|
import datasets |
|
import json |
|
from string import Template |
|
from pathlib import Path |
|
|
|
_HOMEPAGE = "" |
|
_CITATION = "" |
|
_LICENSE = "" |
|
_DESCRIPTION_TEMPLATE = Template( |
|
"$num_classes-way image classification task " |
|
"to test domain shift of class $spurious_class from " |
|
"source context $source_context to a target context without $source_context " |
|
"Selected classes: $selected_classes" |
|
) |
|
_REPO = "https://huggingface.co/datasets/dgcnz/pcbm_survey/resolve/main" |
|
|
|
|
|
class PCBMSurveyConfig(datasets.BuilderConfig): |
|
"""Builder Config for PCBMSurvey""" |
|
|
|
def __init__( |
|
self, |
|
metadata_path: str, |
|
selected_classes: list[str], |
|
spurious_class: str, |
|
source_context: str, |
|
**kwargs, |
|
): |
|
super(PCBMSurveyConfig, self).__init__( |
|
version=datasets.Version("1.0.0"), **kwargs |
|
) |
|
self.metadata_path = metadata_path |
|
self.selected_classes = selected_classes |
|
self.spurious_class = spurious_class |
|
self.source_context = source_context |
|
|
|
|
|
class PCBMSurvey(datasets.GeneratorBasedBuilder): |
|
"""PCBM Metashift Survey Images dataset""" |
|
|
|
""" |
|
task_1_bed_dog.json | airplane, bed, car, cow, keyboard | bed(dog) |
|
task_2_keyboard_cat.json | beach, bus, airplane, keyboard, bird | keyboard(cat) |
|
task_3_bed_cat.json | beach, car, airplane, bed, bird | bed(cat) |
|
task_4_couch_cat.json | beach, motorcycle, airplane, couch, bird | couch(cat) |
|
task_5_painting_lamp.json | bus, painting, cat, computer, snowboard | painting(lamp) |
|
task_6_pillow_clock.json | bus, pillow, cat, computer, snowboard | pillow(clock) |
|
task_7_television_fireplace.json | bus, television, cat, computer, snowboard | television(fireplace) |
|
task_8_fork_tomato.json | car, fork, table, bed, computer | fork(tomato) |
|
task_9_car_snow.json | dog, car, airplane, couch, bird | car(snow) |
|
""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PCBMSurveyConfig( |
|
name="task_1_bed_dog", |
|
metadata_path="task_1_bed_dog.json", |
|
selected_classes=["airplane", "bed", "car", "cow", "keyboard"], |
|
spurious_class="bed", |
|
source_context="dog", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_2_keyboard_cat", |
|
metadata_path="task_2_keyboard_cat.json", |
|
selected_classes=["beach", "bus", "airplane", "keyboard", "bird"], |
|
spurious_class="keyboard", |
|
source_context="cat", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_3_bed_cat", |
|
metadata_path="task_3_bed_cat.json", |
|
selected_classes=["beach", "car", "airplane", "bed", "bird"], |
|
spurious_class="bed", |
|
source_context="cat", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_4_couch_cat", |
|
metadata_path="task_4_couch_cat.json", |
|
selected_classes=["beach", "motorcycle", "airplane", "couch", "bird"], |
|
spurious_class="couch", |
|
source_context="cat", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_5_painting_lamp", |
|
metadata_path="task_5_painting_lamp.json", |
|
selected_classes=["bus", "painting", "cat", "computer", "snowboard"], |
|
spurious_class="painting", |
|
source_context="lamp", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_6_pillow_clock", |
|
metadata_path="task_6_pillow_clock.json", |
|
selected_classes=["bus", "pillow", "cat", "computer", "snowboard"], |
|
spurious_class="pillow", |
|
source_context="clock", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_7_television_fireplace", |
|
metadata_path="task_7_television_fireplace.json", |
|
selected_classes=["bus", "television", "cat", "computer", "snowboard"], |
|
spurious_class="television", |
|
source_context="fireplace", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_8_fork_tomato", |
|
metadata_path="task_8_fork_tomato.json", |
|
selected_classes=["car", "fork", "table", "bed", "computer"], |
|
spurious_class="fork", |
|
source_context="tomato", |
|
), |
|
PCBMSurveyConfig( |
|
name="task_9_car_snow", |
|
metadata_path="task_9_car_snow.json", |
|
selected_classes=["dog", "car", "airplane", "couch", "bird"], |
|
spurious_class="car", |
|
source_context="snow", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION_TEMPLATE.substitute( |
|
num_classes=len(self.config.selected_classes), |
|
spurious_class=self.config.spurious_class, |
|
source_context=self.config.source_context, |
|
selected_classes=", ".join(self.config.selected_classes), |
|
), |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=self.config.selected_classes), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
task_templates=[ |
|
datasets.ImageClassification(image_column="image", label_column="label") |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(f"{_REPO}/data/images.tar.gz") |
|
metadata_path = dl_manager.download(f"{_REPO}/scenarios/{self.config.metadata_path}") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": metadata_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": metadata_path, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path: str, split: str): |
|
"""Generate images and labels for splits.""" |
|
with open(metadata_path, encoding="utf-8") as f: |
|
metadata = json.load(f) |
|
split_data = metadata["data_splits"][split] |
|
ids_to_keep = set() |
|
for _, ids in split_data.items(): |
|
ids_to_keep.update([Path(id).stem for id in ids]) |
|
|
|
files = dict() |
|
for file_path, file_obj in images: |
|
image_id = Path(file_path).stem |
|
if image_id in ids_to_keep: |
|
files[image_id] = (file_obj.read(), file_path) |
|
|
|
for cls, ids in split_data.items(): |
|
for image_id in ids: |
|
image_id = Path(image_id).stem |
|
file_obj, file_path = files[image_id] |
|
yield f"{cls}_{image_id}", { |
|
"image": {"path": file_path, "bytes": file_obj}, |
|
"label": cls, |
|
} |
|
|