
10
+ from pathlib import Path
11
+
12
+ logging.basicConfig(level=logging.INFO)
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ def setup_parser():
17
+ parser = argparse.ArgumentParser(description="Generate a domain shift dataset")
18
+ parser.add_argument("--config", type=str, required=True, help="Path to config file")
19
+ parser.add_argument(
20
+ "--output_dir", type=str, required=True, help="Path to output directory"
21
+ )
22
+ parser.add_argument(
23
+ "--full_candidate_subsets_path",
24
+ type=str,
25
+ required=True,
26
+ help="Path to full-candidate-subsets.pkl",
27
+ )
28
+ parser.add_argument(
29
+ "--visual_genome_images_dir",
30
+ type=str,
31
+ required=True,
32
+ help="Path to VisualGenome images directory allImages/images",
33
+ )
34
+ return parser
35
+
36
+
37
+ def get_ms_domain_name(obj: str, context: str) -> str:
38
+ return f"{obj}({context})"
39
+
40
+
41
+ class DataSplits(BaseModel):
42
+ train: dict[str, list[str]]
43
+ test: dict[str, list[str]]
44
+
45
+
46
+ class MetashiftData(BaseModel):
47
+ selected_classes: list[str]
48
+ spurious_class: str
49
+ train_context: str
50
+ test_context: str
51
+ data_splits: DataSplits
52
+
53
+
54
+ class MetashiftFactory(object):
55
+ object_context_to_id: dict[str, list[int]]
56
+ visual_genome_images_dir: str
57
+
58
+ def __init__(
59
+ self,
60
+ full_candidate_subsets_path: str,
61
+ visual_genome_images_dir: str,
62
+ ):
63
+ """
64
+ full_candidate_subsets_path: Path to `full-candidate-subsets.pkl`
65
+ visual_genome_images_dir: Path to VisualGenome images directory `allImages/images`
66
+ """
67
+ with open(full_candidate_subsets_path, "rb") as f:
68
+ self.object_context_to_id = pickle.load(f)
69
+ self.visual_genome_images_dir = visual_genome_images_dir
70
+
71
+ def _get_all_domains_with_object(self, obj: str) -> set[str]:
72
+ """Get all domains with given object and any context.
73
+ Example:
74
+ - _get_all_domains_with_object(table) => [table(dog), table(cat), ...]
75
+ """
76
+ return {
77
+ key
78
+ for key in self.object_context_to_id.keys()
79
+ if re.match(f"^{obj}\\(.*\\)$", key)
80
+ }
81
+
82
+ def _get_all_image_ids_with_object(self, obj: str) -> set[str]:
83
+ """Get all image ids with given object and any context.
84
+ Example:
85
+ - get_all_image_ids_with_object(table) => [id~table(dog), id~table(cat), ...]
86
+ - where id~domain, means an image sampled from the given domain.
87
+ """
88
+ domains = self._get_all_domains_with_object(obj)
89
+ return {_id for domain in domains for _id in self.object_context_to_id[domain]}
90
+
91
+ def _get_image_ids(self, obj: str, context: str | None, exclude_context: str | None = None) -> set[str]:
92
+ """Get image ids for the domain `obj(context)`, optionally excluding a specific context."""
93
+ if exclude_context is not None:
94
+ all_ids = self._get_all_image_ids_with_object(obj)
95
+ exclude_ids = self.object_context_to_id[get_ms_domain_name(obj, exclude_context)]
96
+ return all_ids - exclude_ids
97
+ elif context is not None:
98
+ return self.object_context_to_id[get_ms_domain_name(obj, context)]
99
+ else:
100
+ return self._get_all_image_ids_with_object(obj)
101
+
102
+ def _get_class_domains(
103
+ self, domains_specification: dict[str, tuple[str, str | None]]
104
+ ) -> dict[str, tuple[list[str], list[str]]]:
105
+ """Get train and test image ids for the given domains specification."""
106
+ domain_ids = dict()
107
+ for cls, (train_context, test_context) in domains_specification.items():
108
+ if train_context == test_context:
109
+ train_ids = self._get_image_ids(cls, context=train_context)
110
+ test_ids = self._get_image_ids(cls, context=None, exclude_context=test_context)
111
+ domain_ids[cls] = [train_ids, test_ids]
112
+ logger.info(
113
+ f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
114
+ " -> "
115
+ f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
116
+ )
117
+ else:
118
+ train_ids = self._get_image_ids(cls, train_context)
119
+ test_ids = self._get_image_ids(cls, test_context)
120
+ domain_ids[cls] = [train_ids, test_ids]
121
+ logger.info(
122
+ f"{get_ms_domain_name(cls, train_context or '*')}: {len(train_ids)}"
123
+ " -> "
124
+ f"{get_ms_domain_name(cls, test_context or '*')}: {len(test_ids)}"
125
+ )
126
+ return domain_ids
127
+
128
+ def _sample_from_domains(
129
+ self,
130
+ seed: int,
131
+ domains: dict[str, tuple[list[str], list[str]]],
132
+ num_train_images_per_class: int,
133
+ num_test_images_per_class: int,
134
+ ) -> dict[str, tuple[list[str], list[str]]]:
135
+ """Return sampled domain data from the given full domains."""
136
+ # TODO: Do we have to ensure that there's no overlap between classes?
137
+ # For example, we could have repeated files in training for different classes.
138
+ sampled_domains = dict()
139
+ for cls, (train_ids, test_ids) in domains.items():
140
+ try:
141
+ sampled_train_ids = random.Random(seed).sample(
142
+ list(train_ids), num_train_images_per_class
143
+ )
144
+ test_ids = test_ids - set(sampled_train_ids)
145
+ sampled_test_ids = random.Random(seed).sample(
146
+ list(test_ids), num_test_images_per_class
147
+ )
148
+ except ValueError:
149
+ logger.error(
150
+ f"{cls}: {len(train_ids)} train images, {len(test_ids)} test images"
151
+ )
152
+ raise Exception("Not enough images for this class")
153
+ sampled_domains[cls] = (sampled_train_ids, sampled_test_ids)
154
+ return sampled_domains
155
+
156
+ def create(
157
+ self,
158
+ seed: int,
159
+ selected_classes: list[str],
160
+ spurious_class: str,
161
+ train_spurious_context: str,
162
+ test_spurious_context: str,
163
+ num_train_images_per_class: int,
164
+ num_test_images_per_class: int,
165
+ ) -> MetashiftData:
166
+ """Return (metadata, data) splits for the given data shift."""
167
+ domains_specification = {
168
+ **{cls: (None, None) for cls in selected_classes},
169
+ spurious_class: (
170
+ train_spurious_context,
171
+ test_spurious_context,
172
+ ), # overwrite spurious_class
173
+ }
174
+ domains = self._get_class_domains(domains_specification)
175
+ sampled_domains = self._sample_from_domains(
176
+ seed=seed,
177
+ domains=domains,
178
+ num_train_images_per_class=num_train_images_per_class,
179
+ num_test_images_per_class=num_test_images_per_class,
180
+ )
181
+ data_splits = {"train": dict(), "test": dict()}
182
+ for cls, (train_ids, test_ids) in sampled_domains.items():
183
+ data_splits["train"][cls] = train_ids
184
+ data_splits["test"][cls] = test_ids
185
+
186
+ return MetashiftData(
187
+ selected_classes=selected_classes,
188
+ spurious_class=spurious_class,
189
+ train_context=train_spurious_context,
190
+ test_context=test_spurious_context,
191
+ data_splits=DataSplits(
192
+ train=data_splits["train"],
193
+ test=data_splits["test"],
194
+ ),
195
+ )
196
+
197
+ def _get_unique_ids_from_info(self, info: dict[str, MetashiftData]):
198
+ """Get unique ids from info struct."""
199
+ unique_ids = set()
200
+ for data in info.values():
201
+ for ids in data.data_splits.train.values():
202
+ unique_ids.update(ids)
203
+ for ids in data.data_splits.test.values():
204
+ unique_ids.update(ids)
205
+ return unique_ids
206
+
207
+ def _replace_ids_with_paths(
208
+ self, info: dict[str, MetashiftData], data_path: Path, out_path: Path
209
+ ) -> MetashiftData:
210
+ """Replace ids with paths."""
211
+ new_data = dict()
212
+ for dataset_name, data in info.items():
213
+ for cls, ids in data.data_splits.train.items():
214
+ data.data_splits.train[cls] = [
215
+ str(data_path / f"{_id}.jpg") for _id in ids
216
+ ]
217
+ for cls, ids in data.data_splits.test.items():
218
+ data.data_splits.test[cls] = [
219
+ str(data_path / f"{_id}.jpg") for _id in ids
220
+ ]
221
+ new_data[dataset_name] = data
222
+ return new_data
223
+
224
+ def save_all(self, out_dir: str, info: dict[str, MetashiftData]):
225
+ """Save all datasets to the given directory."""
226
+ out_path = Path(out_dir)
227
+ data_path = out_path / "data"
228
+ data_path.mkdir(parents=True, exist_ok=True)
229
+
230
+ unique_ids = self._get_unique_ids_from_info(info)
231
+ data = self._replace_ids_with_paths(info, data_path, out_path)
232
+ # for dataset_name, data in info.items():
233
+ # with open(out_path / f"{dataset_name}.json", "w") as f:
234
+ # f.write(data.model_dump_json(indent=2))
235
+
236
+ # with tarfile.open(data_path / "images.tar.gz", "w:gz") as tar:
237
+ # for _id in unique_ids:
238
+ # tar.add(
239
+ # Path(self.visual_genome_images_dir) / f"{_id}.jpg",
240
+ # )
241
+
242
+
243
+ def get_dataset_name(task_name: str, experiment_name: str) -> str:
244
+ return f"{task_name}_{experiment_name}"
245
+
246
+
247
+ def main():
248
+ parser = setup_parser()
249
+ args = parser.parse_args()
250
+ config = OmegaConf.load(args.config)
251
+ metashift_factory = MetashiftFactory(
252
+ full_candidate_subsets_path=args.full_candidate_subsets_path,
253
+ visual_genome_images_dir=args.visual_genome_images_dir,
254
+ )
255
+ info: dict[str, MetashiftData] = dict()
256
+ for task_config in config.tasks:
257
+ for experiment_config in task_config.experiments:
258
+ data = metashift_factory.create(
259
+ seed=task_config.seed,
260
+ selected_classes=task_config.selected_classes,
261
+ spurious_class=experiment_config.spurious_class,
262
+ train_spurious_context=experiment_config.train_context,
263
+ test_spurious_context=experiment_config.test_context,
264
+ num_test_images_per_class=task_config.num_images_per_class_test,
265
+ num_train_images_per_class=task_config.num_images_per_class_train,
266
+ )
267
+ dataset_name = get_dataset_name(task_config.name, experiment_config.name)
268
+ assert dataset_name not in info
269
+ info[dataset_name] = data
270
+
271
+ metashift_factory.save_all(args.output_dir, info)
272
+
273
+
274
+ if __name__ == "__main__":
275
+ main()
scripts/test_generate.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scripts.generate import MetashiftFactory, MetashiftData, get_dataset_name
2
+ from omegaconf import OmegaConf
3
+ import random
4
+
5
+ CONFIG_PATH = "configs/generate.yaml"
6
+ CANDIDATE_SUBSETS_PATH = "scripts/artifacts/csp.pkl"
7
+
8
+ def test_generate():
9
+ config = OmegaConf.load(CONFIG_PATH)
10
+ metashift_factory = MetashiftFactory(
11
+ full_candidate_subsets_path=CANDIDATE_SUBSETS_PATH,
12
+ visual_genome_images_dir=".",
13
+ )
14
+ info: dict[str, MetashiftData] = dict()
15
+ for task_config in config.tasks:
16
+ for experiment_config in task_config.experiments:
17
+ data = metashift_factory.create(
18
+ seed=task_config.seed,
19
+ selected_classes=task_config.selected_classes,
20
+ spurious_class=experiment_config.spurious_class,
21
+ train_spurious_context=experiment_config.train_context,
22
+ test_spurious_context=experiment_config.test_context,
23
+ num_test_images_per_class=task_config.num_images_per_class_test,
24
+ num_train_images_per_class=task_config.num_images_per_class_train,
25
+ )
26
+ dataset_name = get_dataset_name(task_config.name, experiment_config.name)
27
+ assert dataset_name not in info
28
+ info[dataset_name] = data
29
+
30
+ random.seed(2)
31
+ unique_ids = metashift_factory._get_unique_ids_from_info(info)
32
+ random.seed(10000)
33
+ unique_ids_2 = metashift_factory._get_unique_ids_from_info(info)
34
+
35
+ assert unique_ids == unique_ids_2
36
+
37
+