Datasets:

ArXiv:
License:
File size: 2,185 Bytes
44675f6
 
 
 
 
 
 
 
 
 
 
 
 
d57040a
 
 
 
44675f6
 
5147ad1
44675f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: apache-2.0
language:
- ca
- nl
- fr
- af
- ga
- gd
- ms
- oc
---
# Dataset Summary

This is a variation of **mMARCO** by Bonifacio et al. used for the "Improving Low-Resource Retrieval Effectiveness using Zero-Shot Linguistic Similarity Transfer" ECIR2025 paper. 

The source code for the paper can be found [here](https://github.com/andreaschari/linguistic-transfer)

**mMARCO** is a multilingual version of the [MS MARCO passage ranking dataset](https://microsoft.github.io/msmarco/).
For more information, checkout the original **mMARCO** papers:
  * [**mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897)
  * [**A cost-benefit analysis of cross-lingual transfer methods**](https://arxiv.org/abs/2105.06813)

# Dataset Structure 

`queries/` contains both the translated dev queries used for evaluation under `/dev_small` and the translated train/judged queries used for training under `/train/`.

The dev queries are in the following languages: Afrikaans, Catalan, Scottish Gaelic, Malay, Occitan, Sicilian, Cantonese.
the train queries are in the following languages: Afrikaans, Catalan.

`train_with_negs` contains the triples (query, positive doc, negative doc) used for training the models our ECIR 2025 IR4GOOD paper.

# Licensing Information

This dataset is released under [Apache license 2.0](https://www.apache.org/licenses/).


# Citation Information

If you use this dataset, please cite:

```
@article{DBLP:journals/corr/abs-2108-13897,
  author       = {Luiz Bonifacio and
                  Israel Campiotti and
                  Roberto de Alencar Lotufo and
                  Rodrigo Frassetto Nogueira},
  title        = {mMARCO: {A} Multilingual Version of {MS} {MARCO} Passage Ranking Dataset},
  journal      = {CoRR},
  volume       = {abs/2108.13897},
  year         = {2021},
  url          = {https://arxiv.org/abs/2108.13897},
  eprinttype    = {arXiv},
  eprint       = {2108.13897},
  timestamp    = {Mon, 20 Mar 2023 15:35:34 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2108-13897.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```