ucid
stringlengths
13
16
doc_number
int64
3.02k
1.99B
country
stringclasses
2 values
kind
stringclasses
6 values
lang
stringclasses
4 values
date
float64
19.8M
20.1M
application_date
int64
1.98k
1.99k
date_produced
float64
20.1M
20.1M
status
stringclasses
1 value
main_code
stringlengths
4
7
further_codes
stringlengths
4
176
ipcr_codes
stringlengths
5
439
ecla_codes
stringlengths
6
2.19k
title
stringlengths
3
460
abstract
stringlengths
25
14.9k
description
stringlengths
54
959k
claims
stringlengths
7
237k
applicants
stringlengths
3
514
inventors
stringlengths
4
1.47k
WO-1978000001-A1
1,978,000,001
WO
A1
EN
19,781,019
1,978
20,090,507
new
C03B19
C03C3, C03C11
B01D17, B01D39, B01J20, B01J35, B01J37, C02F1, C03B19, C03B37, C03C3, C03C11, C03C13, C03C23, C08J5, C12H1, G21F9
B01D 13/04H, B01D 17/02B, B01D 39/20B, B01J 20/28, B01J 35/06B, B01J 37/02C, C02F 1/68C, C03B 19/12, C03B 37/016, C03C 11/00, C03C 13/04, C03C 23/00S, C03C 3/00, C08J 5/22, C12H 1/04B, G21F 9/12
LOW TEMPERATURE SYNTHESIS OF VITREOUS BODIES AND THEIR INTERMEDIATES
A method of making glass of high purity and in virtually unlimited shapes via solution deposition on a porous self-supporting body by reaction between a first solution and a second solution; an a product made thereby. The rust solution containing at least one basic glass forming solute is confined within a porous container, the walls of which are substantially impermeable to the basic solute. The second solution containing at least one acidic solute is diffused into the porous container through its walls which are substantially permeable to the said acidic solute. The reaction between the rust solution and the second solution takes place within the porous container leading to the deposition of a self-supporting porous body on the inside walls of the container. The porous body which is crystalline, vitreous or intermediate between the two, is purified by leaching and/or washing, dried and thermally consolidated, to a transparent non-porous glass.
LOW TEMPERATURE SYNTHESIS OF VITREOUS BODIES AND THEIR INTERMEDIATESFIELD OF THE INVENTIONThis invention relates to a novel method for making a vitreous body and its intermediates. More particularly, the method relates to a low temperature production of a vitreous body via synthesis of a self-supporting body by solution deposition. DESCRIPTION OF THE PRIOR ARTIn recent years, the most commonly employed commercial process for the manufacture of glass is the direct melting process. This process is somewhat tedious and has not been very successful in the melting of easily devitrifiable and high refrac¬ tory glass. Many of the latest technological advances demand glass to be in a state of high purity which is seldom met in a direct process. Operational cost of the direct process is energy-sensitive and recurring energy crises continue to have significant impact on glass making operations. Consequently, a method for preparing glass at low cost, in a state of high purity and in relatively unlimited composition is needed.A number of indirect processes, namely, anodization, shockwave treatment, and neutron bombardment, have been proposed, but their use has never been realized on a large scale. These processes severely limit the operational flexibility and in most cases, the production cost is higher than for the direct process.In U.S. Patents 2,480,672, 2,106,744 and 3,785,793, for example, a process is disclosed wherein the silica content of an easily meltable alkali-borosilicate glass is enriched by phase separation and leaching. The porous glass which is obtained as an intermediate product is thermally consolidated at elevated tempera¬ ture. Although the process is comparatively inexpensive, it suffers from the limitation with respect to choice and regulation of glass-forming compounds. Choice and regulation of modifying compounds can, however, be achieved via a doping operation in the pores of porous glass. Physical doping operations are dis¬ closed, for example, in U.S. Patents 2,336,227, 3,232,782, 3,938,974 and in the Ph.D. Thesis of M. Samanta, Molecular Engineering of Silica-Rich Glasses Produced by Phase Separation, Catholic University of America, 1975. A chemical doping process is disclosed in a pending U.S. patent application, Serial No. 832,230 filed September 12, 1977 by M. Samanta.High purity glass has been prepared by a vapor deposi- tion process as described, for example, in U.S. Patents 2, 326,059, 3,884,550 and 4,062,665 among many others. In such a process vitreous silica is deposited in the form of a self-supporting porous body singly or in combination with a dopant. This process is expensive and the shape of bodies obtainable from such a process is limited. Polymerization processes have been tried for glass making with limited success. Two distinct lines of approach have been attempted. First is the concentration of a colloidal solu¬ tion under controlled conditions as described, for example in U.S. Patents 2,886,404 and 3,535,890. Second is the interaction in solution between a silicon compound and a polymerizing agent therefor, as described, for example in U.S. Patents 3,678,144, 3,827,893, and 4,059,658. The main difficulty in both lines of approach is the large shrinkage accompanying the process which makes the glass susceptible to breakage and which presents a poten¬ tial problem in the design of molds. SUMMARY OF THE INVENTION In the process of the present invention, first and second solutions separated by a permeable barrier are provided. The first solution contains at least one basic or alkaline glass forming solute and the second solution contains at least one acidic solute with the permeable barrier being substantially permeable to the acidic solute but substantially impermeable to the basic solute. When the first solution and the second solution are originally at suitable concentrations, passage of the second solution through the barrier occurs and a chemical combination takes place resulting in the deposition of a porous self-supporting body on the side of the barrier in contact with the first solution. The porous body can be purified, dried and thermally consolidated to a non-porous glass. DETAILED DESCRIPTION OF THE INVENTIONThe present invention facilitates an economical mass production of vitreous bodies in a state of high purity and in virtually unlimited shapes. According to this invention, a porous self-supporting body deposits on a substrate, when a first solu- tion containing a suitable concentration of at least one basic glass forming solute is allowed to react, on the substrate with a second solution containing a suitable concentration of at least one acidic solute. When the concentration of the acidic solute in the second solution falls outside of the range of suitable concentrations, amorphous or crystalline particles result with no interconnectivity. The broadness of the range of appropriate con¬ centrations depends on the particular type of reaction and can be determined experimentally by trial and error. The first solution and the second solution are separated by a permeable barrier the walls of which act as a substrate for deposition of a porous self-supporting body. The second solution is diffused through the through the barrier which is substantially permeable to the acidic solute but substantially impermeable to the basic glass forming solute. This assures a reaction between the first solution and the second solution on the barrier to deposit a porous self supporting body.The nature and composition of the solutions which are useful for glass formation are shown in Table 1 (first solution) and Table 2 (second solution) . The solutions may be binary (containing one solute) or multicomponent (containing more than one solute) . The solvents useful for the purpose of making a solution may be water, hydrocarbons such as benzene, alcohols such as methanol, ketones such as acetone, ethers such as diethyl ether, carboxylic acids such as acetic acid and mixtures thereof.TABLE 1First SolutionAll solutions contain moderately high to very high concentrations of the basic glass forming solute. The solutions may be true solutions or colloidal solutions. The solutes exemplified in the above table may be simple solutes or complex solutes. Simple solutes are those which are combinations of two different oxides; complex solutes are those which are combinations of more than two oxides. An example of the simple solute is the silicate Na2O,x Si02 where x= 2 to 4 available in commercial water glass solution. An example of the complex solute is the silicate or borate,K2O. 2B2O3. 3SiO2 which can be made synthetically. A convenient method for making an aqueous solution of a simple solute or comp¬ lex solute is to mix suitable raw materials in desired proportion, fuse the mixture at high temperature and finally treat the fused mass with hot water with or without the use of pressure. Other methods include dissolving amorphous oxide in hot aqueous alkali. In many cases the aqueous solutions of the simple solutes or complex solutes are turbid, presumably due to the homogeneous distribution of some undissolved solute in colloidal dimension. In cases where more than one basic glass forming solute is used complications might arise due to the interaction of two solutes leading to the formation of a gel. As an example, the inter¬ action of sodium silicate and sodium aluminate in aqueous solu¬ tion leads to the formation of a gel. The problem can be avoided by using a low concentration of one solute so that gel is formed in small amounts which can be dispersed throughout the solution in colloidal dimension.The prefered concentration range of the basic glass forming solute in the first solution should be such that it will be able to provide from 0.10 mole to 40 moles of glass forming oxide from 1 liter of solution. Stronger or weaker concentra¬ tions may also be used to tailor the process to the product desired. In case more than one basic glass forming solute is present or in case the basic glass forming solute is a complex one, the first solution should be able to provide from 0.10 moles to 40 moles of at least one glass forming oxide.TABLE 2Second SolutionMost solutions should contain very low to moderately high concentrations of the acidic solute; very high concentrations have been found to be useful in special circumstances. The con¬ centration range of the acidic solute in the second solution depends on the concentration of the first solution and can be ascertained by trial and error. The solution must be a true solution. Table 2 continued -is a rapid initial movement of the second solution into the first solution because of large differences in osmotic pressures between the two solutions. With the progress of reaction, this difference decrease because some of the impermeable component deposits out of the solution. The reaction at any stage can be controlled by using external pressure either on the first solution or on the second solution.Various additives may be added to the first solution and/or the second solution to have the desired effects. Suitable additives include peptizing agents, protective colloids, coagulating agents, structure modifiers and composition modifiers. Additives may be present in the first solution as dissolved solute or in homogeneous suspension. They increase the viscosity of the solution and offer resistance to the movement of the basic solute which is desirable for producing a self-supporting structure. The additives may co-deposit in the porous body to increase the porosity and pore-size. Additives for the second solution must be present as dissolved solute. They may increase the pH buffering capacity and/or the osmotic pressure of the second solution which is desirable.The porosity and pore-size of the porous self-supporting body are found to be directly proportional to the concentration of the second solution and inversely proportional to the concentration of. the first solution. Thus, an asymmetric distribution of pore- sizes in the deposited porous body can be achieved merely by pro¬ per manipulation of the concentrations of the solutions at various instants of the process. It has been found that washing the depo¬ sited porous body with water increased the pore diameter and the porosity to a small extent due to the slight dissolution of the porous skeleton by a solution of unreacted basic solute. The thickness of the deposited porous structure is a function of duration of combination. The duration of combination also determines a composition profile within the porous body. A portion of the porous body near the walls of the porous container has more complete deposition than a portion far from the walls. This profile in composition can be destroyed- by leaching with an acid.It has already been pointed out that depending on the concentration of the first solution, a range of concentrations of the second solution can be used to form a self-supporting porous body. When the actual concentration is high in the range of concentrations, the deposited porous body is predominantly crystalline. When the actual concentration of the second solution is low in the range of concentrations the deposited porous body is predominantly vitreous.It is possible to develop in the porous body two or more layers having different compositions merely by replacing the first solution and/or second solution with a different composition. This is an example of discontinuous variation of composition in the porous body. A continuous variation of composition in the porous body can be achieved by varying the composition of the first solution and/or the second solution continuously. In making compositionally inhomogeneous porous body, the importance of both first solution and second solution has to be considered since in the deposition process, the glass forming oxide corresponding to the basic glass forming solute is deposited either singly or in combination with an oxide derived from the acidic solute.The physically bound impurities in the porous self- supporting body can be removed by washing with water at room temperature. The composition profile in the porous body due to non-uniform deposition can be eliminated by leaching. Leaching is done with N/1000 to 3N dilute mineral acid at temperatures varying from 25°C to 100°C.The porous structure can be doped physically or chemically with a modifier. Physical doping processes are described, for example in U.S. Patents 2,336,227, 2,232,782, and 3,938,974 and in the Ph.D. Thesis of M. Samanta, Molecular Engineering of Silica-Rich Glasses Produced by Phase Separation , Catholic University of America, 1975. In this process, the porous body is impregnated with a solution of dopant, dried at room temperature to remove most of the solvent, heated to decompose the dopant into an oxide and finally consolidated at high tempera¬ ture to incorporate the oxide. A chemical doping process is disclosed in pending U.S. patent application, Serial No. 832,230 filed September 12, 1977 by M. Samanta. This chemical doping process involves exchange of protons in the porous body with cations in a weak basic medium.Most of the physically bound water in the undoped or doped porous body can be removed by room temperature drying. Rapid drying introduces tension, particularly at the cut edges of the porous body which then tends to crack. This can be prevented by coating the cut edge with a thin film of polyethylene glycol as described in U.S. Patent 2,861, 351. For a porous structure containing pores of 200 A or lower, controlled drying under a relative humidity of 60-90% is preferable. Capillary forces in this case ar-e very high and too rapid drying causes breakage of the structure.Chemically bound water in the form of surface hydroxyl groups cannot be removed by room temperature drying. These can be removed by vacuum drying at temperatures below the consolidation temperature of the porous body as described in U.S. Patent 2,505,001 or by chemical methods as described inU.S. Patents 2,982,053, 3,459,522 and 3,535,890 wherein replace¬ ment of hydroxyl groups in the porous body is done by halogen. An efficient chemical method ϊs> disclosed in U.S. patent application Serial No. 832,231 filed September 12, 1977 by M. Samanta. In this method, the combination of two non-bridging hydroxyl groups in the porous body to form a single bridging oxide group is sought to be achieved in the presence of an acid anhydride.The doped or undoped porous structure, after removal of most of the physically bound water by room temperature drying for 2 days is heated at the rate of 100°C per hour. It is then kept at about 600° for 2 hours and chemically bound water is removed by appropriate treatment. The temperature is raised again at the rate of 100°C per hour until the porous body is consolidated to a non-porous vitreous body. For a crystalline porous body, the consolidation temperature is close to the liquidus temperature of the consolidated glass (liquidus temperature is the maximum temperature at which glass coexists with crystal) . For a vitreous porous body the consolidation temperature is close to. the glass transition temperature of the consolidated glass (glass transition temperature is the temperature corresponding to the breakpoint of the specific heat versus temperature curve of a glass) . For a mixed phase porous body, the consolidation temperature lies between the glass transition temperature and the liquidus temperature.It is found that glass prepared by the process of this invention is extremely pure. Thus, in the deposition of a germania and silica porous body, impurities like Fe, Co, Ni, Cu, Cr preferentially migrate into solution. Glass made from such a porous body is highly transparent to ultraviolet, visible and infrared radiation.In order to indicate more fully the nature and utility of my invention, the following specific examples are set forth. In all examples, tubular cellulose dialyzer membranes having an average pore diameter of 4.8 nm are used. All concentrations expressed in percentage are gms per 100 ml of solution except where otherwise differently stated. All chemicals are laboratory reagent grade chemicals except for sodium silicate and cesium nitrate.EXAMPLE 1In each of the following experiments, a dialyzer tube 4 in length and 0.5 in diameter is closed at one end and then filled with 40°Be aqueous sodium silicate solution (first solution). 40°Be aqueous sodium silicate solution has a composition of 6.5% Na2O, 25% SiO2 and 68.5% H20, all percentages being expressed in gms per 100 gms of the solution. The tube is then closed at the other end. The closed tube which has a length of 2.5 is almost filled with silicate solution and contains very little space filled with air. The tube is completely immersed in a horizontal position in 3000 ml aqueous ammonium chloride solution (second solution) for 24 hours. .Because of the molecular sizes, only ammonium chloride molecules and no sodium silicate molecules can diffuse through the membrane. The results of various experiments are shown in Table 3. The average room temperature recorded during the experiments is 24°C. TABLE 3 Table 3 continued - Table 3 shows that against a concentration of 40°Be aqueous sodium silicate solution (first solution) concentrations of aqueous ammonium chloride solution (second solution) corres¬ ponding to Experiment Numbers 4, 5, 6, and 7 are suitable for the formation of a porous self-supporting body. Thus, against a concentration of 40°Be aqueous sodium silicate solution (first solution) the range of suitable concentrations is from 0.5% to 5% for aqueous ammonium chloride solution (second solution) . Table 3 also shows that when the actual concen- tration of aqueous ammonium chloride solution is high in the range of concentrations, the deposited porous self-supporting body is predominantly crystalline; when the actual concentra¬ tion of aqueous ammonium chloride solution is low in the range of concentrations, the deposited porous self-supporting body is predominantly vitreous.The concentrations of the reactants useful for deposition of a porous self-supporting body, as demonstrated above, may not be suitable under a set of different conditions. Use of a membrane of different pore size, use of different temperature and use of pressure on either solution can alter the concentration of either solute available for reaction on the membrane substrate. Four deposited porous self-supporting bodies are separated from the membranes and their diameters appear to be larger than the diameter of the original dialyzer tube. This is due to the fact that in the initial stage, there is rapid absorption of ammonium chloride solution within the tube due to the large difference in osmotic pressure between the ammonium chloride solution and the sodium silicate solu- tion. Consequently, within the tube there is a development of pressure which is partially relieved by expansion of the tube both in diameter and length. The porous bodies after washing with water 2 times, are leached with .01N H2SO4 at 21°C for 10 hours to remove sodium ions and then washed with water to remove the acid.. The porous bodies after washing are dried at 21°C for 48 hours to remove most of the physically bound water. They are heated under vacuum at the rate of 100°C per hour. They are then held at 600°C for 2 hours. The temperature is raised again at the rate of 100°C per hour until the porous bodies are consolidated to a non-porous glass. Table 3 shows that consolidation temperature for a crystalline porous body is higher than that for a vitreous porous body. Theoretically, a crystalline porous body should have a consolidation tempera- ture close to the liquidus temperature of the consolidated glass, whereas a vitreous porous body should have a consolidation temperature close to the glass transition tempera¬ ture of the consolidated glass. All four consolidated glasses are analyzed for silica, sodium and iron concentration. The average sodium concentration is 50 ppm, the average iron concentration is 15 ppb, and the average silica concentration is 99.99%. Thus, it is found that very pure silica glass can be prepared by this invention. The concentration of sodium which deteriorates the refractoriness and the concentration of iron which deteriorates the optical quality can be further decreased by using raw materials of high purity and/or using a more severe leaching condition.EXAMPLE 2In each of the following experiments, a dialyzer tube 4 in length arid 0.5 in diameter is closed at one end and then filled with 40°Be aqueous sodium silicate solution. The tube is closed at the other end. The closed tube which has a length of 2.5 is almost filled with silicate solution and contains very little air space. The tube is completely immersed in a horizontal position in 3000 ml 50% aqueous aluminum sulfate solution for the desired time. The deposited porous vitreous body is separated from the dialyzer tube and washed with water. The wall thickness of the washed product is measured. The results of various experiments are shown in Table 4.TABLE 4Average temperature of the experiments = 24°C.This example verifies that wall thickness of the deposited porous body is directly proportional to the duration of combination of the two solutions. In the above experiments, changes in length and in diameter of the dailyzer tubes are practically zero, presumably because the osmotic pressures of the two solutions are very close. It has to be noted that reaction between aqueous aluminum sulfate solution and aqueous sodium silicate solution is very slow. Other reactions like the reaction between aqueous ammonium chloride solution and aqueous sodium silicate solution are very fast and a consider¬ able amount of wall thickness of porous body can be built up in a very short time. EXAMPLE 3In the experiments of Example 1, it is found that the shape and size of the deposited porous body were slightly different from the original shape and size of the membrane. This is due to the rapid osmotic absorption of the second solution within the tube towards the beginning of the experi¬ ment. This leads to a development of pressure and makes the membrane dimensionally unstable. In the following experi¬ ment (Experiment No. 12) the system is buffered with respect to change in pressure. A dialyzer tube 0.5 in diameter and 20 in length is closed at one end and is partially filled with 75 ml 40 Be aqueous sodium silicate solution. The open end of the dialyzer tube is fastened to a support and the tube is suspended vertically in 5000 ml 0.5% aqueous ammonium chlo- ride solution so that 75% of the solution within the dialyzer tube is immersed in ammonium chloride solution. The part of the dialyzer tube which is not filled with silicate solution remains more or less collapsed. The initial rapid diffusion - of the second solution into the tube is thus prevented by a counter acting hydrostatic pressure. Further, solution diffused into the dialyzer tube is accommodated by the inflation of the collapsed portion of the dialyzer tube and this prevents any dimensional instability of the immersed portion of the dialyzer tube. The deposited porous glass tube is found to be perfectly cylindrical conforming to the shape and size of the dialyzer tube. The average room temperature recorded during the experiment is 24°C.It is found that non-uniformity in deposition can be caused by variation in pressure from point to point in a porous container. This gives rise to a problem when the portion of the porous container directly involved in the deposition process had a large vertical length. This problem can be minimized or eliminated by positioning the porous container in the second solution to occupy the shortest vertical distance, and providing the porous container with a flexible non-porous closure which can expend to relieve the pressure developed in course of the process. It is preferable to have the porous container as rigid as possible and to have solutions of very close osmotic pressure. An alternative method for relieving the pressure is to provide the opening of the porous container with a solution-tight piston which can yield to pressure by moving away from the container across a path enclosed by a non-porous structure. In another alternative method a hollow needle may be used to bleed off excess pressure.EXAMPLE 4138 gms potassium carbonate, 248 gms boric acid and 314 gms germania are intimately mixed together and the mixture is vitrified by melting in the ceramic crucible at 1300°C. While hot, the molten mass is poured into 1000 ml of water at room temperature whereby the glass is broken into numerous fragile particles. The mixture is filtered and both the resi- due and filtrate are further treated. The residue is ground to powder which is then added back to the filtrate and the combina¬ tion is heated at 100°C for one hour to dissolve as much solute as possible. The volume of the solution is adjusted to 1000 ml. The potassium borogermanate solution thus obtained contains one mole of K2O, two moles of B2O3 and 3 moles of GeO2. The solu¬ tion appears turbid, presumably due to the homogeneous suspen¬ sion of some undissolved solute in colloidal dimension.15,000 ml of pH 5.00 acetic acid-sodium acetate buffer solurion is prepared as follows. 10,000 ml sodium hydroxide solution and 10,000 ml acetic acid solution, each of approximately 0.5N concentration are made. The actual concentrations of acetic acid solution and sodium hydroxide solution are determined by titration and are found to be 0.500N and 0.426N respectively. Using these values, a 15,000 ml pH 5.00 acetic acid-sodium acetate buffer is prepared by adding 6420 ml of sodium acetate to 8580 ml of acetic acid.In each of the following experiments, a dialyzer tube 0.5 in diameter and 20 in length is closed at one end and is partially filled with 75 ml aqueous potassium borogermanate solution. The open end of the dialyzer tube is fastened to a support and the tube is suspended vertically in 5000 ml acetic acid-sodium acetate buffer solution so that 75% of the solution within the dialyzer tube is immersed in buffer solution and the other 25% of the solution stays above the buffer solution. After the desired length of time, the deposited porous glass body is taken out and is separated from the dialyzer tube.The porous glass tube is washed with water five times and dried at room temperature for two days. The samples from several locations inside glass tubes are analyzed for potassium oxide concentration. The results of various experiments are shown in Table 5. TABLE 5This example demonstrates the use of a complex solute (consisting of more than two oxides) in the first solution and the use of a buffered second solution containing an organic acid. Further, this example demonsrates the existance of a composition profile which is a function of time.EXAMPLE 5To 1000 ml vigorously boiling distilled water is added drop by drop, a freshly prepared solution made by dissolving 5gms of ferric chloride in 5 cc of water. As each drop falls into the boiling water, ferric chloride suffers hydrolysis, forming a beautiful deep red ferric oxide sol. The sol obtained is rapidly dialyzed in a cellphane bag against warm water to free it from the hydrochloric acid and undecomposed ferric chloride. The purified sol is then concentrated to a volume of 10 ml by slow evaporation.In the following experiment (Experiment No. 16) 75 ml red colloidal solution is prepared by uniformly mixing 70 ml of 40°Be aqueous sodium silicate and 5 ml of ferric oxide sol. A dialyzer tube 0.5 in diameter and 20 in length is closed at one end and is partially filled with 75 ml red colloidal solution. The open end of the dialyzer tube is fastened to a support and the tube is suspended vertically in 5000 ml 0.75% aqueous ammonium nitrate solution So that 75% of the solution within the dialyzer tube is immersed in ammonium nitrate solution and the other 25% of the solution stays above the ammonium nitrate solution. After 30 hours, the deposited red porous body is taken out and is separated from the dialyzer tube. The deposited porous body on analysis shows the presence of ferric oxide. The average room temperature recorded during the experiment was 24°C. This example demonstrates the use of an additive in the first solution to incorporate a modifying compound in the deposited porous hody.EXAMPLE 6In the following experiment (Experiment No. 17), a dialyzer tube 0.5 in diameter and 20 in length is closed at one end and partially filled with 75 ml of 40° aqueous sodium silicate solution. The open end of the dialyzer tube is fastened to a support and the tube is suspended vertically in 5000 ml 0.5% aqueous ammonium chloride solution so that 75% of the solution within the dialyzer tube is immersed in ammonium chloride solution and the other 25% of the solution stays above the ammonium chloride solution. After 25 hours of reaction, the solution within the dialyzer tube is replaced by 70 ml of of aqueous potassium borogermante solution as prepared inExample 4; other conditions of the experiment remain unchanged. The reaction is allowed to continue for another 25 hours. The deposited composite porous glass is taken out and is separated from the dialyzer tube. The average temperature recorded during the experiment is 27°C. The porous body, after washing with water two times, is leached with 0.005N H2SO4 at 27°C for 10 hours to remove sodium ions and potassium ions and then washed with water to remove acids. The porous body after washing is dried at 21°C for 48 hours to remove most of the physically bound water. It is heated under vacuum at the rate of 100°C per hour up to 600°C. The vacuum is then taken off and the porous glass is treated with SO3 vapor for 2 hours at 600°C. This process removes the chemically bound water. The porous glass is subjected to vacuum again and the temperature is raised again at the rate of 100°C per hour until the porous body is consolidated at 1450°C to a transparent non-porous glass tube. The tube is a composite with the outer wall substantially made of silica and the inner wall substantially made of germania.EXAMPLE 7In the following experiment (Experiment No. 18) doping with cesium salt is performed using the porous silica glass made in Example 3. For good optical quality, both the cesium salt and the porous glass need to be purified. The purification of porous glass is done by leaching with 0.005N H2SO4 at 27°C for 10 hours. A more severe leaching condition is next adopted by leaching the porous glass with 2N H2SO4 at 95°C for 24 hours. The tube is washed with water to remove acids and is ready for the doping operation.Commercial grade CsNO3 contains 3 - 5 ppm of iron which is detrimental to the optical quality of glass. It is found that a solution of CsNO3 saturated at 100°C has a pH of 6, at which some iron must precipitate in order to maintain the solubility product of Fe(OH), at its extremely low value. 250 ml of solution of CsNO3 saturated at 100°C is vigorously boiled under reflux for 6 hours. The solution turns reddish due to precipitation of Fe(OH)3 and the filtered solution is cooled to crystalization at 23°C. The crystals are separated by filtration and the filtrate which is a saturated solution of CsNO3 in water at 23°C is used in the doping process.To 100 ml of CsNO3 solution is added 200 ml of liquid NH,. The purified porous glass tube is dipped into the above solution. In this process, the protons from the porous glass are replaced by the cesium ions. The ion exchange is complete in three days. The tube which looks white is washed with water to remove CsN03 and NH3. The tube is dried at 23°C for 48 hours to remove most of the physically bound water. It is heated under vacuum at the rate of 100°C per hour up to 600°C. It is held at that temperature for 2 hours. The temperature is raised again at the rate of 100°C per hour until the porous body is consolidated at 1450°C to a trans¬ parent non-porous glass tube.It is found that the first solution and the second solution used in the above examples would form a gel when combined without the use of a porous container. The use of a porous container densifies the gel structure which is intra- connected so as to form a self-supporting porous structure. Thus, although the discussion and the example mainly concern themselves with the formation of certain inorganic oxide porous bodies by acid-base type reactions within a porous container, any reaction in which the reactants fulfill the requirement of gel formation and the requirements of permeability for one and impermeability for the other will be suitable for formation of a porous self-supporting body. Thus manufacture of metallic glasses, organic glasses and other inorganic glasses is possible by the process of this invention. In the method thus generalized for low temperature synthesis of a porous self-supporting body a first solution containing at least one first solute and a second solution containing at least one second solute are provided, wherein the first solution is capable of reacting with the second solution to form a gel. The first solution is confined within a porous container the walls of which are sub¬ stantially impermeable to the first solute and the second solution is diffused into the porous container the walls of which are substantially permeable to the second solute. Within the porous container the reaction between the first solution and the second solution takes place to deposit a porous self-supporting body on the walls. The selection of the concen- tation of the first solution and of the concentration of the second solution are done by trial and error. The first solution and/or the second solution may contain additives to have desired effects. The additives are, for example, peptizing agents, coagulating agents, protective colloids, structure modifiers and composition modifiers as known in the art. Additives offer resistance to the movement of the first solute and this may cause an otherwise permeable (through the walls of the porous container) first solute to become an apparently impermeable one. A weakly gel forming reaction can be converted into a strongly gel forming one by use of certain additives. The porous self-supporting body can be purified, dried and consolidated to a non-porous body. The following table summarizes different types of reactions which can be used to synthesize a porous self-supporting body. TABLE 6 By using the process of this invention vitreous bodies and their intermediates can be made at a much lower cost,with much higher purity, in virtually unlimited compositions and in virtually unlimited shapes. It has a great deal of operational flexibility which is a contrast to the tedious conventional process. The simplicity of the process allows it to be prac¬ ticed in a light chemical facility provided with a minimal number of process accessories. Most of the raw materials useful for the process are cheap, easily available and pose very little danger to the environment. Many of the raw materials can be made indigenously. Atmospheric pollution due to emission of harmful gases is totally absent in many cases and this is a big plus over direct melting processes where pollution is caused by oxides of nitrogen, phosphorus, arsenic, carbon and sulfur.The porous self-supporting body prepared by this invention has many desirable physical and chemical properties. These are high refractoriness, chemical inertness, large surface area, controlled porosity and exceptional purity. The main uses of the porous body are as a filtering medium, as a carrier, as an absorbent and as an ion-exchange medium.Dispersed solids can be separated from liquids and gases by means of the porous body. The separation is based on the molecular size and the porous body can be used for purifi- cation of toxic gases and polluted air and for separation of suspended impurities from waste water.Dissolved solute on the other hand, can be separated from the solvent by hyperfiltration using a membrane made from the porous body of this invention. For this purpose the porous body is considered to be superior to the organic membrane com¬ monly used. Use of an asymmetric membrane will contribute to more efficiency. The separation is based on reverse osmosis and can be used for desalination of saline water, purification of waste water and separation of mixtures of fluids from one another.Dissolved solutes can be separated from one another by ultrafiltration using a membrane made from the porous body of this invention. As in the case of hyperfiltration, an asymmetric membrane will be found more useful in this case. The separation is based on molecular sizes and can be used in laboratory and industrial dialysis. When coated with non- thrombogenic material, the membrane can be used in an artificial kidney.Other potential uses of ultrafiltration or hyper- filtration using a membrane made from a porous body of this invention are in the dairy industry, in food processing, in pulp and paper manufacture and in electroplating waste treatment. The membrane useful for ultrafiltration and hyper- filtration can be in the form of flat membranes, tubes or hollow fibers which are easy to fabricate by following the process of this invention.The porous body can be used for chromatographic applications and as a carrier for biologically active materials such as antigens, antibodies and enzymes. As a catalytic support, the porous body will find applications in chemical process industries like petroleum refineries and in the cata¬ lytic converters of internal combustion engines.The porous body of this invention is a strong absorbent for certain types of molecules which may be solids, liquids or gases. As an absorbent, it can purify liquids and gases like purification of air in an enclosed space and puri¬ fication of beer and wine. It can be used as a drying agent to remove moisture from a system. It can be used to separate a mixture of gases and mixture of liquids which are not readily separable by any other means. An example is the separation of n-hexane and n-octane.The porous body of this invention is a very good medium for ion exchange. The exchange is conveniently done by following the procedure disclosed in U.S. patent application Serial No. 832,230, filed September 12, 1977, by M. Samanta.A prospective use will be purification of nuclear waste liquid containing radiocesium Cs137. When a porous body immersed in waste liquid is treated with NH3, Cs137will be absorbed in the porous body and other radioactive impurities like radio- strontium will be precipitated. The precipitate and porous body will be separated from the liquid which will thus be free from the radioactive material. The precipitate can be properly sealed in a suitable container and the porous body can be consolidated before disposal of the concentrated waste.An alternate procedure will be to exchange the protons in the porous body with Li+, Na+ or K+ and then treat the nuclear waste liquid with the exchanged porous body whereby all the radioactive cations will be absorbed within the porous body.A porous body exchanged with an alkali metal cation can be used for water softening, absorbing Ca++ and Mg++ during the process.The porous body prepared by this invention is hydro- philic and it has a strong affinity for water. A mambrane made from the body is readily wetted by water. The membrane will allow the water to pass through, but no air or gas entrained in the liquid will be able to pass. This property makes the membrane useful for intravenous injection devices where the passage of air into the veins has to be prevented by all means. The porous body prepared by this invention can be made hydrophobic by coating the hydrophilic surface with a hydrophobic material or by deactivating the surface hydroxyl groups. A membrane made from a body so treated will not be wetted by water. The membrane will allow air to pass through, but no water entrained in the air will be able to pass. Typical use of the membrane will be in the design of vents. The hydrophobic porous body has a strong affinity for gasoline and oil. So, it can be used for removal of water from gasoline and for removal of oil slicks from sea water.The porous body can be used as a filler and reinforce¬ ment for polymeric material and as a thermal insulator for home and industry. It can be used as an intermediate in processes for making foam glasses.Other uses of the porous body made by this invention are as an electrolytic separator in an electrochemical cell, as a microorganism-impervious cover for medical containers, as a matrix for a composite super conductive body and as a carrier for dynamically produced reverse osmosis membranes.The consolidated glass having a composition profile will have two basic uses. One will be glass strengthening, wherein glass will have a compressive skin because of the composition profile. Typical uses may be in high strength radar domes, and in chemical strengthening of laboratory and commer- cial glassware. The second basic use will be in fiberoptics. Because of the very high purity and the composition profile, glass will be used in making step-index and graded index optical fibers for optical communication and medical endoscopy. The proposed uses of consolidated glass without any profile potentially are many. This invention permits the making of glass within such wide limits of composition that virtually any desired mechanical, chemical, optical and dielectric property can be obtained by selecting a suitable composition. Important uses of consolidated glass should in¬ clude the uses related to household glassware, general labora¬ tory equipment, packaging for electrical components, mirror blanks for astronomical telescopes, acoustic delay lines, wind¬ shields for supersonic vehicles, accessories for thermonuclear reactors, and nose cones for intercontinental ballistic missiles.Of course, many variations and modifications of the subject invention are possible in the light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
I CLAIM;1. A method for the synthesis of a porous self-supporting body, comprising the steps of: providing a first solution containing at least one basic glass forming solute; providing a second solution containing at least one acidic solute; providing in contact with and separating said solutions a permeable barrier substantially impermeable to said at least one basic solute and substan¬ tially permeable to said at least one acidic solute; and permitting said second solution to pass through said barrier to react with said first solution to deposit on the side of said barrier in contact with said first solution a porous self-supporting body.2. The method of Claim 1 wherein said permeable barrier is a dialyzer membrane.3. The method of Claim 1 wherein said at least one basic solute is selected from the group consisting of borates, aluminates, silicates, germanates, stannates, plumbates, phosphates, arsenates, antimonates, bismuthates, selenates, tellurates, zirconates, titanates, tungstates, vanadates and molybdates.4. The method of Claim 1 wherein said first solution is a true solution.5. The method of Claim 1 wherein said first solu¬ tion is a colloidal solution. 6. The method of Claim 1 and including the step of varying the time during which said solutions are in contact with said barrier so as to obtain a certain thickness for said deposited self-supporting body.7. The method of Claim 1 wherein said deposited self-supporting body is crystalline.8. The method of Claim 1 wherein said deposited self-supporting body is partially vitreous and partially crystalline.9. The method of Claim 1 wherein said deposited self-supporting body is vitreous.10. The method of Claim 1 and including the step of heating said porous body to consolidate it into a non- porous vitreous body.11. The method of Claim 1 and including the steps of: leaching said porous body with acid: washing said porous body with water: drying, said porous body; and heating said porous body to consolidate it into a non-porous vitreous body.12. The method of Claim 1 and including the step of doping said porous body.13. A product made by the process of Claim 1. 14. A product made by the process of Claim 10.15. The method of Claim 1 wherein said first solution contains an additive.16. The method of Claim 1 wherein said second solution contains an additive.17. The method of Claim 1 wherein said first and second solutions contain additives.18. The method of Claim 1 and including the step of varying the rate of deposition of said self-supporting body.19. The method of Claim 1 and including the step of varying the rate of reaction by varying the concentrations of said solutions.20. The method of Claim 1 and including the step of varying the rate of reaction by varying the temperature of said solutions.21. The method of Claim 1 and including the step of varying the rate of reaction by varying the relative pressures of said solutions.22. The method of Claim 1 and including the step of varying the porosity and pore size of said self-supporting body by varying the concentrations of said first and second solutions. 23. The method of Claim 1 and including the step of varying the porosity and pore size of said self-supporting body by varying the concentration of said first solution.24. The method of Claim 1 and including the step of varying the porosity and pore size of said self-supporting body by varying the concentration of said second solution.25. The method of Claim 1 wherein said at least one acidic solute is seleced from the group consisting of acids and salts of strong acids and weak bases.26. The method of Claim 1 wherein the concentration of said first solution is such that one liter of said first solution contains from 0.10 moles to 40 moles of at least one glass forming oxide.27. The method of Claim 1 wherein the solvents for said- first and second solutions are selected from the group consisting of water, hydrocarbons, alcohols, ketones, ethers, carboxylic acids and mixtures thereof.28. The method of Claim 1 wherein said at least one basic solute is a simple solute consisting of two oxides.29. The method of Claim 1 wherein said at least one basic solute is a complex solute consisting of more than two oxides30. The method of Claim 1 wherein said at least one acidic solute is a salt of a strong acid and a weak base.31. The method of Claim 1 wherein said at least one basic solute is selected from the group consisting of silicates and germanates. 32. The method of Claim 1 wherein said barrier is in the form of a container with said first solution on the inside of said container and said second solution on the outside of said container.33. The method of Claim 1 wherein said barrier is in the form of a shaped article whereby said porous self- supporting body conforms to the shape of said barrier.34. A pro duct made by the process of Claim 33.35. The method of Claim 1 and including the step of changing the compositions of said first solution and said second solution during deposition of said self-supporting body to develop in said body, layers of different composition.36. The method of Claim 1 and including the step of changing the composition .of said first solution during deposition of said self-supporting body to develop in said body, layers of different composition.37. The method of Slaim 1 and including the step of changing the composition of said second solution during deposition of said self-supporting body to develop in said body, layers of different composition.38. The method of Claim 1 and including the step of continuously varying the composition of said first solution and said second solution during deposition of said self- supporting body to develop in said body a continuous variation in composition. 39. The method of Claim 1 and including the step of continuously varying the composition of said first solution during deposition of said self-supporting body to develop in said body a continuous variation in composition.40. The method of Claim 1 and including the step of continouously varying the composition of said second solution during deposition of said self-supporting body to develop in said Body a continuous variation in composition.41. The method of Claim 1 and including the step of varying the time during which said solutions are in contact with said barrier so as to develop a certain composition profile for said porous self-supporting body.42. A method for the synthesis of a porous self- supporting body, comprising the steps of:providing a first solution containing at least one gel forming solute: providing a second solution containing at least one solute which will form a gel with the said first solution: providing in contact with and separating said solutions a permeable barrier substantially impermeable to said at least one first solution solute and substantially permeable to said at least one second solution solute: and permitting said second solution to pass through said barrier to react with the said first solution to deposit on the side of said barrier in contact with said first solution a porous self-supporting body. 43. The method of Claim 30 wherein said salt of a strong acid and a weak base is an ammonium salt,44. A product made by the process of Claim 41.45. A product made by the process of Claim 40.
SAMANTA M
SAMANTA M
WO-1978000004-A1
1,978,000,004
WO
A1
EN
19,781,207
1,978
20,090,507
new
F16L13
F16L23, F16L47, B23P11
B23P11, F16L13, F16L23, F16L47
B23P 11/02B, F16L 13/00C, F16L 23/024, F16L 47/22
PIPES AND COUPLINGS AND METHOD OF COUPLING PIPES
A method of securely joining a pipe (1) to a pipe fitting (3) without the need for rotating either element. The fitting (3) or in some cases the pipe (1), is expanded by heating whereby the other element may be inserted in it and the elements are secured together upon cooling by the interengagement of matching grooves (4) and ribs (14) which are provided on the circumferential surfaces of the elements.
Pipes and couplings and method of coupling pipesField of ApplicationThe invention relates to a method of joining pipes to couplings or other fittings, and pipes and couplings or fittings for joining by the method.Disclosure of inventionVarious methods of joining pipes have been known in the prior art but some of these, including the screwing of one element into the other, whilst producing a secure joint, have been impractical in the assembly of complex pipework systems, and the present invention offers the advantage, among others, of ease of installation without loss of security.According to one aspect of the invention there is provided a method of joining members comprising first and second pipe elements of which one member is of thermally expansible material and has an internal cylindrical surface of diameter generally corresponding to the diameter of the cylindrical external surface of the other member, wherein one of said surfaces has at least one circumferential groove therein and the other of said surfaces at least one matching circumferential rib projecting outwardly therefrom, the method comprising expanding the said one member to an extent dependent on the outward extension of said rib or ribs by heating below its melting point to enable one of said membe to enter the other beyond the rib or ribs, assembling the members one within the other, with the or each rib in regis with a corresponding groove, and allowing the expansible member to contract by cooling on to the other member so that the or each rib engages in a corresponding groove.Preferably the said one member is expanded to such an exten that the other member can enter it only by elastic de- formation of the said rob or ribsPreferably there is a plurality of spaced grooves and matching ribs, and the grooves and ribs are of ratchet-like configuration. A sealing and/or sliding agent may be appl to at least one of said surfaces.According to a further aspect of the invention there is provided a combination of members comprising first and second elements characterized in that one member has an internal cylindrical surface of diameter generally corresponding to the diameter of the cylindrical external surface of the other member when both members are at the same temperature, one of said surfaces has at least one circumferential groove therein and the other of said surfaces has at least one matching circumferential rib projecting outwardly therefrom, and the said one member is made of material having such a co-efficient of thermal expansion that it can be expanded by heating below its melting point to such an extent that the one of said member is to enter the other beyond the rib or ribs so that on contraction of said one member the or each rib can engage in a corresponding groove. Prefereably there is a plurality of spaced grooves and matching ribs, and the grooves and ribs are of ratchet-like configuration.According to yet a further aspect of the invention there is provided a pipe element for combination with a further pipe element as aforesaid.Description of FiguresFigures 1 to 4 show sections through combinations of pipes and fittings according to the invention.Description of InventionEmbodiments of the invention will now be described by way of example and with reference to the drawings.The combination shown in Fig. 1 comprises a pipe 1 having a free end 2 and a flanged coupling 3. The pipe 1 is of polypropylene, but inother embodiments may be of other plastics material such as polyethylene, or of metal or other suitable material. The flanged coupling 3 is also of polypropylene, any substitute for which, in other embodiments, will be expansible by heating below its melting point to an extent indicated below.The pipe 1 has an external diameter <3, and at its free end 2 is machined or otherwise formed with circumferential grooves 4. Each groove is defined by a wall 5 substantially perpendicular to the axis of the pipe and an inwardly inclined wall 6, the perpendicular wall being nearer the open end of the pipe. The length of the grooves in the direction of the axis of the tube is 9.5mm. The coupling comprises a flange portion 7 provided with holes 8 for mounting the coupling. Extending from the flange portion is a tubular portion 9 having an internal annular flange 10 which provides an annular shoulder 11 for abutment with end face 12 of the pipe 1 when assembled as will be described below. Between the flange 10 and the open end 13 of the tubular portion 9 of the coupling 3, the internal surface is formed with what may be regarded as a series of circumferential ribs 14 extending outwardly (that is to say towards the axis of the tube) from a theo- retical cylindrical surface of diameter d_. The ribs 14 have faces which are respectively substantially perpendicula to the axis of the tube and inclined at the same angle as the walls 6 of the grooves 4 of the pipe 1. The length and the outward projection of the ribs 14 also correspond to the length and depth of the grooves 4. Between the innermost rib and the shoulder 11 the internal surface of the tube 9 is tapered at 15 at an angle corresponding to the taper 16 at the end 12 of the pipe 1.Typically, the diameter d_ is 50mm and the depth of the groov 4, equal to the projection of the ribs 14, is 2mm. As shown in the drawings that projection of the ribs 14 prevent the insertion of the end 2 of the pipe 1 into the coupling 3 without the distortion of one or other of the components.However, the material of construction of the coupling 3 is such that on heating to a temperature below its melting point, it expands by an amount at least equal to twice the projection of the ribs 14 in a length d_ of the material. Such an expansion will enable the end 2 of the pipe 1 to be inserted into the couplings; a slightly smaller expansion will permit the insertion only by a slight distortion of one or both of the components such as might be effected in a thermal plastics material under an applied load without exceeding the elastic limit.In practice of the method of the invention the coupling 3 is heated in a uniform manner by means for example of hot air, hot oil or by the fluid bed technique. The temperature rise is controlled so that the component does not reach the softening point of the material but sufficiently to ensure that the internal diameter between the peaks of the ribs 14 is only so slightly less than d_ that the end 2 of the pipe 1 can be inserted in the coupling with a snap action by imparting a sharp tap on the coupling in the direction of the axis of the pipe. The end face 12 of the pipe 1 engages the shoulder 11 and thus ensures that the ribs 14 and grooves 4 are in register with one another and, in the absence of a similar force acting in the opposite direction, the pipe 1 will not snap out again. With the source of heat removed, the coupling 3 will cool and return to its original dimensions; in the fully cooled state the components will fit tightly with one another with each rib engaged in a corresponding groove. A certain amount of tolerence can be provided by adjustment of the diameter of the pipe and coupling and of the dimensions of the ribs relative to the grooves, and improved sealing may be afforded by providing a sealing compound in the grooves or between the ribs before assembly of the components. if polytetrafluoroethylene paste is used as the sealing compound, it will also aid the slipping of one component relative to the other. Because of the ratchet-like shape of the ribs and grooves, couplings so assembled will be substantially permanent unless a means can be found of re-heating the coupling without at the same time expanding the pipe.It is envisaged that a range of fittings, such as the coupling 3, will be provided to correspond with pipes having a range of external diameters, The pipes, when cut to the required length, will be cut with external grooves in a similar manner to that in which pipes are sometimes threaded. However, the provision of grooves will be somewhat simpler than the provision of threads and the assembly of the components will be far simpler than screwing of components.Figs. 2 and 3 of the accompanying drawings show respectively an elbow and a T-joint, whilst Figure 4 shows an alternative form of flange fitting. in the fittings shown in Figures 2 to 4, the pipe elements in the form of components respectively designated 20, 21 and 22, are cut with grooves 4 on the outer cylindrical surfaces similar to the end 2 of pipe 1 in Figure 1. These components are joined to pipes, such as pipe 23, in Figure 4, by means of further pipe elements in the form of coupling sleeves 24. Each of the sleeves 24 has an internal annular shoulder 25, and between the shoulder and each open end has a series of ribs 26 formed similarly to ribs 14 on the internal surface of the tubular portion 9of flanged coupling 3. In order to join the pipe to the component the coupling sleeve, which is of thermally expansible material, is heated and snap-fitted to the other elements. It will be understood that the coupling sleeve may be moved relative to a stationary pipe or component, may be moved relative to a stationary coupling sleeve, or there may be movement of both in the snap-fitting operation depending on the requirements of the installation.Two pipes may similarly be joined by the use of a coupling sleeve as described above. Reverting to Figure 1, it will be clear that if the coupling 3 is not used as described above, the end face 13 is available for butt jointing to a pipe of internal diameter d_, and to this extent a coupling or other fitting according to the invention may be regarded as a dual-purpose article.In an alternative embodiment, which may not be quite so advantageous, the end of a pipe may be formed with circumferential grooves at its internal cylindrical surface and a corresponding coupling or other fitting formed with matching ribs at its outer surface. In these circumstances the end of the pipe will have to be expanded by heat to enable the elements to be inserted one within the other.It will also be understood that each of the pipe elements of a combination may comprise a pipe and thus two pipes may be joined one inside the other by the method without the use of a coupling, provided that the outer pipes is thermally expandable.
Claims1. A method of joining members comprising first and second pipe elements of which one member is of thermally expansible material and has an internal cylindrical surface of diameter generally corresponding to the diameter of the cylindrical external surface of the other member, wherein one of said surfaces has at least one circumferential groove therein and the other of said surfaces at least one matching circumferential rib projecting outwardly therefrom, the method comprising expanding the said one member to an extent dependent on the outward extension of said rib or ribs by heating below its melting point to enable one of said members to enter the other beyond the rib or ribs, assembling the members one within the other, with the or each rib in register with a corresponding groove, and allowing the expansible member to contract by cooling on to the other member so that the or each rib engages in a corresponding groove.2. A method as claimed in Claim 1 wherein there is a plurality of spaced grooves and matching ribs.3. A method as claimed in Claim 1 wherein the grooves and ribs are of ratchet-like configura ion.4. A method as claimed in Claim 1 wherein a sealing and/or sliding agent is applied to at least one of said surfaces 5. A method as claimed in any one of claims 1, 2, 3 or 4 wherein the said one member is expanded to such an extent that the other member can enter it only by elastic deformation of the said rib or ribs.6. A pipe element (9) having an internal cylindrical surface of a predetermined diameter, for combination with a further pipe element (2) having a cylindrical external surface of corresponding diameter which external surface has at least one circumferential groove (4) therein or at least one circumferential rib projecting outwardly therefrom, characterised in that said pipe element is provided εt its internal surface with a circumferential rib (14) or groove matching the or each groove or rib, respectively, of the said further pipe element (2) and that said pipe element (9) is made of material having such a coefficient of thermal expansion that it can be expanded by heating below its melting point to such an extent that said further pipe element (2) is able to enter it beyond the rib or ribs (14) so that on contraction the or each rib (14) can engage in a corresponding groove (4) .7. A pipe element as claimed in Claim 6 having a plurality of spaced grooves or ribs.8. A pipe element as claimed in Claim 6 or Claim 7 wherein the cr each groove or rib is of ratchet-like configuration.9. A combination of members comprising first and second pipe elements characterised in that one member has an internal cylindrical surface of diameter generally corresponding to the diameter of the cylindrical external surface of the other member when both members are at the same temperature, one of said surfaces has at least one circumferential groove therein and the other of said surfaces has at least one matching circumferential rib projecting outwardly there¬ from, and the said one member is made of material having such a co-efficient of thermal expansion that it can be expanded by heating below its melting point to such an extent that the one of said members is able to enter the other beyond the rib or ribs so that on contraction of said one member the or each rib can engage in a corresponding groove.
ADVANCED CHEM EQUIP LTD; ADVANCED CHEMICAL EQUIPMENT LTD
ARMITAGE ARTHUR
WO-1978000007-A1
1,978,000,007
WO
A1
EN
19,781,207
1,978
20,090,507
new
F02D11
null
F02M47, F02M63
F02M 47/02D, F02M 63/02C, R02B 275/14
DIRECT INJECTION FUEL SYSTEM
Injection pressure generated by a suitable flow source (16) and a pressure-flow regulator (28) is carried by a common rail or manifold (20) to each injector valve of an engine. The valves (22) are of the closed differential needle, hydraulic-operated type, opening and closing for the injection period by virtue of hydraulic pressure imbalance and balance exerted on the effective piston areas of the valve needle. Balance conditions are controlled by fuel flow through ports and orifices (72, 74, 78, 102) of electric solenoid-operated sliding spool valves (52) by an engine-driven timer device (38, 40) which controls the start and end of the injection period. Controlled by-pass flow from the spool valves (52) may be collected by a low pressure manifold for return to the reservoir along with the overflow from a high pressure manifold (20).
DIRECT FUEL INJECTION SYSTEM Technical FieldThis invention relates to control of fuel injection in internal combustion engines, especially diesel. More particularly, it relates to a common-rail, closed dif¬ ferential needle, hydraulically operated injection valve system for fuel flow control.Background Art U.S.- Patent No. 3.537,547, which I will refer to hereinafter as the AMBAC system, employs a common rail for operation of a diesel engine. Two pumps are required, one a high pressure pump for operating a type of hydraul¬ ic ram which acts on fuel supplied by the other, a low- pressure pump. Fluid from the high pressure pump is not injected into the engine. In the AMBAC system, the fuel is delivered to the injection valves at an injection pres¬ sure equal to the pressure in the common rail. The fuel delivery from the low pressure pump to the ram is init¬ ially mechanically timed from the engine, and initially metered by adjustment of the low pressure pump. Final metering of fuel into the engine is determined by con¬ trolling the length of the injection period, this being accomplished by the high pressure as it varies the en¬ gine speed. As speed and pressure increase; injection duration decreases the so-called torque control. These timing and metering adjustments are critical and high¬ ly complicated. They require use of an expensive pump test stand which can be handled only by special tech¬ nicians.The prior art AMBAC solenoid is single wound and acts electrically in only one direction, return action being by spring. It can be used only on signal to be¬ gin an injection period, apparently playing no part in the duration. The single-wound solenoid operates through a diaphragm and push rod to open or unseat a ball-type check valve.The prior art AMBAC system also employs an hydraul¬ ic imbalance-operated valve, the imbalance being created by the solenoid-operated check on the valves. It is used to control high pressure from a high pressure common rail system to operate a hydraulic ram which forces fuel from the fuel source system into the injection valve for injection into the engine. This valve in itself Is non-adjustable, and in itself cannot control final me¬ tering or duration, this function being performed by the pressure variations in the high pressure system.Therefore, in view of the Inadequacies of the prior art AMBAC system as set out in aforesaid U.S. Patent No. 3,587,547, development of a simple, uncomplicated sys¬ tem for injecting diesel fuel to an engine at the right time and In the right quantity to obtain peak power without an undue amount of pollution represents a high¬ ly desirable result. Furthermore, there is a need for such an improved fuel injection system which does not require the expensive percussion-built injection pumps now in use and one which will permit manufacture and use of economic diesel passenger cars at substantial saving of fuel and improved pollution control.Disclosure of the Invention After extended investigation I have developed just such an improved fuel injection system, particular¬ ly useful for diesel engines.In its broader aspects my invention involves a single-pump fuel injection system In which the pump is of the positive displacement type capable of pro¬ viding sufficient cooling flow against the required rel¬ atively high pressure suitable for proper Injection. The pump of my system may be driven by an associated engine or by other means.According to my invention, a common rail manifold connected to the pump discharge is also joined to a plurality of injection valve assemblies and pressur¬ ized to injection pressure by a pressure-regulating relief valve located at the manifold end opposite the inlet. Overflow from this valve may be piped back to a reservoir. Equal pressure is employed at each valve inlet, with minimum injection lag resulting.The injection valves of the system of the invention are of the closed, differential needle, hydraulic-op¬ erated type, modified according to the invention so that they may be both opened and closed by hydraulic pres¬ sure. This modification makes the spring chamber func¬ tion as a pressure chamber. The injection valve spring helps close the valve at the end of injection. Adjust¬ ments may be made to obtain the proper rate of inject¬ ion and valve balance for best efficiency.An important feature of my invention comprises electrically operated sliding spool valves which cause the mechanical motion of the injection valve needle by controlling the hydraulic pressure balance conditions exerted on the valve needle. Each of the spool valves of the invention consists of two sections, the spool having three lands and two undercut sections. One sec¬ tion controls a by-pass flow from the spring chamber of the injection valve by opening or closing a port leading to a by-pass manifold. The other section re¬ ceives injection pressure from the high pressure system and passes it through a combination port-orifice into the injection valve spring chamber. In the non-inject position, the by-pass port of the first section remains open, permitting flow from the spring chamber, and the port-orifice is in the orifice condition by means of the spool land forming a restriction. Flow through this orifice causes a pressure drop in the spring chamber and allows injection pressure on the valve needle to open the valve for injection.One advantage of my invention is the possibility of using a common low pressure by-pass manifold to re¬ ceive fuel by-passed by the spool valve and connect with the overflow return line from the high-pressure mani¬ fold. Double-wound solenoids may be employed to actuate the spool valve spools in both directions. Solenoid plungers may be used as extensions of the valve spools and equipped so as to hold the spools In their shifted positions. Also, by means of a travel adjustment, spool travel may be set, acting as an orifice size adjustment and rate of injection adjustment. The two oppositely wound solenoid coils may be terminated at three exter¬ ior connectors in such a way as to provide positive bi¬ directional valve spool motions as each coil may be commonly connected to one of three terminals, and this terminal connected by wiring to a suitable electric power source through an on-off control switch. The other two ends of the two coils may be separately connected to the other two terminals, and these terminals connect¬ ed by wiring to proper respective terminals on a timer.According to my invention the preferred timer de¬ vice is mechanically driven by and timed to the engine of my injection system and includes two sets of contacts mounted on suitable bases, with one set to control start of injection and the other to control the end of injection. Each set contains a separate contact for each Injection valve of the engine, and these contacts are connected by wiring to corresponding terminals on the aforesaid solenoids. Included may be a rotating con¬ tact or brush for use in energizing the solenoids in se¬ quence.One set of contacts amy be made variable in relation to the other set so that the length of the injection period may be varied, thereby achieving control of me¬ tering and engine speed.Normal shutdown may be accomplished by an on/off switch.Emergency shutdown may be accomplished by a manual control on a pressure relief valve to dump off the in¬ jection pressure in the high pressure manifold.According to my invention I prefer to use a var¬ iable speed type governor to throttle the engine. This governor employs a fulcrum lever to articulate a mov¬ able contact disc in a timer. The governor is thus en¬ abled to read the engine speed and automatically set the fuel delivery for the particular engine speed read. This, especially when combined with my system of meter¬ ing, which is accomplished by electrical control of duration of injection, permits the air-fuel ratio to be strictly and easily adjusted on the engine inframe at any and all engine RPM points by matching the fuel delivery curve to a volumetric efficiency curve, there¬ by insuring peak torque with a minimum of pollutants and substantially no smoke. signal source 118 Includes as basic components there¬ of a rotatable contact plate 120, for injection dura¬ tion control, a grounding bush rotor 122 and a stat¬ ionery contact plate 124 timed to the engine.In the timer-governor of Fig 5 the setting of throttle 108 controls the operation of the governor. The brushes complete the circuit to open the coil in the solenoids such as the one depicted in Figs 2 and 3. One set of double windings (64 of Figs 2 and 3) is to pull the valve into position. The stationary contact plate 124, which is timed to the engine via the cam¬ shaft gives a constant beginning of injection by pull¬ ing the valve to open the port or a constant ending by pushing the valve to close the port. The other plate 120, rotatable, lags behind. When the amount of fuel needed by the engine is injected as dictated by the gov¬ ernor throttle, a second brush contacts the other plate and de-energizes the opposing set of windings, causing the solenoid to go in the other direction. Contact plates 120 and 124 are adjustable at the initial timing.It can be readily seen from the foregoing descrip¬ tion that my fuel injection system, by providing control of pressure by a spool valve-solenoid arrangement, elim¬ inates a leak-off chamber and permits improved fuel in¬ jection or delivery and obtains optimum efficiency by better control of fuel-air ratio. Constant high pressure rail and manifold system such as depicted in Fig 1 which employs a single high pressure pump for both pressure and fuel delivery. The spool valve-solenoid arrangement such as shown in Fig 4 controls the pressure so that the high pressure source is tapped off, with the spool valve, which is electrically controlled by the solenoid, going down as pressure comes in via lower lines 98 and 78 and then back through by-pass inlet port 76 and line 96 into chamber 86 as by-pass outlet port 74 connected to by¬ pass manifold 32 of Fig 1 is closed. By-pass outlet port 74 is opened when the orifice formed near 80 becomes o- pen as the spool valves turn and go up, thus providing an exit for pressure in the injection valve, as In Fig 4, thereby dropping the pressure therein so that the constant high pressure opens the valve and injects fuel to the engine exactly as needed in a controlled manner as the needle valve 94 moves.Following are several features or advantages of the fuel injection system of the invention.1. A single high pressure pump or fuel to be in¬ jected and an injection pressure which is set and con¬ trolled by a compound pressure-regulating valve where¬ by excess may be spilled back to a tank. No adjustment of the pump is necessary, the injection pressure being adjustable by the regulatory valves.2. An impulse source to begin and end injections, the duration being variable by a movable set of contacts. Beginning and ending of injection may be either constant- variable or vice-versa.3. Hail pressure is dictated by setting a compound pressure relief valve. 4. A double wound solenoid enables positive elec¬ trical action in either of both directions upon sig¬ nals for a definite beginning and ending of the injec¬ tion period. It is mechanically connected to and op¬ erates an associated spool valve.5. An electrically operated solenoid valve with two sections or chambers. One section starts or stops fuel flow into a by-pass manifold, and the second sec¬ tion restricts or opens an orifice, creating a pressure drop or pressure balance on an Injection valve needle, thereby opening and closing it for injection. Because the valve spool travel is adjustable, it regulates the size of the orifice, the rate of pressure drop, the valve opening and the rate of injection.6. Capability of obtaining an optimum fuel air ratio (20:1 running) for a maximum 90% volume efficiency. Since conventional intake manifolds have no butterfly controls, the amount of air in the engine cuts back as the RPM increases. Since the fuel curve increases as the air curve increases, on accelerating, the engine fuel delivery must be cut back to between the torque peak and the hp peak. This can be done according to my invention by use of the nozzle valve being operated di¬ rectly hydraulically.While the invention has been described in terms of preferred embodiments, the claims appended hereto are intended to encompass all embodiments which fall with¬ in the spirit of the invention.
Having thus described my invention and certain pre¬ ferred embodiments thereof, I claim:1. In a fuel injection system an electrically operated spool valve device comprising in cooperative association a spool valve, a double-wound solenoid adapted to oper¬ ate said valve, an orifice adapted to be opened when the spool valve turns and moves upward, a by-pass port a- dapted to be opened when the spool valve turns and moves up, and entering and exiting channels adapted to be con¬ nected to an injection valve.2. The spool valve device of Claim 1 in cooperative as¬ sociation with at least one additional spool valve de¬ vice of the same structure in common manifold alignment.3. The spool valve device of Claim 2 in cooperative as¬ sociation with a governor, timer, pressure pump and in¬ jection valve.4. In a fuel injection system an Injection valve com¬ prising a high pressure inlet, a high-low pressure cham¬ ber, a nozzle body, a wall, an injection pressure cham¬ ber, a needle valve positioned at the end of said in¬ jection valve opposite said high pressure inlet, and lines adapted for releasing pressure from said inject¬ ion valve and returning pressure thereto.5. The injection valve of Claim 4 in cooperative as¬ sociation with a solenoid-operated spool valve where¬ by the pressure In said injection valve may be controlled. 6. The injection valve of Claim 5 wherein the solenoid- operated spool valve comprises the spool valve device of Claim 1.7. The injection valve of Claim 4 in cooperative assoc¬ iation with a governor, timer, pressure pump, common rail manifold and solenoid-operated spool valves and fuel source.8. A direct injection fuel system comprising in cooper¬ ative association a governor-timer, a single high pres¬ sure pump adapted to supply and distribute fuel at a controlled pressure and amount to an engine, and a com¬ mon rail manifold in association with a plurality of injection valves connected to corresponding solenoid- operated spool valves adapted to regulate the pressure in said injection valves.9. The system of Claim 8 wherein the governor-timer comprises a governor comprising a throttle, fulcrum lever, peak fuel adjuster, air-fuel ratio adjuster, an RPM reader, and, in association with said governor, a timer comprising a rotatable contact plate for injection duration control, a grounding brush rotor and a sta¬ tionary contact plate adapted to be timed to an engine.10. A process for controlling fuel-air ratio and pressure injection of fuel into an internal combustion engine which comprises generating injection pressure by a high pressure pump and a pressure-flow regulator valve, carry¬ ing same along with fuel by a common rail manifold to a plurality of needle valves in hydraulically operated in¬ jection valves, controlling fuel flow in said valves through pressure ports and orifices to and from a corres¬ ponding plurality of solenoid-operated sliding spool valves and employing a governor-timer to control, a- long with said spool valves, the starting and ending of the injection of fuel into said internal combustion en¬ gine. Having thus described my invention and certain preferred embodiments thereof, I claim:1. In a fuel injection system an electrically operated spool valve device comprising in cooperative association a reciprocating action spool valve operated by a double-wound solenoid and an Injection valve having two matching passages therebetween, apressure differential orifice created when, in operation, the spool moves from a non-inject to an inject position, said orifice adapted to be created when the spool valve moves upward, a by-pass port adapted to be opened when the spool valve moves upward, and entering and exiting channels.2. The spool valve device of Claim 1 in cooperative as¬ sociation with at least one additional spool valve device of the same structure in common manifold alignment.3. The spool valve device of Claim 2 in in cooperative as¬ sociation with a governor, timer, pressure pump and injection valve.4. In a fuel injection system an injection valve com¬ prising a high pressure inlet, a high-low pressure chamber, a nozzle body, a wall, an injection pressure chamber, a needle valve positioned at the end of said injection valve opposite said high pressure inlet, and interconnecting passages be¬ tween said injection valve and a reciprocating action spool valve operated by a double-wound solenoid, said passages adapted for releasing pressure from said injection valve and returning pressure thereto.5. The injection valve of Clain 4 in cooperative as¬ sociation with a solenoid-operated spool valve whereby the pressure in said injection valve may be controlled. 6. The injection valve of Claim 5 wherein the solenoid- operated spool valve comprises the spool valve device of Claim 1.7. The injection valve of Claim 4 in cooperative as¬ sociation with a governor, timer, pressure pump, common rail manifold and solenoid-operated spool valves and fuel .source.8. A direct injection fuel system comprising in cooper¬ ative association a speed governor which comprises a throttle and a fuel adjuster, a timer-made up of a rotatable contact plate for injection duration control, a grounding brush rotor and a stationary contact plate adapted to be timed to an engine, a single high pressure pump, adapted to supply and distribute fuel at a controlled pressure and amount to an engine, and a common rail manifold in association with a plurality of in¬ jection valves connected to corresponding solenoid-operated spool valves adapted to regulate the pressure in said injection valves.10. A process for controlling fuel-air ratio and pres¬ sure injection of fuel into an internal-combustion engine which comprises generating injection pressure by a high pres¬ sure pump and a pressure-flow regulator valve, carrying same along with a fuel by a common rail manifold to a plurality of needle valves in hydraulically operated injection valves, con¬ trolling fuel flow in said valves by means of a plurality of solenoid-operated sliding spool valves having pressure dif¬ ferential orifices created when the spools move from a non- inject to an inject position and employing a governor-timer to control, along with said spool valves, the starting and ending of the injection of fuel into said Internal combustion engine . STATEMENT UNDER ARTICLE 19STATEMENT EXPLAINING THE AMENDMENT AND DRAWING ATTENTION TO THE DIFFERENNCE BETWEEN THE REPLACED SHEETS AND THE REPLACEMENT SHEETSClaim 1 of replacement sheet 12 has been amended to make clear that(1) Applicant's spool valve is a reciprocating-action valve 24 operated by a double-wound solenoid 26, (2) The two principal parts (of which there may be a series) of Applicant's feed value system are the spool valve24 and the injection valve 22, which have two matching pas¬ sages 76, 96 and 78, 98 between them, as depicted in Fig. 4 in detail, and(3) The orifice near 80 Is a pressure-differential ori¬ fice created when the spool moves from a non-inject to an inject position (sheet 10, lines 1-15)In Claim 4 of replacement sheet 12 it is now specified, as with respect to Claim 1, that Applicant's valve 24 is a double-wound solenoid 26 and that there are interconnecting passages 76, 96 and 78,98 between the spool valve 24 and the injection valve 22 (sheet 10, lines 1-15).On replacement sheet 13 Claim 9 has been combined with Claim 8 to specify that Applicant's speed governor 106 (sheet 8, fourth to last line) is made up basically of a throttle 108 and a fuel adjuster 114 and that his timer 118 comprises a rotatable contact plate 120 for injection duration control (line 2, sheet 9), a grounding brush rotor 122 (line 3, sheet 9) and stationary contact plate 124 (line 4, sheet 9) adapted to be timed to an engine.Claim 10 bridging sheets 13 and 14 has been amended on replacements sheets 13 and 14 to specify how Applicant's solenoid-operated sliding spool valves have a pressure dif¬ ferential orifice created, as. explained hereinabove and in Applicant's specification, when the spool moves from a non- inject to an inject position (lines 1-15 - sheet 10). Please note in this respect Applicant's remarks hereinabove in con¬ nection with the changes made in Claim 1 on replacement sheet 12.
PFEIFFER W M
PFEIFFER W M
WO-1978000009-A1
1,978,000,009
WO
A1
XX
19,781,207
1,978
20,090,507
new
E03D9
B01D23, B63B29, E03D11, C02C1
E03D11
E03D 11/11
NON-POLLUTING TOILET SYSTEM
A toilet system capable of rendering the effluent innocuous and reducing the solid matter therein to microparticle size comprising a reversible, motor-driven pump (56) and a two-position valve (58) operable, on the one hand, for taking water into the system for flushing effluent from the bowl (10) into a treating chamber (12) and, on the other hand, to empty the treating chamber and discharge the effluent from the system so that both the pump and the valve are self-purging. There is a two-position switch (S3) for reversing the motor-driven pump and a valve rod (80, 82) for moving the two-position valve from one position to the other. A motor-driven macerator (54) in the treating chamber provides for effecting maceration of the effluent flushed into the treating chamber. A bacteriacide may be employed to render the effluent innocuous. The macerator is operable independently of the motor-driven pump so that the system can be purged without simultaneous operation of the macerator.
Non-Polluting Toilet System There is need for a non-polluting toilet system for marine use, recreational vehicles, mobile homes, vacation homes, construction sites, trains, planes and the like, regardless of whether or not sewer facilities are available. Chemical and incinerator-type toilet systems have been developed to meet the aforesaid means. However, such systems as have been developed have in common been unable to meet the good health and sanitary requirements and/or the federal standards with respect to decontamination and/or reduction in particle size or have not been sufficiently non- polluting as far as disease-causing bacteria are con¬ cerned; and have required extensive plumbing, holding tanks, pumps, valves and the like which are difficult to keep sufficiently clean to eliminate odor and which form a harbor for the development of bacteria. The objective sought herein was to design a system which would reduce the bacteria to zero or virtually zero coliform bacteria count and to reduce the solid content to microparticle size below any presently available system. Also, a system so designed as to simplify the plumbing, provide pump and valve components which are self-purging so as to eliminate the last vestige of odor and bacterial contamination, and the unpleasant duty of having to disassemble pumps, valves and the like in the system for cleaning. SUMMARY OF IN ENTION As herein illustrated, the toilet system comprises a bowl, a reversible motor-driven pump operable in one direction to supply flush water to the bowl to flush the same, a single treating chamber for receiving effluent flushed from the bowl, means for supplying a bacteriacide to the treating chamber and a macerator in the treating chamber for reducing the solid content to microparticle size. The macera- tion is effected in isolation from any other fluid. Valve means operable in one position to cause the' pump to effect flushing of the effluent from the bowl into the treating chamber and in the other position to discharge the treated effluent from the chamber provides for purging the system. There is a control circuit including switch means for reversing the motor-driven pump, switch means for initiating operation of the macerator motor, a timer for terminating operation of the macerator motor and manually or electrically- operable means for shifting the position of the valve. The treating chamber is of a predetermined capacity such as to receive a predetermined volume of effluent for treatment and the pump is designed to discharge the entire amount of the treated effluent from the treating chamber and terminate the macerating cycle.Alternatively, the system may be provided with two motor-driven pumps, one for delivering water to the bowl to effect flushing and the other to withdraw the treated effluent from the treating tank and discharging it, When a two-pump system is employed, a filtering assembly may be included so that the system becomes a closed loop wherein a predetermined quantity of water may be used repeatedly, thus to economize on the use of water. The invention will now be described in greater detail with reference to the accompanying drawings, wherein: FIG. 1 is a plan view of the toilet structure;FIG. 2 is an elevation taken from the left- hand side of FIG. 1;FIG. 3 is an elevation taken at the rear side of FIG. 1;FIG. 4 is a vertical section taken on the line 4-4 of FIG. 1;FIG. 5 is a fragmentary section taken on the line 5-5 of FIG. 4; FIG. 6 is a plan view partly in section of the motor-driven pump and valve assembly;FIG. 7 is a section taken on the line 7-7 of FIG. 6;FIG. 8 is a section of a modified form of the valve assembly;FIG. 9 is a wiring diagram of the control for operating the system; andFIG. 10 is a block diagram of the control for operating the system. FIG. 11 is an elevation of an alternative toilet structure wherein two motor-driven pumps are used;FIG. 12 is a plan view of the two motor- driven pumps; FIG. 13 is a block diagram of the control when using two pumps;FIG. 14 is an elevation of a filtering unit for use in connecting the system to a closed circuit; and FIG. 15 is a view similar to FIG. 6 showing an alternative valve assembly;FIG. 16 is an elevation partly in section of one of the valve components of the valve assembly shown in FIG. 15; andFIG. 17 is a section taken on the line 17-17 of FIG. 16. Referring to FIGS. 2 and 4, the toilet as herein illustrated comprises essentially a bowl 10,. a treating chamber 12 containing a macerator 14 and a combination pump and valve assembly 16, FIGS. 6 and 7, connected by suitable plumbing to the bowl and to the treating chamber in such a way as to enable delivering flush water to the bowl for flushing the effluent therefrom into the treating chamber and, after macera¬ tion has been accomplished, discharging the effluent from the system.The bowl 10 as shown in FIGS. 1 and 4 is of generally oval cross section and is provided at its rear end with an integral extension 18 and an upwardly inclined control panel 20 upon which are mounted switch means and indicators which enable conveniently initia¬ ting the flushing operation and/or the cleaning opera¬ tion and of determining at any time the condition of the apparatus. The upper or rim of the bowl 10 is provided with a downturned skirt 22 which extends all the way around and along the opposite sides of the extension and the panel to afford an attractive appear¬ ance. A seat 24 is mounted atop the bowl in conven¬ tional fashion and is provided for this purpose at its rear end with transversely spaced holes 26-26 for receiving hinge means for pivotally connecting the seat to the bowl. The lower end of the bowl, FIG. 4, has a centrally located opening 25 defined by an annular26.1 flange 2-6 which seats against a cover plate 30 at the top of the treating chamber 12. The plate 30 contains an opening 32 through which the effluent can be flushed into the treating chamber. A combination gasket and splash guard 27 is provided between the bowl and the treating chamber to provide a watertight joint and to prevent splash of the effluent during maceration up¬ wardly into the bowl.The treating chamber.12 is of generally cylindrical cross section at the lower part, having a side wall 34, FIG. 4, which is generally perpendicular to the bottom, except for one side, the forward side, which has an upwardly and forwardly divergent wall 36. The bottom wall 38 is of annular configuration and has at its center a step bearing 40. Near the bottom, at the side substantially opposite the forwardly divergent wall 36, there is a discharge port 42, FIGS. 4 and 5.The annular, hemitoroidal shape at the bottom is likeUnited States that in application/Serial No. 610,097, filed September4, 1975, for HYDRAULIC ATTRITION UNIT FOR MARINE now United States Patent 4,054,519 TOILETS /and provides in conjunction with the macerator blade an especially effective means for beating paper stock into its constituent fibers.The macerator 14 is mounted within the treat- ing chamber 12 in a housing 44, FIG. 4, provided .with a flange 46 at its top by means of which it is attached to the cover plate 30 within an opening 47. The housing 44 is of sufficient size to receive the macerator motor Ml and is provided in its lower part with a horizontal bottom part 48 to which the motor housing can be bolted. The lower part also contains a central bearing 50 for rotatably and sealably receiving the motor shaft 52, to the lower end of which is fixed the macerator blade 54. Desirably, the shaft 52 extends beyond the blade for en¬ gagement with the step bearing 40. The macerator blade 54 is of the kind disclosedUnited States Patent 4,054,519 in the aforesaid peHding-applieatien and as described herein is designed to effect maceration by causing impact of the particles of the effluent with each other rather than a shearing action such as is commonly used by others for effecting the communition of solid material. The specific reason for using a macerator of this kind rather than a shearing type of cutter is that the effluent con¬ tains a large proportion of paper which a shearing blade will not cut through and which requires repeated pounding and recirculation to break it down into its constituent fibers. A cutting blade merely collects the fibers and becomes choked with the fibers so that its efficiency and effectiveness is reduced to uselessness in a very short period of time. The combination pump and control valve assembly16, FIGS. 6 and 7, comprises, as shown, a motor-driven pump 56 and a selector valve 58. The motor-driven pump is mounted at the rear side of the treating chamber 12 and comprises a pump block 60 bolted to the supporting plate or foot plate of the toilet and a motor M2 superimposed upon the block and bolted thereto with its drive shaft 62 extending perpendicularly downwardly therefrom through suitable bearings into a pump chamber 64 in the block 60. An impeller 66 is keyed to the shaft 62 in the pump chamber 64. The pump chamber 64 contains two ports 68 and 70. The motor M2 is reversible so that by effecting rota¬ tion of the pump in one direction, the port 68 will be an intake port and the port 70 will be a discharge port and by effecting rotation of the pump in the opposite direc¬ tion, the port 68 will be a discharge port and the port 70 an intake port.The selector valve 58, FIG. 7, comprises a valve housing 72 containing a vertically arranged valve chamber 74 in which there is slidably mounted a valve spool 76, the upper end of which is connected to the lower end of a spindle 77 which extends through suitable packing 78. The protruding end of the spindle 77 is connected to the lower end of a plunger rod 80 which extends upwardly from the18 valve assembly through the horizontal extension 17 of the bowl so as to be located forwardly of the panel 20. A82 knob'2-Θ at the upper end of the rod provides means which may be grasped to move it upwardly and downwardly. The valve spool contains ports 84 and 96. When the port 84 is brought into alignment with.the port 70 and the pump is rotated in the proper direction, the water will be drawn into the system through the port 68 and delivered through a coupling 88 and conductor 90 into the bowl for flushing the latter. The valve housing 72 is provided with a port 92 which is connected by a pipe 94 to the port 42 in the treating chamber so that when the valve spool is moved to align the port 96 with the port 92 and the pump is reversed the effluent will be withdrawn from the treating chamber and discharged. The selector valve 58 may, as stated above, be manually actuated by lifting and depressing the rod 80. However, as shown in FIG. 8, it may be automatically actuated by means of a solenoid SOL connected to the upper end of the spindle 77.The system is controlled partly through manually operable switches and partly automatically as follows, FIGS. 9 and 10: Referring to FIGS. 1, 9 and 10, there is mounted on the panel 18 a two-position switch S3 which, in one position, effects flushing and, in the other position, discharge. Power is supplied to the system through a cir¬ cuit breaker 102 and when the power is on, this fact is indicated by a white light W adjacent the circuit breaker. It is within the scope of the invention to automate the . entire cycle of operation.It is not only necessary to macerate the effluent, but also to effect decontamination and deodori- zation and, of course, the greater the amount of macera¬ tion and, hence, reduction in particle size, the greater is the effectiveness of the decontaminant and/or deodor¬ izer. A combination decontaminant and/or deodorizer is introduced into the system in suitable form, for example, the form of a tablet directly into the bowl and, for this4 purpose, there is provided, as shown in FIG. 1, at the rear end of the toilet seat, a slot 106 through which the tablet may be dropped. At the underside of the seat adjacent the opening 106, FIG. 4, there is a recess 108 within which there is mounted a switch assembly SI provided at its forward end with an actuator finger 112 which extends into the opening 106 and, when deflected, by dropping the table through the slot 106, will complete a circuit through the switch to start the motor Ml of the macerator. Desirably, the switch-actuating finger 112 is set so that a predetermined force is required to effect its displacement and the tablets are made strong enough to effect such displacement so that a tablet not specifi¬ cally made for this purpose will not actuate the switch and, hence, will not start the macerator. Instead of the switch SI, a sensing device of well-known kind such as a magnetic switch, photocells, proximity switch, microswitch, reed switch or the like may be used operable by, or in response to, the size, shape, hardness, color or embossment of the bacteriacide. The bacteriacide itself may be a tablet, cartridge, capsule, powder or liquid.It is within the scope of the invention to in¬ troduce the bacteriacide into the effluent prior to or after its maceration, for example, it may, as described above, be deposited in the bowl and flushed together with the effluent into the treating chamber, or it may be in¬ jected directly into the treating chamber, for example, by squirting a charge of bacteriacide directly into the treating chamber each time the bowl is flushed or the macerator is started. It is foreseen that a multiplicity of toilet systems such as described may be used in apart¬ ment-type dwelling units, might be connected by suitable plumbing to a common holding tank or discharge tank so that the macerated effluent from the entire building could be temporarily held where, for example, there is not an available sewage system, and where, for example, it is not desirable to have individual holding tanks for each unit. Such a system would eliminate the responsibility of the individual to introduce the bacteriacide into the toilet, shifting the obligation to the building manager or some other responsible person, thus making it a more foolproof system of disposal without accidental contamination through the carelessness of individual users. The effluent so collected may be recoverable as a liquid or solid, for example, by evaporation of the liquid for fertilization purposes.A large proportion, of the effluent, of course, is paper which is not valuable as a fertilizer and, fur- theimore, tends to clog plumbing. Hence, it is desirable to remove this bulk paper fiber from the treated effluent. This can be done by inserting a filter unit between the discharge side of the toilet system and the waste pipe leading to the holding tank or to the sewer system. Desirably, such a unit should be designed to be expendable so that when it becomes filled, it can be removed and replaced by a new filter.The macerator is allowed to run for a predeter¬ mined length of time as determined by a timer T to effect complete decontamination and reduction of the effluent to a particle size which is acceptable and to a bacteria count which is acceptable, whereupon the switch S3 is changed over to the discharge position and, in this posi¬ tion, will start the motor M2 of the pump to rotate the pump in a direction to discharge the macerated effluent from the system. After having run the system through a cycle for the purpose of macerating the effluent and dis¬ charging it, the system can be cleaned of any residual effluent without reintroducing a chemical and without operation of the macerator by simply flipping the switch S3 first to the flush position and then to the discharge position to circulate fresh water through the system. This may be done two or three times so that the entire system is thoroughly cleaned and will contain no residual fluids which could result in a deposit when standing in the system and become a source of bacterial growth or unpleasant odor. Prior to depositing the chemical tablet, it is, of course, necessary to shift the selector valve 58 either mechanically or electronically to a depressed position to provide for taking water into the system and prior to discharge, that is, after the macerator has completed its function, the valve must be shifted by pulling the rod upwardly. At the right-hand side of the20 panel i8, FIG. 1, there is a white light W which in¬ dicates the power is on. At the left-hand side of the20 .panel 18, FIG. 1, there are two lights, an amber light A in the control circuit indicating that the system is in use and a red light R indicating the treating chamber is filled and should be emptied.The selector valve 58 as described above is mechanically or electrically operated. There may be substituted for this selector valve a check valve assembly 150, FIG. 15, containing passages 152 and 154. Passage 152 is connected to the passage 68 of the rever¬ sible motor-driven pump and the passage 154 is connected to the passage 70 of the reversible motor-driven pump. The passage 154 is, in turn, connected by a check valve 156 to the conductor 88 which leads to the bowl and by a check valve 158 to the conductor 94 which leads to the treating tank. The check valves 156 and 158 are so arranged that when the pump is rotating in a direction to draw water into the passage 152 and force it through the passage 154, it will flow through the check valve156 to the bov/l, but will be prevented from entering the conductor 94. When the pump is driven in the opposite direction, the check valve 158 will permit the treated effluent to be withdrawn from the treating tank and dis- charged by way of the passage 154 and the passage 152 while the check valve 156 will prevent entry of the88 effluent into the conductor 188 to the bowl. Since urine is sterile and contains no solid matter, operation of the macerator is not required nor is it necessary to introduce a bacteriacide. The system may be flushed and discharged simply by flipping the switch S3 first to the flush and then to the discharge. If the toggle switch were flipped to the flush position for flushing solid effluent without also starting the macerator motor, the system would instantly become in¬ operative since the conductor pipes and ports of the pump and valve are so small in diameter that they would not pass the effluent, hence, no harm can come of actuating the toggle switch to effect discharge in the event the macerator has not been operated or has become inoperative. The conductor pipes and parts are, for this purpose, approximately 7/16 inches in diameter.The system is made ready for use by closing a master switch S as shown in FIGS. 9 and.10. Closing the switch S energizes the white light W to indicate that the power is on. In order to flush the toilet, the toggle switch S3 is moved to a position to start the pump motor M2 and held in this position until the bowl is completely flushed into the treating chamber, whereupon it is moved back to its neutral, position and-the pump motor M2 stopped. After flushing, a tablet is forced through the slot 106 and, as it passes through, it actuates the switch SI which starts the macerator motor Ml. A timer T in the macerator circuit is adapted, to be set to continue operation of the macerator for a pre¬ determined time and then to stop the macerator motor. When the macerator motor Ml stops, the amber, light A goes on. Following maceration, the toggle switch S3 is moved to a position to start the pump motor. M2 in the opposite direction and held in this position -until the treating chamber is empty, whereupon it is released and the motor M2 will stop. The circuit as thus arranged enables purging the system without operating the macerator by the simple expedient of holding the toggle switch in. the first position to charge flush water into, the treat¬ ing tank and then holding it in said second position to cause the water to be pumped out of the treating chamber. The valve 76 has to be moved in cons.onance with the pump motor to position it in a first position to admit flush water to the bowl for flushing and thereafter to a posi¬ tion to permit the effluent to be pumped out of the treating chamber when the switch is moved to the position to discharge the treating chamber. This may be effected80 by means of the push-pull rod ,82 or by a solenoid 96,FIG. 8. Desirably, both the push-pull rod and solenoid are included in the system, the push-pull rod serving as a backup in the event that, for some reason, the solenoid fails to operate. There is a red light R on the panel which goes on when the treating chamber is filled to indicate to the user that the chamber should be emptied before reuse. A float-operated switch S2 serves to close the circuit to the red light when the effluent in the treating chamber reaches a predetermined level.The system as described above is essentially of great simplicity as compared with most systems designed for the same purpose and is particularly attractive for the reason that its design frees the system from residual accumulations which may become the source of deposits within the system. This is provided by the reversible pump which is thus self-cleaning in operation and by employing a single selector valve through which the flush water reversibly flows. Efficiency in operation is achieved by disabling the macerator during the purging of the system. Further, as previously indicated, the macerator itself is especially effective in breaking up the solid material to a fineness to promote maximum decontamination and deodorization and the fact that the configuration of the macerating chamber and its isola¬ tion from the pump provides both ideal and maximum exposure of the effluent to the macerator. An alternative toilet system is shown in FIGS.11 and 12 wherein two motor-driven pumps 160 and 162 are used provided with motors M3 and M4. The motor-driven pump 160 as shown in FIG. 12 is provided with a fitting 166 for taking water into the system and a fitting 168 for receiving one end of a conductor 170, the other end of which is connected to the bowl 10. The pump 162 is provided with a fitting 172 which is connected by a conductor not shown to the treating tank 12 and a fitting 176 for connection to a discharge line not shown. The control circuit for the two-pump system is illustrated in FIG. 13 wherein there is a combination on/off circuit breaker switch S4 which, when placed in an on position, connects the circuit to a source of power comprising a battery so labeled. When the switch S4 is placed in the on position, a white light W1 is turned on to indicate that the power is on. A switch S5 in the circuit provides for, in one position, starting the motor M3 and its associated pump 160 to take water into the system and deliver it to the bowl for flushing. As in the previously described system, when the effluent has been flushed into the treating tank, the macerator therein is started by forcing a tablet through the slot provided for this purpose, whereupon the macerator runs for a predetermined period so as to effect complete maceration of the solid matter. During operation of the macerator, a red light R1 in the circuit is turned on to show that the macerator is running. When the macerator motor stops, the red light is extinguished, whereupon the switch S5 is moved in the other direction to the discharge position so as to start the motor M4 of the discharge pump 162 and thus discharge the treated effluent from the treating chamber to the discharge line. There are situations where there are restric- tions on the amount of water that is available and restrictions as to discharge and, for this reason, the system may be provided with a filtering unit as shown in FIG. 14 and the system closed. The filtering unit comprises a tank 180 divided by a partition 182 into two chambers 184 and 186. The chambers 184 and 186 are closed at the top by a cover 188 and are interconnected at the top by a conductor 190. The chamber 184 is filled with a plurality of particles . 192 which may be generally spherical in shape and which may be all of the same size or of different sizes. The particles 192 are buoyant and so will float on liquid delivered into the. chamber 184. These particles may be made of plastic and, desirably, have a somewhat roughened surface. A conductor19419-2- is mounted to the cover 188 with a portion extending into the chamber 184 to a position close to the bottom.196 194The upper projecting end/of the conductor 196 is connected to the discharge side of the pump 164 so that the macerated effluent withdrawn from the treating chamber is delivered into the chamber 184 near the bottom. As the effluent rises in the chamber 184, the solid matter is entrained by the particulate material so that the liquid at the top is substantially free of any solid matter. The filtering particles are sufficiently effec- tive so that the water is substantially clear at the top of the chamber 184 and this clear water flows by way of the conductor 190 into the chamber 186. A conductor 198 is mounted to the cover 188 with a portion extending down to near the bottom of the chamber 186 for withdraw- ing the clear water from the filter tank and returning.200 it to the system for flushing. The upper end/of the conductor 198 is connected to the intake side of the pump 160. Thus, there is provided a closed system wherein a predetermined quantity of water is circulated by the pump through the filter tank where the solid matter macerated by the macerator is trapped. The filter tank may be periodally cleaned either by removing the cover 188 and dumping out the filtering particles and replacing them or a drain valve may be provided at the bottom of the chamber 184 so that fresh water may be flushed through the bed of particulate material from the top to the bottom to clean the particulate material.As described hereinbefore, the flush water has been drawn into the system for flushing the bowl by a motor-driven pump and, for marine purposes, where the clean water which is to be used for the system is sea water, a pump is essential. It is very possible and contemplated within the scope of the invention to use the system in areas where the local water pressure is sufficient to supply water to the system without having to pump it and, accordingly, it is contemplated that the motor-driven intake pump may be dispensed with the con¬ ductor 172 connected directly to a domestic water pipe with a suitable valve such as normally used in any flush water and float control for shutting it off when a suffi¬ cient amount of water has been delivered to effect flush¬ ing.It should be understood that the present dis- closure is for the purpose of illustration only and in¬ cludes all modofications or improvements which fall within the scope of the appended claims.
1. A toilet system capable of rendering the effluent innocuous and reducing the solid matter therein to microparticle size comprising a bowl, a reversible, motor-driven pump operable in one direction to supply flush water to the bowl to flush the same, a treating chamber for receiving effluent flushed from the bowl for treatment, a macerator in the treating chamber for macerating the contents thereof in isolation from any other fluid and a two-position valve operable in one position to cause the pump to effect flushing of . the bowl and in the other position to effect dis¬ charge of the treated effluent.2. A toilet system capable of rendering the effluent innocuous and reducing the solidmatter therein to microparticle size comprising a bowl, a reversible, motor-driven pump, a treating chamber, valve means operable when the pump is rotated in one direction to take water into the system through a port and deliver it to the bowl to flush the latter and when the pump is rotated in the opposite direction to withdraw the effluent from the treating chamber and discharge it through the same port, macerator means in the treating chamber for macerating the effluent when flushed into the treating chamber and means for supplying a bacteriacide to the treating chamber. 3. A toilet system capable of rendering the effluent innocuous and reducing the solid matter therein to microparticle size comprising a bowl, a reversible, motor-driven pump, a treating chamber for receiving effluent flushed from the bowl thereinto, a macerator in the treating chamber operable to effect maceration of the effluent therein, means for supplying a bac¬ teriacide to the treating chamber so as to be present therein during the period of operation of the macerator, valve means movable to a position to con¬ nect the pump to the bowl for supplying flush water to the bowl to flush the effluent into the treating chamber and to another position to connect the pump to the treating chamber for discharging the treated effluent from the treating chamber and means for effecting rotation of the motor-driven pump in a direction to take water into the system when the valve is in the one position and in a direction to discharge the treated effluent from the system when the valve is in the other position.4. A toilet system according to claim 3 wherein there is a switch for reversing the motor-driven pump and means for shifting the valve.5. A toilet system according to claim 3 wherein a bac¬ teriacide is used to render the effluent innocuous during the maceration thereof and there is means operable by deposit of the bacteriacide in the bowl to automatically start the macerator. 6. A toilet system according to claim 5 wherein, the treating chamber is of a predetermined capacity such as to receive a predetermined volume of effluent for maceration in isolation and wherein the motor-driven pump is designed to discharge the entire amount of the treated effluent from the treating chamber.7. A toilet system according to claim 6 wherein there is means for terminating the treating cycle within a predetermined time.8. A toilet system according to claim 3 wherein there is a double-acting switch operable in one position to effect rotation of the motor-driven pump in the direction to take in flush water for cleaning the bowl and in the other position to discharge the cleaning water from the treating chamber without concurrent operation of the macerator.'9. A toilet system according to claim 3 wherein there is a slot for receiving and guiding a tablet into the bowl and a switch for initiating operation of the macerator provided with an actuating arm located in a position such that a tablet passing through the slot .will actuate the switch and thus initiate opera¬ tion of the macerator. 10. A toilet system comprising a bowl, a treating chamber to which the bowl is connected for receiving effluent from the bowl, a macerator in the treating chamber, a reversible, motor-driven pump, a two- position selector valve movable to one position to cause the pump in one direction of rotation to take water into the system and deliver it to the bowl to effect flushing and in the other position to cause the pump in the other direction of rotation to empty the treating chamber and discharge the effluent from the system, switch means for controlling the direc¬ tion of rotation of the motor-driven pump and means for changing the position of the two-position valve.11. A toilet system according to* claim 10 wherein the bowl is connected to the top of the treating chamber by way of a splash guard, and the treating chamber is emptied through a port at the bottom thereof.12. A toilet system according to claim 10 wherein the treating chamber is designed to contain the effluent in isolation during maceration and to be completely emptied following maceration.13. A toilet system according to claim 10 wherein the bottom of the treating chamber is toroidal in vertical and diametral section. 14. A toilet system according to claim 10 wherein-the macerator is motor-driven, there is means for receiving a tablet and conducting it into the bowl and a switch operable by receipt of the tablet to start the macerator motor.15. A toilet system comprising a bowl, treating chamber to which the bowl is connected for receiving effluent from the bowl, a motor-driven macerator in the treating chamber, a reversible motor-driven pump, a two-position selector valve movable to one position to cause the pump in one direction of rotation to take water into the system and deliver it to the bowl to effect flushing and in the other* position to cause the motor in the other direction of rotation to empty the treating chamber and discharge the effluent from the system, and a control circuit including a toggle switch operable in one position to actuate the pump motor to rotate in one direction and in the other in the. opposite direction, a solenoid connected to the two position valve operable by actuation of the toggle switch to move it to the - appropriate position for the direction of rotation of the pump motor, a switch actuatable upon entry of a bacteriacide into the treating chamber to start the macerator pump and a timer for. terminating opera¬ tion of the macerator pump following a predetermined interval. 16. A toilet system according to claim 15 wherein there is an ON-OFF switch for supplying power to the control circuit.17. A toilet system according to claim 15 wherein there is an indicator light which becomes illuminated when the ON-OFF switch is on, indicating that the power is on.18. A toilet system according to claim 15 wherein there is an IN-USE light operable when the macerator pump is in operation to indicate that the system is in use.19. A toilet system according to claim 15 wherein there is a FULL light operable when the level of the effluent in the treating chamber reaches a pre¬ determined level.20. A toilet system according to claim 15 wherein the pump is ported with 7/16 inch intake and discharge ports such as to completely block passages of any unmacerated solid matter. 21. A toilet system capable of rendering effluent innocuous and reducing the solid matter therein to a microparticle size comprising a bowl, a treating tank for receiving effluent flushed from the bowl for treatment, a macerator in the treating chamber for macerating the content thereof, means for in¬ troducing water to the bowl to effect flushing and for discharging the treated effluent from the treating chamber and a two-position switch operable in one position to effect initiation of water to the bowl and in the other position to effect dis¬ charge of the treated effluent from the treating chamber.22. A toilet system capable of rendering effluent innocuous and reducing the solid matter to micro¬ particle size comprising a bowl, a treating chamber for receiving the effluent flushed from the bowl for treatment, a macerator in the treating chamber for macerating the content thereof, motor-driven . pump means for supplying fresh water to the bowl to effect flushing and for discharging the treated effluent from the treating chamber following macera- tion and a two-position switch operable in one position to effect flushing and in the other position to effect discharge. 23. A toilet system capable of rendering the effluent innocuous and reducing solid matter therein to microparticle size comprising a bowl, a treating chamber for receiving effluent flushed from the bowl for treatment, a macerator in the treating chamber for macerating the contents thereof, first means for introducing water into the bowl, second means for discharging the treated effluent from the treating tank and filter means interposed between said first and second means such as to provide a closed circuit for repeated circulation of a predetermined quantity of liquid in the system.24. A toilet system.according to claim 23 wherein the filter comprises a tank containing a plurality of buoyant particles which float upon the disseminated effluent and wherein the first means delivers the disseminated effluent to the bottom of the tank and the second means removes the filtered water from the top of the tank.25. A toilet system according to claim 23 wherein the filter means comprises a tank divided into two chambers, one of which contains a mass of buoyant particles, conductor means connected to the first means for delivering the macerated effluent to said one chamber, a conductor connecting the top of the one chamber to the other chamber, and a conductor connecting the bottom of the other chamber to the second means. 26. A toilet system capable of rendering the effluent innocuous and reducing the solid material .therein to microparticle size comprising a bowl, .a treating tank for receiving effluent flushed f om the bowl . for treatment, a macerator in the treating chamber for macerating the contents thereof, a valve and conductor connecting the bowl to a source of water pressure operable to effect flushing of he bowl, a motor connected to the treating chamber for effect- ing discharge thereof and a two-position switch operable in one position to open the valve to effect flushing of the bowl and in the other position to energize the pump to effect discharge of the treating chamber.27. A toilet system capable of rendering the effluent innocuous and reducing the solid matter therein to microparticle size comprising a bowl, a treating chamber for receiving effluent flushed from the bowl for treatment, a macerator in the treating chamber for macerating the contents thereof, a motor-driven pump for supplying flush water to the bowl to effect flushing and for discharging the treated effluent from the treating chamber following maceration and a valve comprising a flow passage and two checks, one of which connects the flow passage to the bowl and the other of which connects the flow passage to the treating tank. 28. A toilet system capable of rendering effluent innocuous and reducing the solid matter therein to microparticle size comprising a bowl, a treating chamber for receiving effluent flushed from the bowl for treatment, a macerator in the treating chamber for macerating the contents thereof, a motor-driven pump for supplying flush water to the bowl to effect flushing and for discharging the treated effluent from the treating chamber following maceration and a valve containing two one-way gates, one of which is opened by operation of the pump in a direction to supply water to the bowl and the other of which is closed and the other of which is opened by operation of the pump in a direction to discharge the effluent from the treating chamber and the one is closed.
INT WATER SAVING SYST INC; INTERNATIONAL WATER SAVING SYSTEMS INC
ALBERTASSI J H; HEINZE W O
WO-1978000014-A1
1,978,000,014
WO
A1
EN
19,781,221
1,978
20,090,507
new
C02B9
E02B15
B63B35, E02B15
E02B 15/04C3
METHOD AND APPARATUS FOR OIL SKIMMING
Method and apparatus for removing oil from water surfaces including a self-propellable vessel having a catamaran type hull (10, 12) defining an oil collection channel (16) therebetween through which is advanced a series of loosely supported, parallel flexible rope belts (38) of floating oil collecting material which are moved countercurrent to the direction of vessel advance at substantially zero differential velocity relative to the water surface to pick up the oil on the surface. The rope belts (38) float freely on the water surface and are free to move vertically and longitudinally under the action of the water. Lateral deflection of the ropes under the action of debris or other obstruction is also possible. The free floating nature of the flexible belts (38) prevents adverse headwaves from being formed at their initial contact with the water surface and allows relatively high vessel speeds.
Method and Apparatus for.Oil Skimming Background of the Invention 1. Field of the InventionThis invention relates to a method and apparatus for remov¬ ing oil from a water surface and particularly to an improved method and apparatus for effecting the continuous removal and recovery of large quantities of oil from extended area water surfaces.2. General Background and Prior Art.Pollution of natural waterways and defining marginal land masses, such as harbors, rivers, lakes and defining shore lines and even open seas by oil floating on the water surface is of primary environmental significance. Recent years have witnessed ever increasing quantities of oil spillage from tanker or barge damage, drilling accidents, tank cleaning or other sources with attendant environmental damage to both land and water. Such has been accompanied by an ever increasing public concern both with the problem and with the apparent inability of current technology to ameliorate, much less to solve, the problem of large volume oil spillage.Although many expedients have been proposed for effecting the removal and collection of oil floating on water prior to adjacent land mass contamination, such as dispersion, skimming, absorbtion, burning and the like, such efforts have been gener¬ ally ineffective, at least insofar as oil spills of any large quantity and consequent areal size are concerned or where water surface turbulence of anything over minimal character is in¬ volved.Prior attempts at the design of skimmers, crafts which move throughout an oil slick and collect the oil therefrom, have pro¬ ved to have very limited effectiveness. An inherent problem with these devices is that they all present a rigid structure, usually in the form of a belt assembly with a rigid support, to the on¬ coming oil. When such a moving rigid structure is presented to an oil slick a headwave is formed in the oil near the structure. At very low relative velocities of the headwave becomes hydro- dynamically unstable. Studies have shown that at relative speeds in excess of approximately 1.25 knots the headwave breaks up, a entrained droplets of oil are swept past the oncoming structureStudies have also shown that this phenomenon occurs even the structure is provided with a continuously moving belt of o collecting material. Thus, a serious limitation of prior skimm designs has been that they can only operate at speeds of t order of 1 knot if they are to have any significant collecti efficiency at all.A further complication that has materially militated again prompt resolution of oil spill problems is the totally unpredic able nature of the causes thereof and the widespread geograph areas within which which such spills may occur. As a practic matter, the necessary time that passes between the initiation- an oil spill and the physical availablity of any collection mea at the locus thereof usually permits the spread of the spill oil over an area that far exceeds the ability of any present d techniques for collecting or otherwise handling the same. As corollary to the above, all problems attendant oil removal a markedly accelerated as the gallonage of the spill increase both with respect to the geograpic ' areas involved and wi respect to disposition of the collected oil itself.Prior patents of possible interest are cited below:PRIOR ART PATENTSU.S. Patent No. Patentee(s) Issue Date3,643,804 D. E. Sharpton 2/22/723,668,118 H. M. Rhodes 6/6/723,670,896 F. E. Hale, Jr. 6/20/723,744,257 W. F. Spanner 7/10/733,968,041 E. A. De Voss 7/6/764,061,569 J.A. Bennett, ETAL 12/6/77 General Discussion of the InventionThis invention may be briefly described as an improved me¬ thod and apparatus for removing oil from a water surface and which, in its preferred embodiment, includes a modularly asse b- lable, self-propellable catamaran type vessel defining a longi¬ tudinal oil collection channel of inverted U-shape. Large surface areas of oil collecting material for example, polypropylene, in the form of elongate endless belts or ropes are freely and loosely supported on the water surface to move therewith and are abvanced through the inverted U-shaped channel countercurrent to the direction of vessel advance and preferrably at a zero differential velocity relative to the water surface to maximixe oil collection. The preferred oil collecting material is polypro¬ pylene, formed in thin strips and radially disposed about a core belt or rope. Although oil collecting material in continuous flat wide belt or sheet form is possible and contemplated in the present invention, a series of independent rope belts is greatly preferred because it allows further freedom of movement in the lateral direction between the individual belts due to the presence of debris or other obstacles.Associated therewith and disposed upon a deck structure bridging the catamaran hulls are means for advancing the oil collecting material concurrently with the movement of the catama¬ ran vessel through the water and for removing the collected oil prior to the reintroduction of the material into the oil collec¬ tion channel. In its narrower aspects, the subject invention includes the conjoint usage of the catamaran hulls or sections thereof to temporarily store the oil removed from the water sur¬ faces.Among other advantages of the subject invention is the pro¬ vision of a self-propellable oil collection vessel that serves to maximize the collection of oil and the separation efficiency of the oil collecting material employed with respect to the quantity of oil exposed to collection and the time of explosable contact therebetween. Further advantages accrue in oil collection and efficiency when the multiple strip poypropylene ropes used. Still further advantages include provision of a collect method and apparatus that is effectively operative independent sea conditions both with respect to surface turbulence and to presence of floating debirs thereon. Still other advanta include the provision of increased oil storage facilities with detrimental diminution of oil collection efficiency and provision of a readilly assemblable modular structure that easily transportable for rapid assembly at the locus of intended use thereof^An object of this invention is the provision of impro method and apparatus for effecting the collection of oil from surface of water in calm waters as well as in relativ turbulent waters when needed and at relattively high speeds.Other objects and advantages of the subject invention w become apparent from the following specification and from appended drawings which illustrate, in accord with the mandate the patent statutes, a certain presently preferred embodiment oil collection apparatus embodying the principles of this inv tion. Brief Description of DrawingsFor a further understanding of the nature and objects of the present invention, reference should be had to the following detailed description, taken in conjunction with the accompanying drawings, in which like parts are given like reference numerals and wherein:Figure 1 is a schematic plan view of an improved oil collec¬ tion apparatus incorporating the principles of this invention.Figure 2 is a schematic side elevation of the apparatus illustrated in Figure 1; andFigure 3 is a vertical section as taken on the line 3-3 of Figure 1. Detailed Description of the Preferred EmbodimentReferring to the drawings there is provided a catamaran t vessel formed of a pair of elongate spaced hull sectio.ns 10, spanned by a deck section 14 suitably constituted, at least part, of metal grating or the like and supported by a plural of cross beams removably securable to the hull sections 10, The transversely spaced hull sections 10 and 12 and the overly deck assembly generally define an inverted generally U-shaped collection channel 16 running the full length of the vessel w the surface of the water disposed intermediate the hull sectio The hull section 10, 12 and overlying decking may be pref ricated in easily assemblable modular sections of, for examp readily transportable 20 foot lengths, and detachably joined at 18 to form an assembled structure. Further, the hull secti 10, 12 are of multi-co partmented construction. Some of th compartments may be filled with buoyant foam material wh others may be utilized for storage of collected oil.As will hereinafter become apparent, and is clear from F ure 2, the oil collecting material herein employed is slack loose when the vessel is at rest and thus floats loosely upon water surface and allows substantial give or movement of t material under water action; hence particular depth of catamar hull section immersion is not a critical or determinati operative parameter and additionally this looseness allows oper tion of the vessel at higher speeds as discussed more ful below.Mounted in the stern portion of each of the catamaran hu sections 10, 12 in an inboard motor 20 controllable both as speed and helm response from an operating console 22 mounted the deck section 14. Although having the vessel being sel propellable is preferred, it is of course possible to utili some of the basic principles of the present invention in a tow type or other type movable vessel. Peripherally disposed abo the deck section 14 is a guard rail assembly 24. The oil collecting material employed in the practice of the herein described invention may be any of a number of types of materials. For example, sponge may be used, in a sheet or other continuous belt configuration, for collection by absorbtion. However, the material preferred for use in the present invention is polypropylene, formed into the structure disclosed in U.S. Patent No. 3,668,118. Such structure is essentially comprised of an elongate core strand having a multiplicity of thin guage narrow polypropylene strips extending generally radially there¬ from and constituting a relatively loose mass of individually discrete strands or strips that compositely provide a markedly extensive or expanded surface area for the oleophilic attraction and adherence of oil. As is apparent from the disclosure of such patent, the composite structure is both easy to handle and effective in removing the olepohilically adherent- oil from the oleophilic material prior to its reexposure to oil . Such material will hereinafter be termed an elongate oleophilic rope element or elongate oleophlic rope material. Mounted on the fore portions of the deck section 14 are a pair of oleophlic rope element driving and oil separation assem¬ blies, generally designated 30 and 32 respectively. As best shown in Figure 2, each of these assemblies includes a pair of compres- sively engaged drive rollers 34, 36, adapted to advance an assem¬ blage of a plurality of elongate oleophilic rope elements, for example, three endless belt type oil ropes 38a, 38b, and 38c in the direction indicated by the directional arrows 40. Associated therewith are a plurality of guide rollers 44 and 46 to direct the path of travel of the elongate oleophlic rope elements from the drive rollers 34, 36 downwardly into loose, floating disposi¬ tion on the water surface intermediate the catamaran hull sections 10 and 12 adjacent to the bow of the vessel. As can be seen in Figure 2, the lowermost bow guide roller 46 is located substantially above the water line W.L. (for example three feet above in an exemplary vessel of forty feet in length) with the ropes having several extra feet of slack which allows the slack oil collecting material 38 to contact and ride onto the init contacted water surface freely or loosely with substantial permitting it (note 38') to be easily moved longitudinal vertically in response to wave or other water action, as we laterally. Additionally preferably no further guide roll other longitudinal or vertical movement restriction mean provided along the length of the oil collection material 38 it is in the water or close thereto. The rope elements 38 float freely on the wate surface without being taut or ri presented or under any substantial tension or restraint ad to the water surface contact and its contemplated movement.Suitable spacing means, such as vertically disposed ba mounted at each end to a housing 54, are desirably includ maintain the elongate oleophilic rope elements,* for example 38b and 38c, in a desired laterally spaced relation .during travel through the drive asemblies 30 and 32.Mounted on the rear of the deck section 14 and prefe well above the water level W.L. is a guide roll assemb adapted to elevate the oil saturated oleophilic rope ele from engagement with the water surface and to direct them an elongate catch pan 52 on which they are supported during advance as effected by the drive rollers 34, 36. Suitable such as radially extending plates or flanges are included i guide rolls assembly 50 to maintain the oil rope belt laterally spaced relation. The catch pan 52 drains towar driving and separation assemblies 30, 32. Each of the oleopo rope element driving and oil separation assemblies 30 includes a housing 54 and an oil sump from which collected o transferred via schematically illustrated conduit 58 and pu are also utilized to transfer collected oil from the compart 62 to other storage vessels.In using the described unit, the separated modular co ents thereof are adapted to be shipped via air or other means of transportation to the locus of their intended us there assembled. By way of example, the main modular compo thereof may comprise the illustrated two catamaran hull sections, the deck gratings, the oleophilic rope clement driving and oil sepoaration assemblies, the control console assemblies and the like, or may include further sub-assemblies thereof. At or near the locus of use, the readily transportable modules are readily assembled to form the structure depicted in the drawings. The assembled structure is then towed to or drive under its own power to the locus of spillage.In operation, the illustrated vessel is adapted to be ad¬ vanced through the oil spill at a predetermined speed. For the purposes of explanation, such rate of advance may be considered as the water moving from the bow to the stern at a rate of Vw knots. Concurrently therewith, the oleophilic rope element driv¬ ing and oil separation assemblies 30 and 32 are adjusted to ef¬ fect a displacement of those portions of the endless belt elong- gate oleophilic rope elements floating upon the water and dis¬ posed within the oil collection channel intermediate the cata¬ maran hull sections 10 and 12 in the bow to stern direction at a predetermined speed, for example, at a rate of V knots. As best shown in Figure 1, each of the oleophilic rope element driving and oil separation assemblies serves a plurality of separate and discrete endless belt type elongate oleophlic rope elements and whose composite transverse extend substantially fills the trans¬ verse space between the hull sections 10 and 12. As will now be apparent, if the speed of displacement V of the elongate oleophilic rope elements is substantially equal to or slightly in excess of that of V of the elongate oleophilic rope elements is substantially equal to or slightly in excess of that of V , optimum conditions will be established with respect to dwell time for oleophlic pick up of the oil on the strands of the oleophlic rope material. Thus, if the transverse extent of the channel formed between the hull sections is substantially filled with the floating oleophilic mop material and the differential speed relation between such material and the water surface is main¬ tained at a minimal or zero value as described above, essentially optimum conditions, effectively, independent of water surface condition or the presence of' floating debris, can be established and maintained for enhanced oil pick up on a quantitative basis. As is also now apparent, each set of the elongate oleophilic rope elements, for example, 3aa, 38b, 28c, will sclective- ely and preferentially entrain oil from the water surface an they pass upwardly and over the guide roll assembly 50 effe vely separate appreciable quantities of the oil from the w surface. The guide roll assembly 50 directs the elongage o philic rope elements 38 on to the surface of the catch pan 5 support the same as it is advanced into the bite of the pressively engaged drive rollers 34 and 36. The drive roller and 36, which preferably have a surface of elastically deform material, serve both to advance the endless belts of elon oleophilic rope material in the manner described and to pressively squeeze or otherwise displace most of the entra oil from the surfaces of the elongate oleophilic rope materia it advances therepast. Such separated oil is collected in sumps from which it is removed and stored in the tank section of the catamaran hull sections 10 and 12. As will no apparent, the depth of immersion of the catamaran hull sect 10 and 12 is not critical since all collection activity t place on the water surface within the channel marginally def by such hull sections. The loose floatation of the oil collec materials, such as the elongate oleophilic rope elements 38, only maintains the same contact with the floating oil but renders the unit effectively impervious to floating debris or in the water, and within limits, to the degree of turbulenc the water surface since the free floating oleophilic mate will travel over and around any debris and will generally con to the water surface contour.The permitted control of the differentiated velocity bet the floating elongate oleophilic rope elements and the ve velocity permits high efficiency utilization of the oleoph capabilities of the rope elements and consequent high volume high efficiency oil separation from the water surface in a mobility vehicle under widely varying conditions of operationExemplary dimensions for a vessel as illustrated and actually buit, tested and successfully used are a forty (12.2m) aluminum catamaran vessel for inland waters use. Such a vessel can be disassembled and the total vessel stored in two eight-foot-by-eight-foot-by-twenty-foot standard containers. The vessel was powered by two diesel engine driven outdrives and was designed for recovery rates of up to one hundred and seventy-five gp (662 1/m) .Each hull had its own plant and oil recovery system and was capable of operating independently of each other. The vessel had an on-board storage capability of two thousand gallons (7,570 1) and its own discharge pumps for unloading purposes. Further specfications and exemplary details are outlined below:-DIMENSION SPECIFICATIONS-LOA 39'- 8 ( 12 .1 m)Beam 13' - 2 ( 4.01 m)Draft (empty) 1' - 0 ( .305m)Endurance Time 16 hoursRadius Operation 125 N.M. (231 km)Engines ( 2) GM 3-53 NFuel 200 gal. (750L)Oil Recovery Rate 175 gpm (662 1/m) --OIL RECOVERY SYSTEM-(2) Oil Mop Mark 11-9 recovery systems(6) Continuous loop Oil Mop 10 (254 mm) ropes 35' (10.7m) long ea.(2) 135 GPM (511 1/m) independent sump/discharge pumps(6) Independent oil tanks (2000 gal. [7,570.1] total)(2) Manifolds for -fill and discharge(6) Manholes (one into each tank).A vessel at least generally identical to the foregoing was successfully tested for effective oil recovery at speeds up to five kts.The foregoing details and examples are merely exemplary, and subject to great variation within the scope of the present invention. Thus the vessel land its oil collecting materials can be of various sizes and configurations from for example a single hull with the oil collecting materials hung off its side to the preferred multi-hull configurations with centrally defined chan¬ nels. Thus, while the fundamental novel features of -invention been shown and described, it should be undrstood that var substitutions, modifications and variations may be made wit departing from the spirit or scope of the invention. Accordin all such modifications and variations are included in the sop the invention as defined by the following claims.
What is Claimed is:1. A vessel suitable for removing and collecting oil float¬ ing oh the surface of water comprising:(a) an elongate hull defining at least in part an oil coll¬ ection area and having means for advancing the hull through the water; and(b) support means associated with said hull supporting at least one oveable belt or pliant, water floatable oil collecting material to float loosely upon the water surface in the oil collecting area to collect oil floating upon the water surface with the material's initial water surface contact area being free to move vertically and longitudinally under the action of the water.2. The apparatus as set forth in Claim 1 wherein there is further included drive means associated with said hull for moving the oil collecting material longitudinally through the oil collecting area and wherein said drive means includes control means for controlling the speed* of advance of the oil colleting material through the oil collection channel.3. The apparatus as set forth in Claim 2 wherein said drive means also serves as separating means for separating the oil >from the oil collecting material after the oil collecting material is removed from the surface of the water and wherein the drive means and the separating means comprise at least one pair of compress- ively engaged rollers.4. The apparatus as set forth in Claim 1 including stronger means associated with said hull for storing the separated oil on the water.5. The apparatus as set forth in Claim 1 wherein said oil collecting material comprises multiplicities of thin strips of oleophilic material suitably arranged on said belt to present- a fibrous mass to said oil covered water surface. 6. Apparatus as set forth in Claim 1 wherein said belt endless and comprises a continuous rope-like formation of s oil collecting material.7. The appartatus as set forth in Claim 6 wherein s rope-like formation of oil collecting material comprises m plicities of thin strips of oleophilic material generally ra ally disposed about a central rope-like belt.8. The apparatus as set forth in Claims 5 or 7 wherein s oleophilic material comprises polypropylene.9. The apparatus as set forth in Claim 6 wherein said s port means includes means for supporting a series of said be disposed in parallel, side-by-side disposition in the oil co ecting area.10. A vessel for removing and collecting oil floating the surface of water comprising: a. a pair of laterally spaced elongate hull sections fining a longitudinally disposed oil channel therebetween; b. deck means bridging said laterally spaced hull secti and overyling said oil collection channel; c. means for advancing said vessel at a predetermined sp through water having oil on the surface thereof; d. a series of parallel, side-by-side endless belts pliant water floatable oleophilic material each having a port thereof disposed within said oil collection channel substantia parallel to the longitudinal axis thereof, the oleophilic ma rial of each belt being adapted to float loosely and freely u the water surface within the oil collection channel and to c lect oil floating upon said water surface by holding such oil it at adherent interfacial relation therewith; e. a guide roll assembly disposed at the stern.of the v sel; c. controlling said speed of hull section advance and collecting material to render the differential therebetween s stantially zero; 11. 45. The method of Claim 9 further comprising the steps of: a-. introducing said oil collecting material to the water surface at a generally forward location in said collection chan¬ nel; *b. removing said oil collecting material from the water surface at a generally rearward location in said collection chan- ne1; and c. removing the collected oil from said oil collecting ma¬ terial. , ,12. 44. The method of Claim 1-5- wherein said belt is endless and there is further included the steps of:1) advancing said belt as it slackly floats on the water said surface in s-as-i-B water collection section as said vessel moves across the water in a direction countercurrent to the direction of the vessel movement; and ii) controlling the relative longitudinal speeds of said vessel and of the floating belt portion to render the difference therebetween substantially zero.1113. t . The invention claimed in Claims 1, 5, 9 or i5 wherein oil the portion of said belt in said et collection section or channel extends longitudinally along the water surface in contact there¬ with a substantial distance of the order of some feet. AMENDED CLAIMS (received by the International Bureau on 20 November 1978 (20.11.78)What is Claimed is:1. A marine vessel suitable for removing and collec ing oil floating on the surface of water comprising:(a) an elongate hull defining at least in part extended oil collection area and having means associat with the vessel for advancing the hull through the wate and(b) support means associated with said hull for su porting at least one moveable belt of pliant, water floa able oil collecting material to float at least in pa loosely and slackly upon the water surface in the o collecting area to collect oil floating upon the water ^su face with the material's initial water surface contact ar being free to move by itself vertically and longitudinal under the action of the water.2. The apparatus as set forth in Claim 1 wherein the is further included drive means associated with said hu for moving the oil collecting material longitudinal through the oil collecting area and wherein said drive mea includes control means for controlling the speed of advan of the oil collecting material through the oil collecti area.3. The apparatus of Claim 2 including separating mea associated with said hull for separating the oil from t oil collecting material after the oil collecting material removed from the surface of the water by said drive means. 4. The apparatus as set forth in Claim 3 wherein said drive means also serves as said separating means, and wherein the drive means and the separating means comprise at least one pair of compressively engaged rollers.5. The apparatus as set forth in Claim 3 including storage means associated with said hull for storing the separated oil on the vessel.6. The apparatus as set forth in Claim 1 including said belt(s) being freely supported on said support means from the initial contact area and back therefrom a substan¬ tial distance.7. The apparatus as set forth in Claim 6 wherein said belt(s) of oil collecting material comprise(s) multiplici¬ ties of thin strips of oleophilic material suitably arranged on said belt to present a fibrous mass to the water surface.8. Apparatus as set forth in Claim 6 wherein said belt(s) comprise(s) endless belt(s).9. Apparatus as set forth in Claim 8 wherein said belt(s) comprise(s) a continuous, rope-like formation of said oil collecting material.10. The apparatus as set forth in Claim 9 wherein said rope-like formation of oil collecting material com¬ prises mutiplicities of thin strips of oleophilic material at least generally radially disposed about a central rope-like belt. 11. The apparatus as set forth in Claims 7 or 1 wherein said oleophilic material comprises polypropylene.12. The apparatus as set forth in Claim 1 wherein sai support means includes means for supporting a series of sai belts disposed in parallel, side-by-side disposition in th extended oil collecting area.13. A marine vessel for removing and collecting oi floating on the surface of water comprising: a. a pair of laterally spaced elongate hull section defining a longitudinally disposed, extended oil collectio channel therebetween; b. deck means associated with said hull sections an overlying said oil collection channel for bridging an connecting together said laterally spaced hull sections; c. propulsion means associated with said hull section for advancing said hull sections through water having oil o the surface thereof; d. support means associated with said hull sections for supporting movable belts and a set of parallel, side-by-side endless belts of pliant, water floatable oi collecting material mounted on and supported by said suppor means with each belt having a portion thereof dispose within said extended oil collection channel substantiall parallel to the longitudinal axis thereof, the oil col lecting material of each belt being supported by sai support means to float loosely, slackly and freely upon th water surface within said oil collection channel with th material's initial water contact area being free to move b itself vertically and longitudinally under the action of the water and being adapted to collect oil floating upon the water surface by holding the oil on it in adherent inter- facial relation therewith; e. guide assemblies associated with said hull sec¬ tions and disposed aft of the initial water contact area and of said drive means; f. drive means associated with said hull sections for advancing the endless belts of oil collecting material through said oil collection channel in a direction such that the portions of the endless belts of oil collecting material disposed within said oil collection channel are advanced countercurrent to the direction of vessel advance through the water and for further advancing the endless belts of oil collecting material over the guide assemblies elevating the oil collecting material from engagement with the water surface; and g. separating means associated with said hull sections for separating the oil from the oil collecting material prior to the reintroduction of the oil collecting material back into the oil collection channel.14. The apparatus as set forth in Claim. 13 wherein the drive means includes control means for controlling the speed of advance of the oil collecting material through said oil collecting channel. 15. The apparatus as set' forth in Claim 13 wherein th drive means and separating means are at least in par combined and comprise at least one pair of compressivel engaged rollers.16. The apparatus as set forth in Claim 13 furthe comprising catch pan means associated with said deck mean and disposed under said oil collecting material in it return path from said guide assemblies for supporting sai oil collecting material and catching oil falling therefro as it is advanced from said guide assemblies to said driv means.17. The apparatus of Claim 13 wherein said oi collecting material is oleophilic material.18. The apparatus of Claim 17 wherein said oleophli material presents a fibrous mass to the water surface.19. The apparatus of Claim 18 wherein said fibrou mass comprises a rope-like formation having multiplicitie of thin strips of oleophilic material at least generall radially disposed about a central rope-like belt.20. In the emoval of oil from a water surface method comprising the steps of:(a) advancing a marine vessel having a longitudinall disposed, extended oil collection area through the oi covered water;(b) supporting and concurrently advancing at least o elongate, pliant belt of oil collecting material counter current to the direction of vessel advance through the water while slackly and flexibly suspending it on the water -surface in..said oil collection area and while allowing the oil collecting material in at least the initial portion of said area to freely move by itself vertically and longi¬ tudinally under the action of the water; and(c) removing the oil collecting material from the water surface to separate the collected oil from the material.21. The method of Claim 20 further comprising the steps of:(a) introducing said oil collecting material to the water surface at a generally forward location in said collection area and allowing it to remain in contact with the water over an extended distance of some feet;(b) removing said oil collecting material from the water surface at a generally rearward location from said collection area; and(c) removing the collected oil from said oil collec¬ ting material on the vessel and returning the material to the water in said air collection area for further oil collecting.22. The method of removing oil floating on a water surface comprising the steps of:(a) providing a vessel defining at least one side of a longitudinally disposed, extended oil collection area having at least one floatable, pliant belt of pliant, water floatable oil collecting material adapted to float slack and flexibly upon the water in said area;(b) moving the vessel in the longitudinal directi across the water while supporting said material of sa belt(s) in said area to float loosely and slackly upon t water surface with its initial water/oil contact porti being free to move vertically and longitudinally by itse in said oil collection area under the action of the water said oil collection area as the vessel moves across t water; and(c) retrieving said belt(s) from the water at generally rearward location from said collection area.23. The method of Claim 22 wherein said belt(s) endless and there is further included the steps of:(i) advancing said belt(s) as it slackly floats on t water surface in said water collection area .as said vess moves across the water in a direction countercurrent to t direction of vessel movement; and ii) controlling the relative longitudinal speeds said vessel and of the floating belt portion in sa collection area to render the difference therebetween su stantially zero.24. The invention claimed in Claims 1, 13, 20 or wherein the portion of said belt(s) in said oil collecti STATEMENT UNDER ARTICLE 19Enclosed are substitute claim pages (pages 13-20 ) for the originally filed pages 13-15 for the above-identifie patent application. New claims 1-24 are very similar to the originally filed claims 1-17 in substantitve content and scope, but are rewritten versions of the original claims to put them in better form and to more clearly define applicant's inventive concept.The new , substitute claims do not include any new matter not found in the original specification and claims as filed. area or channel extends longitudinally along the wate surface in contact therewith a substantial distance, of th order of-some feet.
MCLELLAN C; OIL MOP INTERNATIONAL INC; OIL MOP INC
MCLELLAN C
WO-1978000019-A1
1,978,000,019
WO
A1
XX
19,781,221
1,978
20,090,507
new
F24J3
null
F24J2
F24J 2/13, F24J 2/18
ENERGY CONCENTRATOR SYSTEM
A radiant energy concentrator system (10) for maximizing the amount of radiation flux (18) impinging and being absorbed in a particular area. The concentrator system (10) includes a stationary spherical reflector (12) which is fixedly secured to a base surface (16) or ground element. A receiver (14) having an extended length in a particular direction extends partially internal to the concave spherical envelope of the reflector (12) and is adapted to be maintained in a direction substantially parallel to the incident radiation (18) impinging and being reflected from the spherical reflector (12). The receiver (14) is displaced in a manner maintaining the extended length of the receiver (14) in a parallel direction to the incident radiation (18) responsive to directional ray variations of the incident radiation (18) impinging on the spherical reflector (12). Secondary radiation concentration devices (90) are mounted on the receiver (14) for reflecting radiation initially reflected from the reflector (12) back onto the reflector (12) and then back to the receiver (14) for absorption.
ENERGY CONCENTRATOR SYSTEM BACKGROUND OP THE INVENTION FIELD OF THE INVENTIONThis invention relates to energy conservation systems In particular, this invention relates to an energy con¬ centrator system for maximizing the input of energy flux into a particular area. Still further, this invention relates to a radiant energy concentrator system utilizing a stationary reflector and a movably actuated receiver system where incident energy is reflected from the re¬ flector to the receiver. More in particular, this in¬ vention pertains to a radiant energy concentrator system whereby the receiver is movable in a two axis rotation for maintenance of the extended length of the receiver in a parallel direction to incident radiation being applied from an external source to the spherical reflec¬ tor. Still further, this invention relates to a radiant energy concentrator system where reflected radiant energy is applied along a line of focus of the spheri¬ cal reflector to be intercepted by the receiver. Addi¬ tionally, this invention pertains to a radiant energy concentrator system utilizing a secondary concentration device mounted on the receiver for re-reflecting radiant energy initially reflected from the receiver mechanism back to an outer wall of the receiver for absorption of such energy.PRIOR ART Energy concentrating systems are well-known in the art. However, in some prior systems, the reflector portion of the system was movable responsive to the directional variations of the incident radiation from an external source. In such prior systems, in order to achieve significant amounts of radianύ energy from an external source such as the sun, large surface areas of the reflectors were necessary. Thus, extre¬ mely sturdy support members had to be utilized for movement support of the reflectors of such prior art systems. This increased 'the cost of such systems which had the disadvantage of making then uneconomical.Additionally, in prior art systems, where the re¬ flector was movable, wind forces had to be taken into account. This further increased the necessity for high load bearing structural members and reduced the accuracy of the focusing of the reflected radiant energy.In other prior art systems of energy concentration, the overall concept was to concentrate the energy to a point focus. In general, the concentration in this concept is through use of paraboloid reflector. In order to achieve focus to a point when utilizing a paraboloid of revolution, the incident radiation should be directed substantially parallel to the axis of the paraboloid. In such systems, when the incident radia¬ tion is to be maintained parallel to the axis of the paraboloid, the reflector must be displaced or a helio- stat must be utilized which redirects the light or radiant energy to the paraboloid of revolution. In either case, it was found that the heliostat or the■ paraboloid of revolution must be displaced and mecha¬ nisms having large surface areas had to be moved. Thus, such prior systems had increased cost and a corresponding decrease in accuracy.Additionally in some prior art systems, the rays being reflected to a receiver area, once having inter¬ cepted the receiver area were dissipated by reflection to the external environment. In some of these prior* systems, there were no secondary concentrating devices in order to utilize the reflections from the- receiver units. Thus, additional energy was wasted in the overall concentrating -systems. SUMMARY OF THE INVENTIONA radiant energy concentrator system which includes a reflector fixedly secured to a base surface for re¬ flecting incident radiation impinging thereon from an energy source. A receiver having an extended length in a predetermined direction is maintained in a direc¬ tion substantially parallel with the incident radiation, A secondary radiation concentration device is mounted on the receiver for further concentrating the reflected radiation to the receiver. The concentrator system 'includes a receiver displacement mechanism secured to the receiver for maintaining the extended length of the receiver in the parallel direction responsive to directional variations of the incident radiation. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevational partially cut-away view of the energy concentrator system;FIG. 2 is a sectional view of the receiver displace¬ ment mechanism taken along the section line 2-2 of FIG. 1;FIG. 3 is a graphical schematic diagram showing the incident 'and first reflected radiant energy rays impin¬ ging and reflecting from the spherical reflector;FIG. 4 is an elevational view of the receiver showing a plurality of compound parabolic concentrators mounted thereon;FIG. 5 is a frontal view of-the spherical reflector having a geodesic type concave contour; FIG. 6 is an elevational partially cut-away view of an embodiment of the receiver showing a secondary concentrating device mounted to the receiver outer wall; FIG. 7 is an elevational partially cut away view of an embodiment of the receiver mechanism showing a plurality of secondary concentrating cup elements mounted to the receiver outer walls; PIG. 8 is a sectional view of the cup elements shown in FIG. 7 taken along the section line 8-8 of FIG. 7; and,FIG. 9 is a sectional view of the cup elements shown in FIG. 8 taken along the section line 9-9 of FIG. 8. DESCRIPTION OF THE PREFERRED EMBODIMENTSReferring now to FIGS. 1 and 3, there is shown energy concentrator system 10 for reflecting incident radiation represented by substantially parallel rays 18 emitted from an energy source such as the sun, from reflector 12 to receiver 14. Additionally, and as will be shown in following paragraphs, secondary radiation concentra¬ ting mechanisms are mounted on receiver 14 for addi¬ tionally capturing and concentrating reflected radiation rays 20 for further impingement on receiver 14. In overall concept, reflector 12 is maintained in fixed securement or positional orientation to ground or some other base surface lβ while receiver 14 is displaced in a manner such that the extended length of receiver 14 is maintained parallel to incident energy rays 18 as a function of the variational changes of the energy source as a further function of time.As will be shown in following paragraphs, reflected energy rays 20 intercept receiver 14 substantially along a line defined by principal axis 22 of reflector 12. Principal axis 22 for purposes of this description is defined as being parallel to incident rays 18 and pass¬ ing through center of curvature 26. In this manner, fluid or other material maintained within receiver 14 is provided with a maximization of energy for purposes to be described and are well-known in the art.Spherical mirrors in general, have been used to deflect or deviate a beam or ray of incident radiation18. The center of curvature 26 of reflector 12 may be reflector defined as the center of the envelope of inner surface 24. In general, many spherical mirrors which are used for optical purposes are relatively flat, thus the dimensions of the .mirror or reflector are small in comparison with the radius of the surface and such mirrors are defined as having small apertures. In such prior cases, incident energy rays 18 which are parallel to principal axis 22 converge through a common point, referred to as the principal focus of the mirror after reflection. If the mirror is concave, the prin¬ cipal focus of the mirror on receiver 14 has a dis¬ tance which is located on principal axis 22 approximately halfway between the center of curvature 26 and the inner surface 24 of reflector 12. reflector In reflectors 12, which include inner sur¬ faces 24 having a relatively large aperture or in reflectors 12 where incident rays 18 have a relatively large inclination to principal axis 22, the images formed are somewhat imperfect and do not wholly focus at a point. Thus, incident rays 18 issuing from an energy source provide for a series of reflected energy rays 20 which cross or intercept principal axis 22 nearer or closer to inner surface 24 than those which are reflected from a center portion as is clearly seen in the schematic ray diagram of FIG. 3. The imperfection is generally referred to as spherical aberration. As can be seen in FIG. 3. there does exist a concentration of reflected energy rays 20 in the area 30 along principal axis 22 and such is referred to as a first order focus area.First order focus area 30 lies approximately halfway between the center of curvature 26 and the receiver inner surface 24 contour as is shown, and lies in a line which passes through center of curvature 26 and is parallel to incident radiation rays 18. Addition¬ ally, it will be noted from FIG. 3 that a great or large proportion of reflected energy rays 20 intercept principal axis 22 in the region between first order focus 30 and reflector midpoint 28. Thus, by providing receiver 14, which is displaceable in a manner such that it may be maintained in a positional location parallel to incident energy rays 18, and close enough to inner surface 24 in order to intercept reflected rays 20, in an area between points 28 and. first order focus 30s --ka - a large percentage of incident energy rays.20 after reflection may be intercepted from spherical inner surface 24. Additionally, reflected rays 20 from reflector 12 subsequent to impingement on receiver 14, only provide for a portion of the radiant energy- to be absorbed by receiver 14. Thus, the ray diagram shown in FIG. 3 only provides for a first impingement schematic diagram, of receiver 14 ray impingement. Dependent upon the optical as well as other thermo-physical properties of receiver 14, there is a large amount of impinging rays 20 which are in themselves reflected away from receiver 14. By including secondary ray concentrating devices mounted on receiver 14, to essentially capture and re¬ direct reflected rays 20 back to receiver 14, there has been found a substantial increase in the energy efficiency of energy concentrator system 10. Such se¬ condary concentrating devices are generally mounted on receiver 14 for further concentrating and capturing reflected radiation rays 20 for re-impingement on receiver 14. Such secondary concentrating devices will be described and defined in following paragraphs. Referring now to FIG. 1, there is shown reflector 12 which is fixedly secured to ground or base surface 16. Reflector 12 is utilized for reflecting incident radiation 18 impinging on inner surface 24 from some external source such as the sun. Reflector 12 may be secured to reflector housing 32 which in turn may be fixedly mounted on base surface 16, or reflector 12 may be secured or otherwise fastened directly to ground 16 in-a manner not important to the inventive concept as is herein described.In general, where the sun is the main external energy source, reflector 12 is generally mounted in either a North/South or East/West orientation. Reflector 12 includes receiver inner surface 24 which is generally curvilinearly contoured and adapted to reflect incident energy rays 18 onto a line defining principal axis 22 as is shown in FIG. 3. In order to provide convergent reflected rays 20, inner surface 24 is concave in con¬ tour and directed toward the external energy source as is shown in FIG. 1. For overall maximization of the incoming energy reflection utilization and for uniform energy distribution, reflector 12 is formed into a substantially spherical contour.Inner surface 24 may be formed of sheet metal polished to a high degree of reflectivity and may be formed of aluminum or some like material and possibly have a coating to protect oxidization aspects of any metal used thereon. Further, it will be noted that reflector 12 may include a spherical frame 32 upon which vacuum deposited metal may be adhered to provide inner surface 24, or in another mode, frame 32 may be mated to a reflective sheet material such as aluminized Mylar or like material, to provide the appropriate re¬ flection properties.As shown in FIG. 5 . reflector 12 may be formed in a geodesic dome type configuration having a plurality of reflective elements 34 of predetermined contour. Each of reflective elements 3 contiguously interface with a next successive reflective element 34 and includes a reflective surface facing the interior of the geo¬ desic dome configuration in the manner clearly shown in FIG. 1.Reflective elements 31* may be planar in contour and consist of mirror tiles or some like reflective element, Additionally, the overall contour of elements 3 to form a geodesic dome type configuration may be in the form of equilateral triangles as shown in FIG. 5 or such may be in the contour of hexagons or pentagons in order to form the geodesic dome type configuration. Where receiver 12 is formed of such reflective elements 34, the cost of producing such reflectors 12 are re¬ duced in that elements 34 may be formed separate and distinct from any base frame 32 and may be inserted on-site of energy concentrator system 10. This leads to a pre-fabricated type system which is important in that the transportation costs as well as the labels costs for producing reflector 12 may be minimized to a substantial degree. Receiver 14, as shown in FIG. 1, includes an extended length in a predetermined direction-generally, but not necessarily defining a tubular member. As is important to energy concentrator system 10 of the instant inven¬ tion, the extended length of receiver 14 is maintained In a direction substantially parallel to incident radia¬ tion 18 from the external source. Receiver 14 is posi- tionally maintained coincident with a focal line defined by reflected radiant energy 20 as is provided by sche¬ matic diagram shown in FIG. 3-Receiver 14 provides for a collector tube having internal chamber 3 within which material or fluid may be passed therethrough in order to heat such responsive to the interception of reflected rays 20 through a first reflection or through subsequent reflections by utilization of secondary concentrating devices mounted to receiver 14. In any event, the reflected rays 20 finally impinge on an outer wall of receiver or collec¬ tor tube 14 and resulting in a high percentage of energy absorption. Fluid may be inserted through chamber 36 by incorporation of ingress conduit 38 and removed by egress conduit 40 through maintenance of a predeter¬ mined pressure head through external systems not impor¬ tant to the inventive concept as is herein defined. Thus, where fluid is passed through chamber 36, the fluid is heated by impingement and absorption of re¬ flected rays 20 on collector tube 14 and then removed for utilization purposes.Receiver 14 as is shown in FIG. 1, is directed to a simple passage type collector tube. Thus, fluid is inserted through conduit 38, heated within receiver 14 and removed for utilization through conduit 40. How¬ ever, tube 14 may include a circulating fluid type collector having a plurality of fluid passages exten¬ ding along an axis thereof for continued heating and heat exchange type transfers throughout the length of portions thereof of collector tube 14. Thus, receiver 14 may include an internal tubular member concentric with the overall contour of receiver 14. As an example, fluid may pass through the centrally disposed tube element in a direction of predetermined orientation. At the end of the centrally disposed concentric tube contour, the fluid passes to the outer annularly shaped tube section where it travels in an opposing direction and absorbs heat directly from the external wall of receiver 14.In order to maintain the extended length of receiver' 14 parallel with incident radiation rays 18, receiver displacement mechanism 42 is secured to receiver 14. This allows receiver 14 to be maintained in a parallel direction to rays 18 responsive to directional varia¬ tions of incident radiation 18 from the external source. As will be seen in following paragraphs, receiver dis¬ placement mechanism 14 includes mechanisms for rotating receiver 14 about a pair of mutually perpendicularaxes. For purposes of reducing the power and strengths of material in displacing receiver 14, displacement mecha¬ nism 42 may be mounted to receiver 14 near or around the center of curvature 26 of reflector 12. This mounting may be made through lug elements 44 and 46 through bolting or other like securement mechanisms mounted directly to the external surface of receiver 14. This type of connection allows for a lower moment of force to be applied for displacement of receiver or collector tube 14.Referring now to FIGS. 1 and 2, rotation of receiver or collector tube 14 about mutually perpendicular axes is accomplished by first motor displacement mechanism 48 and second motor displacement mechanism 50. Each of such mechanisms 48 and 50 respectively control motion of receiver 14 about axis line 52 and second axis line 54. First motor displacement mechanism 48 is mounted to vertically extending structural elements 56 which is secured to base surface 16 through bolting or some like mechanism. A pair of structurally main¬ taining arm sections 8 are pivoted-to vertical frame member 56 at pivot point 60 as is shown.Inclined arm member 62 is supported on vertical fraπ-ie member 56 through bolt or screw member 65 which main¬ tains inclined arm member 62 in a positionally fixed location. Additionally, inclined arm member 62 is bolted in a pivotal manner to arm sections 58 through first axis line 52 as is shown in FIG. 1. Thus, in¬ clined positioning of arm sections 58 may be provided through incorporation of both members 64 within one of adjustable openings 66 formed through arm member 62.First motor displacement mechanism 48 includes first motor 68 which may be of a DC type well-known in the art and may be bolted to one of arm sections.58 as is shown in FIG. 2. First drive gear 70 is mounted and secured to rotational shaft 72 extending from first motor 68. First drive gear 70 which may be a spur gear matingly engages first driven gear 74. Thus, first driven gear 74 is rotationally activated respon¬ sive to rotation of rotational shaft 72 acting through first drive gear 70.As can be seen, first driven gear 7^ is a spur gear formed into a semi-circle for purposes to be described in following paragraphs. Additionally, irst driven gear 7 is rotationally mounted on first axis shaft 72 passing between and through opposing arm sections 58 to permit rotation of gear 74 about first axis line 52. Shaft 76 may be mounted to opposing arm sections 58 through threaded bolt securement or some like tech¬ nique not important to the inventive concept as is herein described. Thus, from the foregoing description, actuation of first motor 68 has a resultant effect of causing rotational receiver 14 about first axis line 52.Second motor displacement mechanism 50 includes second motor 78 which is secured through bolting or some like mechanism to first driven gear 74 on upper flattened surface 80. Second motor 78 is fixedly secured to first driven gear 7 in the manner shown in FIG. 1. Second drive gear 82 is fixedly mounted on rotational shaft 84 which is in turn secured to second motor 78. Second drive gear 82 may be a spur gear of appropriate tooth dimensions adapted to drive second driven gear 86 which is an internal spur gear. Thus, second driven gear 86 mati'ngly engages second drive gear 82 respon¬ sive to rotation of shaft 84 extending from second motor 78. Inclined shaft 88 is mounted to second axis line as is shown in FIG. 1. Receiver 14 is secured to second driven gear 86 through lug members 44 and 46 and thus receiver 14 is rotationally movable responsive to rotational displacement of gear 86 about second axis line 54. In.this manner, receiver 14 is mutually rotatable about perpendicular axis lines 52 and 4 to provide a mechanism whereby tube or receiver 14 may be positioned parallel to incident radiation ray directions 18 respon¬ sive to the energy source location. In operation, receiver 14 is displaced into parallel relation along its extended length with incident radiation energy 18 impinging on spherical reflector 12. Reflected radiant energy -20 is reflected from reflector 12 to tubu¬ lar receiver 14 for interception of rays 20 by receiver 14 along a focus line as provided and shown in FIG. 3.Referring now to FIG. 3 S there is shown a graphical schematic diagram of incident energy rays 18 initially impinging on and showing a first energy ray 20 reflec¬ tion from inner surface 24 of reflector 12. For pur¬ poses of discussion, it is assumed that collector tube or receiver 14 is positionally located along principal axis 22. Reflected rays 20 which are reflected in an intercepting path with receiver 14 after a first re¬ flection from surface 24 are shown in FIG. 3.A portion of inner surface 24 may be divided into reflection segments 102 and 104. First reflection rays 20 reflected from segment 102 intercept receiver 14 in collector tube segment 106. Similarly, reflection rays 20 reflected from segment 104 Intercept tube or re¬ ceiver 14 may be positioned parallel to incident ra¬ diation ray directions 18 responsive to the energy source location.In operation, receiver 14 is displaced into parallel relation along ts extended length with Incident radia¬ tion energy 18 impinging on spherical reflector 12. Reflected radiant energy 20 is reflected from reflec¬ tor 12 to tubular receiver 14 for interception of rays 20 by receiver 14 along a focus line as provided and shown in FIG. 3-Referring now to FIG. 3S there is shown a graphical schematic diagram of incident energy rays 18 initially impinging on and showing a first energy ray 20 reflec¬ tion from inner surface 24 of reflector 12. For purposes of discussion, it is assumed that collector tube or receiver 14 is positionally located along principal axis 22. Reflected rays 20 which are reflected in an intercepting path with receiver 14 after a first reflec¬ tion from surface 24 are shown in FIG. 3. A portion of inner surface 24 may be divided into reflection segments 102 and 104. First reflection rays 20 reflected from segment 102 intercept receiver 14. in collector tube segment 106. Similarly, reflection rays 20 reflected from segment 104 intercept receiver 14 in tube segment 108. Calculations show that appro¬ ximately 58$ of incident radiation energy is initially reflected into an intercepting path to segment 106, with approximately 42$ being initially reflected into segment 108. Further, and of significant importance, is the fact that incident angle 110 of rays 20 inter¬ cepting segment 108 have a low angular value through¬ out a major portion of segment 104. After initial impingement and reflected from segment 108, radiant energy would be generally dissipated into the external environmen .In order to increase the efficiency of energy con¬ centrator system 10, it has been found that addition of secondary concentration devices may be utilized to capture the initial ray reflections from receiver 14 and rereflect those rays back to receiver 14 for further concentrating effects. FIGS. 1 and 6 show one type of secondary concentrating device 112 mounted to receiver 14. Device 112 may take the form of cup element 11 mounted in secured fashion to an outer peripheral wall of collector tube 14. Additionally, cup 114 is a contour of revolution having an axis sub¬ stantially coincident with the axis of tube 14. Cup element 11.4 may be a compound parabolic concentrator type shape having substantially parabolically shaped walls. Cup element 114 have mirror-like inner reflec¬ ting surfaces for reflecting rays 20 back onto tube 14 in order to maximize the total radiant energy impingement on tube 14.As can be seen, cup element 114 is secured to tube 14 in the neighborhood of first order focus area 30. The largest diameter of secondary device 112 is generally formed sufficient in length to accept an initial reflected ray 20 from reflector 12. Cup member 114 may be in¬ creased in size to accept, substantially any incident angle 110, as shown in FIG. 3-, dependent on the physi¬ cal conditions and size limitations of energy concen¬ trator system 10.Device 112 may be mounted to tube 14 through bolts, screws, or other fixed securement mechanisms not im¬ portant to the inventive concept as is herein described. It will be further noted that a plurality of cup elements 114 may be mounted to tube 14 along and substantially coincident with the axis of receiver 14. Such cup elements 112 may be varying sizes in order to maximize the final radiant energy flux impinging on tube 14.Referring now to FIG. 4, there is shown another type of secondary radiation concentration mechanism 90 applied to the outer boundary wall of receiver 14 for concentra¬ ting reflected energy impinging on receiver 14. As can be seen, secondary concentration mechanism 90 is formed of at least a pair of parabolic- reflecting surfaces 92 and 94 which extend in a generally outward direction from collector tube 14 for capturing reflected radiant energy 20 between surfaces 92 and -S .Elements 92 and S are generally at least segments of parabolic surfaces of revolution and channel radia¬ tion impinging and being reflected thereon into region 96 which is a region of concentrated electro-magnetic radiation. Regions 96 passing around collector tube 14 may be mounted to solar cells or other like devices for utilizing the increased radiation energy Impinging thereon. Such secondary concentration devices 90 may be referred to as compound parabolic concentrators. In specific, the basic theory of compound parabolic concen¬ trators have been illustrated in detail in the magazine entitled SOLAR ENERGY , Volume 18, Pages 93-111. How¬ ever, it is not believed that the utilization of such secondary concentrator systems 90 have been adapted to provide structural elements mounted in combination with the energy concentrator system 10 shown and described in the foregoing paragraphs. Each of compound parabolic concentrators 90 are mounted to a peripheral wall of collector tube 14. Radiation collection devices 90 have a radiation receiv¬ ing opening 134 and an opposed radiation collecting surface 136. Radiation receiving opening 134 and ra¬ diation collecting surface 136 are joined by at least the sidewalls 92 and 9 having substantially parabolic profiles. Further illustrated in FIG. 4, it is seen that radiation collection devices 0 include pre¬ determined lateral dimensions 130 and 132. For optimi¬ zation, a lateral dimension ratio of radiation collecting surface 132 to radiation receiving opening 130 is sub¬ stantially equal to the sine of a half field of view of compound parabolic concentrator 90. For each compound parabolic concentrator 90, there exists exis line 138 which is substantially equidistant from each of sidewalls 92 and 94. In particular construction, devices 90 are formed such that each of parabolic wall profile 92 and 94 include a focus 140 at a position on the opposing sidewall at collecting surface 136. In this manner of construction, there is provided a highly efficient type of solar radiation collection device.Additionally, and still further, concentrating system 90 may include a lens 142 secured to sidewalls 92 and 94 and positionally located within radiation receiving opening 134. Such lens 142 may be of the Fresnel type and further provides for concentration of reflected radiation 20 for passing and capturing within each of compound parabolic concentrators 90. As can be seen in FIG. 3, at any particular location on tube 14 along axis line 22, there is generally a fairly high degree of parallel rays 20 entering radiation receiving opening 134. Utilization of lens 142 positional within opening 134 having a focal point at or substantiall .near collec¬ ting surface 136 allows further concentration of rays 20 within concentrators 90 to increase the overall efficiency of system 10.Additionally, and in further regard to FIG. 4, there is shown cut-away views of receiver tube 14. Each of secondary concentrating devices 90 in the form of compound parabolic concentrators may be angled in a particular fashion dependent upon the physical location of compound parabolic concentrators 90 on tube 14. Where the secondary concentrating devices 90 is in the area 108 of tube 14, devices ' 90 may be inclined at a 90° angle to the extended length of tube 14 in order to accept a maximum amount of reflected rays 20. In opposition, as shown by the device 90 on the right side of tube 14 in FIG. 4, where such device 90 is located in area 106 of receiver 14, it is seen that secondary concentrating device 90 may include an oblique angle 144 in order to accept a maximization of reflected rays 20.Still further, as is clearly seen in FIG. 6, compound parabolic concentrator cup members 114 may be placed in combination with secondary reflection devices 90 pre¬ viously described. Such combinations may be mounted in secured manner to an outer wall of tube 14 as has been previously detailed.Another embodiment of energy concentrator system 10 is shown in FIGS. 8 and 9 where another type of secondary concentrating mechanism 116 is employed. Mechanism 116 includes a plurality of secondary cup elements 118 mounted in an interfacing manner each to the other around re¬ ceiver 14 as is shown. Each of secondary cup elements 118 may have an open end 120 directed toward or facing incoming radiant energy 20. Each open end 120 may simi¬ larly include a lens for further concentrating any energy internal to mechanism 116. In this manner, re¬ flected rays 20 from segment 104 of reflector inner surface 24 may be captured within an internal volume of secondary cups 118 and eventually be directed to the outer wall of receiver 14.Outer walls 124 may include a contour approximating a compound parabolic concentrator contour for optimization of re-reflected rays being directed to receiver 14. Ele- ents 118 may be secured to -receiver 14 through bolting, or other like mechanisms not important to the inventive concept as is herein described.Thus, there has been shown a method of concentrating reflected radiant energy into a predetermined area by initially establishing stationary spherical reflector 12 on a base surface 16. In general, when incident radiation is initiated at an external source such as the sun, and base surface is ground, reflector 12 may have a generally North/South or East/West orientation.Movable receiver 14 having an extended length in a predetermined direction is provided for receiving reflected rays 20 from receiver in a- surface 24. Movable receiver 14 is established having a substantially linearly direc¬ ted contour in Its extended length direction. Linearly directed receiver 14 is provided having an extension at least within a line length defined between inner surface 24 and center of curvature 26 of spherical reflector 12. Receiver 14 is generally displaced coincident with a focus line for interception of reflected radiant energy 20 being reflected from surface 24. Receiver 14 may be tubular in contour and is adapted to contain material to be heated within internal chamber 36 through which the material is passed.Although this Invention has been described in connec¬ tion with specific forms and embodimentsthereo , it will be appreciated that various modifications other than those discussed above may be resorted to without depart¬ ing from the spirit or scope of the invention. For example, equivalent elements may be substituted for those specifically shown and described, certain features may be used independently of ther features, and in certain cases particular locations of elements may be reversed or interposed, all without departing from the spirit or scope of the invention as defined in the appended claims.
WHAT IS CLAIMED IS:1. A radiant energy concentrator system, comprising: (a) reflector means fixedly secured to a base surface, said reflector means for reflecting incident radiation impinging thereon from an energy source;.(b) receiver means having an extended length in a predetermined direction, said extended length being maintained in a direction substantially parallel with said incident radiation;(c) secondary radiation concentration means mounted on said receiver means for further concentrating said reflected radiation to said receiver means; and,(d) receiver displacement means secured to said receiver means for maintaining said extended length of said receiver means in said parallel direction respon¬ sive to directional variations of said incident radiation. 2. The radiant energy concentrator system as re¬ cited in claim 1 where said receiver means includes collector tube means having an axis positionally located in a direction substantially parallel said incident radiation direction.3. The radiant energy concentrator system as re¬ cited in claim 2 where said secondary radiation concen¬ tration means is secured to an outer, peripheral wall, of said collector' tube means for intercepting said reflected radiant energy.4. The radiant energy concentrator system as re¬ cited in claim 2 where said secondary radiation concen¬ tration means includes cup means mounted to a peripheral wall of said collector tube means for intercepting ra¬ diant energy being reflected from said reflector means. 5. The radiant energy concentrator system as recited in claim 2 where said secondary radiation concentration means includes cup means mounted to a peripheral wall of said collector tube means, said cup means being formed by a paraboloid of revolution contour having an axis of revolution substantially coincident with said collector tube means axis.6. The radiant energy 'concentrator system as recited in claim 5 where said cup means is positionally mounted to said collector tube means approximately at a position¬ al location equal to one-half a radius of curvature of said reflector means. 7. The radiant energy concentrator system as recited in claim 2 where said secondary radiation concentration means includes radiation collection means mounted to a peripheral wall of said collector tube means, said radia¬ tion collection means having a radiation receiving open¬ ing and an opposed radiation collecting surface, said radiation receiving opening and said radiation collecting surface being joined by at least a pair of sidewalls having substantially parabolic profiles.8. The radiant energy concentrator system as recited in claim 7 where said radiation collection means includes a lateral dimension ratio of said radiation collecting surface to said radiation receiving opening substantially equal to the sine of a half field of view of said radia¬ tion collection means.\ 9. The radiant energy concentrator system as re¬ cited in claim 8 where each of said sidewall parabolic profiles includes a focus at a position on the opposing sidewall at said collecting surface, each of said pro¬ files having an axis line substantially equidistant from each of said sidewalls.10. The radiant energy concentrator system as re¬ cited in claim 9 where each of said sidewalls includes an inner reflecting surface.11. The radiant energy concentrator system as re¬ cited in claim 7 including lens means secured to said sidewalls and positionally located within said radiation receiving opening. 12. The radiant energy concentrator system as recited in claim 1 where said reflector means includes a curvi- linearly contoured- reflective surface adapted to reflect said incident radiant energy.13. The radiant energy concentrator system as recited in claim 1 where said reflector means includes a concave contour reflective surface directed toward said energy source.14. The radiant energy concentrator system as recited in claim 1 where said reflector means is a spherical reflector adapted to reflect said radiant energy. 15. The radiant energy concentrator system as recited in claim 1 where said reflector means Includes a geo¬ desic dome configuration having a plurality of reflec¬ tive elements of predetermined contour, each of said reflective elements contiguously line interfacing with a next successive reflective element, each of said re¬ flective elements having a reflective surface facing interior said geodesic dome configuration.l6. The radiant energy concentrator system as recited in claim 15 where said reflective elements are planar and triangular in contc-ur.17- The radiant energy concentrator system as recited in claim 15 where said reflective elements are planar and hexagonal in contour. 18. The radiant energy concentrator system as recited in claim 1 where said receiver means is positionally main¬ tained coincident with a focal line defined by said reflected radiant energy.19. The radiant energy concentrator system as recited in claim 18 where said receiver means includes collector tube means having an extended length and being position¬ ally displaced in a direction parallel to said incident radiation direction.20. The radiant energy concentrator system as recited in claim 19 where fluid is passed through said collector tube means, said fluid being heated by said reflected radiant energy impinging said collector tube means. 21. The radiant energy concentrator system as recited in claim 1 where said receiver displacement means in¬ cludes means for rotating said receiver means about a pair of mutually perpendicular axes.22. The radiant energy concentrator system as recited in claim 21 where said reflector means is spherical in contour, said receiver displacement means being se¬ cured to said receiver means approximately at a center of curvature of said reflector means spherical contour. 23. The radiant energy concentrator system as recited in claim 21 where said rotation means includes:(a) first motor displacement means rotationally mounted to said base surfa'ce for rotating said receiver means about a first axis line; and,(b) second motor displacement means mounted to said first motor displacement means for rotating said receiver means about a second axis line normal about first axis line.24. The radiant energy concentrator system as recited in claim 23 where said first motor displacement means includes:(a) first motor means;(b) first drive gear means secured to a rotation¬ al shaft extending from said first motor means; and,(c) first driven gear means matingly engaged to said first drive gear means responsive to rotation of said shaft. 25. A method for concentrating reflected radiant energy to a predetermined area, including the steps of:(a) establishing a stationary spherical reflector having a principal axis;(b) providing a movable receiver having an exten¬ ded length in a predetermined direction;(c) establishing a secondary radiation concentra¬ tor mounted on said receiver for further radiating said reflected radiation to said receiver;(d) displacing said receiver into parallel rela¬ tion along said extended length with an incident radiation energy direction impinging on said spherical reflector; and,(e) reflecting said incident radiant energy from said reflector to said receiver. 26. The method of concentrating reflected radiant energy as recited in claim 25 where-the step of provi¬ ding said movable receiver includes the step of estab¬ lishing a substantially linearly directed receiver in said extended length direction.27- The method of concentrating reflected radiant energy as recited in claim 26 where the step of estab¬ lishing said- linearly directed receiver includes the step of providing said extension at least within a line length defined between an inner surface and a center of curvature of said spherical reflector.28. The method of concentrating reflected radiant energy as recited in claim 27 where said receiver ex¬ tended length is displaced coincident with a focus line for interception of said reflected radiant energy. 29. The method of concentrating reflected radiant energy as recited In claim 28 where said receiver is tubular in contour, said receiver adapted to contain material to be heated.30. The method of concentrating reflected radiant energy as recited in claim 25 where said step of dis¬ placing includes the step of pivoting said receiver about a pivot point approximately coincident with said principal axis of said spherical reflector.31. The method of concentrating reflected radiant energy as recited in claim 30 where the step of pivoting includes the step of rotationally moving said receiver in a two-axis rotational mode. 32. The method of concentrating reflected radiant energy as recited in claim 25 where-the step of estab¬ lishing a stationary spherical reflector includes the step of forming an inner reflecting surface in a geo¬ desic dome configuration, said inner surface having an envelope approximating a spherical surface.
BUNCH J
BUNCH J
EP-0003016-B1
3,016
EP
B1
EN
19,811,230
1,979
20,100,220
new
C07D498
A61K31, C07D513
A61K31, C07D241, A61P25, C07D513, C07D498
M07D241:24B, M07D498:04, M07D513:04, C07D 241/24, M07D513:04+281B+241B, C07D 513/04, M07D498:04+267B+241B
PYRAZINO-BENZOXAZEPINE AND -BENZTHIAZEPINE DERIVATIVES, PROCESSES FOR THEIR PRODUCTION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
Compounds of formula I, wherein R₁ is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum of 4 carbon atoms, which may be acylated by an alkanoyl group of 2 to 18 carbon atoms, alkoxyalkyl with a maximum of 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, cycloalkylalkyl of 4 to 7 carbon atoms or a group of formula II, wherein R₅ is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, and either i) X is -CH₂- and n is 0, 1, 2 or 3 or ii) X is -CO- and n is 1, 2 or 3 or iii) X is -O- and n is 2 or 3 and R₂ and R₃ are independently hydrogen, halogen, trifluoromethyl or alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl, each of 1 to 4 carbon atoms and R₄ is hydrogen, alkyl or alkoxy of 1 to 4 carbon atoms, Z is -O- or -S-, with the proviso that, when R₃ is trifluoromethyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl, R₄ is other than alkoxy, are useful for inducing sleep and treating psychotic disturbances and depressions.
PYRAZINOBENZOXAZEPINE DERIVATIVES, PROCESSES FOR THEIR PRODUCTION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM The present invention relates to pyrazinobenzoxazepines, processes for their production and pharmaceutica compositions containing them. The present invention provides compounds of formula I, EMI1.1 wherein R1 is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum of 4 carbon atoms, which may be acylated by an alkanoyl group of 2 to 18 carbon atoms, alkoxyalkyl with a maximum of 6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, cycloalkylalkyl of 4 to 7 carbon atoms or a group of formula II, EMI2.1 wherein R5 is hydrogen, halogen, alkyl or al koxy of 1 to 4 carbon atoms, and either i) X is -CH2- and n is 0, 1, 2 or 3 or ii) X is -CO- and n is 1, 2 or 3 or iii) X is -O- and n is 2 or 3 and R2 and R3 are independently hydrogen, halogen, trifluoromethyl or aikyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl, each of 1 to 4 carbon atoms and R4 is hydrogen, alkyl or alkoxy of 1 to 4 carbon atoms, Z is -O- or -S-, with the proviso that, when R3 is trifluoro methyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl, R4 is other than alkoxy. Any alkyl, alkoxy or alkylthio radical of 1 to 4 carbon atoms is preferably of 1 to 3 carbon atoms, especially 1 and 2 carbon atoms. Hydroxyalkyl has preferably 2 or 3 carbon atoms. Preferably the hydroxy group is attached to a carbon atom other than the carbon atom adjacent to the nitrogen atom. The alkoxy moiety in alkoxyalkyl is preferably located in the terminal position of the alkylene chain which preferably has 2 or 3, especially 2 carbon atoms. The alkoxy radical in alkoxyalkyl is preferably methoxy. Cycloalkyl or the cycloalkyl moiety of cycloalkylalkyl is conveniently cyclopropyl or cyclopentyl. The alkyl moiety of cycloalkylalkyl is conveniently methyl. Halogen means fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine, especially chlorine. R1 is preferably hydrogen, alkyl or a group of formula II, R5 is preferably hydrogen or fluorine. X is preferably -CH2- or -CO-, n is preferably 1 or 3. R2 is preferably hydrogen, halogen or alkoxy. R3 is preferably hydrogen, halogen or alkyl. R4 is preferably hydrogen. When R2 and R3 are other than hydrogen, Rq is preferably in position 8. Z is preferably -0-. The present invention also provides a process for the production of a compound of formula I as defined above, which comprises reacting a compound of formula III, EMI4.1 wherein R2, R3, R and Zare as defined above and y is a leaving group, with a compound of formula IV, EMI4.2 wherein R1 is as defined above. The reaction may be effected in conventional manner for the production of similar compounds. Y is preferably chlorine. The process may be conveniently effected at a tem perature Ct fran 20 to 170 C in an inert organic solvent such as toluene, methylenchloride or dioxane. When R1 is hydrogen conveniently a compound of formula III is added to a solution of a compound af formula IV. The starting material of formula III may be prepared in known manner, e.g. as described herein, for example via the corresponding lactam, e.g. by reaction with phosphoroxychloride. Insofar as the production of starting materials is not particularl described these compounds are known or may be produced in analogous manner to known compounds. Free base forms of the compounds of formula I may be converted into acid addition salt forms in conventional manner and vice versa. Suitable acids are e.g. maleic acid, oxalic acid, methanesulphonic acid, hydrochloric acid and hydrobromic acid. In the following Examples the temperatures given are in degrees Centigrade and are uncorrected. In the table the following abbreviations are used: *) monomÅaleate **) monooxalate EXAMPLE 1: 11- (4-thyl-l-piperazinyl) -pyrazino [2,3-b) [1,5]benaxazepine 3.6 g 1-methylpiperazine are added to a stirred suspension of 4.2 g 11-chloro-pyrazino[2,3-b[l,5]benz- oxazepine in 50 ml as. toluene. Stirring is maintained for four hours at room temperature. 100 ml water and 100 ml ethyl acetate are added and the mixture well shaken. The organic phase is filtered, dried over anhydrous magnesium sulphate and evaporated. The residue is dissolved in ethanol and 1 equivalent of maleic acid in ethanol is added, to yield the heading compound in monomaleate salt form, m.p. 190-191 . The starting material 11-chloro-pyrazino[2,3-b7 tl,5]benzoxazepine may be obtained as follows: a) pyrazino [2,3-b] benzoxazepin=11(10H)-one OH)-one A solution of 51 g 3-bromo-pyrazine-2-carboxylic acid in 130 ml hexamethylphosphorotriamide is cooled to -10 and treated under stirring dropwise with 18 ml of thionyl chloride4 After 5 minutes there are added in one portion 27.3 g of owmnophenol and the reaction mixture i8 stirred 'for 2 honri at room temperature. The mixture is poured on tce and extracted with ethyl acetate. The organic layer was washed with 2N hydrochloric acid, 2N sodium carbonate and finally with water, dried over anhydrous magnesium sulphate, filtered and evaporated. The residue is treated with 2.2 1 of 0.1 N sodium hydroxide and stirred at 700 for 15 hours. The resulting solid is filtered, washed with water and dried in vacuo at 800 to yield the heading compound, m.p. 269-2720. b) ll-chloro-pyrazino[2z3-b][l-5]benzoxazepine 16 g of pyrazino[2,3-b][1,5]benzoxazepine- -11(10H)-one, 140 ml of phosphoroxychloride and 5.6 ml of N,N-dimethylaniline are refluxed for 15 hours. Residual phosphoroxychloride is removed by distillation. The residue is dissolved in methylene chloride and poured on ice. The methylene chloride layer is washed with 4N hydrochloric acid and water, dried over anhydrous magnesium sulphate and evaporated to give the heading compound, m.p. 123-1i60, In analogous manner to that described in Example 1, the following compounds of formula I are obtained, wherein Z is -0-: : EMI8.1 <tb> Example <SEP> R1 <SEP> R <SEP> Ra <SEP> R4 <SEP> m.p. <tb> <SEP> 2 <tb> <SEP> 2 <SEP> H <SEP> H <SEP> H <SEP> H <SEP> 223-224** <tb> <SEP> 3 <SEP> CH2CH2OH <SEP> H <SEP> H <SEP> H <SEP> 218-220** <SEP> (dec.) <tb> <SEP> 4 <SEP> H <SEP> 8-C1 <SEP> H <SEP> H <SEP> 197-199* <SEP> (dec.) <tb> <SEP> 5 <SEP> CH3 <SEP> 8-C1 <SEP> H <SEP> H <SEP> 118-119 <tb> <SEP> 6 <SEP> CH2CH2OH <SEP> 8-C1 <SEP> H <SEP> H <SEP> 230-232** <SEP> (dec.) <tb> <SEP> 7 <SEP> CH3 <SEP> H <SEP> CH3 <SEP> H <SEP> 171-173 <SEP> * <tb> <SEP> 8 <SEP> CH3 <SEP> H <SEP> CH3 <SEP> CH3 <SEP> 175-177 <SEP> * <tb> <SEP> 9 <SEP> CH3 <SEP> H <SEP> C1 <SEP> H <SEP> 134-135 <SEP> F <tb> <SEP> 10 <SEP> H <SEP> H <SEP> H <SEP> CH3 <SEP> 197-198 <SEP> * <tb> <SEP> 11 <SEP> H <SEP> H <SEP> CH3 <SEP> H <SEP> 178-180 <SEP> * <tb> <SEP> 12 <SEP> H <SEP> H <SEP> C1 <SEP> H <SEP> 184-186 <SEP> * <tb> <SEP> 13 <SEP> 02H5 <SEP> H <SEP> H <SEP> H <SEP> 170-171 <SEP> * <tb> <SEP> 14 <SEP> OH <SEP> (OH3)2 <SEP> H <SEP> H <SEP> H <SEP> II <SEP> 145-148 <SEP> * <tb> <SEP> 15 <SEP> CH2CH2OCH3 <SEP> H <SEP> H <SEP> H <SEP> 157-158 <SEP> * <tb> <SEP> 16 <SEP> H <SEP> 8-CH3 <SEP> H <SEP> H <SEP> 196-197 <SEP> * <tb> <SEP> 17 <SEP> CH3 <SEP> 8-OH3 <SEP> H <SEP> H <SEP> 171-172 <SEP> * <tb> <SEP> 18 <SEP> H <SEP> 7-CH3 <SEP> H <SEP> H <SEP> 215-216 <SEP> * <tb> <SEP> 19 <SEP> CH3 <SEP> 7-CH3 <SEP> H <SEP> H <SEP> 160-162 <SEP> * <tb> <SEP> 20 <SEP> H <SEP> 8-OCH3 <SEP> H <SEP> H <SEP> 178-180 <SEP> * <tb> <SEP> 21 <SEP> CH3 <SEP> 8-OCH3 <SEP> H <SEP> H <SEP> 159-161 <SEP> * <tb> <SEP> 22 <SEP> H <SEP> 8-F <SEP> H <SEP> H <SEP> 181-182 <SEP> * <tb> <SEP> 23 <SEP> CH3 <SEP> 8-F <SEP> H <SEP> H <SEP> 170 <SEP> * <tb> <SEP> 24 <SEP> CH3 <SEP> H <SEP> H <SEP> CH3 <SEP> 178-179 <tb> <SEP> 25 <SEP> CH2CH2 <SEP> < <SEP> H <SEP> H <SEP> H <SEP> 140-141 <tb> <SEP> 26 <SEP> CH2CH2 <SEP> e <SEP> 8-OCH3 <SEP> H <SEP> H <SEP> 215-216** <tb> <SEP> - <SEP> (dec.) <tb> <SEP> 27 <SEP> CH,CH, <SEP> H <SEP> H <SEP> CH3 <SEP> 201-203 <tb> <SEP> 27a <SEP> CH2CH2 <SEP> t <SEP> H <SEP> C1 <SEP> CH3 <SEP> 204-208 <SEP> * <tb> EMI9.1 <tb> Example <SEP> R1 <SEP> 2 <SEP> R3 <SEP> R4 <SEP> m.p. <tb> 28 <SEP> CH2CH2 <SEP> t <SEP> H <SEP> CH3 <SEP> H <SEP> 136-138 <tb> <SEP> (OH2)2O\ <SEP> H <SEP> H <SEP> H <SEP> 160-162** <tb> <SEP> 2 <SEP> 2 <SEP> (dex.) <tb> <SEP> 30 <SEP> (CH2)3CO <SEP> e <SEP> F <SEP> H <SEP> H <SEP> H <SEP> 130-131 <tb> <SEP> 31 <SEP> CH2CH2 <SEP> t <SEP> H <SEP> C1 <SEP> H <SEP> 135-137 <SEP> F <tb> <SEP> OH <SEP> 2 <SEP> e <SEP> H <SEP> H <SEP> H <SEP> 137-138* <tb> .33 <SEP> 2 <SEP> 2 <SEP> 9 <SEP> H <SEP> H <SEP> H <SEP> 119-121 <tb> <SEP> C1 <tb> <SEP> 34 <SEP> (CH2)2CH2 <SEP> H <SEP> H <SEP> H <SEP> 133-135 <tb> <SEP> r <SEP> ) <tb> <SEP> 35 <SEP> H <SEP> H <SEP> CH3 <SEP> CH3 <SEP> 200-202* <tb> <SEP> 36 <SEP> OH2CH2 <SEP> H <SEP> CH3 <SEP> CH3 <SEP> 182-183 <tb> <SEP> 37 <SEP> H <SEP> 8-C1 <SEP> CH3 <SEP> H <SEP> 192-193* <tb> <SEP> 38 <SEP> CH3 <SEP> 8-C1 <SEP> CH3 <SEP> H <SEP> 189-192* <tb> <SEP> 39 <SEP> 2 <SEP> t <SEP> 8-Cl <SEP> CH3 <SEP> H <SEP> 212-213** <tb> <SEP> - <SEP> (dec0) <tb> <SEP> 40 <SEP> CH3 <SEP> 8-C1 <SEP> C1 <SEP> H <SEP> 207-209 <tb> <SEP> 41 <SEP> H <SEP> H <SEP> CH3 <SEP> H <tb> <SEP> 42 <SEP> CH2CH2 <SEP> e <SEP> 8-Cl <SEP> H <SEP> H <tb> EMI10.1 <tb> <SEP> Example <SEP> R1 <SEP> b <SEP> R2 <SEP> 3 <SEP> R4 <SEP> m.p. <tb> <SEP> 43 <SEP> CH2 <SEP> < <SEP> H <SEP> H <SEP> H <tb> <SEP> 44 <SEP> CH2 <SEP> < <SEP> H <SEP> C1 <SEP> H <tb> <SEP> 45 <SEP> CH2 <SEP> < <SEP> 8-C1 <SEP> H <SEP> H <tb> <SEP> 46 <SEP> < <SEP> H <SEP> H <tb> <SEP> 47 <SEP> H <SEP> H <SEP> H <tb> <SEP> 48 <SEP> CH3 <SEP> H <SEP> OCH3 <SEP> H <tb> ¯ <SEP> 2 <SEP> 2 <SEP> e <SEP> H <SEP> OCH3 <SEP> H <tb> <SEP> 50 <SEP> H <SEP> H <SEP> C1 <SEP> CH3 <tb> 51 <SEP> CH3 <SEP> H <SEP> C1 <SEP> CH3 <SEP> 121-123* <tb> <SEP> 52 <SEP> CH3 <SEP> H <SEP> SOH3 <SEP> H <tb> <SEP> 53 <SEP> CH3 <SEP> H <SEP> SOCH3 <SEP> H <tb> <SEP> 54 <SEP> H <SEP> CH3 <SEP> H <tb> In analogous manner to that described in Example 1, the following compounds of formula I are obtained, wherein Z is -S-: Example R1 R2 R3 R4 m. p. 55 H H H H 158-161 56 CH3 H H H 171-173* 57 H 8-C1 H H 191-192* (dec.) 58 CH3 8-C1 H H 148-149 59 CH CH OH 8-C1 H H 235-237** (dec.) 60 CH2CH2OH H H H 253-256 naphthalene 1,5-disulpho- nate (aec.) 61 CH3 7-C1 H H 169-170 62 H 7-C1 H H 209-211* 63 CH3 8-F H H 64 H 8-F H H 65 CH3 8-F CH3 H 66 CH3 8-F Cl H 67 CH3 H CH3 H 68 CH3 H C1 H 69 CH3 H SCH3 H 70 CH3 H SOCH3 H 71 CH3 H SO2CH3 H 72 CH3 8-Cl' CH3 H 73 H 8-C1 CH3 H 74 CH3 8-C1 C1 H The starting material ll-chloro-pyrazinot2,3-b] [1,5]benzothiazepine for Example 55 may be prepared as follows: a) 3-(2-amino-henylthio)-pyrazine-2-carboxylic acid methyl eser A mixture of 18 g 3-bromopyrazine-2-carboxylic acid methyl' ester, 13.4 g 2-amino-thiophenolhydrochloride and 250 ml triethylamine is refluxed for 3 hours. Thereafter the solvent is evaporated and the residue treated with methylene chloride and water. The organic phase is dried over sodium sulphate and evaporated, whereby there is obtained the heading compound, which after recrystallisation from ethyl acetate has a m.p. of 155-1560. b) pyrazino [2-3-bltlL5lbenzothia2eEin-ll(lOH)-one Freshly prepared sodium methylate (from 1.8 g of sodium) in 200 ml abs. toluene and 16.8 g 3-(2-aminophenylthio)-pyrazine-2-carboxylic acid methyl ester are stirred together at room temperature for 15 hours. The mixture is poured on ice and the resulting precipitate filtered, whereby there is obtained the heading coMpound, which after recrystallisation from ethyl acetate has a m,p. of 280-2820, c) ll-chloro-pyrazinof2z3-b? rlL51benzothiazesinn In analogous manner to that described in Example lb) there is obtained the heading compound. The compounds of formula T exhibit pharmacolo- gical activity. In particular, they exhibit sleep inducing activity, as indicated in standard tests. For example in one test according to the principles of A.O. Sayers and G. Stille, Electroenceph. Clin. Neurophysiol. 27, 87-89 (1969), the sleep inducing activity in rats is observed after a single peroral administration of from about 0,5 to about 80 mg/kg animal body weight. The compounds are therefore indicated for use as sleep inducing agents. For this use an indicated daily dose is from about 1 to about 100 mg conveniently given shortly before retiring to sleep. Additionally, the compounds of formula I exhibit neuroleptic activity, as indicated in standard tests. For example, in one standard test an inhibition of spontaneous motor activity is observed in mice on p.o. administration of from 1 to 50 mg/kg anir,al body weight cf the compounds in accordance with the principles of Caviezel and Baillod [Pharm. Acta Helv. (195E), 33, 465 484) The compounds are therefore indicated for use as neuroleptic agents. For this use an indicated daily dose is from about 50 to about 500 mg, conveniently given in divided doses 2 to 4 times a day in unit dosage form containing from about 12.5 to about 250 mg, or in sustained release form. Additionally, the compounds of formula I exhibit antidepressant activity, as indicated in standard tests, for example, by an inhibition of tetrabenazine-induced catalepsy and ptosis in rats on intraperitoneal administration of from 5 to 15 mg/kg animal body weight in accordance with the method described by Stille (Arznei mittel-Forsch. 1964, 14, 534). The compounds are therefore indicated for use as antidepressant agents. For this use an indicated daily dose is from about 5 to about 150 mg, conveniently administered in divided doses 2 to 4 times a day in unit dosage form containing ftom about 1.25 to 75 mg, or in-sustained release form. The compounds of formula I may be administered in pharmaceutically acceptable acid addition salt form. Such acid addition salt forms exhibit the sane order of activity as the frec base forms. The present inven tion also provides a pharmaceutical ccmposition com prising a compound of formula I, in free base form or in pharmaceutically acceptable acid addition salt form, in association with a pharmaceutical carrier or diluent. Such compositions may be in the form of, for example, a solution or a tablet. The sleep inducing activity and the neuro leptic activity is the preferred utility for compounds of formula I. The compounds of formula I wherein Z is -o- , especially those of Examples 1 and 25 are especially indicated as sleep inducing agents. The compounds of Examples 5, 7, 9, 31, 38, 58and 68 are especially indicated as neuroleptic agents. In one group of compounds R1 is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum of 4 carbon atoms or alkoxyalkyl with a maximum of 6 carbon atoms, R2 is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, R3 and R4 are hydrogen and Z is -O-. In another group of compounds R1 is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum 0±- 4 carbon atoms, alkoxyalkyl with a maximum of 6 carbon atoms or a group of formula II, wherein R5 is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, and either i) X is -CIS2- and n is O, 1, 2 or 3 or ii) X is -CO- and n is 1, 2 or 3 or iii) X is -O- and n is 2 or 3, R2 is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, R3 is hydrogen, halogen, trifluoromethyl or alkyl, alkoxy or alkylthio, each of 1 to 4 carbon atoms, R4 is hydrogen, alkyl or alkoxy of 1 to 4 carbon atoms and Z is -O-.
WHAT WE CLAIM IS: 1. A compound of formula I, EMI17.1 wherein R1 is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum of 4 carbon atoms, which may be acylated by an alkanoyl group of 2 to 18 carbon atome, alkoxyalkyl with a maximum of .6 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, cycloalkylalkyl of 4 to 7 carbon atoms or a group of formula II, EMI17.2 wherein R5 is hydrogen, halogen, alkyl or al koxy of 1 to 4 carbon atoms, and either i) X is -CH2- and n is 0, 1, 2 or 3 or ii) X is -CO- and n is 1, 2 or 3 or iii) X is -0- and n is 2 or 3 and R2 and R3 are independently hydrogen, halogen, trifluorpmethyl or alkyl, alkoxy, 'alkylthiO alkylsulfinyl or alkylsulfonyl, each of 1 to 4 carbon atoms and R4 is hydrogen, alkyl or alkoxy of 1 to 4 carbon atoms, Z is -O- or -S-, with the proviso that, when R3 is trifluoro methyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl, R4 is other than alkoxyor an acid addition salt thereof. 2. A process for the production of a compound of formula I, as defined in claim 1, which comprises reacting a compound of formula III, EMI19.1 wherein R21 R3, R4 and Z are as defined in claim 1. and y is a leaving group, with a compound of formula IV, EMI19.2 wherein R1 is as defined in claim 1. 3. A compound of claim 1, wherein R1 is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum of 4 carbon atoms or alkoxyalkyl with a maximum of 6 carbon atoms, R2 is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, R3 and R4 are hydrogen and Z is -O-. 4. A compound of claim I, wherein R1 is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl with a maximum of 4 carbon atoms, alkoxyalkyl with a maximum of 6 carbon atoms or a group of formula II, wherein R5 is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, and either i) X is -OH2- and n is O, 1, 2 or 3 or ii) Xis -CO- and n is 1, 2 or 3 or iii) Xis -O- and n is 2 or 3, R2 is hydrogen, halogen, alkyl or alkoxy of 1 to 4 carbon atoms, R3 is hydrogen, halogen, trifluoromethyl or alkyl, alkoxy or alkylthio, each of 1 to 4 carbon atoms, R4 is hydrogen, alkyl or alkoxy of 1 to 4 carbon atoms and Z is -O-. 5. A compound of claim 1, which is 11-(4-methyl-l- piperazinyl)-pyrazino[2,3-b) [l,5)benzoxazepine. 6. A pharmaceutical composition comprising a compound of claim 1 in free base form or in pharmaceuti cally acceptable acid addition salt form in association with a pharmaceutical carrier or diluent.
SANDOZ AG
LEUTWILER, ALBERT, DR.; SORG, DIETER, DR.
EP-0003024-B1
3,024
EP
B1
DE
19,820,120
1,979
20,100,220
new
B23Q41
B65G47
B23Q41, B65G47
B65G 47/48B2, B23Q 41/02
FLEXIBLE MANUFACTURING SYSTEM
1. Flexible manufacturing system for workpieces affixed to pallets, comprising a plurality of processing machines, a workpiece-pallet conveyor system connecting such processing machines with each other, and a loading and unloading station, identification means to be associated with individual workpiece pallets, reading stations for reading said identification means at the exits of said conveyor system, and means for enconding a new target address, characterized in that said identification means comprises a drum rotatable into a plurality of registering positions, on the periphery of which drum there is disposed a plurality of code strips the number of which is equal to the number of registering positions of said drum, each of which code strips is adapted to represent a complete target address including possible parity characters, that at least a portion of said code strips includes further identifications, and that said means for encoding a new target address comprises an indexing mechanism which in each case automatically rotates said drum by one step from one registering position into the next following.
Flexible 6 Fertigungssystem Die Erfindung betrifft ein flexibles Fertigungssystem für Werkstücke, bestehend aus einer Anzahl Bearbeitungsmaschinen, einer diese miteinander und einer Lade- und Entlade-Station verbindenden Werkstückförderanlage, den einzelnen Werkstücken zuzuordnenden Kennzeichen, Lesestationen zum Ablesen der Kennzeichen an den Ausfahrstellen und Einrichtungen für die Einstellung einer neuen Zieladresse ( Werkstatt und Betrieb 108 (19?5) Heft 8, Seiten -481 bis 554). Bei dem bekannten Fertigangssystem dieser Art besteht-das Kennzeichen aus einer festen Codierung und einer ver änderlichen Codierung an Jeder Palette. Nach der Bear¯ beitung eines Werkstücks in einer Bearbeitungsmaschine wird die veränderliche Codierung geändert, indem einzelne kippbare Nocken umgestellt werden, daraus ergibt sich, ob die betreffende Palette, und damit das Werkstück, schon in einer Bearbeitungsmaschine war oder nicht. Eine solche Kennzeichnung hat den Nachteil, dass an jeder Bearbeitungsmaschine eine Einrichtung vorgesehen sein muss, mit der die Codierung geändert werden kann. Eine solche Einrichtung erfordert einen beträchtlichen Aufwand an jeder Bearbeitungsmaschine. Ein solcher Aufwand lässt sich allenfalls noch vertreten, wenn die Änderung der Codierung und damit die Einstellung der neuen Zieladresse sich darauf beschränkt, einzelne kippbare Nocken umzustellen, um anzuzeigen, dass das Werkstück bereits die erste Zieladresse (Bearbeitungsmaschine) durchlaufen hat, ist aber praktisch nicht mehr vertretbar, wenn das gleiche Werkstück in einer grösseren Anzahl von Bearbeitungsmaschinen bearbeitet werden muss, und vor allem, wenn das gleiche Werkstück nach einer Zwischenbearbeitung auf einer anderen Bearbeitungsmaschine nochmals zu einer Bearbeitungsmaschine zurück muss, um dort nach einem anderen Programm bearbeitet zu werden. In diesem Falle genügt nämlich nicht die einfache Kennzeichnung, dass das Werkstück bereits die betreffende Bearbeitungsmaschine durchlaufen hat, sondern es muss nicht nur eine vollständig neue Zieladresse, sondern auch das dort abzurufende Bearbeitungsprogramm in das Kennzeichen eincodiert werden. Mit anderen Worten bedeutet das, dass an jeder Bearbeitungsmaschine eine Einrichtung vorhanden sein muss, mit der das Kennzeichen völlig neu programmiert werden kann, wozu natürlich gehort, dass an dieser Einrichtung auch das nächstiolgende Programm abgerufen und bei der Einstellung der neuen Zieladresse in das Kenn- zeichen eingege#ben werden kann. Bllgemern veränderbare Xeflnz#ichen und Einrichtungen zu- - deren Veränderung sind be-kannt, neben den bereits erwähnten kippbaren Nocken beispielsweise magnetische Kennzeichen (DAS 19 30 923). Allgemein haben veränderbare Kennzeichen darüber hinaus den Nachteil, dass sie beim Umlauf der Werkstücke auf der Förderanlage versehentlich verändert werden können, wodurch erhebliche Störungen entstehen können, die bis zur schweren Beschädigung einer Bearbeitungsmaschine gehen können, beispielsweise wenn das Endbearbeitungsprogramm abgerufen wird, ehe das Vorbearbeitungsprogramm durchlaufen ist. Aufgabe der Erfindung ist es deshalb, ein flexibles Fertigungssystem der eingangs genannten Art derart zu verbessern, dass veränderliche Kennzeichnungen und die zu deren Veränderung erforderlichen Einrichtungen an den einzelnen Bearbeitungsmaschinen überflüssig werden. Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass das Kennzeichen aus einer in mehrere Raststellungen drehbaren Trommel besteht, auf deren Umfang eine der Zahl der Raststellungen gleiche Zahl von Codierleisten angeordnet ist, in deren jeder wenigstens eine vollständige Zieladresse einschliesslich eventueller Prüfzeichen darstellbar ist, und dass die Einrichtung für die Einstellung einer neuen Zieladresse aus einem Schaltmechanismus besteht, der die Trommel jeweils um eine Teilung aus einer Raststellung in die nächstfolgende weiterdreht. Die erfindungsgemäss vorgesehene Trommel weist keine ver änderlichen Kennzeichen auf, so dass die Gefahr einer versehentlichen Umcodierung völlig beseitigt ist, ein Schaltmechanismus, der die Trommel jeweils in eine folgende Raststellung dreht, ist im Vergleich zu einer Einrichtung zur Änderung des Kennzeichens ausserordentlich einfach. Darüber hinaus kann eine solche Trommel so viele Zieladressen enthalten, wie Raststellungen vorhanden sind, also für praktische Bedürfnisse unbegrenzt viele, und es ist ohne weiteres möglich, neben der Zieladresse auch die erforderliche Programminformation im Kennzeichen unterzubringen. Geeignete Codierleisten sind bekannt (vergl. beispielsweise DAS 15 56 643). Dadurch, dass die Trommel jeweils in einer Raststellung verrastet ist, ist bereits eine weitgehende Sicherheit gegen unbeabsichtigtes Verstellen erreicht. Eine absolute Sicherheit kann gemäss einer Weiterbildung der Erfindung dadurch erreicht werden, dass die Trommel formschlüssig in ihren Raststellungen durch Eingriff von Rastzähnen festgelegt ist, die axial aus dem Eingriff herausschiebbar sind, und dass der Schaltmechanismus eine die Rastzähne aus dem Eingriff herausschiebende Steuerbahn aufweist. Durch eine solche Massnahme ist gewährleistet, dass die Trommel unter keinen Umständen versehentlich aus der eingestellten Stellung heraus verdreht wird. Die Rastzähne können dabei durch Federkraft und/oder Eigengewicht in den formschlüssigen Eingriff gedrängt sein. Grundsätzlich ist es möglich, für ein Werkstück eine Trommel fest zu codieren und an der Werkstückpalette anzubringen, wenn nämlich die Werkstückpalette speziell nur für ein bestimmtes Werkstück vorgesehen ist. Für den Fall, dass Änderungen des Werkstücks berücksichtigt werden sollen und/oder dass die Palette für unterschiedliche Werkstücke geeignet ist, wird zweckmässigerweise jede Codierleiste zur auswechselbaren Aufnahme einer Reihe von Nocken, Schaltbolzen, Magneten, optischen Markierungen oder dergleichen Kennzeichnungselementen vorgesehen. Bei Änderungen am Werkstück braucht dann nicht die ganze Trommel ausgewechselt zu werden; es genügt, die Kennzeichnungselemente an der betreffenden Codierleiste bzw. den betreffenden Codierleisten auszuwechseln, bzw. zu ändern. Die Lesestationen müssen natürlich, wie üblich, zum Ablesen der gewählten Kennzeichnungselemente geeignet sein. Um ein Verschmutzen der Kennzeichen während der Bearbeitung, etwa durch Späne oder Schmiermittel, zu verhindern, was besonders bei magnetischen und optischen Markierungen wichtig ist, weist zweckmässigerweise der Maschinentisch jeder Bearbeitungsmaschine eine Abdeckung auf, die die Trommel bei auf dem Maschinentisch befindlicher Palette völlig abdeckt. Wenn eine solche Abdeckung vorgesehen ist, ist es im allgemeinen nicht, oder nur schwer, möglich, das Kennzeichen abzulesen, wenn die Palette sich auf dem Maschinentisch befindet. Es ist deshalb erforderlich, die im Kennzeichen enthaltene Programmangabe für die Bearbeitungsmaschine, soweit vorhanden, an einer anderen Stelle abzulesen. Dazu stehen mehrere Möglichkeiten zur Verfügung, als praktisch günstigste hat sich die Lösung herausgestellt, dass zwischen jeder zu einer Bearbeitungsmaschine führenden Ausfahrstelle und der betreffenden Bearbeitungsmaschine eine speichernde Lesestation zum Ablesen und Speichern des über die Zieladresse hinausgehenden Teils des Kennzeichens angeordnet ist. Eine solche Lesestation nimmt die Programmangabe unmittelbar vor dem Einfahren des Werkstücks in die Bearbeitungsmaschine auf und hält sie zum Abruf durch das Bearbeitungsmaschinenprogramm bereit, so dass der Abruf unmittelbar nach Beendigung der Bearbeitung des vorhergehenden Werkstückes erfolgen kann und bereits während der Werkstückwechselzeit die Bearbeitungsmaschine mit dem für den kommenden Arbeitsgang benötigten Werkzeug bzw.Nehrspindelkopf bestückt werden kann. Die Erfindung soll anhand der Zeichnung näher erläutert werden; es zeigen: Fig. 1 schematisch eine Aufsicht auf ein flexibles Fertigungssystem; Fig. 2 eine isometrische Ansicht einer Ausfahrstelle der Werkstückförderanlage des Systems nach Fig. 1, die zu einer Bearbeitungsmaschine führt; Fig. 3 eine Aufsicht auf eine erfindungsgemässe Kennzeichentrommel in Verbindung mit einer Lesestation; Fig. 4 einen Längsschnitt durch eine erfindungsgemässe Kennzeichentrommel in Verbindung mit einem Schaltmechanismus; und Fig. 5 einen Schnitt längs der Linie V-V in Fig. 4. In Fig. 1 ist ein flexibles Fertigungssystem mit drei Bearbeitungsmaschinen A, B und C und einer Werkstückförderanlage D dargestellt. Die nicht dargestellten Werkstücke werden in bekannter Weise auf Paletten 11 aufgespannt und mit diesen in einer Lade- und Entladestation 12 auf die Förderanlage D in ebenfalls bekannter Weise aufgegeben. Von dort laufen sie in ebenfalls bekannter Weise im Sinne der Pfeile 13 auf der Förderanlage D um. Vor jeder der drei Bearbeitungsmaschinen befindet sich in der Förderanlage D eine Ausfahrstelle 14, von der die Palette mit dem Werkstück jeweils auf einen Schwenktisch 15 gelangen kann, von dem sie wiederum zum Maschinentisch 16 der zugehörigen Bearbeitungsmaschine gebracht wird. Nach der Ankunft auf dem Bearbeitungstisch 16 und dem Verspannen erfolgt die Bearbeitung des Werkstücks durch die betreffende Be arbe itungsmaschine nach einem vorgegebenen Programm, anschliessend wird die Palette mit dem Werkstück über den Schwenktisch 15 und die Ausfahrstelle 14 wieder in die Förderanlage D eingeschleust und läuft weiter zur nächsten Bearbeitungsmaschine bzw. zur Entladestation 12, wo sie aus der Förderanlage herausgenommen wird, das bearbeitete Werkstück abgespannt und ein neues Werkstück auf die Palette 11 aufgespannt wird, die dann wieder in der Ladestation 12 auf die Förderanlage D aufgegeben wird. Ein solches Fertigungssystem ist bekannt und braucht deshalb hier nicht näher erläutert zu werden. Im dargestellten Ausführungsbeispiel sind drei verschiedene Bearbeitungsmaschinen, eine Vielspindel-Bohrmaschine A mit auswechselbaren Mehrspindelköpfen, eine Fräsmaschine B und ein Bearbeitungszentrum C mit automatischem Werkzeugwechsel vorgesehen. Eine Erweiterung um zusätzliche Bearbeitungsmaschinen, sowohl gleichartige als auch andersartige, ist ersichtlich ohne weiteres möglich; der Ubersichtlichkeit halber sind jedoch nur die drei genannten Bearbeitungsmaschinen dargestellt. Um echte Flexibilität des Systems zu erreichen, ist es notwendig, dafür Vorsorge zu treffen, dass Jedes Werkstück die Bearbeitungsmaschinen in beliebiger Reihenfolge anlaufen kann, und dass es vor allem möglich ist, das gleiche Werkstück nach einer Zwischenbearbeitung auf einer anderen Bearbeitungsmaschine nochmals zu einer Bearbeitungsmaschine laufen zu lassen, die das Werkstück früher bereits durchlaufen hat, um dort eine weitere, andere Bearbeitung durchzuführen. Wie aus Fig. 2 ersichtlich ist, befindet sich,in Laufrichtung der Paletten 11 gesehen,vor einer Ausfahrstelle 14, eine Lesestation 17, an der ein Kennzeichen 18 an der Palette 11 abgelesen werden kann. Ergibt sich aus dem Kennzeichen, dass die Palette mit dem Werkstück der zugeordneten Bearbeitungsmaschine zuzuführen ist, wird diese, sofern der zugehörige Paletten-Wechseltisch 15 aufnahmefähig ist, in der Ausfahrstation 14 angehalten und die Ausfahrstation, wie durch Pfeil 19 angedeutet, um 900 geschwenkt. Die Palette 11 wird dann auf den Paletten Wechseltisch 15 gefördert, der eine zweite Lesestation 20 aufweist. In der Lesestation 20 wird das Kennzeichen auf das in der Bearbeitungsmaschine durchzuführende Programm abgefragt und zweckmässiger- aber nicht notwendigerweise geprüft, ob die Palette tatsächlich für die zugeordnete Bearbeitungsmaschine bestimmt ist. Diese Progra=kenn- zeichnung wird in bekannter Weise gespeichert und zum Abruf durch das Programm der angeschlossenen Bearbeitungsmaschine bereitgehalten. Der genaue Aufbau von Kennzeichen 18 und Lesestation 17 bzw. 20 wird später erläutert. Nach Beendigung der Bearbeitung des vorangegangenen Werkstücks in der Bearbeitungsmaschine wird dieses vom Maschinentisch 16 auf den Schwenktisch 15 zurückgefördert, so dass die zugehörige Palette die in Fig. 2 dargestellte Stellung einnimmt. Das Kennzeichen 18 einer in dieser Stellung befindlichen Palette befindet sich über einem Schaltmechanismus 21| in dem das Kennzeichen 18 zwangsläufig umgeschaltet wird, wie noch näher erläutert wird. Nachdem der Schwenktisch 15 mit einer oder zwei Paletten beladen ist, einer mit einem zu bearbeitenden Werkstück vor der Lesestation 20 und/oder einer mit einem bearbeiteten Werkstück gegenüber dem Schaltmechanismus 21, wird der Schwenktisch 15 im Sinne des Pfeils 0 22 um 180 geschwenkt. Das zu bearbeitende Werkstück wird dann auf den Maschinentisch 16 gefördert, das bearbeitete Werkstück kommt in die Ausfahrstation 14, diese wird wieder entsprechend dem Pfeil 19 zurückgeschwenkt und das bearbeitete Werkstück kann im Sinne des Pfeils 13 auf der Förderanlage D zur nächsten Zieladresse, sei es einer anderen Bearbeitungsmaschine oder der Lade- und Entladestation 12 weiterlaufen. Der Schwenktisch 15 wird anschliessend im leeren Zustand wieder zurückgeschwenkt, so dass er wieder die in Fig. 2 dargestellte Stellung einnimmt. Wenn eine Palette auf den Maschinentisch 16 aufgespannt ist, befindet sich vor dem Kennzeichen 18 der Palette 11 eine Abdeckung 23, die das Kennzeichen gegen Schmiermittel, Späne oder andere Verschmutzungen schützt. Wie aus Fig. 3 bis 5 hervorgeht, besteht das Kennzeichen aus einer um eine zur Bewegungsrichtung der Palette (Pfeil 13) senkrechte Achse 41 drehbaren Trommel 25, die im dargestellten Ausführungsbeispiel sechseckigen Querschnitt hat, es sind jedoch auch andere Querschnittsformen, wie Kreiszylinder, möglich. Am Umfang der Trommel sind Codierleisten vorgesehen, von denen der Ubersichtlichkeit halber in Fig. 3 nur eine einzige durch einen vorstehenden Nocken 26 angedeutet ist. Gemäss Fig. 4 weist jede Codierleiste Aufnahmen 42 für Steuernocken wie 26 auf, in die entsprechend den darzustellenden Kennzeichen vorstehende Nocken wie 26 eingesetzt werden, bzw. nicht; in Fig. 4 ist die Trommel ohne eingesetzte Nocken dargestellt. Die Anzahl der Aufnahmen 42 jeder Codierleiste hängt von der Anzahl der Zieladressen und Programme ab, im dargestellten Ausführungsbeispiel sind zehn Aufnahmen 42 vorgesehen. Wie bereits erwähnt, können statt der Nocken auch andere Kennzeichnungsmittel verwendet werden, wie optische Kennzeichen; bei unmagnetischen Werkstoffen kommen auch Magnete in Frage. Die in Fig. 4 dargestellten Aufnahmen 42 können auch als um den Trommelumfang herumlaufende Nuten ausgebildet sein, so dass der Angabe Codier- leiste nur eine funktionelle Bedeutung insoweit zukommt, als damit eine zusammengehörige Reihe von Nocken oder dergl. Kennzeichnungsmitteln bezeichnet wird und nicht notwendigerweise eine körperliche, von der Trommel trennbare Halterung für Kennzeichnungsmittel. In Fig. 3 ist die Trommel 25 einer Lesestation 17 gegenüber dargestellt. In der dargestellten Ausführungsform weist diese Lesestation 17 zehn Schalter 27 auf, die betätigt werden, wenn ein Nocken wie 26 dem Schalter 27 beim Vorbeifahren gegenübersteht, die übrigen Schalter bleiben unbetätigt Solche Lesestationen sind bekannt und brauchen deshalb nicht näher beschrieben zu werden. Wenn an Stelle von, Nocken c andere Kennzeichnungsmittel verwendet werden, wie Magnete, optische Kennzeichnungen oder dergl., muss die Lesestation 17 entsprechend abgewandelt werden; auch solche Lesestationen sind bekannt und brauchen deshalb nicht erläutert zu werden. Im Innern der Trommel 25 ist ein Rastbolzen 24 koaxial zur Achse 41 angeordnet. Er ist mittels einer Passfeder 39 mit der Trommel 25 verbunden, so dass er nur mit dieser gemeinsam verdrehbar, dieser gegenüber aber längs verschiebbar ist. Der Rastbolzen 24 trägt einen Zahnkranz 28, der mit einem entsprechenden Zahnkranz 29 an einer an der Palette 11 befestigten Halterung 30 im dargestellten Ausführungsbeispiel sechs Raststellungen definiert. Der Rastbolzen 24 wird durch sein Eigengewicht und zusätzlich eine Feder 37 in diese Raststellungen gedrängt, so dass er, und damit die Trommel 25, ungewollt nicht aus diesen Raststellungen herausgedreht werden kann. Bei axialer Verschiebung des Rastbolzens 24 gegen die Wirkung der Schwerkraft und der Feder 37 wird er aus den Raststellungen herausgehoben, so dass anschliessend die Trommel 25 mit ihm gemeinsam in die nächste Raststellung verdreht werden kann. Zu diesem Zweck ist der Schaltmechanismus 21 vorgesehen, der in Fig. 4 näher dargestellt ist. Dieser weist eine in Richtung der Achse 41 heb- und senkbare Steuerbahn 31 auf, deren Betriebsstellung durch zwei Mikroschalter 32 und 33 angezeigt wird, die je nach Betriebsstellung der Steuerbahn 31 mit Hilfe eines Nockens 34 betätigt werden. In der angehobenen Stellung der Steuerbahn 31 ragt diese in den Laufweg der aus der Halterung 30 nach unten hervorstehenden Spitze des Rastbolzens 24, so dass dieser aus seiner Ruhestellung angehoben wird und die Rastzähne 28, 29 ausser Eingriff gebracht werden. An der Steuerbahn 31 befindet sich eine Schaltrolle 35, die in der angehobenen Stellung gemäss Fig. 4 in den Laufweg eines Schaltrades 36 ragt, in der Halterung 30 drehbar gelagert und mit dem Rastbolzen 24 mittels einer Passfeder 40 drehfest aber längs verschiebbar verbunden ist. Wenn die Palette 11 im Sinne des Pfeils 13 in Fig. 5 an einem Schaltmechanismus 21 vorbeiläuft, dessen Steuerbahn 31 angehoben ist, läuft zunächst die nach unten vorstehende Spitze des Rastbolzens 24 auf die Steuerbahn 31 auf und wird durch diese angehoben, wie in Fig. 4 dargestellt. Anschliessend kommt die Schaltrolle 35 an einem Zahn des Schaltrades 36 zur Anlage und beim Weiterlauf dreht das Schaltrad 36 und damit der Rastbolzen 24 und die Trommel 25 um eine Teilung, im dargestellten Falle 60 , weiter. Anschliessend läuft die Spitze des Rastbolzens 24 wieder von der Steuerbahn 31 ab und senkt den Rastbolzen 24 in die nächste Raststellung, die durch die Zahnkränze 28 und 29 definiert ist. Es ist dann die in Fig. 3 strichpunktiert bei 26' dargestellte Codierleiste an der Stelle, die in Fig. 3 durch die in durchgezogenen Linien dargestellte Codierleiste 26 eingenommen wird, so dass beim Passieren der Palette an der nächsten Lesestation dieser ein vollständig neuer, jedoch von vornherein festgelegter Code dargeboten wird. Diese Codierleiste enthält neben einer beliebigen neuen Zieladresse (nächste Bearbeitungsmaschine bzw. Lade und Entladestation) auch ein Kennzeichen für das an der Zieladresse durchzuführende Programm, d.h., eine Kennzeichnung für das in der durch die Zieladresse identifizierten Bearbeitungsmaschine durchzuführende Programm. Beides, Zieladresse und Programm, sind durch Einstecken von Nocken unveränderlich vorab festgelegt. Eine Änderung kann lediglich gewollt erfolgen, wenn bewusst der Rastbolzen 24, etwa durch einen geeigneten Schlüssel oder eine getrennte Wechselstation ohne Schaltrolle 35 aus der Rastung herausgehoben und die Trommel 25 so verdreht ist, dass die zu ändernde Codierleiste zugänglich ist. Die Nocken 26 oder anderen Kennzeichen können dann manuell ausgewechselt werden, ein versehentliches Ändern der Kennzeichnung ist jedoch ausgeschlossen.
Patentansprüche 1. Flexibles Fertigungssystem für Werkstücke, bestehend aus einer Anzahl Bearbeitungsmaschinen, einer diese miteinander und einer Lade- und Entlade-Station verbindenden Werkstückförderanlage, den einzelnen Werkstücken zuzuordnenden Kennzeichen, Lesestationen zum Ablesen der Kennzeichen an den Ausfahrstellen und Einrichtungen für die Einstellung einer neuen Zieladresse, dadurch gekennzeichnet, dass das Kenn- zeichen aus einer in mehrere Raststellungen drehbaren Trommel besteht, auf deren Umfang eine der Zahl der Raststellungen gleiche Zahl von Codierleisten ange ordnet ist, in deren jeder wenigstens eine voll ständige Zieladresse einschliesslich eventueller Prüf zeichen darstellbar ist, und dass die Einrichtung für die Einstellung einer neuen Zieladresse aus einem Schaltmechanismus besteht, der die Trommel jeweils um eine Teilung aus einer Raststellung in die nächst folgende weiterdreht. 2. Fertigungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Trommel formschlüssig in ihren Raststellungen durch Eingriff von Rastzähnen festgelegt ist, die axial aus dem Eingriff herausschiebbar sind, und dass der Schaltmechanismus eine die Rastzähne aus dem Eingriff herausschiebende Steuerbahn aufweist. 3. Fertigungssystem nach Anspruch 2, dadurch gekenn zeichnet, dass die Rastzähne durch Federkraft und/oder Eigengewicht in den formschlüssigen Eingriff gedrängt sind. 4. Fertigungssystem nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass Jede Codierleiste zur auswechselbaren Aufnahme einer Reihe von Nocken, Schaltbolzen, Magneten, optischen Markierungen oder dergl. Kennzeichnungselementen vorgesehen ist. 5. Fertigungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Maschinentisch jeder Bearbeitungsmaschine eine Abdeckung aufweist, die die Trommel bei auf dem Maschinentisch befindlicher Palette völlig abdeckt. 6. Fertigungssystem nach Anspruch 5, dadurch gekenn zeichnet, dass zwischen jeder zu einer Bearbeitungs maschine führenden Ausfahrstelle und der betreffenden Bearbeitungsmaschine eine speichernde Lesestation zum Ablesen und Speichern des über die Zieladresse hinaus 6gehenden Teils des Kennzeichens angeordnet ist.
GEBR. HELLER MASCHINENFABRIK GMBH
HAUSSMANN, HERBERT; MAIER, HEINZ
EP-0003025-B1
3,025
EP
B1
DE
19,840,418
1,979
20,100,220
new
B66C13
G05D3, B63B27
B66C13, G05D3
B66C 13/48, G05D 3/14, B66C 13/30
ROTATIONAL GEAR OR LIFTING GEAR DRIVE CONTROL ARRANGEMENT FOR A CRANE
1. Regulation means for slewing or fifting gear drives of a crane, in particular for ships, wherein at the end of an inner crossbeam (4) rotatable about a swivel (3) there is arranged an outer crossbeam (11) rotatable about a swivel (10) having a loading gear (19), where the drives (5, 13) of the inner crossbeam (4) and of the crossbeam (11) are respectively equipped with an angle of rotation regulating device (25 ; 31), which device possesses a theoretical value generator (24) having a control lever (23) to set the angle of rotation (gamma) of the inner crossbeam (4) in relation to a reference line (9) and the angel of rotation (epsilon) of the outer crossbeam (11) in relation to the inner crossbeam (4), the generator output signals fed to the regulator (25) for the slewing gear drive (5) in order to adjust the angle of rotation (gamma) of the inner crossbeam (4) in relation to the reference line (9), where a function generator (30) serves as a theoretical value former for the angle of rotation (epsilon soll ) of the outer crossbeam (11) in relation to the inner crossbeam (4), characterized in that the function generator (30) is supplied with the output signal (gamma soll) of the theoretical value generator (24), and that the function generator (30) is equipped with a computing module (39) provided with an adjusting lever (36) or an electric follow-up circuit, which serves to adjust parameter values (gamma O/R) defined by the distance of the transportation path(s) from the inner swivel (3) of the inner crossbeam (4) and the length of the inner and outer crossbeam.
Regelung für Drehwerks- oder Hubwerksantriebe eines Krans Die Erfindung bezieht sich auf eine Regelung für Drehwerks- oder Hubwerksantriebe eines Krans, insbesondere für Schiffe, bei dem am Ende eines um ein Drehgelenk drehbaren Innenholms ein um ein Drehgelenk drehbarer Aussenholm mit einem Ladegeschirr angeordnet ist. Ein Kran dieser Art ist bereits vorgeschlagen worden. Aufgabe der Erfindung ist es, eine Last von einem Aufnahmepunkt zu einem Absetzpunkt entlang einer vorgegebenen Kurve, insbesondere einer Geraden,zu bewegen. Die Lösung dieser Aufgabe besteht bei einer Regelung der eingangs genannten Art darin, dass die Drehwerksantriebe des Innenholms und des Aussenholms mit einer Drehwinkelregeleinrlchtung ausgerüstet sind, die zur Vorgabe des Drehwinkels des Innenholms gegenüber einer Bezugslinie einen mit einem Steuerhebel versehenen Sollwertgeber besitzt, dessen Ausgangssignal einerseits zur Einstellung des Drehwinkels des Innenholms einem Regler für den Drehwerksantrieb des Innenholms und andererseits zur Einstellung des Drehwinkels des Aussenholms gegenüber dem Innenholm einen Funktionsgenerator zum Bilden eines vom Drehwinkel und Verlauf des Lastweges abhängigen Winkelsollwertes zugeführt wird, der zur Vorgabe des Winkels zwischen Innenholm und Aussenholm einem weiteren Regler für den Drehwei > ks- antrieb des Aussenholms zugeführt ist. Auf diese Weise kann man innerhalb des Aktionskreises des Krans durch Steuerung der Drehbewegungen des Innen- und Aussenholms in der Horirontalen beliebige Transportwege und damit eine Verkürzung der Transportzeit erzielen. In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt: Fig. 1 zeigt eine schematische Seitenansicht eines Schiffskrans mit waagrechten Rnicklenkern, Fig. 2 eine Draufsicht zu Fig. 1, Fig. 3 eine Regeleinrichtung für die Winkeleinstellung der Knicklenker des in den Figuren 1 und 2 ge zeigten Krans, Fig. 4 eine Prinzip-Darstellung der Schaltung des in Fig. 3 gezeigten Funktionsgenerators, Fig. 5 eine Abhängigkeit der Drehwinkel des Innen und Aussenholms vom Transportweg s und Fig. 6 eine Einrichtung zur Erzielung einer vorgeb baren, insbesondere konstanten Transportge schwindigkeit. In Fig. 1 ist auf einer Konsole S eine Säule 2 angeordnet, an der an einem festen senkrechten drehzapfen eines Drehgelenks 3 das eine Ende eines Innenholms 4 drehbar gelagert ist. Zum Drehen des Innenholms 4 dient ein Drehwerksantrieb, der aus einem Motor 5 und einem Getriebe mit Ritzel 6 sowie Zahnkranz 7 besteht. Ein Winkelgeber 8 dient zum Erfassen des Drehwinkels , den der Innenholm 4 gegenüber einer Bezugslinie 9 (Fig. 2) einnimmt. Am anderen Ende des Innenholms 4 ist ein weiteres Drehgelenk 10 für einen Aussenholm 11 mit einem weiteren Winkelgeber 12 angeordnet, der den Winkel ± zwischen dem Innenholm 4 und dem Aussenholm 11 erfasst. Zum Drehen des Aussenholms 11 gegenüber dem Innenholm 4 dient ein weiterer Drehwerksantrieb, der aus einem Motor 13 und Getrieberit Ritzel 14 und Zahnkranz 15 besteht. Im Aussenhom 11 ist eine durch einen Motor angetriebene Winde 16 angeordnet, dessen Seil 17 über eine Laufrolle 18 am freien Ende des Aussenholms 11 ein Ladegeschirr 19 für die Aufnahme einer Last 20 trägt. Die beiden Drehwerksantriebe 5, 6, 7 und 13, 14, 15 sind - wie Fig. 3 zeigt. - mit einer Drehwinkelregeleinrichtung 22 ausgerustet, die zur Vorgabe des Drehwinkels T des Innenholms 4 gegenüber der Bezugslinie 9 einen mit einem Steuerhebel 23 versehenen Sollwertgeber 24 besitzt, dessen Ausgangssignal °8011 zur Einstellung des Drehwinkels des Innenholms 4 einem Regler 25 für den Drehwerksantrieb 5, 6, 7 des Innenholms zugeführt ist. Dieser Regler 25 besitzt einen Soll-Istwertvergleicher 26, einen Regelverstärker 27 und einen Steuersatz 28 für ein im Ankerkreis des Motors 5 angeordnetes elektronisches Stellglied 29. Der mit dem Motor 5 in Verbindung stehende Winkelgeber 8 liefert ein Signal, das als Istwert ## ist dem Soll- Istwertvergleicher 26 zugeführt wird. Andererseits wird das Ausgangssignal fsolk des Sollwertgebers 24 zur Einstellung des Winkels des Aussenholms gegenüber dem Innenholm einem Funktionsgenerator 30 zum Bilden eines vom Drehwinkel ## und Verlauf des Transportweges s abhängigen Winkelsollwertes gsoll zugeführt, der zur Vorgabe des Winkels ± zwischen Innenholm 4 und Aussenholm 11 einem Regler 31 für den Drehwerksantrieb 13, 14, 15 des Aussenholms zugeführt ist. Der Regler 31 besitzt einen Soll-Istwertvergleicher 32, einen Regelverstärker 33 und einen Steuersatz 34 für ein im Ankerkreis des Motors 13 angeordnetes elektronisches Stellglied 35. Der mit dem Motor 13 verbundene weitere Winkelgeber 12 liefert den Istwert ist' der dem Soll-Istwertvergleicher 32 zugeführt wird. Mit dem Sollwertgeber 24 wird vom Kranführer der Drehwinkel des Innenholms als Sollwert vorgegeben. Abhängig von diesem Drehwinkel t wird im Funktionsgenerator 30 für den Drehwerksantrieb des Aussenholms 11 ein Sollwert 6soll von solcher Grösse gebildet, dass das Ladegeschirr 19 mit der Last 20 auf einem vorgegebenen Transportweg bewegt wird. Hierzu ist der Funktionsgenerator 30 derart ausgebildet, dass sein Ausgangssignal nach der mathematischen Beziehung E,Sou=f Yo} Yo > .... (1) vom Eingangssignal ## soll abhängt. Dabei ist y0 ein Parameter des Transportweges von der innen Drehachse des Innenholms 4. Für einen geradlinigen Transportweg gilt: EMI5.1 Darin bedeutet R die Länge des Innenholms 4, die im vorliegenden Fall gleich der Länge des Aussenholms 11 ist. Für einen vorgegebenen Kran ist die Grösse R eine Konstante. Der Wert y0 kann für jeden gewünschten Transportweg zu Beginn der Ladetätigkeit in den Funktionsgenerator 30 über eine Eingabevorrichtung mit einem Stellhebel 36 eingegeben werden; er ist hier der senkrechte Abstand des Transportweges s von der inneren Drehachse des Innenholms 4. Wie Fig. 4 zeigt, befinden sich im Funktionsgenerator 30 zur Berechnung des Sollwertes soll entsprechend der oben angegebenen Beziehung (2) mehrere Rechnerbausteine. Der am Eingang des Funktionsgenerators anstehende Sollwert soll wird einem Cosinus-Bildner 37 zugeführt und dessen Ausgangssignal cos óll im Subtrahierer 38 von dem im Rechner-Baustein 39 gebildeten Signalwert yo subtrahiert. Im einfachsten Fall ist der Rechner-Baustein 39 ein Potentiometer 40 mit Abgriff 41, das an einer Batterie 42 liegt. Der Abgriff ist mit dem Stellhebel 36 verbunden. Das Ausgangs signal R Y - cos soll des Subtrahierers 38 wird in einem Multiplizierer 43 quadriert. In einem Konstantwertbildner 44, der im einfachsten Fall durch ein Potentiometer 45 mit Abgriff 46 gebildet ist, welches an einer Batterie 47 liegt, wird der Wert 1 gebildet, wobei das maximale Ausgangssignal des Cosinus-Bildners 37 identisch eingestellt wird mit dem Ausgangswert des Konstantwertbildners 44. Im Subtrahierer 48 wird vom Konstantwert 1 des Konstantwertbildners 44 der Ausgangswert des Multiplizierers 43 abgezogen. Das Ausgangssignal des Subtrahierers 48 wird dem Radizierer 49 zugeführt, dessen Ausgangssignal im Multiplizierer 51 mit dem Ausgangs signal des Sinus-Bildners 50 für den Wert oll multipliziert wird. Der so gebildete Wert wird einem Eingang eines Subtrahierers 52 zugeführt. Der andere Eingang des Subtrahierers 52 ist mit dem Ausgang eines weiteren Multiplizierers 53 verbunden, dessen Eingänge einerseits an den Ausgang des Cosinus Bildners 37 und an den Ausgang des Subtrahierers 38 angeschlossen sind. Der Ausgang des Subtrahierers 52 liefert das Signal cos 6soll' welches im Baustein 54 invertiert wird, d.h. es wird der arc cos von cos soll und danit ±soll gebildet. Für einen geradlinigen Transportweg und vorgegebene Werte yO und R ergibt sich die in Fig. 5 dargestellte Zuordnung von ysoll und ±soll Zu Beginn eines Transportvorganges stellt der Kranführer den Kran durch Verstellen des Steuerhebels 23 (Fig. 3) so ein, dass das entlang des einzuhaltenden Transportweges s bewegte Ende des Aussenholms 11 im Schnittpunkt mit der Bezugslinie 9 liegt (gestrichelte Stellung in Fig. 2). Je nach Grösse des sich dabei er gebenden Startwinkels °0 ist dann der senkrechte Abstand y0 des Transportweges von der Achse des festen Drehgelenks 3 des Innenholms 4 festgelegt. Dieser Wert y0 kann von Hand mit dem Stellhebel 36 (Fig. 4) oder über eine elektrische Nachlaufschaltung abhängig vom Startwinkel ##o nach der Beziehung yO=2Rcos#o ....(3) automatisch in den Funktionsgenerator 30 eingegeben werden. Hierzu braucht lediglich der am Ausgang des Winkelgebers 8 in der Startposition anstehende Signalwert über eine Rechenschaltung und eine Nachlaufschaltung mit Stellmotor zur Verstellung des Potentiometer abgriffs 41 herangezogen zu werden. Nach der Einstellung des Abgriffs 41 des Potentiometers 40 bleibt der am Potentiometer eingestellte Wert für sich wiederholende Transportvorgänge erhalten. Der Kranführer fährt durch Betätigen des Steuerhebels 23 (Fig. 3) das Ladegut vom Aufnahmepunkt zum Absetzpunkt entlang einer Geraden. Ist am Ende des Aussenholms 11 für das Ladegeschirr 19 eine Drehscheibe 55 mit Drehwerksantrieb 56, 57, 58 angeordnet (Fig. 2), so ist es vorteilhaft, den Winkel der mit einem Drehgelenk 21 versehenen Drehscheibe 55 zur Linie s abhängig;Tom Drehwinkel zu und dem Winkel g zwischen Inneholm und Aussenholm nach der Beziehung EMI7.1 derart zu steuern, dass die Last 20 entlang des Trans- portweges s parallel zu ihrer Achse verschoben wird. Dadurch kann ein Stapelvorgang zeit- und personalsparend durchgeführt werden. Dies ist insbesondere bei automatischem Transportbetrieb, insbesondere bei Verladung durch eine Schiffsluke von Vorteil, da z.B. Container ihre parallele Lage zur Schiffslängsachse in Jeder Position des Transportweges beibehalten. Der Drehwerksantrieb für die Drehscheibe 55, bestehend aus Motor 56, Getriebe 57 und Winkelgeber 58 (Fig. 1 und 3) ist mit einem Regler 59 ausgerUstet, der einen Soll-Istwertvergleicher 60, einen Regelverstärker 61 und einen Steuersatz 62 enthält, welcher ein elektronisches Stellglied 63 für den Ankerstrom des Drehwerksmotors 56 beaufschlagt. Der Sollwert Z soll wird in einem Addierer 64 und einem Subtrahierer 65 gebildet. Gemäss der mathematischen Beziehung (4) wird der Addierer 64 von den Sollwerten und ±soll gespeist und der Subtrahierer 65 von einem Potentiometer 66, in dem der konstante Signalwert 4 gebildet wird. Es st zweckmässig, der Drehwinkelregelung eine G schwindigkeitsregelung derart zu unterlagern, dass eine vorgebbare Transportgeschwindigkeit, insbesondere eine ausserhalb des Anfahr- und Bremsbereiches zumindest annShernd konstante Transportgeschwindigkeit eingehalten wird. Hierzu sind - wie Fig. 6 zeigt - im Regler 25 für den Drehwerksantrieb 5, 6, 7 des Innenholms 4 zwischen den Soll-Istwertvergleicher 26 und dem Regelverstärker 27 ein Verstärker 110 mit nachgeordnetem Differenzierglied 111 und ein weiterer Soll-Istwertvergleicher 112 angeordnet. Im Differenzierglied 111 wird der Winkel sollwert ° soll differenziert und als Winkelgeschwindig-éitssollwert --- soll im Soll-Istwertvergleicher dt 112 mit dem in der Differenziereinrichtung 113 ge d rist bildeten Winkelgeschwindigkeits-Istwert ##ist ver glichen. Der Differenzwert wird dem Regelverstärker 27 zugeführt. Fermer werden im Regler 31 für den Drehwerksantrieb 13 14, 15 des Aussenholms 11 zwischen dem Soll-Istzert- vergleicher 32 und dem Regelverstärker 33 ein Verstärker 114 mit nachgeordnetem Differenzierglied 115 und ein weiterer Soll-Istwertvergleicher 116 angeordnet. Im Differenzierglied 115 wird der Winkelsollwert 6soll differenziert und als Winkelgeschwindig keitssollwert d# soll im Soll-Istwert-Vergleicher 116 mit dem in der Differenziereinrichtung 117 gebildeten d± ist Winkelgeschwindigkeits-Istwert dt s verglichen. dt Der Differenzwert wird dem Regelverstärker 33 zugeführt. Durch die dabei erzielte zumindest annähernd konstante Transportgeschwindigkeit kann bei einem frei wählbaren Transportweg eine optimale umscfilagleistung erzielt werden. 6 Figuren 4 Patentansprüche
Patentansprüche 1. Regelung für Drehwerks- oder Hubwerksantriebe eines Krans, insbesondere für Schiffe, bei dem am Ende eines um ein Drehgelenk drehbaren Innenholms ein um ein Drehgelenk drehbarer Aussenholm mit einem Ladegeschirr angeordnet ist, d a d u r c h g e k e n n z e i c h n e t dass die Antriebe des Innenholms (4) und des Aussenholms (11) mit einer Drehwinkelregeleinrichtung (22) ausgerüstet sind, die zur Vorgabe des Drehwinkels ( °) des Innenholms (4) gegenüber einer Bezugslinie (9) einen mit einem Steuerhebel (23) versehenen Sollwertgeber (24) besitzt, dessen Ausgangssignal ( f ll) einerseits zur Einstellung des Drehwinkels ( ## ) des Innenholms (4) einem Regler (25) für den Drehwerksantrieb (5, 6, 7) des Innenholms (4) und andererseits zur Einstellung des Winkels (6 ) des Aussenholms gegen über dem Innenholm einem Funktionsgenerator (30) zum Bilden eines vom Drehwinkel (f) ) und Verlauf des Transportweges abhängigen Winkelsollwertes ( ±SOll) zugeführt wird, der zur Vorgabe des Winkels zwischen Innenholm und Aussenholm einem weiteren Regler (31) für den Drehwerksantrieb (13,. 14, 15) des Aussenholms (11) zugeführt ist. 2. Regelung nach Anspruch 1, d a d u r c h g e k e n nz e i c h n e t , dass der Funktionsgenerator (30) mit einer Eingabevorrichtung, insbesondere einem Stellhebel (36), zur Änderung eines von der Geometrie des Krans abhängigen Parameterwertes, insbesondere des Abstandes (yO) des Transportweges (s) von der Drehachse des inneren Drehgelenks (3) des Innenholms besitzt. 3. Regelung nach Anspruch 1 oder 2 für einen Kran, bei dem am Ende des Aussenholms eine Drehscheibe mit Drehwerksantrieb gelagert ist, d a d u r c h g e k e n n z e i c h n e t , dass der Drehwerksantrieb (56, 57, 58) der Drehscheibe (55) abhängig vom Dreh winkel zur t ) des Innenholms und dem Winkel ( 6 ) zwi- schen Innenholm und Aussenholm derart gesteuert wird, dass die Last (20) entlang des Transportweges parallel zu ihrer Achse verschoben wird. 4. Regelung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e 5 c h n e t , dass der: Drehwinkelregelung eine Geschwindigkeitsregelung derart unterlagert ist, dass eine vorgebbare Transportge- schwindigkeit, insbesondere eine ausserhalb des Anfahrund Bremsbereiches zumindest annähernd konstante Transportgeschwindigkeit eingehalten wird.
O & K, ORENSTEIN & KOPPEL AKTIENGESELLSCHAFT WERK LUBECK; SIEMENS AKTIENGESELLSCHAFT
BEHRENDT, VOLKMAR, ING.(GRAD); BERTLING, TONI, DIPL.-PHYS. DR.-ING.
EP-0003036-B1
3,036
EP
B1
DE
19,801,015
1,979
20,100,220
new
E04C1
B28B11
B28B11, E04B2
E04B 2/14, B28B 11/00E2
METHOD OF MANUFACTURING CERAMIC BRICKS, ESPECIALLY BRICKS WITH GRID-LIKE CAVITIES AND APPARATUS FOR MANUFACTURING SAME
1. A method of manufacturing ceramic building blocks with intersecting webs, more particularly perforated bricks, in which a continous mass is first extruded which is divided by cutting up into blocks, wherein each block is cut off from the continuous mass with a longitudinal surplus and before drying and firing is rolled or closed by rubbing down the longitudinal surplus on at least one of the front faces and so obtains its final size, characterized in that before rolling or rubbing, the webs of the grid extending perpendicular to the processing direction in the area of the longitudinal surplus are removed to the level required for the rolling or rubbing.
Keramischer Baustein sowie Verfahren und Einrichtung zu dessen Herstellung Die Erfindung bezieht sich auf einen keramischen Baustein, insbesondere Gitterziegelstein mit stirnseitigen Öffnungen sowie auf ein Verfahren und eine Einrichtung zu dessen Herstellung, bei dem zunächst ein Rohlingsstrang extrudiert wird, der dann durch nacheinander Abschneiden in Rohlinge aufgeteilt wird, die auf Rohlingsfertigmass gebracht sowie anschliessend getrocknet und gebrannt werden. Keramische Bausteine mit stirnseitigen Öffnungen haben den Nachteil, dass beim Mauern viel Mörtel dadurch verloren geht, dass der aufgestrichene Mörtel zum Teil in die Öffnungen hineinfällt und hierdurch das Wärme däinmverhalten ungünstig beeinflusst wird. Der Erfindung liegt somit die Aufgabe zugrunde, einen derartigen Baustein so zu gestalten, dass diese Mörtelverluste nicht mehr auftreten können, sowie ein einfaches Verfahren zur Herstellung eines derartigen Bausteins zu finden. Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass eine der beiden Stirnseiten geschlossen ausgebildet ist. Auf diese geschlossene Stirnseite kann dann der Mörtel aufgetragen werden, ohne dass die Gefahr besteht, das Verluste wie bei den bekannten Bausteinen auftreten, Ein derartiger Baustein soll nach der Erfindung dadurch hergestellt werden, dass jeder Rohling mit Längenzugabe vom Rohlingsstrang abgeschnitten und vor dem Trocknen und Brennen wenigstens einer der Stirnseiten zugewalzt wird, wobei der Rohling das Rohlingsfertigmass erhält. Die geschlossene Stirnseite des erfindungsgemässen Bausteins wird somit durch Zwischenschaltung eines einfachen Verfahrensschritts hergestellt. Bei Gitterbausteinen mit senkrecht zueinander verlaufenden Gitterstegen gestaltet sich der Zuwalzvorgang besonders einfach, wenn, wie die Erfindung ferner vorsieht, vorher die in Walzrichtung verlaufenden Gitterstege im Bereich der Längenzugabe in der für das Zuwalzen erforderlichen Höhe entfernt werden. Die verbleibenden Gitterstege brauchen dann nur noch umgebogen zu werden, um eine glatte und geschlossene Fläche zu erzielen. Vorzugsweise sollen die Rohlinge wenigstens beim Passieren durch die Einrichtung zum Verschliessen der Stirnseite(n) parallel zu ihren Stirnseiten transportiert werden. Dies ermöglicht es, das Verschliessen der Stirnseite(n) und damit das Verkürzen auf das Rohlingsfertigmass während der Vorbeifahrt an der Einrichtung hierfür vorzunehmen. Für diesen Vorgang muss der Baustein somit nicht mehr angehalten werden, wodurch die Produktionsgeschwindigkeit erheblich gesteigert werden kann. Eine weitere Verbesserung lässt sich ferner dadurch erzielen, dass das Verschliessen der Stirnseite(n) des Rohlings durch Abschleifen der Längenzugabe geschieht. Es hat sich gezeigt, dass diese Massnahme hinsichtlich Zeitaufwand und der erforderlichen Längenzugabe besonders günstig ist. Zur Durchführung dieses Verfahrens wird vorgeschlagen, dass für das Abschleifen wenigstens eine rotierende Schleif- scheibe vorgesehen ist. Dabei ist es zweckmäBig, dass die Schleifscheibe derart angeordnet ist, dass sie mit einer ihrer Flachseiten über die Stirnseite(n) des Rohlings fährt. Damit der Rohling kontinuierlich auf das Rohling fertigmass gebracht werden kann, wird vorgeschlagen, dass die Schleifscheibe in der Transportbahn mit ihrer Stirnseite parallel zur Transportrichtung angeordnet ist. Je nach verwendetem Material kann es von Vorteil sein, wenn die Schleifscheibe an ihrer Flachseite entweder aufgerauht oder glatt ausgebildet ist. In der Zeichnung ist die Erfindung anhand von schematisch den Verfahrensablauf und die Einrichtung zum Verschliessen der Stirnseite darstellenden Ausführungabeispielen näher veranschaulicht. Es zeigen: Fig. 1 in schematischer Darstellung die Herstellung eines Gitterziegelsteins mit einer geschlossenen Stirnseite; Fig. 2 eine andere Ausführungsform. In der in dieser Ansicht linken Seite der Fig. 1 ist ein Pressenmaul 1 einer Extrusionspresse gezeigt, aus der sich in Richtung des Pfeils A ein Rohlingsstrang 2 bewegt. Dieser Rohlingsstrang 2 wird dann in einer hie r nicht näher dargestellten Schneidvorrichtung in einzelne Rohlinge 3, versinnbildlicht durch den Rohling 3', aufgeteilt, wobei die Schneidflächen die Stirnseiten 4,5 bilden. Diese Rohlinge 3 sind als Gitterziegelsteine mit gitterförmig zueinander verlaufenden Stegen 6 ausgebildet, so dass eine Vielzahl von Kanälen entstehen, die von Stirnseite 4 zur Stirnseite 5 durchgehen. Der Rohling 3' ist dabei nicht auf Rohlingsfertigmass geschnitten, sondern erhält eine Längenzugabe, so dass er um einen bestimmten Betrag länger als der fertige Rohling ist. Im Anschluss daran werden die in dieser Ansicht parallel zur Zeichnungsebene verlaufenden Gitterstege 6' im Bereich der Längenzugabe an der rechten Stirnseite 5' herausgeschnitten, so dass der Rohling 3 entsteht, der rechts neben dem Rohling3' dargestellt ist. Auf diese Weise verbleiben nur die senkrecht zur Zeichnungsebene verlaufenden Gitterstege 6a . Diese Massnahme ist für den weiteren Verfahrensgang nicht unbedingt notwendig. Im nächsten Arbeitsgang wird der Rohling 3 um 900 gedreht, so dass seine Gitterstege 6a nach unten zu liegen kommen. Auf diese Weise nimmt der Rohling 3 ' die neben dem Rohling 5 gezeichnete Stellung ein. Die Transportrichtung bleibt gleich und verläuft in Richtung des Pfeils B. Beim Weitertransport dieses Rohlings 3 ' stossen dessen Gitterstege 6a ' vor eine mit ihren Flachseiten waagerecht angeordnete Schleifscheibe 7, die von einem Antriebsmotor 8 in schnelle Umdrehung versetzt wird. Hierdurch werden nacheinander die Gitterstege 6a ' abgeschliffen, wobei sich die Gitteröffnungen in der Stirnseite 5 ' zusetzen und gleichzeitig der Rohling 3 ' auf Rohlingsfertigmass gebracht wird. Auf diese Weise entsteht der ganz rechts dargestellte Rohling 3 mit einer geschlossenen Stirnseite 5 . Dieser Rohling 3 ist dann fertig zum Trocknen und Brennen. Beim Ausführungsbeispiel nach Fig. 2 wird zunächst, wie oben beschrieben, der Rohling 3 hergestellt. Im nächsten Arbeitsgang werden dann die Gitterstege 6a bzw. 6a ' umgebogen, so dass die dortigen Öffnungen verschlossen werden. Dieser Verfahrensgang ist an dem nach rechts folgenden Rohling 3''' dargestellt. Das Umbiegen geschieht hier durch eine in Richtung des Pfeils B bewegte Walze 7, die auch gleichzeitig dafür sorgt, dass der Rohling 3 ' sein Fertigmass erhält. Nach dem Umbiegen hat der Rohling die Form des ganz rechts dargestellten Rohlings 3'''''. Er ist dann fertig zum Trocknen und Brennen.
Patent ansprüche : 1. Keramischer Baustein, insbesondere Gitterziegel stein mit stirnseitigen Öffnungen, dadurch gekennzeichnet, dass eine der beiden Stirnseiten (5) geschlossen ausgebildet ist. 2. Verfahren zur Herstellung von keramischen Bau steinen mit stirnseitigen Öffnungen, insbesondere Gitterziegelsteinen, nach Anspruch 1, bei dem zunächst ein Rohlingsstrang extrudiert wird, der dann durch nacheinander Abschneiden in Rohlinge aufgeteilt wird, die auf Rohlingsfertigmass ge bracht sowie anschliessend getrocknet und gebrannt werden, dadurch gekennzeichnet, dass jeder Rohling (3) mit Längenzugabe vom Rohlingsstrang (2) abgeschnitten und vor dem Trocknen an wenigstens einer der Stirnseiten (5) zugewalzt oder durch Abschleifen der Längenzugabe ver schlossen wird, wobei der Rohling (3) das Rohlingsfertigmass erhält. 3. Verfahren nach Anspruch 2, wobei die Bausteine als Gitterbausteine ausgebildet sind, dadurch gekennzeichnet, dass vor dem Zuwalzen die in Walzrichtung verlaufenden Gitterstege (6) im Bereich der Längenzugabe in der für das Zuwalzen erforderlichen Höhe entfernt werden. 4. Verfahren nach Anspruch 2 oder 3, bei dem die Rohlinge zu einer Einrichtung transportiert werden, die jeweils wenigstens eine Stirnseite der Rohlinge unter Verkürzung auf das Rohlings fertigmass verschliesst, dadurch gekennzeichnet dass die Rohlinge (3) wenigstens beim Passieren der Einrichtung (7,8) parallel zu ihren Stirnseiten (4,5) transportiert werden. 5. Einrichtung zur Durchführung des Verfahrens nach Anspruch 2, dadurch gekennzeichnet, dass für das Abschleifen wenigstens einp rotierende Schleifscheibe (7) vorgesehen ist. 6. Einrichtung nach Anspruch 5, dadurch gekenn zeichnet, dass die Schleifscheibe (7) derart angeordnet ist, dass sie mit einer ihrer Flach seiten über eine der Stirnseiten (5) des Roh lings (3) fährt. 7. Einrichtung nach den Ansprechen 5 oder 6, dadurch gekennzeichnet, dass die Schleifscheibe (7) in der Transportbahn mit ihrer Stirnseite parallel zur Transportrichtung (B) angeordnet ist. 8. Einrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schleifscheibe (7) an ihrer Flachseite aufgerauht ist. 9. Einrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schleifscheibe (7) an ihrer Flachseite glatt ausgebildet ist.
PETER VAN EYK GMBH & CO. KOMMANDITGESELLSCHAFT
SMEETS, HEINRICH
EP-0003039-B1
3,039
EP
B1
EN
19,821,222
1,979
20,100,220
new
B65D83
null
B65D83
B65D 83/00A
A CONTAINER FOR CONTAINING SUBSTANCES IN A HERMETICALLY SEALED CONDITION AND A METHOD FOR MAKING THE SAME
The container of the invention is adapted to contain a liquid or viscous substance (15) such as a sealing compound or an adhesive in an air tightly sealed condition. The container comprises a rigid or stiff peripheral wall (10) which is closed at one end by means of a distendable membrane (16) the outer surface of which is exposed to ambient atmospheric pressure. In a preferred embodiment the container is shaped as a cylindrical cartridge which is closed at the other end by means of an ejection piston (13). The distendable membrane may be made from a stretchable sheet material which is fastened to the cylindrical container body in a tight condition, whereafter the sheet material is permanently stretched by filling a heated substance into the container and exposing said substance to a compressive force.
A container for containing liquid substances and a method for making the same ¯¯¯¯ ¯¯¯ The present invention relates to a container or package for 'containing liquid substances, especially viscous substances, in a hermetically sealed condition, and comprising a substantially rigid or stiff peripheral wall. Such containers or packages containing liquid or viscous substances are often stored for a long period of time under greatly varying temperature conditions before the content of the container is used. As the thermal coefficients of expansion of the container and its content, respectively, are normally different a partial vacuum may be generated in containers or packages of the type in question. When sealing compounds, adhesives, and other similar viscous masses or substances are packed in containers or packages of this known type the more fluid components, such as solvents, have a disadvantageous tendency to separate during storage of containers or packages containing such viscous substances or masses. It has been found that this tendency to separation of fluid components is substantially reduced by using the container according to the invention which is characterized in that the peripheral wall is air-tightly closed at one end thereof by a distendable membrane or wall part. This advantage is presumably due to the fact that even during storage with greatly varying temperature conditions the content of a container according to the invention is not exposed to pressure conditions differing substantially from the ambient atmospheric pressure because the distendable membrane or wall part will function as a kind of thermal expansion and contraction compensator. The said membrane or wall part may possibly be'protected against mechanical stresses, for example by means of a lid-shaped rigid end wall. However, in this case the said end wall must be provided with one or more greater or smaller air passages securing that the outer surface of the distendable membrane or wall part is always exposed to the ambient atmospheric pressure. If desired, the distendable membrane or wall part may be sealed to the lid-shaped end wall along its periphery, and when the content has been filled into the container or package the distendable membrane or wall part may be fastened thereto together with and possibly also by means of the lid-shaped end wall. Alternatively, the rim portion of the membrane or wall part may be wedged or clamped between the container and the lid-shaped end wall without being united with the latter. In any case, the lidshaped end wall may have a form so that the distendable membrane or wall part may freely move so as to compensate for variations of the volume of the substance or mass contained in the container. Thus, the container or package according to the invention may, for example, have the form of a bucket or pot provided with a lid. The invention may, however, with special advantage be used in connection with a cylindrical container or cartridge for containing a sealing compound, an adhesive, or other viscous masses or substances, and'of the type being closed at one of its ends by means of an ejection piston displaceable within the cylinder. When the content of such a container or cartridge is to be used the cartridge is normally placed in a socalled ejection pistol which comprises a plunger to cooperate with the ejection piston of the cartridge, and which may be operated manually or by means of pressurized air so that the viscous substance, for example a sealing compound, is discharged through a spout or nozzle. Containers or cartridges of the said type provided with an integrally formed spout the free end of which is closed, but adapted to be cut off immediately before the content of the cartridge is to be discharged, are known. It is also known to provide cartridges with a discharge opening defined by a threaded pipe stub on which a discharge spout. or nozzle may be fastened. In that case tl, discharge opening of the cartridge or container may be closed by a perforatable wall which is stretched tightly across said tube stub and which may be perforated by means of a pointed tool immediately before the content of the cartridge is to be discharged or ejected. In practice containers or cartridges with a content of a viscous substance is often stored for a long period of time before use, under greatly varying temperature conditions as mentioned above. As the thermal expansion coefficients of the container or cartridge and its content, respectively, are normally different, the varying storing temperatures cause that the ejection piston is displaced backwards and forwards in the cylinder-shaped container or cartridge. It has been found, however, that a temperature caused reduction of the content of the container or cartridge is often partly or totally compensated for by suction of air from the ambient atmosphere through the space between the inner wall of the container and the outer wall of the cylindrical skirt of the ejection piston into the inner space of the cylindrical container or cartridge. Such suction of air into the container or cartridge may be rather disadvantageous, partly because the air reacts with the content of the container in an undesired manner, and partly because air bubbles included in the viscous substance in the container or cartridge may cause an undesired splashing or spattering of the substance when it is later discharged or ejected from the container or cartridge. According to another aspect of the invention the said peripheral wall may have the shape of a circular cylinder which at its other end opposite to said distendable membrane or wall part is adapted to be closed by an ejection piston displaceable in said cylinder. The container according to the invention may then be used as a cartridge of the type described above. In that case the distendable membrane or wall part will not only hermetically close or seal said other end of the cylinder, but due to its distendability it may also serve as a thermal expansion compensator, because without exerting any substantial resistance it may be distended more or less dependent on the actual temperature of the mass or substance contained in the cylinder. Consequently, the ejection piston may remain stationary in relation to the cylinder, and undesired suction of air into the cylinder may be avoided. Furthermore, the tendency of solvents and other fluid components to separate from the remaining content of the cylinder or cartridge is reduced as explained above. The container or package may at said one end comprise an end wall defining a discharge opening therein, and according to the invention the distendable membrane or wall part may then be arranged within the container so as to cut off communication between said discharge opening and the inner space of the container. A distendable membrane or wall part will then be arranged well protected within the cylinder. When the inner surface of said end wall has a concave shape, the edge portion of said distendable membrane or wall part may, according to the invention, be sealingly fastened to the inner surface of said end wall, preferably along the transition to said peripheral wall, and adapted to engage with and be supported by said end wall in its fully or partly distended condition. By this embodiment it is obtained that the distendable membrane or wall part may be made from a relatively weak or thin-walled material because when distended it is supported by the adjacent, much more heavy concave end wall. When the viscous substance is filled into the container in a hot condition and at a temperature substantially above the maximum temperature to which the container or package may be exposed during storage, the membrane or wall part may be distended and caused to engage with the end wall of the cylinder during the filling operation whereby the membrane is supported and a complete utilization of the space of the cylinder is obtainable. When the viscous substance is later cooled, the membrane or wall part may move away from the cylinder end wall to an extent corresponding to the thermal contraction of the viscous substance or mass. The distendable membrane or wall part may be of any suitable material, for example an elastic rubber or plastic material which may be stretched without offering-any substantial resistance when the temperature of the container content is increased. It is preferred, however, to produce the membrane or wall part of a substantially inelastic material of a type permitting heat sealing or gluening of the rim portion of the membrane or wall part to the container. When the said membrane or wall part is of a substantially inelastic material it is preferably provided with folds or pleatings in its non-distended condition, whereby collapsing of the distendable membrane or wall part is facilitated when the volume of the liquid or viscous substance contained in the container is reduced due to thermal contraction. The distendable membrane or wall part is preferably made from a thin sheet material which is impervious to air and which may easily be heat sealed to the container wall. Therefore, according to the invention the said membrane or wall part is preferably made from a metal foil such as an aluminum foil, coated by a layer of heat sealable plastic material, such as a plastic film or a heat sealable lacquer. The present invention also provides a method of making a cylinder-shaped container or cartridge of the above type, and the method according to the invention is characterized in closing one end of a cylindrical tube length or section by positioning a thin stretchable sheet material, such as a film or a foil across said one end and sealing it to the surface of said tube length, filling the liquid substance to be packed into the tube length through the open other end thereof and exposing said substance to a compressive force so as to stretch said sheet material permanently. The sheet material may then be fastened to the tube length in a tight condition whereby the fastening process is facilitated, and the distendable membrane or wall part is then provided by the later stretching process. The liquid substance is preferably filled into the tube length in a heated condition. Thereby the filling process is facilitated, and provided that the temperature of the heated mass or substance exceeds the maximum temperature to which said substance is expected to be exposed during the later storage, the membrane or wall part will never be distended to the same extent during storage as during filling of the container. On the contrary it may be expected that the mass or substance is contracted so that the membrane or wall part will become more slack. Because the sheet material has been stretched permanently during the filling process and thereby obtained a certain oversize, it will be able to compensate even for the reductions of volume occurring at extremely low temperatures. The said compressive force may be applied to the liquid or viscous mass filled into the tube length by any suitable means. The said compressive force may, however, advantageously be applied by means of an ejection piston which is inserted into the open end of the tube length or section. As mentioned above the membrane or wall part may be fastened to said one end of the cylindrical tube length in any suitable manner, for example by gluening or heat sealing depending on the materials from which the tube length and the membrane or wall part are made. The sheet material being used for making the distendable membrane or wall part may, for example, be a laminate of a metal foil, such as an aluminium foil, and a plastic film, such as a polyethylene film. The plastic film may be used as the inner layer, and the sheet material may then be heat sealed to the cylindrical tube length which may also be made from plastic material. The purpose of the plastic film is to make the membrane or wall part impervious to vapour and solvents. The invention will now be further explained with reference to the drawings illustrating various embodiments of the method and container according to the invention, and wherein Fig. 1 is a side view and partially sectional view of a container or cartridge according to the invention filled with a viscous mass and comprising a membrane shown in a substantially distended condition, Fig. 2 is a view similar to that in Fig. 1, but with the membrane in a non-distended condition, Fig. 3 is a side view and partially sectional view of a second embodiment of the container or cartridge according to the invention, Fig. 4 is the same as Fig. 3, but with the membrane in another position, Figs. 5 to 7 illustrate various steps of a method for making a third embodiment of a cylindrical container or cartridge provided with an ejection piston, Fig. 8 is a side view and partial sectional view of a cylindrical container or cartridge made by the method illustrated in Figs. 5 to 7 and being provided with an end wall having a discharge. spout, Fig. 9 is a ridge view and partial sectional view of the container or cartridge and the end wall shown in Fig. 8 arranged in a conventional, manually operatable ejection pistol, and Fig. 10 is a side view and partially sectional view of a modified embodiment of the container or cartridge shown in Fig. 8 and 9 placed in an ejection pistol which may be actuated by means of pressurized air. Figs.l to 4 show a cylindrical container or cartridge 10 having an endSwall 12 provided with a threaded tube stub 11. The other end of the cartridge or cylinder 10 is closed by an ejection piston 13 which is displaceable in the cylinder. The threaded tube stub 11 defines a discharge passage 14 therein. The passage 14 is separated from the inner space of the cylinder 10 which contains a viscous substance or mass 15, by means of a distendable wall part or membrane 16. In the embodiment shown in Figs. 1 and 2 the rim portion of the membrane 16 is sealingly fastened to the end wall 12 along a transitional zone 17 between said end wall and the cylindrical wall of the cartridge or container 10. The membrane 16 has such a size that it may be brought into engagement with the concave inner surface of the end wall 12 as shown in Fig. 1. The membrane 16 may, for example, be in this position immediately after the filling process by which the viscous mass 15 has been filled into the cartridge or container 10, preferably in a heated condition. When the mass or substance 15 is cooled so that the volume thereof is reduced the piston 13 may remain in the position shown in Fig. 1 in relation to the cylinder because the reduction of the volume is compensated for by the distendable membrane 16 which is moved a suitable distance towards the piston 13 as indicated in Fig. 2. In this manner the membrane 16 may serve as a thermal volume change compensator as well as for hermetically sealing the inner space of the cylinder or cartridge 10. When the content of the cartridge 10 is to be used it is placed in an ejection pistol of a type as that shown in Fig. 9 or 10 and comprising a plunger by means of which an inwardly directed pressure may be applied to the piston 13 of the cartridge 10. Thereafter, the membrane or wall part 16 is perforated by means of a suitable, pointed tool or instrument and a kind of discharge spout, not shown, may be mounted on the threaded tube stub 11. The viscous substance or mass 15 may now be ejected or discharged at the place of use in a manner known per se. The embodiment shown in Figs. 3 and 4 corresponds to that shown in Figs. 1 and 2 apart from the fact that in Fig. 3 and 4 the rim portion of the membrane 16 is fastened to the inner surface of the end wall 12 immediately adjacent to the discharge passage 14, and the distendable membrane or wall part 16 has a folded or pleated shape. Also in this embodiment the membrane may serve as a thermal volume change compensator as illustrated in Fig. 3 and 4 so that displacement of the piston 13 in relation to the cylinder is avoided even when the cartridge or container 10 is stored under varying temperature conditions. Consequently, suction of air through the space between the piston and the cylinder wall and into the inner of the cylinder is avoided. The cylinder 10 and the piston 13 may be of any suitable material, but they are preferably made by ejection moulded plastic material. In principle, the membrane or wall part 16 may be made as an integral part of the container or cartridge 10. However, in order to facilitate production it is preferred to make the membrane 16 and the cylinder 10 separately and the membrane may then be fastened to the cylinder by heat sealing, gluening, or in any other suitable manner. The membrane or wall part 16 is preferably a laminate of metal foil, preferably aluminium foil, and a heat sealable plastic material, such as polyethylene. Such a laminate is impervious to vapour, gases, and liquid solvents and may be heat sealed to the cylinder or container 10. Figs. 7 to 10 show other embodiments of a cylinder-shaped container or cartridge 10 made from a relatively stiff or rigid cylindrical tube length 18, one end of which is closed by means of an ejection piston 19 which may, for example, be of the type which is described in Danish patent application No. 1149/78 and which cooperates with a separate piston engaging member 20. At its other end the tube length 18 is closed by means of a distendable membrane or end wall 21 the rim portion of which is sealingly fastened to the adjacent part of the outer surface of the tube length 18. The end wall or membrane 21 may be of the same type as the membrane 16 previously described, and the membrane 21 may be fastened to the tube length 18 in any of the manners described above in connection with the membrane 16. In its mounted condition the end wall or membrane 21 has a certain oversize, which means that its area exceeds the cross sectional area of the tube length 18. The end wall or membrane may, alternatively, be of a highly elastic material. As indicated by broken lines in Fig. 8 the membrane or end wall 21 may be moved to such an extent that it may compensate for thermal changes of volume of a viscous substance or mass 15 contained in the container or cartridge 10 so that at any time the substance or mass will be subjected to a pressure corresponding substantially to the ambient atmospheric pressure whereby the advantages previously described may be obtained. The substance or mass 15 contained in the cartridge 10 may, for example, be a sealing compound, an adhesive, or a similar viscous mass. When the content of the cartridge or container shown in Fig. 8 is to be used, the cartridge may be placed in a conventional ejection pistol as that shown in Fig. 9 and generally designated by 22. Immediately before the container or cartridge 10 is placed in the pistol 22 a discharge spout 23 having a socket 24 is mounted on the end of the cartridge which xs closed by the membrane or end wall 21. A cutting edge 25 forming an extension of the wall of the spout 23 extends axially from the inner surface of the socket 24, and a pair of concentric, annular sealing ridges 26 surround the cutting edge 25 as best shown in Fig. 8. When the trigger 27 on the pistol 22 is operated in the usual manner the piston 19 of the cartridge 10 is pressed inwardly by means of a plunger 28 of the pistol 22. Thereby the membrane or end wall 21 of the cartridge 10 is caused to move outwardly, and the cartridge 10 will be pressed tightly against the inner surface of the socket 24. As a result, the cutting edge 25 will make a curved cut in the membrane 21 whereby communication is established between the inner space of the cartridge 10 and the passage of the spout 23. At the same time the membrane 21 is pressed tightly against the sealing ridges 26 (Fig. 9) so that the content of the cartridge is prevented from penetrating between the end wall or membrane 21 and the inner surface of the socket 24. In the embodiment shown in Fig. 10 the outer surface of the cylindrical tube length 18 is provided with locking projections or cams 29 and 30, respectively, at both ends. The socket 24 of the discharge spout 23 is provided with corresponding inner cam surfaces 31 by means of which the spout 23 may be fastened to one end of the cartridge 10 as shown in Fig. 10. When the socket 24 is mounted on the cartridge the cutting edge 25 will perforate the membrane or end wall 21 as described above. By means of the locking cams 30 the other end portion of the cartridge 10 may be fastened to a conventional ejection pistol generally designated by 32 and being of the type operated by pressurized air. When the trigger 33 of the pistol 32 is operated the piston 19 of the container or cartridge 10 will be pressed inwardly by means of pressurized air so that the viscous substance 15 is ejected from the cartridge through the discharge spout 23 as described above. In conventional sealing compound cartridges of the type described the discharge spout forms an integrating part of the cylindrical wall of the cartridge or container, and therefore these conventional cartridges must be produced by ejection moulding for which reason they are relatively expensive. In the embodiments of the container according to the invention shown in Figs. 7 to 10 the tube length may be cut from a tube of a longer length which may be produced in a substantially cheaper way, for example by extrusion. The tube length 18 may be made from plastic or metal, such as aluminium, or it may be made from a laminate of plastic material and metal, for example an extruded plastic tube being outwardly coated by an aluminium foil in order to make it impervious to gases, vapours, and liquid solvents. As shown in Fig. 7,the membrane or end wall 21 may similarly consist of a laminate formed by an inner plastic film, such as polyethylene, and an outer metal foil, such as aluminium. It may, however, involve certain technical difficulties to fasten the membrane or end wall 21 to the tube length 18 so that a hermetical seal is obtained because,as mentioned above, the membrane must have a certain oversize and must consequently be in a folded or pleated condition when fastened. However, according-to the invention a method has been provided by means of which a container or cartridge as that described above may be produced in a much more simple manner. This new method is illustrated in Figs. 5 to 7. As shown in Fig. 5 a stretchable sheet material 21' which may be a laminate of films or foils or may consist of a single layer of material, is fastened to one end of a tube length 18. The sheet material 21' is fastened to the inner or outer surface of the tube length 18 in a substantially tight condition, preferably by heat seal*ly or gluening. The container or package manufacturer may ,ien deliver this semi-manufactured article together with associated piston parts to the manufacturer of the viscous substance or mass 15 to be packed in the container or cartridge. The viscous substance 15 is filled into the open end of the semimanufactured article shown in Fig. 5 in a hot condition, the said article being arranged so that the end of the tube length 18 closed by the sheet material 21' is engaging with a concave surface of a die 34 as shown in Fig. 6. The open other end of the filled tube length 18 is now closed by the piston 19 whereafter an inwardly directed force is applied to the piston 19 by means of a plunger 35 of a suitable force applying apparatus, not shown. The plunger 35 applies such a force or pressure to the piston 19 that the sheet material 21' is stretched permanently to such an extent that it is brought into engagement with the concave surface of the die 34 whereby the distendable membrane or end wall 21 is formed. The plunger 35 may now be removed and the piston engaging member 20 may be mounted on the container or cartridge which is now ready for storage or shipment. When the mass or substance 15 contained in the container or cartridge 10 is cooled the volume of the mass or substance is reduced, and the membrane or end wall 21 will then take up a folded or pleated shape as shown in Fig. 7. Provided that the maximum temperature to which the content 15 of the container 10 is exposed during storage and shipment does not exceed the temperature during the filling process, the end wall will be able to compensate for the thermal volume changes which will occur during storage and shipment. Even though the container or package according to the invention has predominantly been explained with reference to so-called cartridges for sealing compounds and similar substances, it should be understood that the invention may also be used in connection with packages and containers of other types being adapted to contain a viscous mass or substance in a hermetically sealed condition. As an example, the container according to the invention may be shaped as a can having its upper end closed by means of a membrane like distendable end wall which may possibly be protected by means of a removable lid provided with one or more air passages securing that the membrane like end wall is exposed to the ambient pressure. It should also be mentioned that even though the distendable membrane or wall part is preferably made from a substantially inelastic sheet material it may, alternatively, be made from an elastic material extending across the end of the cylinder 10 in its strainless condition. The membrane may then have such a resiliency that it may be stretched sufficiently to for example engage with the concave inner surface of the end wall 12 shown in Figs. 1 to 4 without applying any substantial elastic force to the content 15 of the container 10.
CLAIMS 1. A container for containing liquid substances, especially viscous substances (15), in a hermetically sealed condition, and comprising a substantially rigid peripheral wall (10, 18) c h a r a c t e r i z e d in that the peripheral wall (10, 18) is airtightly closed at one end th > , of by a distendable membrane or wall part (16, 21). 2. A container according to claim 1, c h a r a c t e r i z e d in that said peripheral wall has the shape of a circular cylinder (10, 18) which at its other end opposite to said distendable membrane or wall part (16, 21) is adapted to be closed by an ejection piston (13, 19) displaceable in said cylinder. 3. A container according to claim 1 or 2, comprising at said one end an end wall (12) defining a discharge opening (14) therein, c h a r a c t e r i z e d in that said distendable membrane or wall part (16) is arranged within the container (10) so as to cut off communication between said discharge opening (14) and the inner space of the container. 4. A container according to claim 3, wherein the inner surface of said end wall (12) has a concave shape, c h a r a c t e r i z e d in that the edge portion of said distendable membrane or wall part (16) is sealingly fastened to the inner surface of said end wall, preferably along the transition (17) to said peripheral wall (10), and is adapted to engage with and be supported by said end wall (12) in its fully or partly distended condition. 5. A container according to any of the claims 1 to 4, c h a r a c t e r i z e d in that said distendable membrane or wall part (16, 21) is of substantially inelastic material and is provided with folds or pleatings in its non-distended condition. 6. A container according to any of the claims 1 to 5, c h a r a c t e r i z e d in that said membrane or wall part (16, 21) is made from a metal foil coated by a layer of heat sealable plastic material. 7. A method of making a cylinder-shaped container according to any of the claims 2 to 4, c h a r a c t e r i z e d in closing one end of a cylindrical tube length or section (18) by positioning a thin, stretchable sheet material (21') across said one end and sealing it to the surface of said tube length, filling the liquid substance (15) to be packed into the tube length through the open other end thereof, and exposing said substance to a compressive force so as to stretch said sheet material (21') permanently. 8. A method according to claim 7, c h a r a c t e r i z e d in that said liquid substance (15) is filled into the tube length (18) in a heated condition. 9. A method according to claim 7 or 8, c h a r a c t e r i z e d in that said compressive force is applied by means of an ejection piston (19) which is inserted into the open end of the tube length (18). 10. A method according to any of the claims 7 to 9, c h a r a c t e r i z e d in using a sheet material (21') which is a metal foil, such as aluminium foil, laminated with a plastic film.
NIELSEN, OLE SIMONNI MUNDELING
NIELSEN, OLE SIMONNI MUNDELING
EP-0003042-B1
3,042
EP
B1
DE
19,811,202
1,979
20,100,220
new
E06B3
E05D15, E06B7
E06B1, E06B3
E06B 1/70, E06B 1/32B, E06B 3/46B
FRAME PROFILE FOR A SLIDING DOOR OR WINDOW
1. Frame profile for the lower transverse frame member or the sill of at least one sliding leaf or panel (24), having at least one rail (23) and with, facing the interior of the room, an inner element (1, 2) and connected therewith in plug-in fashion, an outer element (3, 4), the inner element (1, 2) consisting of a material having a poorer heat conductivity than the outer element (3, 4) characterised in that the outer element (3, 4) engages beneath the inner element (1, 2), the rail (23) is mounted on the inner element (1, 2), its long side (26) which is situated beneath the sliding panel (24) and which is directed towards the interior of the room being at least substantially covered by the inner element (1, 2).
Rahmenprofil für ein Fenster, eine Tür od. dgl. Die Erfindung bezieht sich auf ein Rahmenprofil für ein Fenster, eine Tür od. dgl. Dabei ist in erster Linie an den Aussen- oder Blendrahmen gedacht. Aus verschiedenen Gründen fertigt man solche Rahmen bzw. Rahmenprofile aus Aluminium oder aber aus Holz und versieht dieses, zumindest an seiner sich quer zur Fensterbene erstreckenden Fläche, mit einer Rahmenabdeckung aus Aluminium oder einem anderen Metall. Metall hat indessen den Nachteil, ein guter Wärmeleiter zu sein, und infolgedessen kühlt es sich in der kalten Jahreszeit wesentlich rascher und stärker ab als beispielsweise Holz. Bei ausreichend grosser Luftfeuchtigkeit bildet sich an einer derart abgekühlten Innenseite des Rahmenprofils Schwitzwasser. Die nachteiligen Folgen des letzteren sind insbesondere auf dem Fenster- und Türsektor hinreichend bekannt. Abgesehen davon entsteht auf diese Weise auch ein nicht unerheblicher Wärmeverlust, der sehr im Gegensatz zu dem neuen Gesetz zur Energieeinsparung steht. Die Aufgabe der Erfindung wird infolgedessen darin gesehen, ein Rahmenprofil für ein Fenster, eine Tür od. dgl. zu schaffen, welches nicht zur Schwitzwasserbildung neigt und dessen Wärmeverlust geringer ist als derjenige eines zumindest teilweise aus Metall, insbesondere Aluminium, bestehenden Rahmenprofils. Zur Lösung dieser Aufgabe wird ein Rahmenprofil für ein Fenster, eine Tür od. dgl. vorgeschlagen, welches entsprechend dem kennzeichnenden Teil des ersten Anspruchs ausgebildet ist. Da dem Rauminnern lediglich das aus schlecht wärmeleitendem Werkstoff hergestellte Innenelement zugeordnet ist, wird der Wärmeabfluss aus dem Rauminnern in der angestrebten Weise erschwert. Das sich in folge seiner vergleichsweise besseren Wärmeleitfähigkeit wesentlich rascher abkühlende Aussenelement kommt mit der Luft im Rauminnern nicht in Kontakt, so dass sich daran auch kein Schwitzwasser bilden kann. Andererseits hat es aber den Vorteil höherer Stabilität, die vor allen Dingen beim unteren Querholm eines Blendrahmens eine wichtige Rolle spielt. Das Aussen- und das Innenelement sind in bevorzugter Weise miteinander insbesondere steckbar verbunden, was die Herstellung sehr erleichtert. Im Bedarfsfalle kann man sie zusätzlich noch miteinander verschrauben, um ein gegenseitiges Verschieben insbesondere bei starken Belastungen, wie sie beispielsweise bei schweren Schiebetüren auftreten, sicher zu verhüten. Eine besondere Ausgestaltung der Erfindung besteht darin, dass das Aussenelement das Innenelement untergreift und wenigstens eine, insbesondere aber zwei im seitlichen Abstand angeordnete, sich in Längsrichtung des Aussenelements erstreckende Halteleisten, in je einen zugeordneten Halteschlitz des Innenelements eingreifen. Selbstverständlich können Halteleisten und Halteschlitze auch in umgekehrter Weise angebracht werden. Die Halteleisten sichern die Steckverbindung quer zu ihrer Längsrichtung, d.h. quer zur Ebene des Fensters oder der Tür. Wenn die Verbindung stramm genug ist, reicht sie auch zu einer einwandfreien Sicherung in Längsrichtung der Halteleisten aus. In Weiterbildung der Erfindung ist vorgesehen, dass jede der beiden Halteleisten eine Verdickung insbesondere an ihrem freien Ende aufweist, wobei die Verdickungen gegeneinander weisen und jede von einer Wulst des Halteschlitzes hintergriffen wird, wobei sich die Wulst an einer elastisch nachgiebigen, jeweils eine Schlitzflanke bildenden Wand des Innenelements befindet. Der Zusammenbau dieser beiden Teile ist verhältnismässig problemlos, indessen lassen sie sich hernach nur noch schwer trennen, was im Sinne einer guten Verbindung sehr erwünscht ist. Bei einem Rahmenprofil als unterer Rahmen-Querholm oder Bodenschwelle mit wenigstens einer Laufschiene für einen Schiebeflügel besteht eine andere Variante der Erfindung darin, dass die Laufschiene auf das Innenelement aufgesetzt und seine nach dem Rauminnern weisende, unterhalb des Flügels gelegene Längsseite, durch das Innenelement wenigstens weitgehend abgedeckt ist. Insofern wird auch die Bildung einer Kältebrücke im Bereich der Laufschiene unter bunden. Letztere besteht vor allen Dingen bei Schiebetüren aus festigkeitsmässigen Gründen immer aus Metall, vorzugsweise aus Aluminium. Sie wird mit dem Innenelement zweckmässigerweise verschraubt. Eine andere Ausbildung eines Rahmenprofils mit einem parallel zum Flügel angebrachten, zusätzlichen Feld besteht darin, dass parallel zur Laufschiene im seitlichen Abstand von dessen nach aussen weisendem Längsrand ein Aufsatzprofil am Aussenelement montiert ist, auf welchem sich das zusätzliche Feld ab stützt. Das Aufsatzprofil kann seinem Zweck und seiner Belastung entsprechend gestaltet und dimensioniert werden. Entsprechendes gilt auch für die Werkstoffwahl. Der Zwischenraum zwischen dem Aufsatzprofil und dem Innenelement mit der Laufschiene ist in weiterer Ausgestaltung der Erfindung mittels eines Füllstücks überbrückt. Der fragliche Bereich gehört ebenfalls der kalten Zone an, und dem Füllstück kommt daher die Aufgabe zu, Schwitzwasserbildung zu vermeiden, Es verhindert nämlich eine Luftzirkulation in dem genannten Bereich. Eine weitere bevorzugte Variante der Erfindung wird darin gesehen, dass der Aussenfläche des Innenelements eine Dichtung vorgesetzt ist, die sich von der Laufschiene bis zum Aussenelement erstreckt. Vorzugsweise handelt es sich dabei um eine streifenförmige Dichtung, die in eine entsprechende Nut eingelegt oder an einem der sie umgebenden Teile, beispielsweise dem Innenelement, befestigt, insbesondere angeklebt sein kann. Noch vorteilhafter ist es allerdings, wenn man diese Dichtung einstückig mit dem Innenelement als sogenannte Hart-Weich-Kombination herstellt. Das Füllstück besteht gemäss einer Weiterbildung der Erfindung aus einer Profilschiene, die sich einerseits am Aufsatzprofil und andererseits wenigstens an der Dichtung abstützt. Dabei ist es sehr von Vorteil, wenn der von der Dichtung abgewandte Längsrand des Aufsatzprofils in der Art einer Anpresslippe ausgebildet ist, um einerseits dicht an das Aufsatzprofil anzuschliessen und andererseits die notwendige Anpresskraft im Bereich der Dichtung aufzubringen. Eine andere Variante der Erfindung sieht in diesem Zusammenhang vor, dass das Füllstück aus Kunststoff besteht und seine am Aufsatzprofil einerseits und an der Laufschiene und/oder dem Innenelement andererseits anliegenden Längskanten oder -bereiche aus weichem elastischem Kunststoff bestehen, während das übrige Füllstück aus steiferem Kunststoff gefertigt ist. Demnach handelt es sich hier um ein Profil in sogenannter Hart-Weich-Kombination. Der harte Kunststoff gewährleistet dauerhaft die Formstabilität, während der weichere das Anschmiegen und gute Abdichten auch bei nicht ganz ebener Dichtfläche oder -kante sicherstellt. Das Aufsatzprofil besteht gemäss einer weiteren Ausgestaltung der Erfindung aus tragfähigem Kunststoff, und es ist insbesondere als auf den Schenkeln stehendes U-Profil gestaltet. Dabei können zur Vergrösserung der Auflagefläche die beiden U-Schenkel verbreitert bzw. umgebogen, vorzugsweise nach innen hin umgebogen sein. Dabei ist es sehr von Vorteil, dass wenigstens der äussere U-Schenkel gegenüber dem Aussenelement mittels einer Dichtung abgedichtet ist, diese insbesondere in die Stirnfläche dieses Schenkels eingelassen ist. Sie verhindert das Eindringen von Wasser und Schmutz ins Innere des Aufsatzprofils, falls dieses an irgend einer Stelle nicht vollkommen dicht aufsitzt. Gemäss einer zweckmässigen Weiterbildung der Erfindung ist das Aussenelement als sogenannte Rohrschwelle ausgebildet und das Innenelement im wesentlichen winkelförmig gestaltet, wobei sein vertikaler Schenkel die nach innen weisende Fläche der Rohrschwelle übergreift. Diese Konstruktion macht es möglich, die Rohrschwelle bis unter die Laufschiene hindurchzuführen, was aus statischen Gründen erstrebenswert ist. Trotzdem werden auch hier Schwitzwasserbildung an der Innenseite der Rohtschwelle bzw. des Aussenelements und die Schaffung einer Kältebrücke verhindert. Im übrigen befinden sicn beispielsweise bei Schiebetüren ohnehin zumindest das raumeinwärts gelegene Ende der Rohrschwelle und damit auch mindestens der vertikale Schenkel des Innenelements unterhalb des Bodenniveaus. Dies trägt natürlich auch zur Erreichung der angestrebten Ziele bei. Eine andere Ausbildung der Erfindung sieht vor, dass das Füllstück aus Schaumstoff besteht. Es ist infolgedessen leicht herzustellen, billig, von geringem Gewicht und hinsichtlich des angestrebten Zwecks von hoher Wirksamkeit. Eine weitere Variante der Erfindung sieht vor, dass das zusätzliche Feld als Schiebeflügel ausgebildet und das Aufsatzprofil mit einer Laufschiene versehen, insbesondere einstückig damit aus Aluminium hergestellt ist. Gemäss einer anderen Ausgestaltung der Erfindung wird vorgeschlagen, dass das Aussenelement als sogenannte Rahmenabdeckung für eine Holzschwelle ausgebildet ist. In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung anhand vertikaler Längsmittelschnitte durch ein als unterer Blendrahmen-Querholm ausgebildetes Rahmenprofil dargestellt. Das erfindungsgemässe Rahmenprofil besteht aus dem Innenelement 1 bzw. 2 und dem Aussenelement 3 bzw. 4. In Fig. 1 ist das Aussenelement 3 als sogenannte Rahmenabdeckung ausgebildet und an eine Schwelle 5 angeschraubt. Demgegenüber handelt es sich beim Aussenelement 4 (Fig. 2) um eine sogenannte Rohrschwelle. Letztere und die Rahmen abdeckung 3 sind aus Aluminium hergestellt, und es handelt sich dabei vorzugsweise um Abschnitte stranggepresster Profile. Das Innenelement 1 des ersten Ausführungsbeispiels verlängert das Aussenelement 3 nach dem Rauminnern hin und schliesst insbesondere bündig mit der dem Rauminnern zugekehrten Längskante 6 der Schwelle 5 ab. Im Gegensatz dazu übergreift das Innenelement 2 beim zweiten Ausführungsbeispiel die Längskante 7 des Aussenelements 4 mit seinem nach unten gerichteten Winkelschenkel 8. In vorteilhafter Weise ist im Bereich des unteren Endes der Längskante 7 eine Steckverbindung 9 vorgesehen. Sie kann beispielsweise durch einen hakenförmigen Ansatz 10 des Aussenelements 4 mit nach oben weisendem Schenkel einerseits und einen sich insbesondere innen erweiterten Aufnahmeschlitz 11 des Winkelschenkels 8 gebildet sein. Jedes aus einem Werkstoff schlechter Leitfähigkeit, beispielsweise PVC hergestellte Innenelement, ist an seinem Aussenelement mittels einer Steckverbindung 12 gehalten. Zu diesem Zweck besitzt jedes Aussenelement zwei parallel verlaufende, im seitlichen Abstand angeordnete Halteleisten 13 und 14, die an ihrem freien, nach oben weisenden Ende jeweils innen eine wulstförmige Verdickung 15 bzw. 16 tragen. Die Halteleisten stecken in einem zugeordneten Halteschlitz 17 bzw. 18, wobei jede Verdickung 15 bzw. 16 eine Wulst 19 bzw. 20 am Mündungsrand des zugeordneten Halteschlitzes 17 bzw. 18 hintergreift. Um ein Verrasten zu ermöglichen, sind die Wände 21 bzw. 22, welche eine der beiden Schlitzflanken bilden, elastisch auslenkbar. Die Steckverbindung lässt sich ohne grössere Mühe herstellen, jedoch ist sie nachfolgend nur noch schwer zu lösen. Damit ist ein fester Halt des Innenelements am zugeordneten Aussenelement gewährleistet. Auf das Innenelement 1 bzw. 2 ist eine Laufschiene 23 für einen strichpunktiert angedeuteten Schiebeflügel 24 montiert. Die Befestigung kann mit Hilfe von Schrauben 25 vorgenommen werden, die in entsprechende Schlitze oder Bohrungen des Innenelements 1 bzw. 2 eingedreht werden. Die Laufschienen bestehen, ebenso wie die Aussenelemente, aus Metall, insbesondere Aluminium. Um eine Schitzwasserbildung an der Rauminnenseite im Bereich der Laufschiene zu verhindern, wird die nach dem Rauminnern weisende Längsseite 26 der Laufschiene durch eine nach oben weisende Leiste des Innenelements 1 bzw. 2 abgedeckt. Parallel zum Schiebeflügel 24 ist noch ein zusätzliches Feld vorgesehen, welches beim Ausführungsbeispiel der Fig. 1 als Schiebeflgel 27 und beim Ausführungsbeispiel gemäss Fig. 2 als festes Feld 28 ausgebildet ist. Parallel zur Laufschiene 23 und im seitlichen Abstand von dessen nach aussen weisendem Längsrand ist ein Aufsatzprofil 29 bzw. 30 am Aussenelement 3 bzw. 4 montiert. Hierauf stützt sich das zusätzliche Feld 27 bzw. 28 ab. Der Zwischenraum zwischen diesem Aufsatzprofil und dem Innenelement 1 bzw. 2 mit der daran befestigten Laufschiene 23 ist mit Hilfe eines Füllstücks 31 bzw. 32 überbrückt. Das Füllstück 32 besteht aus einer Profilschiene mit im wesentlichen U-förmigem Querschnitt, das auf seinen beiden U-Schenkeln steht. Der in Fig. 2 rechts gelegene U-Schenkel besitzt eine annähernd S-förmige Gestalt. Das U-Mittelstück ist gegen das Aufsatzprofil 29 hin verlängert. Als Werkstoff wird für das Füllstück 32 Kunststoff verwendet, und zwar in einer sogenannten Hart-Weich-Kombination. Dabei besteht die im Querschnitt etwa winkelförmige ;Verlängerungs- leiste 33 beispielsweise aus weichem Kunststoff, um sich dichtend an die zugeordnete Wandung 34 des Aufsatzprofils 29 anzuschmiegen. Gleichzeitig wird das Füllstück 32 gegen eine streifenförmige Dichtung 35 gedrückt, so dass auch auf der gegenüberliegenden Seite eine gute Abdichtung erzielt wird, die das Übertreten von Luft an das darunter liegende Teilstück ces Aussenelements unterbindet. Die Dichtung 35 besitzt eine streifenförmige Gestalt, und sie ist zwischen dem über ihr befindlichen Schenkel der Laufschiene 23 und einem nach oben ragenden, leistenförmigen Ansatz des Aussenelements 3 bzw. 4 eingesetzt, wobei die genannten Teile aussen bündig zueinander verlaufen. Wie bereits erläutert, kann die Dichtung 35 mit dem Innenelement 2 auch einstückig als Hart-Weich-Kombination herstellen, mit der Dichtung als weiche Komponente. In Fig. 2 liegt der konvex gewölbte Teil des rechten U-Schenkels des Füllstücks 32 an der Dichtung 35 an. Die darüber befindliche Ecke 36 kann ebenfalls aus weichem Kunststoff hergestellt sein, während man die restlichen Teile vorzugsweise aus hartem Kunststoff spritzt. Das Aufsatzprofil 29 hat einen im wesentlichen U-förmigen Querschnitt, und es wird zweckmässigerweise aus Kunststoff gefertigt. Man kann es beispielsweise in eine nach unten offene Nut 37 des festen Feldes 28 einlassen. Die beiden U-Schenkel sind nach innen hin abgewinkelt, wobei der äussere mit einer zweckmässigerweise im Querschnitt 0-förmigen Dichtung 38 versehen wird. Diese gewährleistet auch bei gewissen Unebenheiten der aneinander anliegenden Flächen, die insbesondere beim Einbau entstehen können, das Eindringen von Feuchtigkeit und Zugluft unter das Aufsatzprofil 29. In Fig. l besteht das Füllstück 31 vorzugsweise aus Schaumgummi. Das Aufsatzprofil 30 ist einstückig mit einer Laufschiene 41 aus Metall, vorzugsweise Aluminium, hergestellt. Es besitzt eine im Querschnitt etwa U-förmige Form mit beidseits angesetzten Verstärkungswinkeln. Letztere bilden Gegenflächen für in den Schiebeflügel 27 eingelassene Dichtleisten 42, 43 bzw. deren nach aussen ragende Dichtlippen. Weil das Innenelement das Aussenelement gegen das Rauminnere hin überragt und seine Wärmeleitfähigkeit bedeutend geringer ist als diejenige des Aussenelements, verhindert bzw. erschwert man wirkungsvoll einen Wärmefluss vom warmen Innenraum nach aussen. Durch den Wegfall der früher bei aus Aluminium hergestellten Rohrschwellen bzw. Rahmen abdeckungen üblichen Kältebrücke unterbleibt auch die Schwitzwasserbildung im wärmeren Innenraum. Trotzdem ist dieses Rahmenprofil in beiden beschriebenen Ausgestaltungen erheblichen Belastungen ohne weiteres gewachsen, ohne dass dabei der Einbau unzumutbare Massnahmen erfordert. Es kommt noch hinzu, dass dieses Rahmenprofil die Verwendung der üblichen Eckverbindungsteile gewährleistet. Im Falle der Verwendung bei Türen kann man die begehbaren Teile ohne weiteres aus Aluminium fertigen, so dass das Profil in dieser Hinsicht nicht empfindlicher ist als vorbekannte Rahmenprofile. In diesem Zusammenhang wird ausdrücklich noch darauf aufmerksam gemacht, dass die Wände 21 und 22 des horizontalen Winkel schenkels des Innenelements 2 nicht allein als Steckverbindungselemente, sondern gleichzeitig auch als Stütz- elemente dienen.
Ansprüche 1. Rahmenprofil für ein Fenster, eine Tür od. dgl., gekennzeichnet durch ein dem Rauminnern zugekehrtes Innenelement (1, 2) und ein Aussenelement (3, 4), wobei das Innenelement aus einem Werkstoff schlechterer Wärmeleitfähigkeit besteht als das Aussenelement. 2. Rahmenprofil nach Anspruch l, dadurch gekennzeichnet, dass das Aussen- (3, 4) und das Innenelement (1, 2) miteinander insbesondere steckbar verbunden sind. 3. Rahmenprofil nach Anspruch 2, dadurch gekennzeichnet, dass das Aussenelement (3, 4) das Innenelement (1, 2) untergreift und wenigstens eine, insbesondere aber zwei im seitlichen Abstand angeordnete, sich in Längsrichtung des Aussenelements erstreckende Halteleisten (13, 14) in je einen zugeordneten Halteschlitz (17, 18) des Innenelements (1, 2) eingreifen. 4. Rahmenprofil nach Anspruch 3, dadurch gekennzeichnet, dass jede der beiden Halteleisten (13, 14) eine Verdickung (15, 16) insbesondere an ihrem freien Ende aufweist, wobei die Verdickungen gegeneinander weisen und jede von einer Wulst (19, 20) des Halteschlitzes (17, 18) hintergriffen wird, wobei sich die Wulst an einer elastisch nachgiebigen, jeweils eine Schlitzflanke bildenden Wand (21, 22) des Innenelements (1, 2) befindet. 5. Rahmenprofil als unterer Rahmen-Querholm oder Bodenschwelle, mit wenigstens einer Laufschiene für einen Schiebeflügel, nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Laufschiene (23) auf das Innenelement (1, 2) aufgesetzt und seine nach dem Rauminnern weisende, unterhalb des Flügels (24) gelegene Längsseite (26) durch das Innenelement (1, 2) wenigstens weitgehend abgedeckt ist, 6. Rahmenprofil nach Anspruch 5, mit einem parallel zum Flügel angebrachten zusätzlichen Feld, dadurch gekennzeichnet, dass parallel zur Laufschiene (23) im seitlichen Abstand von deren nach aussen weisendem Längsrand ein Aufsatzprofil (29, 30) am Aussenelement (3, 4) montiert ist, auf welchem sich das zusätzliche Feld (27, 28) ab stützt. 7. Rahmenprofil nach Anspruch 6, dadurch gekennzeichnet, dass der Zwischenraum zwischen dem Aufsatzprofil (29, 30) und dem Innenelement (1, 2) mit der Laufschiene (23) mittels eines Füllstücks (31, 32) überbrückt ist. 8. Rahmenprofil nach einem oder mehreren der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Aussenfläche des Innenelements (1, 2) eine Dichtung (35) vorgesetzt ist, die sich von der Laufschiene (23) bis zum Aussenelement (3, 4) erstreckt. 9. Rahmenprofil nach Anspruch 7 und 8, dadurch gekennzeichnet, dass das Füllstück (32) aus einer Profilschiene besteht, die sich einerseits am Aufsatzprofil (29, 30) und andererseits wenigstens an der Dichtung (35) abstützt. 10. Rahmenprofil nach einem oder mehreren der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Füllstück (32) aus Kunststoff besteht und seine am Aufsatzprofil (29) einerseits und an der Laufschiene (23) und/oder dem Innenelement (2) andererseits anliegenden Längskanten oder -bereiche aus weichem elastischem Kunststoff bestehen, während das übrige Füllstück aus steiferem Kunststoff gefertigt ist. 11. Rahmenprofil nach einem oder mehreren der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass das Aufsatzprofil (29) aus tragfähigem Kunststoff besteht und insbesondere als auf den Schenkeln stehendes U-Profil gestaltet ist. 12. Rahmenprofil nach Anspruch ll, dadurch gekennzeichnet, dass wenigstens der äussere U-Schenkel des Aufsatzprofils (29) gegenüber dem Aussenelement (4) mittels einer Dichtung (38) abgedichtet ist, diese insbesondere in die Stirnfläche dieses Schenkels eingelassen ist. 13. Rahmenprofil nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Aussenelement (4) als sogenannte Rohrschwelle ausgebildet und das Innenelement (2) im wesentlichen winkelförmig gestaltet ist, wobei sein vertikaler Schenkel (8) die nach innen weisende Fläche (7) der Rohrschwelle übergreift. 14o Rahmenprofil nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Füllstück (31) aus Schaumstoff besteht, 15. Rahmenprofil nach Anspruch 14, dadurch gekennzeichnet, dass das zusätzliche Feld als Schiebeflügel (27) ausgebildet und das Aufsatzprofil (30) mit einer Laufschiene (41) versehen, insbesondere einstückig damit aus Aluminium hergestellt ist. 16o Rahmenprofil nach einem oder mehreren der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass das Aussenelenent (3) als sogenannte Rahmenabdeckung für eine Holzschwelle (5) ausgebildet ist.
GRETSCH-UNITAS GMBH BAUBESCHLAGFABRIK
MAUS, JULIUS
EP-0003044-B1
3,044
EP
B1
DE
19,810,805
1,979
20,100,220
new
C03C27
C08L83, B32B17
C03C27, C08L83, B32B17, C09J183, B32B7, B32B27
C09J 183/04+B4S, C03C 27/10, C08L 83/04+B4S, B32B 17/10G
LAMINATES AND METHOD FOR MAKING THEM
1. Optically transmitting laminates consisting to two or more laminae which are bonded by one or more intermediate layers of organopolysiloxanes, characterized in that the intermediate layer consists of an optically transmitting organopolysiloxane prepared by a platinum-catalysed addition reaction, the organopolysiloxane comprising the following individual components : I. Organopolysiloxanes of the general formula : R2 R'SiO(R2 SiO)n SiR2 R' wherein R is monovalent, linear or branched, substituted or unsubstituted radical which is bonded to silicon and contains no aliphatically unsaturated groups, and R' is a monovalent, linear or branched, substituted or unsubstituted radical containing an aliphatically unsaturated group bonded to silicon and n is a positive integer of a value such that the viscosity of the compound is between 50 and 100,000 mPa', preferably 100-70,000 mPa's. II. Organopolysiloxanes containing structural units of the general formula : Ra H6 SiO[4-a-b)/2]
Schichtkörper und Verfahren zu ihrer Herstellung Die vorliecende Erfindung betrifft optisch durchlässige Schichtkörper, die durch eine oder mehrere Zwischenschichten aus optisch durchlässigen und durch mit Platin katalysierter Additionsreaktion hergestelltem Organopolysiloxan verbunden sind, und ein Verfahren zu ihrer Herstellung. Gängige Werkstoffe für Schichtkörper sind z.B. Glas, Polycarbonate, Polyamide oder Polymethacrylsäureester. Zur Erzielung bestimmter Eigenschaften werden die Schichtkörper aus einem Werkstoff oder durch Kombination mehrerer Werkstoffe hergestellt. Der sich zwischen den plattenförmigen Materialien befindende Zwischenraum kann in verschiedener Weise ausgefüllt werden. So ist es z.B. möglich, in den Zwischenraum ein Gas, im einfachsten Falle Luft, einzubringen, des weiteren können Folien aus Polycarbonaten, teilacetalisierten Polyvinylalkohlen, Polyvinylbutyraten, Polycarbonatsiloxancopolymeren oder thylenvinylacetatcopolymeren verwendet werden. Ferner wurde bereits die Verwendung von kondensationsvernetzenden Organopolysiloxanen (DT-OS 1 955 514, DT-OS 2 239 404) und additionsvernetzenden Organopolysiloxanen (DT-OS 1 940 124) vorgeschlagen. Es ist bekannt, Schichtkörper, die aus zwei durchsichtigen plattenförmigen Materialien, die parallel zueinander in einem bestimmten Abstand angeordnet sind, mit einer Zwischenschicht aus elastischen Organopolysiloxanen herzustellen. Diese werden in giessfähiger Konsistenz zwischen die beiden plattenförmigen Materialien gebracht und härten in situ durch geeignete Vernetzersubstanzen oder Polymerisationskatalysatoren zu einer elastischen Zwischenschicht aus. Für diesen Zweck wurden sowohl kondensationsvernetzende Systeme (DT-OS 2 239 404, DT-OS 1 955 514) als auch additionsvernetzende Systeme (DT-OS 1 940 124) vorgeschlagen. Bei allen bekannten Methoden ist das Problem der genügenden Haftung an den plattenförmigen tlaterialien, insbesondere bei Polycarbonaten, Polyamiden oder Polymethacrylsäureestern, verbunden mit optischer Fehlerfreiheit nicht zufriedenstellend gelöst. Werden für die elastische Zwischenschicht kondensationsvernetzende Systeme verwendet, so bewirken die Spaltprodukte, die während des Härtungs- vorganges freigesetzt werden, erhebliche Schwierigkeiten. Ferner treten Trübungen oder Spannungsrisskorrosionen an der Oberfläche von Polycarbonaten, Polyamiden oder Polymethacrylsäureestern sowie eine ungleichmässige Vulkanisation oder Schwunderscheinungen auf, die durch überschüssig verwendete Vernetzersubstanz hervorgerufen werden. Die Funktionen derartiger Schichtkörper sind vielfältig und umfassen z.B. Schalldämmung, Wärmeisolierung, Brandeindämmung, Schutz gegen mechanische Beanspruchung, wie z.B. Schlag- oder Schussbeanspruchung oder auch die dekorative Gestalung von Räumen. Eine weitere Forderung besteht darin, dass die Schichtkörper ein relativ geringes Gewicht aufweisen sollen. Es besteht daher ein Bedarf an solchen Schichtkörpern, die eine gute optische Durchlässigkeit bei gleichzeitiger guter Schalldämmung und Wärmeisolierung verbunden mit hervorragender Beständigkeit gegen Durchschlagen und Absplittern aufweisen. Wesentlich ist ferner die Forderung nach schlechter Brennbarkeit, leichtem Gewicht und einfacher Herstellungsweise. Eine der Aufgaben der vorliegenden Erfindung besteht deshalb darin, Schichtkörper zu schaffen, welche die genannten Forderungen erfüllen. Gegenstand der vorliegenden Erfindung sind deshalb optisch durchlässige Schichtkörper, die durch eine oder mehrere Zwischenschichten aus Organopolysiloxanen verbunden sind, welche dadurch gekennzeichnet sind, dass die Zwischenschicht aus einem optisch durchlässigen und durch mit Platin katalysierter Additionsreaktion hergestelltem Organopolysiloxan besteht. Im Sinne der vorliegenden Erfindung wird unter optisch durchlässig sowohl durchsichtig als auch durchscheinend verstanden. Ferner schliesst plattenförmig im Sinne der Erfindung auch gewinkelte und gebogene, flächenförmige Materialien ein. Vorzugsweise sind diese Materialien durchsichtig und parallel zueinander in einem gewünschten Abstand angeordnet. Das Organopolysiloxan wird durch Reaktion eines aliphatisch ungesättigte Gruppen enthaltenden Organopolysiloxans mit einem siliciumgebundene Wasserstoffatome enthaltenden Organopolysiloxan unter dem katalytischen Einfluss einer Platin-Verbindung gebildet, und der Vulkanisationsgrad wird über das stöchiometrische Verhältnis des aliphatisch ungesättigte Gruppen enthaltenden Organopolysiloxans zu dem siliciumgebundene Wasserstoffatome enthaltenden Organopolysiloxans eingestellt. Nach der vorliegenden Erfindung werden folgende Einzelkomponenten durch die Organopolysiloxan-Zusammensetzungen umfasst: l I. Organopolysiloxane der allgemeinen Formel: R2R' SiO(R2SiO) nSiR2R' worin R ein an Silicium gebundener, einwertiger linearer oder verzweigter substituierter oder nicht substitu ierter, keine aliphatisch ungesättigte Gruppen auf weisender Rest und R' ein einwertiger linearer oder verzweigter substituierter oder nicht substituierter, eine an Silicium gebundene aliphatisch ungesättigte Gruppe enthaltender Rest ist, und n eine ganze positive Zahl ist die so bemessen ist, dass die Viskosität der Verbindung zwischen 50 und 100 000 cP bei 25 0C liegt, bevorzugt bei 100 - 70 000 cP bei 250C liegt. II. Organopolysiloxane mit Struktureinheiten der allgemeinen Formel: EMI5.1 worin R die vorstehend, bei Komponente I beschriebene Be deutung hat, a einen Wert von 1,00 - 2,00, b einen Wert von 0,1 - 1,0 und die Summe von a + b etwa 1,5 - 3,0 be trägt, wobei mindestens zwei an Silicium gebundene Was ser- stoffatome je Molekül vorliegen und III. ein Platin-Katalysator. Der oben angegebene Bestandteil der allgemeinen Formel I ist ein lineares Organopolysiloxan, dessen Molekülkette end ständige an Silicium gebundene ungesättigte Gruppen auf weist. Zu den Resten R gehören Alkylreste, wie z.B. Methyl, Äthyl, Propyl, Isopropyl, Butyl, Octyl jeweils in verzweigter oder nicht verzweigter Form; Cycloalkyl, wie z.B. Cyclopentyl, Cyclohexyl: Aryl, wie z.B. Phenyl, Naphthyl, Tolyl und Xylol; Aralkyl, wie z.B. Benzyl, Phenyläthyl, sowie halogen substituierte Derivate der vorgenannten Reste, wie z.B. Chlor methyl, Chloräthyl, Chlorpropyl, Bromphenyl u.ä. Vorzugsweise sind mindestens 75 % der vorhandenen Reste R Methylreste und die verbleibenden Reste Phenylreste. Besonders bevorzugt sind Verbindungen der allgemeinen Formel I, in denen R für den Methylrest steht. Verbindungen gemäss der allgemeinen Formel I können in einem Molekül auch verschiedene der o.a. Reste enthalten. Zu den Resten R' der allgemeinen Formel I gehören Alkenylreste, wie Vinyl, Allyl, Butenyl und Alkinylreste, wie Äthinyl, Propinyl und Butinyl. Vorzugsweise steht R' für den Vinyl- oder Allylrest und besonders bevorzugt für den Vinylrest. Bei den Organopolysiloxanen der allgemeinen Formel II handelt es sich um Organosilicium-Verbindungen, die siliciumgebundene Wasserstoffatome enthält. In einem Molekül des Bestandteiles II müssen jedoch wenigstens 2 siliciumgebundene Wasserstoffatome vorhanden sein. Der Rest R entspricht der unter Bestandteil I gegebenen Definition. Die organischen Reste R können dabei gleich oder verschieden sein. Bei Bestandteil II kann es sich um ein Homopolymer, ein Copolymer oder ein Gemisch aus 2 oder mehr solcher Verbindungen handeln. Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Organohydrogenpolysiloxane der allgemeinen Formel 3-xHxSiO(SiHyRzO)nR3-xHx wobei x einen Wert von 0 oder 1 besitzt, y einen durchschnittlichen Wert von 0 - 0,8, bevorzugt von 0,3 - 0,8 und z einen solchen von 1,2 - 2,0 aufweist, die Summe von x + y nicht kleiner als 1 und die Summe von y + z nicht grösser als 2 ist. Die Zahl n besitzt einen solchen Wert, dass die Viskosität des betreffenden Organohydrogenpolysiloxans zwischen ca. 3 und 1000, bevorzugt 5 und 100 0 Centi-Poise (cP) bei 25 C liegt. Diese Angaben stellen keine Einschränkungen im Sinne der vorliegenden Erfindung dar, sondern alle Verbindungen gemäss der allgemeinen Formel II sind geeignet. Als Bestandteil III wird ein Platin-Katalysator verwendet, der die zwischen der Si-CH=CH2-Bindung und er Si-H-Bindung stattfindende Additionsreaktion katalysiert, z.B. feinverteiltes ele montares Platin, Hexachloroplatinsäure oder Komplexe von Platin-VerbX dingen mit Olefinen. Vorzugsweise wird eine Lösung von Pt(00)2Cl2 in Tetramethyltetravinylcyclotetrasilexan verwendet. Besonders bevorzugt werden solche Platin-Katalysatoren verwendet, die in den Organopolysiloxanen, den Bestandteilen der erfindungsgemässen Mischung,löslich sind. Solche Platin-Katalysatoren sind Stand der Technik und z.B. in US 3 220 972, US 3 715 334, US 3 159 601 oder DT-OS 2 251 297 beschrieben. Die zugesetzte Katalysator Menge beträgt im allgemeinen 0,1 bis 100, vorzugsweise 0,2 - 50, besonders bevorzugt 0,5 - 20 ppm Platin, bezogen auf das Gesamtgewicht der in den Mischungen enthaltenen Organopolysiloxan-Bestandteile. Ganz besonders bevorzugt werden erfindungsctemäss nur 0,7 - 5 ppm Platin verwendet. Zusätzlich können die Mischungen Inhibitorensubstanzen enthalten, welche die Aktivität der zugesetzten Platin-Verbindungen bei Raumtemperatur oder leicht erhöhter Temperatur vermindern, hingegen bei hoher Temperatur 0 im Bereich von 100 C und darüber keinen Einfluss auf die Aktivität der Platin-Verbindungen ausüben Beispiele für Inhibitoren sind Benzotriazol, acetylenische Verbindungen oder auch stark komplexbildende Verbindungen, wie z.B. Acetylaceton. Ein wesentliches Merkmal der vorliegenden Erfindung ist in der Wahl des Verhältnisses der in Komponente I vorhandenen aliphatisch ungesättigten Gruppen zu den in Komponente II vorhandenen an Silicium gebundenen Wasserstoffatomen zu sehen. Das stöchiometrische Verhältnis, von den in der Mischung vorhandenen aliphatisch ungesättigten Gruppen zu den an Silicium gebundenen Wasserstoffatomen, kann aufgrund der Zusammensetzung der Komponenten I und II rechnerisch leicht ermittelt und so das gewichtsmässige Verhältnis der beiden Komponenten eingestellt werden. Das stöchiometrische bzw. gewichtsmässige Verhältnis von Komponente I zu Komponente II ist bestimmend für die Endkonstistenz der fertigen Mischunq. Das nach der vorliegenden Erfindung gewählte stöchiometrische Verhältnis von aliphatisch ungesättigten Gruppen der Komponente I zu an Silicium gebundenen Wasserstoffatomen der Komponente II hat einen Wert von 1,1 bis 5,0, bevorzugt 1,5 bis 3,0. Das Verhältnis wird bei bekannter Zusammensetzung von Komponente I und Komponente II durch die gewichtsmässige Dosierung von Komponente I zu Komponente II eingestellt. Verarbeitungs- und Reaktionszeit werden bei gegebener Zusammensetzung von Komponente I und Komponente II durch Art und Menge des als Komponente III dienenden Platin Katalysators, gegebenenfalls durch Zusatz einer geeigneten Inhibitorsubstanz, eingestellt. Üblicherweise liegt die Verarbeitungszeit bei 30 Minuten bis ca. 12 Stunden und die Reaktionszeit bei 120 Minuten bis 48 Stunden. Durch Wärmezufuhr kann die Reaktionszeit erheblich verkürzt werden. Die optische Durchlässigkeit sowohl der plattenförmigen Materialien als auch der Zwischenschicht soll so hoch wie möglich sein, was jedoch nicht ausschliesst, dass eine Einfärbung und/oder oberflächliche Beschichtung der plattenförmigen Materialien und/oder der Zwischenschicht vorgenommen werden kann. Eine solche Einfärbung oder auch Trübung kann z.B. durch anorganische Pigmente, wie z.B. Russ, Titandioxyd, Eisenoxyde oder andere Schwermetalloxyde oder organische, farbige oder färbende Substanzen vorgenommen werden. Die Färbemittel dürfen jedoch mit der elastischen Zwischenschicht nicht reagieren. Vorzugsweise werden bei der vorliegenden Erfindung optisch durchsichtige Substanzen für die plattenförmigen Materialien verwendet, wie z.B. Glas, Polymethacrylsäureester, Polycarbonate, Polyamide oder eine Kombination dieser Substanzen. Die Zwischenschicht wird bei dem erfindungsgemässen Verfahren zwischen die einzelnen plattenförmigen Materialien eingebracht, indem die plattenförmigen Materialien in dem gewünschten Abstand arretiert und die die Zwischenschicht bildenden Materialien eingegossen, eingepresst oder eingesaugt werden. Es ist jedoch auch möglich,auf eine Platte die erfindungsgemässe Zwischenschicht aufzutragen und dann eine zweite Platte mit einem solchen Druck aufzupressen, dass der gewünschte Abstand zu der ersten Platte erhalten wird, wobei das Organopolysiloxan den gewünschten Zwischenraum vollständig ausfüllt. Dieser Vorgang kann in analoger Weise wiederholt werden, wenn ein Schichtkörper bestehend aus mehr als zwei plattenrörmigen Materialien hergestellt werden soll. Die vorliegende Erfindung wird durch die folgenden Beispiele noch näher beschrieben. Alle angegebenen Teile sind Gewichtsteile, soweit nicht ausdrücklich etwas anderes festgestellt wird. Beispiel 1 Zwei Glasscheiben von 2 mm Stärke und einer äusseren Abmessung von 50 x 50 cm wurden in einem Abstand von 1,5 mm parallel zueinander mit Hilfe eines äusseren Rahmens angeordnet. Eine Seite des Rahmens blieb offen. In die offengebliebene Seite wurde eine Mischung aus folgenden Einzelbestandteilen gegossen: 1000,0 Teile vinylendgestopptes Polydimethylsi loxan einer Viskosität von 1000 cP bei250C 1,4 Teile eines Organohydrogenpolysiloxans der allgemeinen Formel EMI11.1 bei der n und m so bemessen sind, dass die Verbindung eine Viskosität von 11 cP bei 250C aufweist und einen Si-H-Gruppen gehalt von 4,0 mmol/g hat 1 ppm Platin in Form eines Platin-Katalysators mit einem Platin-Gehalt von ca. 2 Gew.-E Obenstehende Mischung liess sich bei 25 0C ca. 60 Minuten verarbeiten (Potlife) und wurde vor dem Eingiessen zwischen die beiden Glasscheiben 10 Minuten bei 3 Torr einer Vakuumbehandlung unterworfen. Nach 24 Stunden war die Mischung zu einer die Glasscheiben fest verbindenden gelartigen Masse vulkanisiert. Die Konsistenz der Masse und die Haftung zum Glas änderte sich bei längerer Lagerung und Wärme/Wechsel-Beanspruchung von - 100C auf + 800C nicht. Der Schichtkörper war optisch vollkommen klar und durchsichtig und änderte seine optische Eigenschaften bei Sonnen- oder UV-Bestrahlung nicht. Die Glasscheiben liessen sich ohne Zerstörung des Glases nicht mehr voneinander trennen. Bei gewaltsamer Zerstörung des Schichtkörpers durch Schlagbeanspruchung haftete das Glas an der Zwischenschicht aus Organopolysiloxan so fest, dal3 keine die Umbebung gefährdende Splitterwirkung auftrat. Beispiel 2 2 Scheiben aus Polymethacrylsäureester von 3 mm Stärke und äusseren Abmessungen von 50 x 50 mm wurden in einem Abstand von 1 mm parallel zueinander angeordnet und mit der in Beispiel 1 beschriebenen Organopolysiloxan-Mischung vergossen. Nach vollständiger Reaktion hatte die Organopolysiloxan-Mischung zu einer die beiden Polymethacrylsäureester-Scheiben festverbindenen gelartigen Masse reagiert. Das optische Verhalten und das Verhalten bei Schlagbeanspruchung war ähnlich dem in Beispiel 1 be schriebenen Schichtkörper aus Glas. Bei längerer Lagerung, d.h. nach 60 Tagen, trat keine Loslösung der Zwischenschicht von den beiden Scheiben auf. Eine optische Veränderung oder Spannungsrisskorrosion war nicht zu beobachten. Beispiel 3 Zwei Polycarbonatplatten einer Schichtdicke von 3 mm und äusseren Abmessungen von 50 x 50 mm wurden in einem Abstand von 1,5 mm parallel zueinander angeordnet und mit der in Beispiel 1 beschriebenen Organopolysiloxan-Mischung vergossen. Nach vollständiger Reaktion war die Organopolysiloxan-Mischung zu einer die Polycarbonatscheiben festverbindenden gelartigen Masse vulkanisiert. Der Schichtkörper hielt einer starken Schlagbeanspruchung nach DIN 52306 stand, ohne dass eine Loslösung der Zwischenschicht auftrat. Optisches und mechanisches Verhalten änderten sich bei einer Lagerung über 8 Wochen nicht. Beispiel 4 Wie in Beispiel 1 beschrieben, wurden Schichtkörper durch Kombination der in den vorhergehenden Beispielen genannten Werkstoffe hergestellt. Es wurden Schichtkörper aus Poly carbonat/Polymethacrylsäureester und PolymethacrylsAure- ester/Glas hergestellt. Auch hier zeigte sich die beiderseitig gute Haftung der Organopolysiloxan-Mischung. Die durchgeführten Schlagversuche erbrachten die gleichen guten, in den vorstehenden Beispielen schon beschriebenen Ergebnisse. Beispiel 5 Gemäss Beispiel 3 wurde ein Schichtkörper aus Polycarbonatplatten mit einer Organopolysiloxan-Mischung folgender Zusammensetzung hergestellt: 100,0 Teile vinylendgestopptes Polydimethylsiloxan 0 einer Viskosität von 1000 cP bei 25 C 3,5 Teile des in Beispiel 1 beschriebenen Organo hydrogenpolysiloxans 1 ppm Platin in Form des Platin Katalysators Dicarbonyldichlorplatin (nach DT-OS 2 251 297) mit einem Platin-Gehalt von ca. 2 Gew.-%. Es wurde ein Schichtkörper erhalten, bei dem sich die beiden Scheiben schon bei leichter mechanischer Beanspruchung vollkommen von der Zwischenschicht lösen liessen. Beispiel 6 In einem Holzrahmen wurde eine Polycarbonatscheibe von 3 mm Dicke und den äusseren Abmessungen 50 x 50 cm waagerecht angeordnet und eine Mischung aus folgenden Einzelbestandteilen in einer Schichtdicke von 1,0 mm auf die Scheibe aufgebracht: 100,0 Teile vinylendgestopptes Polydimethylsiloxan einer Viskosität von 65 000 cP bei 250C 0,2 Teile des in Beispiel 1 beschriebenen Organo hydrogenpolysiloxans 2 ppm Platin des in Beispiel 1 beschriebenen Katalysators Auf die Organopolysiloxan-Mischung wurde unter schrägem Ansetzen eine zweite Scheibe aus Polymethacrylsäureester aufgelegt. Der nach vollständiger Reaktion der Organopolysiloxan-Mischung erhaltene Schichtkörper hielt einer starken Schlagbeanspruchung nach DIN 52306 stand, ohne dass eine Loslösung der Zwischenschicht auftrat.
Patentansprüche 1.) Optisch durchlässige Schichtkörper, die durch eine oder mehrere Zwischenschichten aus Organopolysiloxanen verbunden sind, dadurch gekennzeichnet, dass die Zwi schenschicht aus einem optisch durchlässsen und durch mit Platin katalysierter Additionsreaktion hergestell tem Organopolysiloxan besteht. 2.) Schichtkörper nach Anspruch 1, dadurch gekennzeichnet, dass das Organopolysiloxan die folgenden Einzelkompo nenten umfasst: I. Organopolysiloxane der allgemeinen Formel: 2R SiO (R2SiO) nSiR2R ' worin R ein an Silicium gebundener einwertiger linearer oder verzweigter substituierter oder nicht substituierter, keine aliphatisch ungesättigte Gruppe aufweisender Rest ist, und R' ein einwertiger linearer oder verzweigter substituierter oder nicht substituierter, eine an Silicium gebundene ali phatisch ungesättigte Gruppe enthaltender Rest ist, und n eine ganze positive Zahl ist, die so bemessen ist, dass die Viskosität der Verbindung zwischen 50 und 100 000 cP, bevorzugt zwischen 100 - 70 000 cP lieqt. II. Organopolysiloxane mit Struktureinheiten der allgemeinen Formel; EMI17.1 worin R die vorstehend, bei Komponente I be schriebene Bedeutung hat, a einen Wert von 1,00 - 2,00, b einen Wert von 0,1 - 1,0 und die Summe von a + b etwa 1,5 - 3,0 beträgt, wobei mindestens zwei an Silicium gebundene Wasserstoffatome je Molekül vorliegen. III. Einen oder mehrere Platin-Katalysatoren. 3.) Schichtkörper gemäss Anspruch 1 oder 2, dadurch ge kennzeichnet, dass in dem Organopolysiloxan das Ver hAltnis der in Komponente I vorhandenen, an das Sili cium gebundenen, aliphatisch ungesättigten Gruppen zu den in Komponente II vorhandenen, an Silicium gebunde nen Wasserstoffatomen, auf die Stöchiometrie bezogen, einen Wert grösser als 1 besitzt. 4.) Schichtkörper gemäss einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in dem Organo polysiloxan das Verhältnis der in Komponente I vor handenen, an Silicium gebundenen, aliphatisch unge sättigten Puppen zu den in Komponente II vorhandenen, an Silicium gebundenen Wasserstoffatomen, auf die Stöchiometrie bezogen, einen Wert von 1,1 - 5,0 auf weist. .) Schichtkörper gemäss einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in dem Organo polysiloxan der Rest R' in Komponente I eine Vinyl gruppe ist, die Reste R die Methylgruppe darstellen, und die Verbindung eine Viskosität von 50 bis 100 000, bevorzugt 100 bis 70 000 cP bei 250C hat. Schichtkörper gemäss einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in dem Organo polysiloxan die Komponente II der allgemeinen Formel R H (SiHyRzO) nR3¯XHX entspricht, wobei x einen Wert von 0 oder 1, y einen durchschnittlichen Wert von 0 - 0,8, bevorzugt 0,3 0,8 und z einen Wert von 1,2 - 2,0 aufweisen; die Summe von x + y nicht kleiner als 1, die Summe von y + z nicht grösser als 2 ist, und die Zahl n einen solchen Wert besitzt, dass die Viskosität des betreffenden Organohydrogenpolysiloxans zwischen 3 0 und 1000, bevorzugt 5 und 100 cP bei 25 0 liegt. 7.) Schichtkörper gemäss einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Platinver bindung (Komponente III) in der Mischung aus Kompo nente I und Komponente II löslich ist. 8.) Schichtkörper gemäss einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Platinver verbindung (Komponente III) eine Lösung von Pt(C0)2Cl2 in Tetramethyltetravinylcyclotetrasiloxan ist. 9.) Verfahren zur Herstellung von Schichtkörpern gemäss einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Organopolysiloxan in den Zwischenraum zwischen mindestens zwei optisch durch lässigen Materialien entweder eingepresst, eingesaugt oder eingegossen wird oder jeweils auf eine Seite der plattenförmigen Materialien aufgebracht wird, worauf die Platten gleichzeitig oder bei mehr als zwei Platten auch nacheinander so stark aufeinander gepresst werden, dass der gewünschte Abstand eingestellt wird und das Polysiloxan den eingestellten Zwischenraum vollständig ausfüllt.
BAYER AG
HERZIG JOACHIM DR; HERZIG, JOACHIM, DR.
EP-0003051-B1
3,051
EP
B1
EN
19,820,120
1,979
20,100,220
new
G03G15
B41F13, F16C13
B41F7, G03G21, B41F13, G03G15
G03G 15/00H1
METHOD OF MOUNTING PRINTING CYLINDERS UTILIZING FLEXIBLE METAL SLEEVES AND PRINTING APPARATUS USING SUCH A PRINTING CYLINDER
Printing apparatus of the type utilizing flexible, readily collapsible, imperforate thin metal sleeves wherein the sleeves are mounted in a device which maintains their cylindrical configuration rigidified by introduction of fluid under pressure interior of the sleeve during use. A method of mounting the sleeve (10) and several structures for supporting the sleeves are described. These include the provision of means in the printing press cooperating with the sleeves for maintaining its interior pressure and for stopping the press if the pressure should drop below a predetermined value. The sleeves may carry an exterior coating of flexible, microcrystalline, wholly inorganic photo-conductive material such as sputtered ultra-pure cadmium sulfide.
The invention is concerned generally with printing apparatus which include cylinders for transferring of pigment to a substrate using electrostatic techniques. The invention is advantageously utilizable in the printing of multicolor images on substrates which are either in long strip form or in the form of sheets of paper, fabric and the like. Multicolor printing by conventional presses is a complex process from the point of making the color separations, forming the cylinders, operating the presses, providing the pigment or inks for the separate cylinders or other plates, etc. Several developments in recent years have pointed to the use of electrostatic techniques for multicolor printing in printing presses using electrostatic techniques. As known, photoelectrostatic imaging is effected by charging the surface of a photoconductive coating in darkness, exposing the same to a light image, then toning the latent image with fine particles either in powder form or suspended in a solvent. The toned or developed image can either be transferred to a receptor or it can be fused in place directly onto the electrophotographic member of which the photo conductive coating is a part. One of the coatings which has been evolved recently is a high gain, high resolution, easely charged, fully dischargeable, wholly inorganic, microcrystalline photoconductive material which has especially the property that it is rugged and extremely flexible when coated onto a thin flexible substrate. The material is disclosed in U.S. Patent 4.025.339. This coating is advantageous in addition to being flexible in that it can be imaged quickly in a high speed press and discharged readily by ambient light so that, as will be explained, it can be provided with an image of toner that is insulating and thereafter charged to apply a charge to the insulating toner while permitting the charge on the untoned areas to be dissipated in light. Secondary toner then can be adhered to the primary toned image and transferred to a substrate. Thin-walled metal sleeves of electrodeposited nickel, copper, iron or other metal have been used in the fabric and other substrate printing field with success. Sleeves of plated metal may be used, such as for example, tin, chromium or other metals as nickel. These sleeves are a fraction of a millimeter thick and can be several meters long and as much as a third of a meter in diameter. They are seamless and are readily supported in printing machines. One type of sleeve is disclosed in U.S. Patent 2.287.122. Such sleeve is foraminous in order to enable ink or other pigment to be expressed by doctor means through the walls of the cylinders onto the passing substrate. The walls are provided with suitable designs in the surface blocking certain of the holes and leaving others open. For electrostatic use, these sleeves are sputtered with coatings of the photoconductive material which has been mentioned and are imperforate. An important ad vantage of this type of sleeve is that it is light in weight, it is quite strong and is collapsible so that packing and shipping the same is economical. In using the sleeves, they must be mounted in cylindrical form on the printing press to receive and transfer the pigment, and must be supported on their interiors by using some readily installed or removed device to mainrain the sleeves in rigid cylindrical form during use. Reference is made to Rothwell U.K. Patent 789.177, published January 15, 1958; Klemm W. German Auslegeschrift 1.231.258 published December 29, 1966; Zimmer Austria Patent 240.879 and Zimmer W. German Auslegeschrift 1.181.237, for a description of some devices wherein sleeves are pressurized by means of an inflatable tube. As evidenced by these publications the cylinders therein are described processed to have a pattern applied on their exterior (U.K. 789.177; DAS 1.181.237; Austria 240.879) or to produce a sleeve in a galvanic process (DAS 1.181.237). The U.S. Patent 3.312.801, March 12, 1968 may be referred to as concerned with the packing of flexible sleeves. Considerable difficulties in providing structure for mounting such collapsible sleeves in a high speed printing press have deferred their use functionally in such press device, not withstanding the considerable advantage thereof as mentioned earlier herein. Accordingly the invention provides a method of mounting an elongate flexible thinwalled metal sleeve on a frame for use in a rotary printing press, characterized by the steps of providing a rotatable framework including a device for shaping the sleeve into a cylinder; engaging the sleeve over the framework; forming the ends of the sleeve into circles; sealing the ends; containing the ends against axial movement and applying fluid pressure on the interior of the sleeve to inflate the same with uniform incremental internal pressure along said interior thereof. Concurrently, the invention also provides the mounting method according to claim 1, characterized in that the sleeve is unsupported along the remaining length between the ends of said sleeve. Further, the invention provides a printing press employing the said sleeve mounting and characterized by A. an elongate framework including shaft means having opposite ends for connecting the framework into a printing press to be rotated thereby, a disc mem ber at each end of the framework connected respec tively to one of said shaft ends and each disc member adapted to have one end of a thin-walled metal sleeve coupled thereto and circularly shaped thereby and an axially extending spacer connected between said shaft ends for fixedly spacing the disc members apart and maintaining the spacing during the use of the apparatus, B. the axially extending spacer being arranged to have such a length as to form the sleeve into cylindrical configuration in cooperation with the members and C. means for applying a uniform pressure on the in terior of the sleeve to every increment thereof over the entire area thereof between said ends in order to maintain its cylindrical configura tion during use of the apparatus. Additionally the invention provides the printing press further including the apparatus characterized in that the axially extending spacer means comprise an elongate rigid cylinder whose outer diameter is less than the inner diameter of the sleeve which is adapted to be supported by the apparatus whereby there will be a cylindrical space defined between the outer surface of the rigid cylinder and the inner surface of the sleeve when it is installed, the said pressure being supplied into said cylindrical space and the sleeve thereby being mechanically unsupported throughout its major length during use; and also the apparatus, characterized in that said means for applying pressure include means for introducing fluid under pressure in the framework and transmitting the pressure to said cylindrical space when the sleeve is installed in place. For a complete understanding of the invention preferred embodiments are described with reference to the accompanying drawings. Figure 1 is a perspective view of a sleeve of the type which is to be mounted by means of the apparatus of the invention and held in a rigid cylindrical configuration to enable the same to be used as ink transfer means in a printing press; Figure 2 is a sectional view through several of such sleeves showing the convenient manner in which they may be assembled for storing or transportation in small space; Figure 3 is a highly diagrammatic view of a printing press having two of the cylinders of the invention asso ciated therewith in order to show the environment of the invention; Figure 5 is a similar view but partially exploded of a modified form of the invention; Figure 6 is another similar view of a further modification of the invention; Figure 7 is a sectional view similar to that of Figure 6 showing a variation of the structure of Figure 6; Figure 8 is a median sectioned view through a printing apparatus taken generally along line 8-8 of Figure 9 and in the indicated direction, parts being taken away, and illustrating another modification of the invention; Figure 9 is an endelevational view of the apparatus of Figure 8, view taken from the left hand side; Figure 10 is a fragmentary detailed view of the sleeve clamping means of Figures 8 and 9 and Figure 11 is a highly diagrammatic view of a printing press having the sleeve of the invention installed therein, there being means for utilizing a source of exterial pressure operable by exterial control means. In Figure 1 there is illustrated in perspective view the type of cylinder 10 which is used with the invention, the same being based upon a sleeve 12 which has been formed by electrodeposition out of nickel, copper or the like, being quite thin - of the order of a small fraction of a millimeter and hence flexible or may comprise a naked sleeve plated with such metals as tin chromium or thus. Upon this sleeve 12 there is sputtered a thin film coating 14 of a wholly inorganic, microcrystalline, highly sensitive, readily chargeable photoconductive material such as for example ultrapure cadmium sulfide. The characteristics of the material and the method of sputtering the same are disclosed in said U.S. Patent 4.025. 339. The techniques for the electrodeposition of the metal sleeve 12 and some of the characteristics thereof are described in said U.S. Patent 2.287.122 with the exception that the metal sleeve 12 is imperforate instead of foraminous as disclosed in said latter patent. In the formation of the metal sleeve 12 the resulting product is normally cylindrical and likewise, in sputtering the coating 14 the configuration of the sleeve 12 will be maintained in cylindrical form. It is possible for the sputtering to be carried on with the metal sleeve 12 forming the substrate for the coating in an oval configuration. In the mounting of the sleeve or cylinder 10, it will invariably be in a cylindrical configuration for high speed printing presses, especially multi-color presses. Nonetheless the sleeve 10 is to some extent collapsible without damage to either the substrate of metal or the coating of microcrystalline photoconductive material. The metal substrate comprising the sleeve 1? is stiff enough to handle, for example in a size which has a length of about two meters and a diameter which is about a sixth of a meter without axial collapsing or wrinkling, but can be readily compressed or collapsed laterally along its entire length to enable it to be shaped for example into oval form as shown in Figure 1. Likewise it can be partially rolled into reentrant shapes to occupy considerably less volume than when it is in its full cylindrical configuration as disclosed in U.S. Patent 3.372.801. This enables many of these sleeves to be packaged in a single small package as shown in Figure 2 in which there are two additional sleeves 10' and 10 within the sleeve 10. Abviously more than two such sleeves can be compressed into a single bundle. Reference is made now to Figure 3 which illustrates the environment in which the sleeve 10 is intended to be used. Here as an example a printing presse 16 is shown, this being of a type which is intended to apply two colors of ink or dye carried in the fountains 18 and 20 in registration on a long strip-like substrate 22 of paper or the like. The substrate 22 is guided by means of the rolls 24, 26, 28 and 30 to pass around a back-up roll 32 against which the printing will occur. Two cylinders of the type described are shown at 10 and 10 '. The direction of rotation of the drum 32 is indicated by the arrows 34, the direction of each of the cylinders 10 and 10 ' being indicated by arrows marked on the cylinders. In this apparatus 16, the cylinders 10 and 10''' will be presumed to have images carried on their outer surfaces as primary toned images. These can be applied while the cylinders 10 and 10''' are off the apparatus 16 and the cylinders thereafter installed in the apparatus. In use the cylinders are charged by suitable corona means at 36 and 38, the charging occurring in light so that the charges on the photo conductive coatings are immediately dissipated leaving only the charges on the primary toner. The type of toner chosen is one which is insulating when developed, that is, fused. The fountains 18 and 20 contain the ink or dye which comprises the secondary toner. The polarity of the particles of the secondary toner is established as the opposite of that of the charge on the primary toner. This can be done electrophoretically or by triboelectric techniques. As the charged images pass the fountains 18 and 20 they will pick up the secondary toner from the respective fountains and apply the same to the surface of the substrate 22. Electrical bias can be used to assist in this transfer. Transfer will be done in registration. After the transfer has been completed and the images pass the nip between the cylinders and the back-up roller 32 the printing cycle is repeated. Although not normally required, remaining secondary toner, if any, may be removed from the surfaces of the cylinders 10 and 10 ' by suitable solvents or mechanical means at stations 40 and 42, with suitable solvents and/or mechanical means which do not affect the primary toner. The cylinders 10 and 10''' could be provided with developed toned images and treated with suitable reagents or chemicals to render the toned surfaces hydrophobic and the untoned surfaces hydrophyllic to enable the cylinders to be used as printing cylinders with greasy ink in watered offset printing presses., The use of the cylinders in the type of printing apparatus operating by means of electrostatic techniques in preferred. As heretofore mentioned, the cylinder 10 is required to be perfectly cylindrical and relatively rigid during its use and with its mounting or support, should be easily installed and removed from the printing press on which it is to be used. Likewise, it is required to be easily installed and removed from the mounting which carries it. in Figure 4, there is illustrated (in section) a form of mounting upon which the cylinder 10 is arranged for use in a printing press. The mounting device 44 basically comprises a device in which the cylinder is suspended in cylindrical configuration and is kept inflated by means of a fluid such as oil or air or the like pumped into the interior of the cylinder 10 and maintained at a low pressure. It has been found that the cylinders 10 can be kept quite rigid and maintain their cylindrical configuration by means of pressures only slightly greater than atmospheric, say of the order of .5 to .7 of an atmosphere greater than ambient. This is considered a surprising result. The cylinder ends must be tightly gripped in cylindrical configuration to prevent wrinkles and bulges. In Figure 4 the mounting device is basically formed of two stub shafts 46 and 48, shaft 48 being solid and shaft 46 being hollow. A flanged disc 50 has an inwardly directed annular cup-like flange 52 whose interior diameter is very closely the outer diameter of the sleeve 10. A hub 54 mounts the web 51 of the disc 50 on the hollow shaft 46 non-rotatively, the center of the shaft 46 having a through bore 56 whose inner end may be plugged at 58 but which is provided with a lateral opening at 60 that connects with a radial passageway 62 passing through the hub 54 but located axially interior of the web 51 of the disc 50, the web 51 being imperforate. The interior end of the shaft 46 also has a large washer 64 secured thereto as by welding, the washer 64 supporting an elongate rigid metal cylinder 66 and being secured thereto, also by welding, for example. This cylinder is included in the term axially extendin & spacer means as employed herinafter. The opposite end of the cylinder 66 is attached to a second washer 68 that is welded to the shaft 48 so that both shafts 46 and 48 are aligned and rotate in unison. A second disc 70 has a central hub 72 that may be secured to the shaft 48 permanently or non-rotatable relative thereto but held in place by a nut such as 74. The body 76 of the disc is imperforate and has an inwardly directed cup-like annular flange 78 at its outer periphery having the same interior diameter as the flange 52. Suitable packing is provided at 80 and 82 serving to prevent the leaking of fluid outwardly of the discs 50 and 70. The disc 50 is held in place by the nut 81 engaging over the threaded end 83 of the shaft 46. In use, a sleeve 10 is shaped into a cylinder and fitted into the interior of the flange 78 and cemented in place with a suitable adhesive, primarily to render the telescoping connection fluid tight. The flange 50 is not in place at this time. After installing the right hand end of the sleeve 10, the disc 50 is moved telecopically over the left hand end of the sleeve 10 and again the connection is effected with a coating of adhesive in place to provide a second fluid tight connection. When the adhesive has set, the entire assembly is installed in a printing press such as the apparatus 16 and a fluid such as air, hydraulic fluid or the like is admitted into the bore 56 through a suitable fitting attached to the left hand end of the shaft 46. This fitting is required to maintain the connection fluid tight while rotating, there being many such fittings known in the art. Such a fitting is indicated at 57, connected by line 59 to the fluid source 61. The fluid is carried in the annular space between the central cylinder 66 and the sleeve 10 and it serves to maintain the sleeve 10 fully inflated and rigid during use. The presence of the inner sleeve enables a very small amount of fluid to be used to maintain the rigidity of the sleeve 10, and in the case of air or other gas being the fluid, the amount of pressure needed to maintain the inflated condition is lower than it would be if the shaft extended fully through the device and there was no cylinder 66. It is clear that the cylinder 66 functions to maintain the spacing between the discs 50 and 70 and to keep the shafts 46 and 48 in alignment and rotating together. The entire assembly is included in the term framework is used. The internal pressure needed for keeping the cylinders inflated on a printing press is so low that readily available air pressure form commercial sources commonly provided in shops and factories will suffice. Further, since the method of transfer of ink to the substrate requires no mechanical pressure in the preferred structure in which the cylinders will be used, mechanical tension alone will be adequate to maintain the cylinders in their normal configuration in many instances. Two other forms of the invention are illustrated, respectively in Figures 5 and 6, but the principals of construction and operation are basically the same for all of the cylinder supporting devices including that of Figure 4. Each has means for clamping or seizing the ends of the cylinder 10 in a fluid tight connection while shaping the same to form the cylindrical configuration, each has means for admitting a fluid to the interior of the cylinder to inflate it if required but at least to maintain it in rigid cylindrical configuration, and each has means for mounting the device onto a printing press. If should be understood that although the practical manner of introducing the fluid and maintaining the internal pressure is by having structure on the printing press which connects with the cylindersupporting device while the cylinder is rotating, it is nevertheless possible to have the cylinder-supporting device provided with means that pumps the fluid into the interior of the cylinder and is sealed under some pressure so that the entire device is maintained in tis fully expanded condition independently of the printing machine. The mounting devices 90 of Figure 5 differs primarily from that of Figure 4 in that the ends of the cylinder are held in place pneumatic or hydraulic expandable cushions. There is a pair of stub shafts 92 and 93 which have the interior rigid cylinder 94 secured to their inner ends, respectively, but both of these shafts are hollow. The right hand shaft 93 has a single bore 96 which connects to one or more radial passageways 98 in the washer end 100 of the cylinder 94 leanding to the interior of an inflatable elastomeric cushion 102 clamped to the end of the cylinder 94 by suitable bands 104. The securement can be effected by room temperature vulcanizing adhesive or other adhesive. A similar cushion 106 shown in deflated condition is provided on the left hand end of the cylinder 94, since this end is shown in condition while it is being assembled. The shaft 92 differs from the shaft 93 and that of Figure 4 in that it has concentric passageways, there being a central bore or pipe 108 and a larger telescoping second bore 110, these being located within one another and being independent of one another. The central passageway formed by the bore 108 is connected through a fitting 112 by way of a short length of conduit 114 through the interior of the cylinder 94 to a lateral opening 116 to which it is connected by a suitable fitting 118. The outer bore 110 connects to one or more radial passageways 120 leading to the interior of the cushion 106. Assembly is effected by moving the end cup-shaped discs 122 and 124 into telescoping engagement with the cylinder 10 taking up on the nuts 126 and 128, introducing a first fluid into the bores 96 and 108 to inflate the cushions 104 and 106 to clamp the sleeve 10 in place and thereafter introducing a second fluid into the interior pipe 108 to maintain the sleeve 10 as a rigid cylinder. The second fluid is held between the inner cylinder 94 and the interior of the sleeve 10. Shaft packing is not deemed necessary in the device 90. In Figure 6 there is illustrated a device 140 which utilizes an elastomeric boot of cylindrical configuration to maintain the sleeve 10 rigid so that no fluid will be engaged against the interior of the sleeve and so that it is not essential that the engagement of the sleeve 10 in the end discs be fluid tight. In this device there is again an inner rigid cylinder 142 connected with a pair of end stub shafts 144 and 146 upon which there are engaged the discs 148 and 150 by means of the nuts 152 and 154, respectively. On the exterior of the cylinder 1i2 there is mounted an elongate elastomeric sleeve-like boot 156 whose ends are tight clamped to the exterior of the cylinder 142 by any suitable means such as the annular band 158 and 160. The hollow bore 162 of the shaft 146 terminates axially within the cylinder 142 at 164 at which point it is connected by way of the conduits 166 connected at 168 to openings in the side wall of the cylinder 142, as for example at 170. Accordingsly passage for fluid from the exterior of the cylinder 142 is provided by way of the bore 162 to the chamber 172 formed on the interior of the boot 156 and the outer surface of the cylinder 142. The assembly of the device 140 and the method of inflation are easily effected since everything may be in place at one end, say the right hand end, the sleeve 10 slipped in place into the cup of the disc 150 while no fluid is present, the second disc 148 telescopically engaged over the left hand end of the sleeve, the nut 152 screwed home and fluid applied This inflates the boot 156 and rigidifies the sleeve 10. This will form a rather firm base for the sleeve 10 during use. In Figure 7 another device 240 is illustrated in which the equivalent components of Figure 6 are designated by the same second and third numerals and the numeral 2 as the first. The principal differences between the devices 140 and 240 lie in the fact that the entire interior of the cylinder 242 carries the fluid, which in this case is a gas and the fact that the end washers of the cylinder 242 function both as such washers and the discs 148 and 150. Thus they carry reference numerals 248 and 250. The fluid is admitted by way of bore 262 in shaft 246 and finds its way into the chamber 172 through passageways 270. The structure 240 is advantageous in eliminating parts comprising outer cup-shaped discs so that there need be no part of the device 240 protruding radially beyond the sleeve 10 itself. Thus the device is lighter in weight, simpler to construct, and more economical than the device 140. In Figures 8 to 10 a modified embodiment of the inven tion is designated generally by reference character 300 and comprises a central hollow shaft 312 of metal having a plurality of lateral passageways 313 for air. Other fluids may be used, but for convenience only air will be referred to herinafter because it is most convenient to use the same in printing establishments. The ends of the central shaft 312 are closed off by plugs 314 and 316 to which the shaft is welded as indicated at 318 and 320, respectively. A flanged disc is connected to each of these plugs by suitable means, the disc 322 being shown on the left and the desc 324 on the right. These discs 322 and 324 are identical and their construction and functions will be explained in detail later. At this point it is to be noted that the plugs 314 and 316 are generally cylindrical and that each of the discs 322 and 324 includes a hollow cylindrical hub shown at 326 and 328 which telecopically engages the respective plugs 314 and 316 on the exterior thereof, airtight connection being maintained by suitable packing such as O-rings 330. The discs 322 and 324 include internal radial strengthening ribs 332 and 334 integral with the web or body of each disc, the latter being imperforate to retain the air pressure which is to be maintained on the interior of the device 300. As noted, the structures at opposite ends of the shaft 312 are different. These represent embodiments of the invention capable of being used together or separately. In other words, the structure at the left hand end may be used solely or duplicated at the right hand end; the structure at the right hand end may be used solely or duplicated at the left hand end; one of each structure may be used together at opposite ends. Considering now the structure at the left hand end of the device 300, the plug 314 has a cylindrical axial recess formed in its outer end at 336 and a coaxial socket 338 in the center of the recess 336 in which there is disposed a simple air valve 340 of the so-called Schraeder type which communicates by way of the passageway 342 with the interior 344 of the hollow shaft 312. As explained, the shaft has the lateral passageways 313 by means of which the outer annular chamber 346 and the inner chamber 344 are in communication. As understood, a thin metal sleeve 348 of electrodeposited nickel or the like with an outer photoconductuve coating is adapted to be clamped into cylindrical configuration on the device 300 and maintained in inflated condition by air pressure. This is effected by introducing air under pressure by way of the valve 340 into the chamber 344. The disc 322 has an inwardly directed radial flange 349 which is engaged over the axial end of the plug 314 and provided with perforations and threaded sockets to aid in the assembly of the device. For example, in the device shown, there is a perforation in alignment with each of the ribs 322 thus providing six equally paced perforations aligned with threaded sockets in the axial end of the plug 314. One such perforation is indicated at 350 and a threaded socket at 352. These perforations and sockets receive machine screws 354 which pass through an outer cap or centering flange member 356 thereby securing the disc 322 to the plug 314. The centering flange member 356 has a central spigot 358 which is cylindrical on its exterior to fit into the recess 336 and is tapered on the interior as indicated at 360 and provided with a keyway at 362. There is also a radial flange portion 363 overlying the flange 349. The member 356 has the aligned perforations in the flange portion 363 for the screw 354 but in addition has several other perforations 364 which are intended to be aligned with threaded sockets 366 formed in the flange 349 to receive other machine screws 368 that pass through the flange portion 363. These screws 368 are only three in number as shown in Figure 9 and their function is to enable the proper alignment of the disc 322 and the flange member 356 but more importantly, to aid in assembly. The two parts 322 and 356 can be assembled together before the disc 322 is engaged onto the plug. Looking now at Figure 12 which is an enlarged view of the outer section of the disc 322, there is an annular thickended rim 370 which has an interior (on the right hand face) axially extending annular seat or groove 372 formed fully around its circumference and coaxially centered. There is an elastomeric ring 374 seated in the bottom (left hand end) of the groove 372, the ring 374 being provided with spaced passageways 376 aligned with perforations 378 provided in the rim 370 and ope ning to an external shallow furrow 380 provided on the exterior of the rim 370. There is a pressure ring 382 of cylindrical c apparatus 300 with the sleeve 348 is effected, the sleeve 348 being easily slipped into place as the assembled disc 322, flange member 356 and ring 382, and properly positioned. Thereafter, taking up on the nuts 386 presses the ring 382 against the elastomeric ring 374 which expands in attempting to extrude out of the groove 372 thereby firmly clamping the sleeve 348 in place. Assuming that the same structure and procedure has been utilized in assembly of the right hand end of the device 300, it can be pumped up to a pressure of say about half an atmosphere through the use of the valve 340 and installed in the printing press. The tapered socket 362 provides for centering and the keyway provides for positive driving of coupling of the device with suitable mechanical driving means associated with the printing press. The right hand end of the device need not have a valve equivalent to the valve 340 but could have a blind end in the equivalent of the tapered socket 360 in the axial end of the plug 316. As a matter of fact, there need not be a second keyway at this location. In the view of Figure 8, however, a second form of structure is illustrated which enables various functions to be effected by means of another valve. Referring now to the right hand end of the device 300 shown in Figure 8, the only structural difference between that end and the left hand end lies in the valve device mounted at the right hand end. There is a valve housing 390 set into the right hand plug 316 which has a port 392 leading to the chamber 344. The movable valve 394 is seated at the right hand end of the chamber 396 by means of the O-rings 398 against the axial intake port 400 and held there by a spring 402. The spring 402 is of a strength to maintain any pressure which is in the chamber 344 and 346 if the device 300 is removed from a press in which it is installed. When installed in a press, the stem 404 of the valve member 406 pushes the valve 394 off its seat and holds the port 400 open. The valve member 406 has a coaxial passageway and itself is slidable in the port 400, being kept air tight therein by suitable O-rings. Its external face 410 has O-rings to enable it to make a frictional and air tight connection with a fitting that can supply external air pressure to the device 300. The fitting is not shown in Figure 8 but is symbolized by the fitting 412 in Figure 11 as a rotary air connection. The spring 402 keeps the valve member 406 in engagement with the fitting 412. From this discription it is obvious that air can be maintained and supplied to the interior of the sleeve 348 through the valve member 406 from outside sources to pump up the sleeve 348 and maintain it in such condition. Referring to Figure 11 printing press is shown diagrammatically having the device 300 installed therein, the structure being such as to utilize an external source of pressure. The other device of the invention previously described may be utilized so long as they utilize an external source of pressure. The device 300 is shown mounted on the frame 414 of a printing press 416, only a very small part of which is diagrammed. The substrate in the form of a web of paper 418 is being guided through the press 416 and may pass over idler and drive rollers, an idler roller being indicated at 420 and a drive roller being indicated at 422 mounted to the frame 414. The press drive 424 may be mechanical, electrical, pneumatic or a combination of these, suitably controlled as custormary with modern printing presses. The mechanical drive extending to the several rotary parts is indicated by the broken lines 426. A pressure source is shown at 428 supplying pressure to the fitting 412 by way of the pressure regulator 430 and the air line 432 and 434. The exact pressure within the sleeve 348 will be controlled by the pressure regulator 430 whose set value may be established manually as by a control 436 or may be varied automatically for certain purposes by way of the line 438. The pressure switch 440 is sensitive to sudden changes in the pressure in the line 434, being connected to the line 434 by a conduit 442. A large hole suddenly occurring in the sleeve 348 or the bursting thereof will cause a sudden dropping of pressure in the chamber 346. The drop will be experienced by the line 434 and the regulator will attempt to equalize the pressure. This radical change sensed by the switch 440 can be made to operate the switch to turn off the press drive and prevent damage. Slight air leaks in the chamber 346 can be taken care of by the regulator 430 as a routine matter. The press 416 will normally have some form of transducer system (not shown) to indicate registration of multiple impressions and a signal from such system can be picked up and transmitted by a line, electrical or pneumatic, as shown at 444 to a sensor 446. This sensor 446 may in turn provide a signal which operates a register adjusting device 448 which is nothing more than an automatic adjustment for the set point of the pres sure regulator. It has been found that since the sleeve 448 is made out of metal that is very thin, it is capable of being inflated slightly beyond its normal diameter by a small amount, say a few thousandths of a millimeter. Registration can be affected by this means, to augment ordinary registration control means rather than to replace the same. The pressure adjustment effected by the register adjust device 448 is applied to the pressure regulator 430 by way of the line 438. Finally it is stated that, hereby, the subject matter of the attached claims is made part of the disclosure of this specification without reiterating the wording of said claims.
Claims 1. A method of mounting an elongate flexible thinwalled metal sleeve on a frame for use in a rotary printing press, characterized by the steps of providing a rotatable framework including a device for shaping the sleeve into a cylinder; engaging the sleeve over the framework; formind the ends of the sleeve into circles; sealing the ends; containing the ends against axial movement and applying fluid pressure on the interior of the sleeve to inflate the same with uniform incremental internal pressure along said interior thereof. 2. The mounting method according to claim 1, characterized in that the sleeve is unsupported along the remaining length between the ends of said sleeve. 3. The mounting method according to claim 1 or 2, characterized in that the fluid pressure is applied directly to the interior of the sleeve. 4. The mounting method according to claim 1 or 2, characterized in that the fluid pressure is applied indirectly to the interior of the sleeve by introducing an inflatable body within the sleeve and introducing fluid under pressure to said inflatable body whereby to apply pressure to said sleeve interior sufficient to rigidify the same. 5. A printing apparatus including a support for an imperforate thin-walled metal sleeve for use as an ink transfer device, the sleeve being flexible and collapsible when unsupported, characterized by A. an elongate framework including shaft means having opposite ends for connecting the frame wirk into a printing press to be rotated thereby, a disc member at each end of the framework connected respectively to one of said shaft ends and each disc member adapted to have one end of a thin-walled metal sleeve coupled thereto and circularly shaped thereby and an axially extending spacer connected between said shaft ends for fixedly spacing the disc members apart and maintaining the spacing during the use of the apparatus, B. the axially extending spacer being arranged to have such a length as to form the sleeve into cylindrical configuration in cooperation with the disc members and C. means for applying a uniform pressure on the interior of the sleeve every increment thereof over the entire area thereof between said ends in order to maintain its cylindrical configuration during use of the apparatus. 6. The apparatus according to claim 5, characterized in that the axially extending spacer means comprise an elongate rigid cylinder whose outer diameter is less than the inner diameter of the sleeve which is adapted to be supported by the apparatus whereby there will be a cylindrical space defined between the outer surface of the rigid cylinder and the inner surface of the sleeve when it is installed, the said pressure being supplied into said cylindrical space and the sleeve thereby being mechanically unsupported throughout its major length during use. 7. The apparatus according to claim 6, characterized in that said means for applying pressure include means for introducing fluid under pressure in the framework and transmitting the pressure to said cylindrical space when the sleeve is installed in place. 8. The apparatus according to claim 5 or 6, characterized in that the means for introducing pressure include at least one passageway through the shaft means and connecting conduit means between said passageway and the interior of said sleeve for applying said pressure on the interior wall of said sleeve. 9. The apparatus according to claim 5 or 6, characterized in that the means for introducing pressure include at least one passageway through the shaft means and means for establishing a connection between said passageway and an external source of fluid under pressure. 10. The apparatus according to claim 6 or 7, characterized in that there is a generally cylindrical inflatable boot sealed to said rigid cylinder and the means for applying pressure include a conduit for leading fluid to the interior of the boot to expand same into engagement with the interior of the sleeve. 11. The apparatus according to claims 6 or 7, charac terized in that the opposite ends of the rigid cylinder are provided with respective inflatable cushions adapted to be inflated into engagement with the ends of the sleeve to seal and clamp said sleeve ends between the rigid cylinder and the shaft having a first passageway means for introducing a first fluid under pressure to the interiors of said cushions. 12. The apparatus according to claim 6 or 7, characterized in that there is a coaxial inflatable boot disposed in the framework telecopically located on the interior of the sleeve and sealed at its ends and structure for leading the fluid to the interior of the boot to inflate the same against the inside surface of the sleeve. 13. The apparatus according to claim 5 or 6, characterized in that there is at least one passageway coaxial with and through said shaft, habing its inner end terminating in the interior of the sleeve and its outer end terminating at one of said shaft means ends, a fluid tight connection coupling said sleeve ends, structure for leading fluid under pressure to one shaft means end and into said passageway from the exterior of the framework. 14. The apparatus according to claim 6 or 7, characterized in that the ends of the cylinder have washers closing same off, the shaft means are coaxial with the washers, the disc members are mounted on the shaft means, and the fluid bypasses the cylinder on the exterior thereof. 15. The apparatus according to claim 14, characterized in that the disc members have inwardly directed axially extending annular flanges and the sleeve is capable of being secured on the interior of the flanges. 16. The apparatus according to claim 15, characterized in that said shaft includes a second passageway means independent of the said one passageway means to enable introducing a second fluid under pressure in the said annular space to inflate said sleeve when installed. 17. The apparatus according to claim 5 or 6, characterized in that there are means for mounting said apparatus for rotation, an external source of fluid under pressure and means extablishing a rotatable fluid coupling leading from said external source of fluid under pressure to said interior whereby to apply fluid pressure thereto during rotation. 18. The apparatus according to claim 5 or 6, characterized in that the sleeve ends are in coupled B relationship with the respective disc members. 19. The apparatus according to claim 5, characterized in that said elongate framework includes arigid hollow cylinder having end washers closing the same and said shaft means ends respectively are connected to the respective washers and are axially extending outwardly relative to said cylinder a coupling on the shaft ends for effecting the rotatable connection into the printing press, said framework including a disc member at each end of the calinder connected respectively to the shafts and capable for rotation with said framework, each disc member having a peripheral, annular, axially extending relatively short flange with the flanges and discs forming cup-like formations opening toward one another and having the inner diameter thereof larger than the exterior diameter of said cylinder, at least one of the discs being movable axially relative to the other disc and capable of being secured in a predetermined axial position each cup-like formation adapted to have one end of said sleeve coupled thereto for circularly shaping same thereby the position of the movable disc at a location relative to the other disc and the cylinder being fixed when the sleeve is in place so that the sleeve will form a second hollow cylinder coaxial of the first cylinder and surrounding the same and further including a pressurized fluid source, at least one end of said shaft means including a passageway leading fron said shaft means to a space between cylinders at a location axially outward said cylinders. 20. The apparatus as claimed in claim 19 characterized in that a passageway formed through said shaft, an external source of fluid under pressure and a connection between said source and said passageway communicate internally with the interior of the sleeve when said sleeve is so mounted and coupled. 21. Apparatus according to claim 5 or 6, characterized in that each disc member has the ends thereof sealybly mounted and coupled to said respective ends of said sleeve, there being no mechanical support provides for said sleeve between its ends when said sleeve is so coupled, said a spacer being connected between the shaft ends for fixedly spacing the disc members apart and maintaining the spacing during the use of the apparatus. 22. The apparatus according to in any one of claim 5 to 21, characterized in that thin-walled metal sleeve has its ends adhesively engaged with said disc members in stretched condition. 23. The apparatus according to any one of claim 1 to 22, characterized in that the sleeve has an exterior thin film coating of a microcrystalline flexible photoconductive material. 24. Apparatus for supporting an imperforate thin walled metal sleeve which is flexible and collapsible when unsupported, for use as an ink transfer device in a printing press or the like characterized by A. an elongate hollow shaft having a plug at opposite ends thereafter and lateral passageways through the shaft wall between the ends thereof, B. each of the plugs having structure to enable the apparatus to be removably coupled to a printing press and be rotated by the press drive on an axis defined by the axis of the hollow shaft, C. an imperforate disc connected to each of the plugs coaxial with said shaft and having a circumferential groove on its face located radially inward of its outer edge, the diameter of the grooves being sub standially greater than the outer diameter of the hollow shaft, said grooves facing one another axially and providing seats for the ends of said thin walled metal sleeve adapted to be engaged therein and extending between said discs spaced outwardly of said hollow shaft, D. an elastomeric O-ring engaged in each groove and a locking ring also axially movable into said groove and adapted to engage said O-ring and press same into its groove whereby to clamp the ends of the thin-walled sleeve into the respective grooves while forming said ends into circles coaxial with said shaft, E. said apparatus providing no support for the said sleeve when so installed between the clamped ends thereof other than fluid pressure, F. means for securing the locking rings in said clamped engagement and G. a valve in at least one of said plugs to enable the admission of fluid under pressure into the interior of the sleeve when said sleeve is so mounted in said apparatus, the valve bein arranged to retain the fluid pressure in the apparatus. 25. The apparatus as claimed in claim 24, characterized in that the valve is capable of being opened to connect the apparatus to an external source of pressure while mounted in a printing press and rotating. 26. The apparatus as claimed in claim 25, characterized in that the valve is arranged automatically to close but retain said pressure if the apparatus is removed from said printing press. 27. The apparatus as claimed in claim 26, characterized in that the means for securing the locking rings comprise bolts extending through said discs from the exterior faces thereof and into engagement with the clamping rings on the interior of said grooves. 28. The apparatus as claimed in claim 27, characterized in that the said structure to enable coupling of said apparatus to a printing press comprise tapered sockets formed in each respective plug coaxial with said shaft and at least one of said sockets having key means, said sockets adapted to be engaged with male members connected with said printing press, at least the keyed socket adapted to be engaged with a male member that is rotary.
STORK BRABANT B.V.
ANSELRODE, LODEWIJK; VERTEGAAL, JACOBUS GERARDUS
EP-0003053-B1
3,053
EP
B1
DE
19,801,126
1,979
20,100,220
new
C07C99
C07C101
null
124BG8B4B1M
PROCESS FOR THE CONTINUOUS PREPARATION OF ANTHRANILIC ACID
1. A process for the continuous preparation of anthranilic acid by reaction of an alkali metal phthalamate and/or alkali metal phthalimidate with a hypohalite in an aqueous medium, wherein a) phthalimide and/or phthalamic acid is dissolvent in a aqueous alkali metal hydroxyde solution in a ratio of from 3 to 3.5 moles of alkali metal hydroxide per mole of phthalimide and/or of from 2 to 2.5 moles of alkali metal hydroxide per mole of phthalamic acid, b) the resulting aqueous solution of alkali metal phthalamate and/or phthalimidate is mixed with an aqueous solution of an alkali metal hypochlorite in a mixing apparatus, c) the resulting mixture is reacted in the first part of a reaction tube at a high flow rate, at from 10 to 54 degrés C, under substantially adiabatic conditions, thereafter d) the reaction mixture which leaves the first part of the reaction tube at a high flow rate is allowed to complete the reaction in the second part of the said tube at from 55 to 90 degrees C and e) anthranilic acid is isolated in the conventional manner from the alkaline reaction mixture which leaves the tube.
'Verfahren zur kontinuierlichen Herstellung von Anthranilsäure Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von Anthranilsäure durch zweistufige Umsetzung von phthalamidsaurem und/oder phthalimidsaurem Alkali mit Alkalihypohalogeniten, indem die erste Stufe weitgehend adiabatisch und beide Stufen unter Verwendung hoher Strömungsgeschwindigkeiten und unterschiedlicher Temperaturen durchgeftihrt werden, wobei zunächst Phthalimid und/oder Phthalamidsäure in einer bestimmten, UberschUssigen Alkalilaugenmenge gelöst werden und erst dann ohne weiteren Zusatz von Uberschüssigem Alkali die Lösung mit Hypohalogeniten vermischt und umgesetzt wird. Es ist aus der deutschen Patentschrift 1 224 748 bekannt, dass man phthalamidsaures Alkali durch Oxidation mit Alkalihypochlorit kontinuierlich zur Anthranilsäure umsetzt. Die Ausgangsstoffe werden in Form ihrer gekühlten, wässri- gen Lösungen miteinander in einer gekUhlten Mischkammer vermischt und in der ersten Reaktionsstufe, der Bildung von Phenylisocyanat-2-carbonsäure, in dem ein Kühlsystem enthaltenden Teil einer Reaktionskolonne umgesetzt. In der zweiten Stufe, der Bildung von Anthranilsäure, soll die Reaktionstemperatur 700C nicht übersteigen. In der TBeschreibung wird auf die Wichtigkeit, insbesondere in der' ersten Stufe die Reaktionswärme durch Kühlung abzufuhren, hingewiesen und eine Maximaltemperatur von +IOOC fUr die Bildung der Phenylisocyanat-2-carbonsäure genannt. Auch bei diskontinuierlicher Verfahrensweise der Umsetzung wurde bisher auf gute Kühlung Wert gelegt. Aus den deutschen Auslegeschriften 1 950 281 und 2 000 698 ist ein Verfahren zur kontinuierlichen Herstellung von Anthranilsäure durch Umsetzung von phthalamidsaurem und/ oder phthalimidsaurem Alkali mit Hypohalogeniten in wässri- gem Medium bekannt, wobei man a) ein wässrige Lösung von phthalamidsaurem und/oder phthalimidsaurem Alkali und eine wässrige Lösung von Alkalihypochlorit in einer Mischvorrichtung mischt, b) die erhaltene Mischung im ersten Teil eines engen Reak tionsrohres mit hoher Strömungsgeschwindigkeit bei 10 bis 500C unter weitgehend adiabatischen Bedingungen un setzt, anschliessend c) die aus dem ersten Teil des Reaktionsrohres mit hoher Strömungsgeschwindigkeit abströmende Umsetzungsmischang im zweiten Teil des genannten Rohres bei 60 bis 800C zu Ende umsetzt und d) aus der abströmenden alkalischen Umsetzungsmischung in Ublicher Weise Anthanilsäure und/oder Isatosäureanhydrid abtrennt, und gegebenenfalls während der Stufe b) und/ oder der Stufe c) ein Reduktionsmittel zusetzt. Bei diesem Verfahren wird nur ein Teil des freien Alkalihydroxids schon beim Lösen des Ausgangsstoffes verwendet, ein weiterer Teil der Hypochlorltlösung zugesetzt. Vorteilhaft gelangen wässrige Lösungen von 10 bis 50 Gewichtsprozent Phthalimid und/oder Phthalamid zur Anwendung; die von 1 bis 1,1 Mol Alkalihydroxid Je Mol Phthalimid/Phthalamid enthalten. Es wird angegeben, dass die wässrigen Hypohalogenitlösungen vorteilhaft von 8 bis 15 Gewichtsprozent Hypohalogenit und von Orbis 3, vorzugsweise von 0,02 bis 2,1 Mol Alkalihydroxid Je Mol Phthalimid/Phthalamidsäure enthalten. In Beispiel 1 (Herstellung von Anthranilsäure) befindet sich Alkalibydroxid sowohl in der Phthalimidlösung in einer Menge von 1,1 Mol NaOH je Mol Phthalimid als auch in der Hypochloritlösung (1,4 Mol NaOK, bezogen auf 1 Mol Phthalimid). Die Auslegeschrift 1 950 281 gibt an, dass durch Einstellung der Ausgangslösungen in Bezug auf Alkalikonzentration die Bildung des Endstoffs beeinflusst wird. Bei einer Menge von 0,9 bis 1,1 Mol Alkali Je Mol Phthalimid bzw. Phthalamidsäure im Ausgangsgemisch erhält man Isatosäureanhydrid. Nur für diesen Fall sieht die Auslegeschrift, wie Beispiel 2 zeigt, eine Zugabe des gesamten Alkali zum Ausgangsstoff vor. Die deutsche Offenlegungsschrift 2 328 757 beschreibt ein Verfahren zur Herstellung von Aminen, z.B. auch Anthranilsäure, durch Umsetzung von Carbonsäureamiden mit Hypochloriten in Gegenwart von Brom, Jod und/oder Halogenamiden und überschüssigem Alkalihydroxid. Es wird angegeben, dass vorteilhaft wässrige Suspensionen von 1 bis 50 GewichtsPro- zent Ausgangscarbonsäureamid zur Anwendung gelangen. Die wässrigen Hypochloritlösungen enthalten im allgemeinen von 5 bis 15, vorzugsweise von 12 bis 14 Gewichtsprozent Hypochlorit und können zusätzlich von 0,2 bis 2,5 Mol, vorzugsweise 1 bis 2,1 Mol Alkalihydroxid je Mol Hypochlorit enthalten. Im Ausgangsgemisch beider Ausgangsstoffe kommen im J rallgemeinen Mengen von insgesamt 0,2 bis 2,5 Mol, vorzugsweise 1 bis 2,1 Mol Alkalihydroxid (nicht eingerechnet das im Hypochlorit enthaltene Alkali), bezogen auf 1 Mol Aus gangscarbonsäureamid und Carbonamidgruppe am Molekül, in Frage. Enthält die wässrige Hypochloritlösung kein freies Alkalihydroxid, so werden am Anfang oder im Laufe der Umsetzung zweckmässig von 0,2 bis 2, vorzugsweise 1 bis 2 Mol Alkalihydroxid pro Mol Hypochlorit zugeführt. Es wird beschrieben, dass für die Reaktion einem Gemisch von Ausgangscarbonsäureamid, Katalysator und Wasser eine wässrige Lösung des Hypohalogenits zugeführt und das Gemisch während 1 bis 4 000 Sekunden bei der Reaktionstemperatur gehalten wird. Dann wird im Falle von Phthalamidsäure wässrige Alkalilauge zugeführt und das Gemisch eine Sekunde bis zu 3 Stunden bei der Reaktionstemperatur, gegebenenfalls unter Erwärmen gehalten. - Je höher man die Reaktionstemperatur wählt, dest kürzer hält man zweckmässig die Reaktionszeit bis zur Zugabe der Alkalilauge. In einer bevorzugten Aus führungsform wird das Ausgangscarbonsäureamid, z.B. Phthalamidsäure, zuerst aus Carbonsäureanhydrid, Ammoniak und gegebenenfalls Alkalihydroxid bei einer Temperatur von in der Regel 20 bis 800C hergestellt und das so gebildete Reaktionsgemisch ohne Isolierung des Reaktionsproduktes direkt als Ausgangs stoff nach dem erfindungsgemässen Verfahren umgesetzt, In Beispiel 1 wird so zuerst phthalamidsaures Salz hergestellt, wobei sich in der Lösung kein Uberschüssi- ges Natriumhydroxid Je Mol Phthalamidsäure befinden, diese Lösung dann'mit Chlorlauge, die kein überschüssiges Alkalihydroxid enthält, vermischt und schliesslich 2 Mol Natri umhydroxid Je Mol Phthalamidsäure zugesetzt. Ein weiteres in der deutschen Offenlegungsschrift 2 357 749 beschriebenes Verfahren zeigt die entsprechende Herstellung von Aminen durch Umsetzung von Carbonsäureamiden mit Hypochloriten in Gegenwart von überschüssigem Alkalihydroxid und in Gegenwart von Polymerisationsinhibitoren. Vorteilhaft gelangen wässrige Suspensionen von 1 bis 50 Gewichtsprozent Ausgangscarbonsäureamid zur Anwendung. Die wässri- gen Hypochloritlösungen enthalten auch hier im allgemeinen von 5 bis 15, vorzugsweise von 12 bis 14 Gewichtsprozent Hypochlorit und können zusätzlich von 0,2 bis 2,5 Mol, vorzugsweise 1 bis 2,1 Mol, Alkalihydroxid je Mol Hypochlorit enthalten. Im Ausgangsgemisch beider Ausgangsstoffe kommen im allgemeinen Mengen von insgesamt 0,2 bis 2,5 Mol, vorzugsweise 1 bis 2,1 Mol Alkalihydroxid (nicht eingerechnet das im Hypochlorit enthaltene Alkali), bezogen auf 1 Mol Ausgangscarbonsäureamid und Carbonamidgruppe am Molekül, in Frage. Enthält die wässrige Hypochloritlö- sung kein freies Alkalihydroxid, so werden am Anfang oder im Laufe der Umsetzung zweckmässig von 0,2 bis 2, vorzugsweise 1 bis 2 Mol Alkalihydroxid pro Mol Hypochlorit zugeführt. Die Arbeitsweise bezüglich Zugabe von Alkalilauge entspricht der deutschen Offenlegungsschrift 2 328 757, wie auch alle Beispiele zeigen. In beiden Offenlegungsschriften wird ausdrücklich angegeben, dass man nur bei anderen Carbonsäureamiden, nicht bei Phthalamidsäure, zweckmässig das Alkali von Anfang an mit dem Ausgangsgemisch vereint und während einer Sekunde bis zu 3 Stunden die Umsetzung durchführt. Es wurde nun gefunden, dass man Anthranilsäure durch Umsetzung von phthalamidsaurem und/oder phthalimidsaurem Alkali mit Hypohalogeniten in wässrigem Medium vorteilhaft herstellt, wenn man a) Phthalimid und/oder Phthalamidsäure in wässriger Alkali lauge mit einem Verhältnis von 3 bis 3,5 Mol Alkali hydroxid je Mol Phthalimid und/oder von 2 bis 2,5 Mol Alkalihydroxid Je Mol Phthalamidsäure löst, b) die so gebildete wässrige Lösung von phthalamidsaurem und/oder phthalimidsaurem Alkali und eine wässrige Lö sung von Alkalihypochlorit in einer Mischvorrichtung mischt, c) die erhaltene Mischung im ersten Teil eines Reaktionsroh res mit hoher Strömungsgeschwindigkeit bei 10 bis 540C unter weitgehend adiabatischen Bedingungen umsetzt, an schliessend d) die aus dem ersten Teil des Reaktionsrohres mit hoher Strömungsgeschwindigkeit abströmende Umsetzungsmischung im zweiten Teil des genannten Rohres bei 55 bis 90 C zu Ende umsetzt und e) aus der abströmenden alkalischen Umsetzungsmischung in üblicher Weise Anthranilsäure abtrennt. Weiterhin wurde gefunden, dass man das Verfahren vorteilhaft ausführt, wenn man dem Reaktionsgemisch während der Stufe c) oder d) ein Reduktionsmittel zusetzt. Weiterhin wurde gefunden, dass man das Verfahren vorteilhaft ausführt, wenn die Umsetzung in Gegenwart von Brom, Jod und/oder Halogenamiden der Formel EMI6.1 worin R1 eine Sulfonsäuregruppe, einen Sulfonatrest, eine Sulfonamidgruppe bezeichnet, R2 ein Wasserstoffatom, einen aliphatischen Rest, ein Chloratom oder.Bromatom bedeutet, X ein Chloratom, Bromatom oder Wasserstoffatom bezeichnet, R1 und R2 darüber hinaus auch zusammen mit dem benachbarten Stickstoffatom Glieder eines heterocyclischen Restes, der mindestens eine dem Stickstoffatom benachbarte Sulfongruppe' oder Phosphonylgruppe der Formel EMI7.1 worin R3 für ein Wasserstoffatom oder ein Alkaliatom steht, enthält, bezeichnen können, oder R1 und R2 zusammen auch den Rest EMI7.2 bedeuten können, worin R4 für einen Alkylenrest, den Rest EMI7.3 oder den Rest EMI7.4 R5 für ein Wasserstoffatom, ein Chloratom oder Bromatom und R6 für einen aliphatischen Rest stehen, durchgeführt wird. Die Umsetzung lässt sich für den Fall der Verwendung von Natriumhydroxid und Natriumhypochlorit durch die folgenden Formeln wiedergeben: EMI7.5 Im Vergleich zu den bekannten Verfahren liefert das Ver fahren nach der Erfindung Anthranilsäure auf einfacherem und wirtschaftlicherem Wege in teilweise besserer Ausbeute und Reinheit und wesentlich besserer Raum-Zeit-Ausbeute. Die Reaktion verläuft schneller und kann somit in wesentlich kleineren Rohrreaktoren durchgeführt werden. Der End stoff fällt in einer gröberen und besser ausgebildeten Kristallform von geringerer Restfeuchte an. Man erhält weniger schmierige, besser filtrierbare und trockenbare Kristalle, die im nachfolgenden Feststofftransport der Trocknungsanlage einen schnelleren und störungsfreieren Betrieb erlauben. Ausserdem ist der Zusatz der gesamten überschüssigen Alkalilauge in Stufe a) vorteilhaft. Denn bei den bekannten Verfahren werden die für den Ablauf des chemischen Prozesses benötigte Lauge nur zum Teil der Phthalimid (Phthalamid)-lösung, zum Teil der Bleichlauge oder erst nachträglich dem Gesamtgemisch zudosiert. Beim Betrieb ergeben sich durch Regelschwankungen Ungenauigkei ten in der Laugedosierung, die bei den bekannten Verfahren den Prozessablauf negativ beeinflussen, z.B. besteht bei Unterschuss von Natronlauge in der Phthalimidlösung die Ge fahr, dass Phthalimid ungelöst bleibt und Verstopfungen her vorruft. Schwankungen der Natronlaugemenge in der Bleich lauge führen zu Konzentrationsänderungen > die die Ausbeute beeinflussen. Mit einer zusätulichen Dosierung von Lauge in das Gesamtgemisch der Ausgangsstoffe (Phthalimid bzw. Phthalamidsäure und Hypochlorit) wird die Anzahl der erfor derlichen Regelungen noch weiter erhöht. Entsprechend ist der Betrieb des erfindungsgemässen Verfahrens vergleichswei se sicherer und erfordert weniger Betrieb und oberwachungs- personal. Die Gesamtbetriebszeit, einschliesslich Herstellung des wässrigen Ausgangsgemisches und Aufarbeitung des Reakti onsgemisches, ist bei dem erfindungsgemässen Verfahren kürzer. Alle diese vorteilhaften Ergebnisse sind im Hinblick auf den Stand der Technik überraschend. J Der Ausgangs stoff wird in Stufe a) in wässriger Alkalilauge,' zweckmässig Kalilauge und insbesondere Natronlauge, gelöst. Vorteilhaft gelangen wässrige Lösungen von 10 bis 50, bevorzugt 15 bis 30 Gewichtsprozent (bezogen auf die reine Wassermenge) Phthalimid und/oder Phthalamidsäure zur Anwendung, die von 3 bis 3,5, bevorzugt 3,1 bis 3,2 Mol Alaklihydroxid je Mol Phthalflmid und/oder 2 bis 2,5, bevorzugt 2,1 bis 2,2 MoL'Alkalihydroxid Je Mol Phthalamidsäure enthalten. Die Lösung wird zweckmässig bei einer Temperatur von -5 bis +500cm vorzugsweise von 20 bis 30 0C, drucklos oder unter Druck, kontinuierlich durchgeführt. Verwendet man Xatalysatoren, z.B. die in der deutschen Offenlegungsschrift 2 357 749 oder vorteilhaft die in der deutschen Offenlegungsschrift 2 D28 757 beschriebenen Katalysatoren, so werden sie zweckmässig schon in Stufe a) dem Ausgangsstoff bzw. seiner Lösung zugesetzt. Man kann aber den Katalysator, zweckmässig im Gemisch mit Wasser, auch dem Ausgangsgemisch getrennt oder zusammen mit dem Hypohalogenit zusetzen. Als Katalysatoren kommen vorteilhaft Brom, Jod und/oder die vorgenannten Halogenamide I, im allgemeinen in einer Menge von 0,0001 bis 0,1, vorzugsweise von 0,001 bis 0,01 Mol Katalysator Je Mol Phthalimid bzw. Phthalamidsäure in Betracht. Anstelle der genannten Stoffe können auch Verbindungen, die unter den Reaktionsbedingungen solche Stoffe bilden, verwendet werden, z.B. Bromide und Jodide anstelle von Brom oder Jod. Zweckmässig wählt man wasserlösliche Halogenide. Diese Halogenide kommen vorteilhaft in Gestalt ihrer Erdal'xali- und insbesondere ihrer Alkalisalze in Frage, z.B. Calciumbromid, Cä!ciumjodid, Magnesiumbromid, Magnesiumjodid, Lithiumbromid, Lithiumjodid und insbesondere Natrium- und Kaliumbromid oder -jodid. Bevorzugte Halogenamide I sind solche, in deren Formel R1 eine Sulfonsäuregruppe, einen Sulfonatrest, insbesondere einen Al kalisulfonatrest wie Natriumsulfonat oder Kaliumsulfonat, eine SulSonamidgruppe bezeichnet, R2 ein Chloratom, ein Bromatom, einen Alkylrest mit 1-bis 4 Kohlenstoffatomen oder insbesondere ein Wasserstoffatom bedeutet, X ein Bromatom, ein Chloratom oder zweckmässig ein Wasserstoffatom bezeichnet, R1 und R2 darüber hinaus auch zusammen mit dem benachbarten Stickstoffatom Glieder eines heterocyclischen, 5- oder 6-gliedrigen Ringes, der mindestens eine dem Stick stoffatom benachbarte Sulfongruppe oder Phosphonylgruppe der Formel EMI10.1 worin R3 für ein Wasserstoffatom oder ein Alkaliatom, insbesondere ein Natriumatom oder Kaliumatom steht, enthält, bezeichnen können oder R1 und R2 zusammen auch den Rest EMI10.2 bedeuten können,worin R4 für einen Alkylenrest mit 2 bis 4 Kohlenstoffatomen, den Rest EMI10.3 oder den Rest EMI10.4 R5 für ein Wasserstoffatom, ein Chloratom oder Bromatom und RO für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, insbesondere die Methylgruppe, stehen. An den vorgenannten heterocyclischen Ring kann noch ein Phenylkern anelliert sein. Vor teilhaft- enthält der heterocyclische Rest 2 dem Stickstoffatom benachbarte Sulfon- oder Phosphongruppen oder zwei oder drei Sulfonamidogruppen oder Phosphonamidogruppen, insbesondere in demselben Ring, bei mehrkernigen heterocyciischen Resten. Vorgenannte bevorzugte Rest können noch durch unter den Reaktionsbedingungen inerte Gruppen oder Atome, z.B. Chloratome, Bromatome, Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, den Phenylkern substituierende Carboxyl- oder Carboxylatgruppen, substituiert sein. Als Katalysatoren kommen z.B. in Betracht: Glutarimid, Adipinsäureamid, Succinimid; vorzugsweise Cyanursäure, 515-Dimethylhydantoin, Tri sulfami d, N-Methyl-sulfamin 'säure, Natriumtriimidometaphosphat; entsprechende Gemische vorgenannter Halogenamide I; Sulfaminsäure und ihre Salze, zweckmässig Alkalisalze wie das Natrium- oder Kaliumsalz, und insbesondere Sulfamid sind besonders bevorzugt, gegebenenfalls im Gemisch mit vorgenannten Halogenamiden I. Die wässrigen Hypochloritlösungen der Stufe b) enthalten vorteilhaft von 5 bis 15, insbesondere 12 bis 14 Gewichtsprozent Hypochlorit und keine wesentlichen Mengen, höchstens bis zu 0,01 Mol überschüssiges Alkalihydroxid Je Mol Phtha' imid/?hthalamidsdure. Bevorzugte Alkalihypochlorite sind das Kaliumsalz oder insbesondere Natriumhypochlorit. Im allgemeinen wird die Reaktion mit einem Verhältnis von Hypohalogenit von 1 bis 2, vorzugsweise 1 bis 1,2 Mol Hypohalogenit je Mol Phthalimid und/oder Phthalamidsäure durchgeführt. Vorteilhaft vermischt man den Ausgangsstoff in seiner wassrigen, alkalischen Lösung vorgenannter Konzentration aus Stufe a) mit der Alkalihypochlorltlösung in Stufe b) in vorgenanntem Mengenverhältnis in einer Mischungsvorrichtung. Solche Vorrichtungen können Mischzellen, Mischdüsen oder Kammern müt Rührwerke hoher Umdrehungszahl sein. Die Mischung wird in der Regel bei einer Temperatur zwischen 0 und'SOoC, vorteilhaft zwischen 25 und 450c, drucklos oder unter Druck, kontinuierlich durchgeführt. Die Reaktion wird vorteilhaft in 2 Reaktionsräumen (Stufe c) und d)) unter weitgehender Vermeidung der Rückmischung in beiden Räumen und weitgehend adiabatisch in der ersten Stufe durchgeführt. Die Umsetzung erfolgt in 2 Reaktions schritten, der Reaktionsstufe c), der Umsetzung des Aus gangsstoffes über das N-chlor-phthalamidsaure Alkalisalz zum phenylisocyanat-2-carbonsauren Alkalisalz und der fol genden Stufe d) der Umsetzung des Alkali salzes zur Anthra nilsäure. Die erste Reaktionsstufe wird weitgehend unter adiabatischen Bedingungen durchgeführt, die entstehende Reaktionswärme erwärmt dabei das Umsetzungsgemisch in der J Regel auf eine Temperatur zwischen 20 und 50 C. Aus der Mischungsvorrichtung gelangt das Reaktionsgemisch in den Reaktionsraum der ersten Reaktionsstufe (Stufe c)) > der aus einem vorteilhaft engen Reaktionsrohr besteht, und von dort nach der Umsetzung in den Reaktionsraum der folgenden Stufe (Stufe d)). Mischurgvorrichtung, der Reaktionsraum der ersten Stufe und die Lösungen der Ausgangsstoffe brauchen nicht gekühlt zu werden. Ein bevorzugtes Merkmal des Verfahrens nach der Erfindung ist die weitgehende Vermeidung der Rückmischung in Stufe c), ein rascher Entzug des Reaktionsgemisches aus c) und seine Zuführung - unter weitgehender Vermeidung der Rückmischung - in die Stufe d). Zweckmässig stellt man durch einen engen Querschnitt des Reaktionsrohres der ersten Stuten und Verwendung entsprechender Transportpumpen eine hohe Strömungsgeschwindigkeit des Reaktionsgemisches ein. Als Pumpen können z.B. Strahl-, Rotations-, Kreiskoljen-, Walzkolben-, SchrSubenkolben-, Exzenter-, Flügel-, Kreisel-, Axial-, Propeller-pumpen verwendet werden. In einer bevorzugten Ausführungsform des Verfahrens werden die Strömungsgeschwindigkeiten durch Querschnitt und Länge des Reaktionsrohres bestimmt. Vorteilhaft sind z.B. Reaktorquerschnitte von 10 bis 10 000 mm2 und Strömungsgeschwindigkeiten von 0 > 1 bis 10, insbesondere 0,2 bis 3 m/sec, vorzugsweise 0,5 bis 1 m/sec. Bei diesen Geschwindigkeiten wird in der Regel in einer Verweilzeit von 0,4 bis 40, vorzugsweise von 0,7 bis 20 Sekunden der Ausgangsstoff in der Stufe c) weitgehend über des am Stickstoffatom chlorierte Phthalsäuremonoamid zum Alkalisalz der Phenylisocyanat-2-carbonsä.ure umgesetzt. Das gebildete Alkali salz wird, bedingt durch die hohe Strömungsgeschwindigkeit, dem Reaktionsraum der Stufe c) sofort entzogen, der folgenden Stufe zugeführt und dort, im allgemeinen mit einer Verweilzeit von 0 > 3 bis 150, vorzugsweise von 0 > 4 bis 40 Sekunden, zur Anthranilsäure umgesetzt. Die hohe Strömungsgeschwindigkeit verhindert gleichzeitig weitgehend eine Rückmischung innerhalb der ge-' samten Umsetzung des Reaktionsgemisches. Insbesondere wird die Rückmischung des gebildeten Endstoffs mit dem Reakti onsgemisch der Stufe c) vermieden und damit die Bildung von Nebenprodukten durch Umsetzung des Hypohalogenits bzw. des N-chlorierten Phthalsäuremonoamids mit dem Endstoff und/oder durch entsprechende Umsetzungen in den Gemischen der Stufen c) und d) unterdrückt. Die Reaktion wird in Stufe c) bei einer Temperatur von 10 bis 540c, vorzugswei se zwischen 20 und 540cm insbesondere zwischen 20 und 45 C, in der Stufe d) von 55 bis 90 C, vorzugsweise von 60 bis 850C, drucklos oder unter Druck durchgeführt. Am Ende der Reaktionsfolge wird das Reaktionsgemisch entnommen und kann als alkalische Lösung der Anthranilsäure weiterverar beitet werden, da der Endstoff in ausgezeichneter Reinheit anfällt. Die Isolierung der Endstoffe aus den alkalischen Lösungen kann durch Ausfällen mit Säuren, z.B. Salzsäure. oder Schwefelsäure, und nachfolgender Filtration vorgenom men werden. Die Umsetzung kann vorteilhaft in Stufe c) oder insbesonde re Stufe d) unter Zusatz einer grossen Zahl von in Wasser und/oder Alkalien löslichen oder mit ihnen mischbaren, in der deutschen Auslege schrift 2 000 698 beschriebenen Re duktionsmitteln durchgeführt werden. Geeignet sind bei spielsweise Hydride wie Natriumborhydrid, Lithiumtriäth oxy-aluminiumhydrld; reduzierende Schwefelverbindungen wie Natriumsulfid, Natriumhydrogensulfid, Ammoniumsulfid, schweflige Säure, Schwefeldioxid, Natriumdithionit, Natri umthiosulfat, Natriumformaldehydsulfoxylat, Thioharnstoff dioxid; Hydrazin und seine Salze, z.B. das Sulfat oder Chlorid; Glucose. Bevorzugte Reduktionsmittel sind Natrium sulfit und Natriumbisulfit. Das Reduktionsmittel kann in stöchiometrischem Verhältnis oder im Uberschuss zum zugege benen Hypohalogenit, vorzugsweise von 0,005 bis 0,1 Xqui J rValenten Reduktionsmittel Je Mol Hypochlorit, verwendet werden. Zweckmässig kommen Lösungen des Reduktionsmittels in Wasser, .B. 10- bis 40*gewichtsprozentige, wässrige Na triumbisulfitlösungen, in Betracht. Der Zusatz des Reduktionsmittels kann, diskontinuierlich oder in der Regel kontinuierlich, vorteilhaft dem Reaktionsgemisch hinter demReaktionsraum der Stufe c) und vor Ende der Stufe d) der Reaktion erfolgen. Man kann das Reduktionsmittel an mehreren Stellen oder zweckmässig an einer Stelle dem Gemisch während der- Umsetzung der in der ersten Reaktionsstufe gebildeten Phenylisocyanat-2-carbonsäure zur Anthranilsäure zusetzen, vorteilhaft direkt nach Beendigung der 'Jmsetzung des Ausgangsstoffes zur Phenyl isocyenat-2-carbonsäure. Die Beendigung der Reaktionsstufe c) wird in der Regel durch einen Temperaturanstieg von 20 bis 30 0C auf etwa 45 bis 500C angezeigt. Die Geschwindigkeit des Zusatzes richtet sich in der Regel nach der Strömungsgeschwindigkeit des Reaktionsgemisches, wobei die Konzentration der zugesetzten Lösung und das vorgenannte Verhältnis Reduktionsmittel zu Ausgangshypohalogenit zu berücksichtigen sind. Die Dosierung der Reduktionslösung kann in beliebiger Weise, über Kammern mit RUhrwerken, Mischdüsen oder vorzugsweise über eine Mischzelle, erfolgen. Die Reaktion kann nach Zugabe des Reduktionsmittels im Reaktionsrohr mit hoher Strömungsgeschwindigkeit, z.B. mit 0,2 bis 3 m/sec, oder auch ohne Verminderung der Ausbeute in einem Reaktionsrohr beliebiger Dimensionierung erfolgen. Querschnitt, Strömungsgeschwindigkeit und Temperatur der Ausgangslösungen bestimmen im allgemeinen die Lange der Rohrstrecke, in der die erste Reaktionsstufe c) durchgeführt wird. Beispielsweise ist die Stufe c) bei einem Rohrquerschnitt von 2 200 mm2 und bei einer Strö mungsgeschwindigkeit von etwa 1 m/sec bei einer Ausgangstemperatur von etwa 400C in der Regel nach etwa 1,5 Meter Länge des Reaktionsrohres beendigt, anschliessend wird zweckmässig das Reduktionsmittel zugeführt. Die nach dem Verfahren der Erfindung herstellbaren Verbindungen sind wertvolle Ausgangsstoffe für die Herstellung von Farbstoffen und Riechstoffen. Bezüglich der Verwendung wird auf die genannten Patentschriften und Ullmanns Encyklopädie der technischen Chemie (4. Auflage), Band 8, Seite 375, verwiesen. Die in den folgenden Beispielen angeführten Teile bedeuten Gewichtsteile. Sie verhalten sich zu den Volumenteilen wie Kilogramm zu Liter. Beispiel 1 Man verwendet eine Anlage, die aus einer Mischdüse und einem Reaktionsrohr von 1,1 Meter Länge und 53 Millimeter Innendurchmesser besteht. 590 Teile flüssiges Phthalimid werden stündlich in einer Mischdüse kontinuierlich in 2 103 Teilen wässriger, 25-gewichtsprozentiger Natronlauge und 4 752 Teilen Wasser gelöst und kontinuierlich 18 Teile/h 30-gewichtsprozentige, wässrige Lösung des Natriumsalzes der Amidosulfonsäure zugeführt. Die gebildete Lösung wird stündlich in der Mischdüse mit 1 750 Teilen wss- riger Natriummypochloritlösung (242 Teilen Natriumhypochlorit; 13,8 Gewichtsprozent akt. Chlor) bei 420C gemischt. Die Strömungsgeschwindigkeit im nachfolgenden Re aktionsrohr beträgt 1,07 Meter pro Sekunde. Die Verweilzeit beträgt eine Sekunde. Das Reaktionsgemisch wird im ersten Teil des Reaktionsrohres (Stufe c)) (0,3 m) weitgehend adiabatisch (von 42 bis 530C) umgesetzt, wobei im verbleibenden Reaktionsraum eine Selbsterwärmung bis 890C auftritt. Das Gemisch wird kontinuierlich stündlich mit 25 Teilen 40-gewichtsprozentiger, wässriger Natriumbi- - sulfitlösung versetzt, auf 1OOC abgekühlt und mit Salzsäure auf pH-Wert 4,2 eingestellt, abgesaugt und der Filterrückstand mit Wasser gewaschen und getrocknet. Man erhält stündlich 535 Teile (97 % der Theorie) Anthranilsäure (99,3 %) vom Fp 146,20C; Raum-Zeit-Ausbeute: 268 Teile pro Stunde und Liter. Beispiel 2 Führt man die Umsetzung analog Beispiel 1, aber ohne Zugabe von Amidosulfonsäure durch, so erhält man stündlich 506 Teile (92 % der Theorie) Anthranilsäure von einem Gehalt von 99,1 Prozent und Fp 146,10C. Raum-Zeit-Ausbeute: 27 Teile pro Stunde und Liter. Vergleich Filtrierleistung Restfeuchte (Teile Anthrfil- (Gew. vor dem säure/h . m) Trocknen nach dem Filtrieren Beispiel 1 150 6 Beispiel 2 130 9 Beispiel 1 DAS 1 950 281 90 20 Beispiel DAS 2 000 698 90 20 Beispiel 1 DOS 2 328 757 120 10 J
WatentansprUche 1. Verfahren zur kontinuierlichen Herstellung von Anthra nilsäure durch Umsetzung von phthalamidsaurem und/oder phthalimidsaurem Alkali mit Hypohalogeniten in wässrigem Medium, dadurch gekennzeichnet, dass man a) Phthalimid und/oder Phthalamidsäure in wässriger Alka lilauge mit einem Verhältnis von 9 bis 3,5 Mol Alka lihydroxid Je Mol Phthalimid und/oder von 2 bis 2,5 Mol Alkalihydroxid Je Mol Phthalamidsäure löst, by die so gebildete wässrige Lösung von phthalamidsaurem und/oder phthalimidsaurem Alkali und eine wässrige Lösung von Alkalihypochlorit in einer Mischvorrich tung mischt, c) die erhaltene Mischung im ersten Teil eines Reakti onsrohres mit hoher Strömungsgeschwindigkeit bei 10 bis 540C unter weitgehend adiabatischen Bedingungen umsetzt, anschliessend d) die aus dem ersten Teil des Reaktionsrohres mit hoher Strömungsgeschwindigkeit abströmende Umsetzungsmi Mischung im zweiten Teil des genannten Rohres bei 55 bis 90 0C zu Ende umsetzt und e) aus der abströmenden alkalischen Umsetzungsmischung in üblicher Weise Anthranilsäure abtrennt. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man dem Reaktionsgemisch während der Stufe c) oder d) ein Reduktionsmittel zusetzt. J '3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich net, dass die Umsetzung in Gegenwart'von Brom, Jod und/ oder Halogenamiden der Formel EMI18.1 worin R1 eine Sulonsäuregruppe, einen Sulfonatrest, eine Sulfonamidgruppe bezeichnet, R2 ein Wasserstoffatom, einen aliphatischen Rest, ein Chloratom oder Bromatom bedeutet, X ein Chloratom, Bromatom oder Wasserstoffatom bezeichnet, R1 und R2 darüber hinaus auch zusammen mit dem benachbarten Stickstoffatom Glieder eines heterocylischen Restes, der mindestens eine dem Stickstoffatom benachbarte Sulfongruppe oder Phosphonylgruppe der Formel EMI18.2 worin R3 für ein Wasserstoffatom oder ein Alkaliatom steht, enthält, bezeichnen können, oder 1 R1 und R2 zusammen auch den Rest EMI18.3 bedeuten können, worin Rg für einen Alkylenrest, den Rest EMI18.4 oder den Rest EMI18.5 R5 für ein Wasserstoffatom, ein Chloratom oder Bromatom und RU für einen aliphatischen Rest stehen, durchgeführt wird.
BASF AKTIENGESELLSCHAFT
GRIMMER, JOHANNES; KILPPER, GERHARD, DR.
EP-0003057-B1
3,057
EP
B1
DE
19,810,429
1,979
20,100,220
new
H05F3
E04F15
H05F3, A47G27, E04F15
E04F 15/16, H05F 3/02B, A47G 27/04C3
TEXTILE FLOOR COVERING AND METHOD OF LAYING THE SAME
1. Web-shaped textile flooring with or without a backing of any type, comprising an effective layer capable of leading off electrostatic charges and earthed electric conductors arranged in the form of a network, characterized in that the network formed by conductors (13) being in direct contact with each other is in direct continuous contact with the effective layer (12) and that a broader conductor strip (15) extending in longitudinal web direction and contacting the conductors (13) of the conductor network is provided.
Textiler Bodenbelaq und Verfahren zu seiner Verlegung Die Erfindung betrifft einen bahnförmigen textilen Bodenbelag mit oder ohne Trägerschicht jeglicher Art, mit einer Nutzschicht und eingearbeiteten elektrischen Leitern. Textile Bodenbeläge, wie Teppichböden, Filze oder Vliese z.B. mit einer vorgefertigten oder bei der Herstellung der Nutzschicht erzeugten Trägerschicht, können sich, insbesondere, wenn sie aus synthetischem Material bestehen, bei geringer relativer Luftfeuchtigkeit durch Reibung aufladen. Diese Aufladung, die Potentiale von bis zu 10.000 Volt erreichen kann, hat zwar keinen unmittelbar schädigenden Einfluss, sie wirkt sich aber auf den Menschen unangenehm aus, weil beim Berühren von Metallteilen Funkenüberschläge erfolgen. Ausserdem können hochempfindliche elektronische Anlagen, wie Computer, sowohl durch die Aufladung als auch durch den Funkenüberschlag gestört werden. Zur Vermeidung bzw. Verringerung der elektrostatischen Aufladung von textilen Bodenbelägen ist es bekannt, in die Belänge ein hygroskopisches Material einzuarbeiten oder einzusprühen, das eine grössere Feuchtigkeit im Bodenbelag bin det. Die Feuchtigkeit bewirkt eine Verteilung elektrostatischer Ladungsträger und verhindert so die Entstehung hoher Spannungspotentiale. Die chemische Behandlung des Bodenbelages wirkt aber nicht dauerhaft und muss von Zeit zu Zeit durch Nachsprühen erneuert werden. Ferner ist es bekannt, textile Bodenbeläge mit einer Stahlfaserbeimischung zu versehen. Die Stahlfasern werden der Nutzschicht in Form von Stapelfasern zugegeben. Dies be wirkt eine gewisse elektrische Leitfähigkeit im Bodenbelag, die auch permanent beibehalten wird. Ausserdem ist die Einarbeitung von Kohlefäden als elektrische Leiter bekannt. Diese bekannten Massnahmen bewirken eine Ladungsverteilung innerhalb des Bodenbelages. Durch die flächenhafte Bodenberührung des Bodenbelages kann eine gewisse undefinierte Ableitung nach Erde erfolgen, so dass stärker Aufladungen, die zu stärkeren Funkenentladungen führen, vermieden werden. Es ergibt sich jedoch keine vollflächig wirkende Erdung. Im übrigen kann auf dem menschlichen Körper elektrische Ladung entstehen durch andere Ursachen als Reibung zwischen Schuhwerk und Bodenbelag, nämlich durch Reibung von hauptsächlich synthetischer Wäsche auf dem menschlichen Körper. Diese kann jedoch nur auf den Bodenbelag gelangen, falls leitfähiges Schuhmaterial vorliegt. Bei einem weiteren bekannten Bodenbelag (US-PS 2 302 003) sind in die Nutzschicht elektrisch leitend gemachte Baumwollfäden eingearbeitet. Diese sind mit einer unter der Nutzschicht angebrachten Schicht aus leitendem Gummi ver bunden. Die Verlegung dieses Teppichbodens und der elektrische Anschluss der leitenden Gummischicht erfordert umfangreiche Vorbereitungen. Auf dem Boden werden im allgemeinen elektrische Leiter verlegt, die beim Auflegen des Bodenbelages in Kontakt mit der leitenden Gummischicht kommen. Diese Vorbereitungsarbeiten sind aufwendig und teuer. Aufgabe der Erfindung ist es, einen bahnförmigen textilen Bodenbelag der eingangs genannten Art zu schaffen, durch dessen Konstruktion aufgrund definierter vollflächig wirkender Erdung es nicht mehr möglich ist, dass statische Elektrizität überhaupt auftritt und dessen elektrischer Erdungsanschluss schnell und einfach herstellbar ist= Zur Lösung dieser Aufgabe ist erfindungsgemäss vorgesehen, dass ein flächenförmiges Leiternetz in Flächenkontakt zur Nutzschicht angeordnet ist und dass ein in Bahnlängsrichtung verlaufender breiterer Leiterstreifen vorgesehen ist, der mit den Leitern des Leiternetzes in Kontakt ist. Durch das flächenförmige Leiternetz, das direkt Kontakt mit der Nutzschicht hat und an Erdungsanschluss angeschlossen ist, wird eine echte definierte Ableitfähigkeit über die gesamte Bodenfläche erreicht, d.h. es ergibt sich eine vollflächige definierte Erdung der Bodenbelagfläche. Die Herstellung der elektrischen Verbindung des Leiternetzes erfolgt über den Leiterstreifen, in dessen Bereich ein Verbindungselement durch den Bodenbelag hindurchgetrieben wird. Der Erdungsanschluss wird in Kontakt mit dem Verbindungselement gebracht. Dies kann beispielsweise dadurch geschehen, dass auf dem Fussboden des mit dem Bodenbelag zu belegenden Raumes ein Leiterband verlegt ist, das quer zu den Leiter streifen der einzelnen Bodenbelagbahnen verläuft. An den Kreuzungspunkten der Leiterstreifen mit dem am Boden verlegten Leiterband wird jeweils ein Kontaktelement durch den Bodenbelag hindurchgetrieben. Das Kontaktelement erhält somit elektrischen Kontakt sowohl mit dem betreffenden Leiterstreifen als auch mit dem Leiterband. Bei dem Kontaktelement kann es sich um einen Nagel handeln. Auf diese Weise wird der gesamte Bodenbelag an Erdpotential angeschlossen, wobei eine auf dem Bodenbelag drehende Person jedoch über einen ausreichend hohen Widerstand geerdet ist. Der Erdungsanschluss bewirkt, dass innerhalb des gesamten Bodenbelags Erdpotential herrscht, so dass das Spannungspotential an jeder Stelle des Bodenbelages stets Null beträgt. Lediglich wenn beispielsweise eine auf dem Bodenbelag stehende Person eine elektrische Stromleitung berührt und sich der hohe Widerstand der Nutzschicht schützend auswirkt, kann vorübergehend eine Spannungsdifferenz am Bodenbelag auftreter Die elektrischen Leiter können in direktem Kontakt zur Nutzschicht zwischen dieser und einer beliebigen Rückenlage angeordnet sein. Weitere Möglichkeiten ergeben sich aus den Unteransprüchen 6 und 7. Die elektrischen Leiter, die untereinander in Kontakt stehen, bilden eine gitterförmige Lage, die in direktem Kontakt mit der Nutzschicht steht, und sie haben gleichzeitig elektrische Verbindung mit dem Leiterstreifen. Auf diese Weise ist sichergestellt, dass sowohl in Längsrichtung als auch in Querrichtung des Bodenbelages eine elektrische Ableitung erfolgt. Aus einer Bodenbelagbahn können an beliebiger Stelle Stücke herausgeschnitten werden, die sämtlich vollflächig das gitterförmige Leiternetz enthalten, so dass an allen Stellen des Bodenbelages eine Verteilung und Ableitung von Ladungsträgern möglich ist. Werden einzelne Stücke des Bodenbelages gegeneinandergesetzt, dann können die Leiter der aneinander angrenzenden Stücke miteinander verbunden werden. Der Widerstand zwischen zwei Punkten des Bodenbelages liegt bei dieser Ausbildung in der Grössenordnung von 106 bis 108 Ohm. Der Erdableitwiderstand ist von derselben Grössenordnung. Innerhalb des Bodenbelages soll der elektrische Widerstand zum Abführen der Ladungen zwar möglichst gering sein, jedoch sollte vermieden werden, dass der Körper einer Person, die auf dem Bodenbelag steht oder geht, niederohmig geerdet wird. In diesem Falle wäre die Gefährdung beim Berühren einer Stromleitung zu gross. Der erforderliche Über- gangswiderstand zwischen den geerdeten Leitern im Inneren des Bodenbelages und einem auf dem Bodenbelag befindlichen Körper wird von der Nutzschicht gebildet. Dies bedeutet, dass bei einer Widerstandsmessung auf dem Bodenbelag die Entfernung der beiden Messpunkte, zwischen denen der Widerstand gemessen wird, das Messergebnis nur ganz unwesentlich beeinflusst. Die Erfindung ist bei Velourteppichen anwendbar, sie kann aber auch bei allen anderen Arten von textilen Bodenbelägen mit oder ohne Trägerschicht realisiert werden, beispielsweise bei Boucleware und bei ebener Ware (Nadelfilz). Die elektrischen Leiter können wellenförmig verlaufen, wobei die Wellen seitlich benachbarter Leiter sich in gegenseitigem Kontakt überlappen. Die Wellen können sinusförmig, dreieckförmig, rechteckförmig usw. sein. Die wellenförmige Verlegung hat den Vorteil einer besonders einfachen Fertigung. Weitere Möglichkeiten des Leiterverlaufes und der Leiteranordnung sind in den Unteransprüchen 2 bis 7 gekennzeichnet. In vorteilhafter Weiterbildung der Erfindung sind die elektrischen Leiter in direktem Kontakt zur Nutzschicht zwischen dieser und einer beliebigen Rückenlage angeordnet. Die Leiter sowie der Leiter streifen haben eine ganz geringe Stärke, so dass sie in der Kontur des Bodenbelages nicht in Erscheinung treten. Die Stärke beträgt beispielsweise ca. 0,15 mm. Im folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf die Figuren näher erläutert. Figur 1 zeigt schematisch einen Querschnitt durch einen Velour-Teppichboden mit einem durch den Leiterstreifen getriebenen Verbindungselement, Figur 2 zeig eine Draufsicht auf eine Rückenlage mit aufgelegten elektrischen Leitern und Leiterstreifen, und Figur 3 zeigt in Draufsicht das Schema einer Verlegung mehrerer Bodenbelagbahnen in einem Raum. Der in Figur 1 dargestellte Velour-Teppichboden weist eine Rückenlage 10 aus Filz, einem Schaumstoffmaterial o.dgl. auf. Auf der Rückenlage 10 befindet sich eine Klebeschicht 11, z.B. aus Polyäthylen, die die Polträgerschicht 20 mit der Rückenlage verbindet. 12 bezeichnet die Polhaare, die durch die Trägerschicht 20 durchgearbeitet sind. Auf die Klebeschicht 11 sind auf der der Trägerschicht 20 zugewandten Seite draht- oder bandformige elektrische Leiter 13 aufqelegt, die gemäss Figur 2 in Längsrichtung der Teppichbahn 14 verlaufen und wellenförmig verlegt sind. Die Wellen der einzelnen Leiter 13 überlappen sich teilweise, so dass seitlich benachbarte Leiter 13 in direktem Kontakt miteinander und mit den Polhaaren 12 stehen. Die Überlappungen erfolgen jeweils an den Maxima der Wellenlinien. Auf diese Weise ist die gesamte Fläche der Trägerschicht 20 bzw. der Klebeschicht 11 mit Leitern belegt, die sich in Längsrichtung der Bahn 14 erstrecken und untereinander Querverbindungen haben. In Längsrichtung der Bahn 14 verläuft ferner in der Nähe der einen Bahnkante ein Leiterstreifen 15. Dieser kann z.B. aus einer sehr dünnen Metallfolie bestehen und steht in elektrischem Kontakt mit den Leitern 13. Er dient zur Ermöglichung eines elektrischen Anschlusses an eine externe Erdungseinrichtung. An dem Leiterstreifen 15 ist zur Herstellung der Erdungsverbindung ein Nagel 16 oder ein anderes leitendes Verbindungsteil durch den Bodenbelag hindurchgetrieben, so dass es in leitender Verbindung mit dem Leiterstreifen 15 steht. Unterhalb des Bodenbelages ist auf dem Fussboden 17 ein Leiterband 18 verlegt, das quer zu den Leiterstreifen 15 sämtlicher Bodenbelagbahnen verläuft, wie aus Figur 3 hervorgeht. Das Leiterband 18 ist mit einem Erdungsanschluss 19 verbunden und leitet das Erdpotential an die verschiedenen Leiterelemente 16, die es auf die Leiterstreifen 15 der nebeneinanderliegenden Bodenbelagbahnen weiterleiten. Die einzige Installation, die auf dem Fussboden vorgenommen wer den muss, besteht in der Befestigung des Leiterbandes 18, das zweckmässigerweise aufgeklebt wird.
Ansprüche 1. Bahnförmiger textiler Bodenbelag mit oder ohne Trägerschicht jeglicher Art, mit einer ableitfähigen Nutzschicht und ein gearbeiteten elektrischen Leitern, d a d u r c h g e k e n n z e i c h n e t, dass ein flächenförmiges Lei tcrneLz (13) in Flächenkontakt zur Nutzschicht (12) ancJeoriot ist und dass ein in Bahnlängsrichtung verlau fender breiterer Leiterstreifen (15) vorgesehen ist, der mit den Leitern (13) des Leiternetzes in Kontakt ist. 2. Textiler Bodenbelag nach Anspruch 1, dadurch gekennzeich net, dass die elektrischen Leiter (13) wellenförmig ver laufen und dass die Wellen seitlich benachbarter Leiter sich in gegenseitigem Kontakt überlappen. 3. Textiler Bodenbelag nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die elektrischen Leiter geradlinig und sich kreuzend verlaufen. 4. Textiler Bodenbelag nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die elektrischen Leiter verschlungen und sich kreuzend verlaufen. 5. Textiler Bodenbelag nach einem der Ansprüche 1 bis 4, da durch gekennzeichnet, dass die elektrischen Leiter (13) in direktem Kontakt zur Nutzschicht (12) zwischen dieser und einer beliebigen Rückenlage (10) angeordnet sind. 6. Textiler Bodenbelag nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die elektrischen Leiter (13) in direk tem Kontakt zur Nutzschicht (12) in die die Nutzschicht tragende Trägerschicht unmittelbar eingearbeitet sind. 7. Textiler Bodenbelag nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die elektrischen Leiter (13) in direk tem Kontakt zur Nutzschicht (12) unterhalb dieser angeord net sind. 8. Textiler Bodenbelag nach Anspruch 1, dadurch gekenn zeichnet, dass der Leiterstreifen (15) m t einem Kontakt element (16) verbunden ist, das über eine Leitung (19) an dem Erdungsanschluss angeschlossen ist. 9.¯Textiler Bodenbelag nach Anspruch 8, dadurch gekenn zeichnet, dass das Kontaktelement ein Nagel (16) oder eine Schraube ist. 10. Verfahren zum Verlegen eines textilen Bodenbelags nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf einem Unterboden quer zur vorgesehenen Bahnrichtung des Bodenbelages ein geerdetes Leiterband (18) verlegt wird, und dass an den Kreuzungspunkten des Leiterbandes (18) mit den Leiterstreifen (15) jeweils ein Kontakt element (16) durch den Bodenbelag in den Unterboden ge trieben wird.
CLEVEN, BERNDT; CLEVEN, HANS-JURGEN, DIPL.-ING.
CLEVEN, BERNDT; Cleven, Hans-Jürgen, Dipl.-Ing.
EP-0003059-B1
3,059
EP
B1
DE
19,810,107
1,979
20,100,220
new
C07C103
A01N37
C07C235, C07C67, C07C231, A01N39
124BG12B3D2B2F6, 124BG12B2D2F, A01N 39/02
HERBICIDALLY ACTIVE 4-(P-PHENOXY-PHENOXY)-ALPHA-PROPIONIC ACID ALKOXYALKYLAMIDES, PROCESS FOR THEIR PREPARATION, HERBICIDAL AGENTS CONTAINING THEM AND THEIR USE
1. A herbicically acitive 4-(p-trifluoromethylphenoxy)-alpha-phenoxypropionic acid alkoxyalkyl amide fo the formula I see diagramm : EP0003059,P12,F1 wherein alkylene represents a straight or branched saturated hydrocarbon chain of 1 to 4 carbon atoms and R represents an alkyl radical of 1 to 4 carbon atoms.
Herbizid wirksame a-(4-Phenoxy-phenoxy) propionsäure-alkoxyalkylamide, Verfahren zu ihrer Herstellung und sie enthaltende herbizide Mittel und deren Verwendung Vorliegende Erfindung betrifft neue herbizid wirksame, trifluormethylierte &alpha;-(4-Phenoxy-phenoxy)- propionsäure-alkoxyalkylamide, Verfahren zu ihrer Herstellung, ferner herbizide Mittel, die diese neuen Verbindungen als Wirkstoffe enthalten, sowie die Verwendung der neuen Wirkstoffe und der sie enthaltenden Mittel zur selektiven Bekämpfung von Unkräutern in Kulturpflanzenbeständen. In den letzten Jahren ist eine reichaltige Patentliteratur über herbizid wirksame, in verschiedener Weise substituierte Diphenyläther einschliesslich Phenoxy-phenoxy-alkancarbonsäuren, ihre Salze, Ester und andere Derivate erschienen. Den nächstliegenden Stand der Technik bilden verschiedene Amide der 4-(p- Trifluormethyl-phenoxy)a-phenoxy-propionsäure. Amide dieser Säure ohne funktionelle Gruppe im Amidteil sind in den Dr-OS 2 433 067, 2 531 643 und 2 639 796 publiziert worden, wie das Amid und das Methylamid. Amide dieser Säure mit Aethergruppen (auch cyclischen) in der Amid Seitenkette finden sich in der DT-OS 2 531 643 und in der japanischen Offenlegungsschrift 52-130912 wie das N-Methoxy-amid und das Morpholid. Die neuen 4-(p-Trifluormethyl-phenoxy)-a-phenoxy- propionsäure-alkoxyalkylamide vorliegender Erfindung entsprechen der Formel I EMI2.1 <tb> <SEP> CII <tb> <SEP> 3 <tb> OF <SEP> 5 <SEP> O-CH-C-NH-alkylen-Ow <tb> <SEP> 0 <tb> worin f' Alkylen eine gerade oder verzweigte gesättigte Kohlenwasserstoffkette mit 1 bis 4 C-Atomen, und R einen Alkylrest mit 1 bis 4 C-Atomen darstellen. Der Alkylrest kann geradkettig oder verzweigt sein und schliesst also Methyl, Aethyl, Propyl, Isopropyl und die vier möglichen Butylreste mit ein. Neben Methylen -CH2- seien als mögliche Alkylen EMI3.1 <tb> ketten <SEP> CH2 <SEP> CH2 <SEP> - > <SEP> CR'-CR2 > <SEP> -CR2-CR2 <SEP> CH2 <SEP> CH2 <SEP> , <SEP> CH2 <SEP> CR <SEP> , <tb> <SEP> L <SEP> r <SEP> c <SEP> LL <SEP> LI <tb> <SEP> CH3 <SEP> CR <SEP> CH3 <tb> <SEP> 1 <SEP> 3 <tb> -CH2-C- <SEP> und <SEP> -C-CH2- <SEP> speziell <SEP> erwähnt. <tb> <SEP> CH3 <SEP> CH3 <tb> Die er findungs gemässen Wirkstoffe der Formel I und die sie als aktive Komponente enthaltenden herbiziden Mittel sind insbesondere brauchbar zur Bekämpfung grasartiger monocotyler Unkräuter und sind diesbezüglich den oben erwähnten bekannten Amid-Verbindungen klar überlegen, insbesondere bei (post-emergenter) Nachauflauf Anwendung. Die bekannten Verbindungen zeigen keine genügende herbizide Aktivität gegenüber schwer bekämpfbaren Ungräsern besonders bei niedrigen Aufwandmengen, oder aber sie schädigen bei der zur Bekämpfung der Ungräser notwendigen Aufwandmengen auch die Kulturpflanzen. Ueberraschenderweise zeigen die er findungs gemässen neuen Wirkstoffe der Formel I eine bessere herbizide Wirkung als die vorher erwähnten bekannten Produkte. Dabei sind die erfindungsgemassen Verbindungen sehr verträglich gegenüber Kulturpflanzen, wie z.B. Soja, Zuckerrübe, Baumwolle etc. Aufgabe dieser Erfindung war also, neue Wirkstoffe in der Reihe der a-(Phenoxy-phenoxy)-propion- säurederivate zu schaffen, welche bekannten Verbindungen ähnlicher Struktur in der herbiziden Wirkung gegen schwer bekämpfbare monocotyle Unkräuter überlegen und gegenüber wichtigen Kulturpflanzen verträglich sind, also eine Bereicherung der Technik darstellen. Zur Herstellung der neuen Wirkstoffe der Formel I dienen an sich bekannte Verfahren: Nach einem dieser Verfahren setzt man ein entsprechendes 4-Trifluormethylphenoxy-a-phenoxy-propionsäurehalogenid der Formel II EMI4.1 worin Hal ein Halogenatom, insbesondere Chlor darstellt, in Gegenwart eines basischen Säureakzeptors mit einem Alkoxyalkylamin der Formel III H2N-alkylen-O-R (III) um,worin Alkylen und R die unter Formel I gegebenen Bedeutungen haben. Gemäss einer Variante dieses Verfahrens kann man anstelle des Säurehalogenids der Formel II auch einen niederen Alkylester dieser Säure, insbesondere den Methylester, mit dem Amin der Formel III unter Bedingungen umsetzen, die eine Abspaltung des dem Ester zugrunde liegenden Alkanols (Methanol) bewirken. Diese Aminolyse von relativ leicht verseifbaren Carbonsäureestern ist eine allgemein anwendbare Methode zur Herstellung von Carbonsäureamiden und kann z.B. durch Dispergieren und Schütteln des Carbonsäureesters in wässerigen Aminlösungen schon in der Kälte erfolgen. Gemäss einem weiteren Verfahren setzt man den Hydroxy-diphenyläther oder ein Salz desselben der Formel IV EMI5.1 worin Y Wasserstoff oder das Kation eines Alkalimetalls bezw. das Aequivalent eines Erdalkalimetallkations bedeutet, mit einem a-HalogenpropionsSure-alkoxyalkylamid der Formel V EMI5.2 <tb> Hal <SEP> - <SEP> ca <SEP> - <SEP> CO <SEP> - <SEP> NH <SEP> - <SEP> alkylen <SEP> - <SEP> 0 <SEP> - <SEP> R <SEP> (V) <tb> <SEP> CH3 <tb> in Gegenwart eines säurebindenden Mittels (Base) um. Die Umsetzungen werden vorzugsweise in einem gegen über den Reaktionskomponenten inerten Lösungsmittel durchgeführt. Als Lösungsmittel konnnen solche aus den verschiedensten Stoffklassen in Frage, wie aliphatische und aromatische, gegebenenfalls chlorierte Kohlenwasserstoffe, z.B. Aethylenchlorid etc., sowie polare organische Lösungsmittel, wie Alkohole, Aether, Ketone, Amide, stabile Ester, z.B. Methyläthylketon, Dimethoxyäthan, Dimethylformamid, Dimethylsulfoxid, Tetrahydrofuran etc. Als basische Säureakzeptoren für die Umsetzung mit den Halogenverbindungen der Formel II und V können wässerige Alkalimetallhydroxide, wie KOH und NaOH sowie weitere iibliche basische Stoffe, wie Karbonate (K2C03, NaHCO3), Alkoholate (NaOCH3 und Kalium-tert.butylat), aber auch organische Basen wie Triäthylamin etc. verwendet werden. Die Ausgangsstoffe der Formeln II bis V sind grösstenteils bekannt. Soweit gewisse unter die Formel III fallende Amine noch neu sein sollten, lassen sie sich nach den für die bekannten Vertreter gebräuchlichen Methoden leicht herstellen. Neue a-Halogenpropionsäureamide der Formel V werden aus den entsprechenden Propionsäurehalogeniden und Aminen der Formel III erhalten. Das nachfolgende Beispiel veranschaulicht die Herstellung eines erfindungsgemässen Wirkstoffs der Formel I. Weitere in entsprechender Weise oder nach einer anderen der erwähnten Methoden hergestellte Wirkstoffe sind anschliessend tabellarisch aufgeführt. Beispiel 17,2 g (0,05 Mol)&alpha;-[4-(p-Trifluormethyl-phenoxy)-phenoxyl- propionsäurechlorid werden zu einem Gemisch von 4,1 g (0,05 Mol) 2-Methoxyäthylamin, 7,5 ml (0,055 Mol) Triäthylamin und 50 ml Methylenchlorid unter Eiskühlung zugetropft. Dabei lässt man die temperatur auf 20 C ansteigen. Nach zweistündigem RUhren engt man das Reaktionsgemisch ein und filtriert den Ruckstand in Aether über eine kleine Kieselgelsäule. Beim Eindampfen des Filtrats erhält man 14,9 g (77,6%) a-[4-(p- Trifluormethyl-phenoxy)- phenoxy]-propionsäure-(2-methoxy)-äthylamid vom Fp. 73-75 C. In analoger Weise wurden auch folgende Verbindungen der Formel I hergestellt: EMI7.1 <tb> Verbing. <SEP> - <SEP> alkylen-0-R <tb> <SEP> No. <tb> <SEP> 1 <SEP> cm2 <SEP> CH2- <SEP> CH3 <tb> <SEP> 2 <SEP> -CH2-CH2- -C2HS <SEP> 72-73 <tb> <SEP> 3 <SEP> -CH2-CH2-0-C3H7 <SEP> (n) <SEP> 70-720 <tb> <SEP> 4 <SEP> -CH-CH2-o-CH3 <SEP> 62-65 <tb> <SEP> CH3 <tb> <SEP> 5 <SEP> .CR?-CR2-CR2.0cH3 <SEP> 69-700 <tb> <SEP> 6 <SEP> -CR2-GH2-CE2- -C2R5 <SEP> 60-610 <tb> <SEP> 7 <SEP> -CR2-CR2-2 <SEP> -0-C3H7(i) <SEP> 60-61 <tb> <SEP> 8 <SEP> -CH2-OCH3 <tb> <SEP> 9 <SEP> -CH2-0-C2H5 <tb> <SEP> L0 <SEP> -CH2-CH-0-CH3 <tb> <SEP> CH3 <tb> <SEP> (H3 <SEP> 3 <tb> <SEP> 11 <SEP> -CH-CH2-0-CH3 <tb> <SEP> GH3C3 <tb> <SEP> 3 <tb> <SEP> 12 <SEP> -cR2-C-0-CR3 <tb> <SEP> CR3 <tb> Die Erfindung betrifft auch herbizide Mittel, welche einen neuen Wirkstoff der Formel I enthalten, sowie Verfahren zur pre- und insbesondere post-emergenten Unkrautbekämpfung, insbesondere von monocotylen Ungräsern. Die erfindungsgemässen Mittel können in den Ub- lichen Formulierungen vorliegen. Die Herstellung erfindungsgemässer Mittel erfolgt in an sich bekannter Weise durch inniges Vermischen und Vermahlen von Wirkstoffen der Formel I mit geeigneten Trägerstoffen, gegebenenfalls unter Zusatz von gegen über den Wirkstoffen inerten Dispersions- oder Lösungs mitteln. Die Wirkstoffe kennen in den folgenden Auf- arbeitungsformen vorliegen und angewendet werden: feste Aufarbeitungsformen: Stäubemittel, Streumittel, Granulate, Umhullungsgranu- late Imprägnierungs- granulate und Homogen granulate; in Wasser dispergierbare Wirkstoffkonzentrate: Spritzpulver, (wettable powder), Pasten, Emulsionen: flüssige Aufarbeitungs formen: Lösungen. Zur Herstellung fester Aufarbeitungsformen (Stäubemittel, Streumittel, Granulate) werden die Wirkstoffe mit festen Trägerstoffen vermischt. Als TrSger- stoffe kommen zum Beispiel Kaolin, Talkum, Bolus, Löst, Kreide, Kalkstein, Kalkgrits, Ataclay, Dolomit, Diatomenerde, gefällte Kieselsäure, Erdalkalisilikate, Natriumund Kaliumaluminiumsilikate (Feldspäte und Glimmer), Calcium und Magnesiumsulfate, Magnesiumoxid, gemahlene Kunststoffe, DUngemittel, wie Ammoniumsulfat, Ammonium- phosphat, Ammoniunitrat, Harnstoff, gemahlene pflanzliche Produkte, wie Getreidemehl, Baumrindemehl, Holzmehl, Nussschalenmehl, Cellulosepulver, Rückstände von Pflanzenextraktionen, Aktivkohle etc., je für sich oder als Mischungen untereinander in Frage. Granulate lassen sich herstellen, indem man die Wirkstoffe in einem organischen Ldsungsmittel lust und die so erhaltene LUsung auf ein granuliertes Mittel, z.B. Attapulgit, SiO2, Granicalcium oder Bentonit, aufbringt und dann das organische Ldsungsmittel wieder verdampft. Polymerengranulate können hergestellt werden, indem man z.B. ein fertiges, poröses Polymerengranulat, wie Harnstoff/Formaldehyd-Polymerisate, Polyacrylnitril und Polyester, mit bestimmter Oberfläche und günstigem vorausbestimmtem Absorptions/DesorptionsverhSltnis mit den Wirkstoffen, z.B. in Form ihrer Lösungen (in einem niedrig siedenden Lösungsmittel), imprägniert und das Lösungsmittel entfernt. Derartige Polymerengranulate können in Form von Mikrogranulaten mit Schuttgewichten von vorzugsweise 300 g /Liter bis 600 gleiter auch mit Hilfe von Zerstäubern aufgebracht werden. Das Zerstäuben kann über ausgedehnte Behandlungsflächen mit Hilfe von Flugzeugen durchgefuhrt werden. Granulate sind auch durch Kompaktieren des Träger materials mit den Wirk- und Zusatzstoffen und an schliessendes Zerkleinern erhältlich. Diesen Mitteln können ferner den Wirkstoff sta bilisierende Zusätze und/oder nichtionische, antion aktive und kationenaktive Stoffe zugegeben werden, die beispielsweise die Haftfestigkeit der Wirkstoffe auf Pflanzen und Pflanzenteilen verbessern (Haft- und Klebemittel) und/oder eine bessere Benetzbarkeit (Netzmittel) sowie Dispergierbarkeit (Dispergatoren) gewährleistet. Als Klebemittel kommen beispielsweise die folgenden in Frage: Olein-Kalk-Mischung, Cellulose derivate (Methylcellulose, Carboxymethylcellulose), Hydroxyäthylenglykoläther von Mono- und Dialkylphenolen mit 5 bis 15 Aethylenoxidresten pro Molekul und 8 bis 9 Kohlenstoffatomen im Alkylrest, Ligninsulfonsäure, deren Alkalimetall- und Erdalkalimetallsalze, Polyäthylen glykoläther (Carbowaxe), Fettalkoholpolyglykoläther mit - 5 bis 20 Aethylenoxidresten pro Molekül und 8 bis 18 Kohlenstoffatomen im Fettalkoholteil, Kondensations produkte von Aethylenoxid, Propylenoxid, zu Polyvinyl- pyrrolidone, Polyvinylalkohole, Kondensationsprodukte von Harnstoff-Formaldehyd sowie Latex-Produkte. In Wasser dispergierbare Wirkstoffkonzentrate, d.h. Spritzpulver (wettable powder), Pasten und Emul sionskonzentrate stellen Mittel dar, die mit Wasser auf jede gewünschte Konzentration verdünnt werden können. Sie bestehen aus Wirkstoff, Trägerstoff, gegebenenfalls den Wirkstoff stabilisierenden Zusätzen, oberflächenaktiven Substanzen und Antischaummitteln und gegebenenfalls Lsungsmitteln. Die Spritzpulver (wettable powder) und Pasten werden erhalten, indem m±n die Wirkstoffe mit Dispergiermitteln und pulverfUrmigen Trägerstoffen in geeigneten Vorrichtungen bis zur Homogenität vermischt und vermahlt. Als Trägerstoffe kommen beispielsweise die vorstehend für die festen Aufarbeitungsformen erwähnten in Frage. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Trägerstoffe zu verwenden. Als Dispergatoren können beispielsweise verwendet werden: Kondensationsprodukte von sulfoniertem Naphthalin und sulfonierten Napthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins b. von Naphthalinsulfonsäuren mit Phenol und Formaldehyd sowie Alkalimetall-, Ammonium- und Erdalkalimetallsalze von Ligninsulfonsäure, weiter Alkylarylsulfonate, Alkali- und Erdalkalimetallsalze der Dibutylnaphthalinsulfonsäure, Fettalkohol-- sulfate, wie Salze sulfatierter Hexadecanole, Heptadecanole und Salze von sulfatiertem Fettalkohol polyäthylenglykoläther, das Natriumsalz von Oleylmethyltaurid, ditertiare Acetylenglykole, Dialkyldilaurylammoniumchlorid und fettsaure Alkali- und Erdalkalimetallsalze. Als Antischaummittel kommen zum Beispiel Silicone in Frage. Die Wirkstoffe werden mit den oben aufgeführten Zusätzen so vermischt, vermahlen, gesiebt und passiert, dass bei den Spritzpulvern der feste Anteil eine Korn grösse von 0,02 bis 0,04 und bei den Pasten von 0,03 mm nicht überschreitet. Zur Herstellung von Emulsionskonzentraten und Pasten werden Dispergiermittel, wie sie in den vorangehenden Abschnitten aufgeführt wurden, organische Lösungsmittel und Wasser verwendet. Als LUsungsmittel kommen beispielsweise die folgenden in Frage: Alkohole, Xylole, Toluol, Dimethylsulfo xid, N,N-dialkylierte Amide und Trialkylamine. Die Lösungsmittel müssen praktisch geruchlos, nicht phytotoxisch, den Wirkstoffen gegenüber inert und dürfen nicht leicht brennbar sein. Ferner kennen die erfindungsgemässen Mittel in Form von LUsungen angewendet werden. hierzu wird der Wirkstoff bzw. werden mehrere Wirkstoffe der Formel I in geeigneten organischen LUsungsmitteln, LUsungsmittel- gemischen, Wasser oder Gemischen von organischen LUsungsmitteln mit Wasser gelöst. Als organische Lösungs- mittel können aliphatische und aromatische Kohlenwasserstoffe, deren chlorierte Derivate, Alkylnaphthaline, allein oder als Mischung untereinander verwendet werden. Der Gehalt an Wirkstoff in den oben beschriebenen Mitteln liegt zwischen 0e1 bis 95%, bevorzugt zwischen 1 bis 80%. Anwendungsformen können bis hinab zu 0,001% verdünnt werden. Die Aufwandmengen betragen in der Regel 0,06bis 10 kg AS/ha, vorzugsweise 0,25 bis 4 kg AS/ha. Die Wirkstoffe der Formel I kennen beispielsweise wie folgt formuliert werden (Teile bedeuten Gewichtsteile): Spritzpulver Zur Herstellung eines a) 50%igen, b) 25%igen und c) 10%igen Spritzpulvers werden folgende Bestandteile verwendet: a) 50 Teile 4-(p-Trifluormethyl-phenoxy)-a-phenoxy propionsäure-(3-methoxy)-propyl-(2)-amid, 5 Teile Natriumdibutylnaphthylsulfonat, 3 Teile Naphthalinsulfonsäuren-Phenolsulfon säuren-Formaldehyd-Kondensat 3:2:1, 20 Teile Kaolin, 22 Teile Champagne-Kreide; b) 25 Teile 4-(p-Trifluormethyl-phenoxy)-a-phenoxy propionsäure-(2-methoxy) äthylamid, 5 Teile Oleylmethyltaurid-Natrium-Salz, 2,5 Teile Napthalinsulfonsäuren-Formaldehyd Kondensat, 0,5 Teile Carboxymethylcellulose, 5 Teile neutrales Kalium-Aluminium-Silikat, 62 Teile Kaolin; c) 10 Teile eines der obigen Wirkstoffe, 3 Teile Gemisch der Natriumsalze von gesättigten Fettalkoholen, 5 Teile Naphthalinsulfonsäuren - Formaldehyd Kondensat, 82 Teile Kaolin. Der angegebene Wirkstoff wird auf die entsprechenden Trägerstoffe (Kaolin und Kreide) aufgezogen und anschliessend vermischt und vermahlen. Man erhält Spritzpulver von vorzüglicher Benetzbarkeit und Schwebefähigkeit Aus solchen Spritzpulvern können durch Verdünnen mit Wasser Suspensionen jener gewünschten Wirkstoffkonzentration erhalten werden. Derartige Suspensionen werden zur Bekämpfung von Unkräutern und Ungräsern in Kulturpflanzungen verwendet. Paste Zur Herstellung einer 45Zigen Paste werden folgende Stoffe verwendet: 45 Teile 4-(p-Trifluormethyl-phenoxy)-&alpha;-phenoxy- propionsäure-(3-äthoxy) -propyl- (1) -amid, 5 Teile Natriumaluminiumsilikat, 14 Teile CetylpÏlyäthylenglykoläther mit 8 Mol Aethylenoxid, 1 Teil Oleylpolyäthylenglykoläther mit 5 Mol Aethylenoxid, 2 Teile Spindeln1, 23 Teile Wasser, 10 Teile Polyäthylengylkol. Der Wirkstoff wird mit den Zuschlagstoffen in dazu geeigneten Geräten innig vermischt und vermahlen. Man erhält eine. Paste, aus der sich durch VerdUnnen mit Wasser Suspensionen jeder gewünschten Konzentration herstellen lassen. EmuLsionskonzentrat Zur Herstellung eines 25%igen Emulsionskonzentrates werden 25 Teile 4-(p--Trifluormethyl-phenoxy)--phenoxy- propionsäure-(3-äthoxy)-propyl-(1)-amid, LO Teile Mischung von Nonylphenolpolyoxyäthylen - und Calcium-dodecylbenzol-sulfonat, 10 Teile Cyclohexanon 55 Teile Xylol miteinander vermischt. Dieses Konzentrat kann mit Wasser zu Emulsionen auf geeignete Konzentrationen verdünnt werden. Anstatt des jeweiligen in den vorhergehenden Formu lierungsbeispielen angegebenen Wirkstoffs kann auch eine andere der von der Formel 1 umfassten Verbindungen verwendet werden. Erfindungsgemasse Mittel, die als aktive Komponente mindestens eine Verbindung der Formel I enthalten, eignen sich besonders zur selektiven Bekämpfung monocotyler Ungräser in pre- und insbesondere post-emergenter Anwendung in Kulturpflanzenbeständen, wie z.B. Soja, Baumwolle, Zuckerrohr etc. Zum Nachweis der Brauchbarkeit als Herbizide (pre- und post-emergent) und zum Beweis der Ueberlegenheit gegenüber bekannten Wirkstoffen ähnlicher Struktur dienen folgende Testmethoden: Pre -emergente Herbizid-Wirkung (Reimhemmung) Im Gewächshaus wird unmittelbar nach der Einsaat der Versuchspflanzen in Saatschalen die Erdoberfläche mit einer wässerigen Dispersion der Wirkstoffe, erhalten aus einem 25%-igen Emulsionskonzentrat resp. aus einem 25%-igen Spritzpulver mit Wirkstoffen, die wegen ungenugender Loslichkeit nicht als Emulsionskonzentrat hergestellt werden können, behandelt. Es wurden vier verschiedene Konzentrationsreihen angewendet, entsprechend 4, 2, 1 und 0,5 kg Wirksubstanz pro Hektar. Die Saatschalen werden im Gewächshaus bei 22-25 C und 50-70% rel. Luftfeuchtigkeit gehalten und der Versuch nach 3 Wochen ausgewertet und die Resultate nach folgender Notenskala bonitiert: 1 = Pflanzen nicht gekeimt oder total abgestorben 2-3 = sehr starke Wirkung 4-6 = mittlere Wirkung 7-8 = geringe Wirkung 9 = keine Wirkung (wie unbehandelte Kontrolle) als Versuchspflanzen dienen: hordeum (Gerste) setaria italica triticum (Weizen) echinochloa crus galli zea (Mais) beta vulgaris sorghum hybr. (Hirse) sida spinosa oryza (Reis) sesbania exaltata glycine (Soja) amaranthus retroflexus gossypium (Baumwolle) sinapis alba avena fatus ipomoea purpurea lolium perenne galium aparine alopecurus myosuroides pastinaca sativa bromus tectorum rumex sp. cyperus esculentus chrysanthemum leucum. rottboellia exaltata abutilon sp. digitaria sanguinalis solanum nigrum Post -emerzente Rerbizid-Wirkung < Kontakherbizid) Eine grössere Anzahl (mindestens 7) Unkräuter und Kulturpflanzen, sowohl monocotyle wie dicotyle, wurden nach dem Auflaufen (im 4-bis-6-Blattstadium) mit einer wässerigen Wirkstoffdispersion in Dosierungen von 0,06; 0,125; 0,25; 0,5 kg Wirksubstanz pro Hektar auf die Pflanzen gespritzt und diese bei 24 -26 C und 45-60% rel. Luftfeuchtigkeit gehalten. 15 Tage nach- Behandlung wird der Versuch ausgewertet und das Ergebnis wie im pre-emergent-Versuch nach derselben Notenskala bonitiert. Als Kulturpflanzen in diesem Test dienten Soja, Baumwolle und Zuckerrübe. Als monokotyle Unkräuter wurden acht Pflanzen aus der im pre-Emergenztest gegebenen Liste ausgewählt. Als bekannte Vergleichssubstanzen dienten folgende Verbindungen des Standes der Technik: EMI18.1 (DT-OS 2 639 796) EMI18.2 (DT-OS 2 433 067) EMI18.3 (Jap. OLS 52-130912) EMI18.4 (DT-OS 2 531 643) Die gepruften erfindungsgemässen Wirkstoffe entsprechen der Nummerierung in der Tabelle nach dem Beispiel. Ergebnisse: EMI19.1 <tb> <SEP> Co <SEP> Co <SEP> W <SEP> <tb> <SEP> . > <SEP> 0 <SEP> H <SEP> > 1 <SEP> r <SEP> O <SEP> < D <SEP> fl <SEP> o <SEP> W <SEP> C: <tb> <SEP> CD <SEP> 'O <SEP> C) <SEP> 0 <SEP> 0 <SEP> rr <SEP> n <SEP> rr <SEP> =r <SEP> L < <SEP> 0 <tb> <SEP> Verbindung <SEP> Q <SEP> X <SEP> r- <SEP> g <SEP> X <SEP> c <SEP> a <SEP> n <tb> <SEP> tr <SEP> rr <SEP> C <SEP> ii <SEP> C <SEP> CD <tb> <SEP> J <SEP> 3omOPrO <SEP> 0 <SEP> 1 <tb> <SEP> CL <SEP> c: <SEP> (D <SEP> L <SEP> T <SEP> 0 <SEP> O <tb> <SEP> - <SEP> rC: <tb> <SEP> r <SEP> 3 <SEP> P, <SEP> (D <tb> <SEP> m <SEP> 0 <SEP> O <SEP> CD <tb> <SEP> 9 <SEP> 0, <SEP> 0, <tb> <SEP> < D <tb> <SEP> 500 <SEP> 9 <SEP> 6 <SEP> 5 <SEP> 7 <SEP> 9 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> A <tb> <SEP> 250 <SEP> 9 <SEP> 8 <SEP> 6 <SEP> 8 <SEP> 9 <SEP> 3 <SEP> 2 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 125 <SEP> 9 <SEP> 9 <SEP> 6 <SEP> 9 <SEP> 9 <SEP> 4 <SEP> 2 <SEP> 2 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> B <SEP> 500 <SEP> 3 <SEP> 2 <SEP> 3 <SEP> 9 <SEP> 4 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 250 <SEP> 4 <SEP> 4 <SEP> 3 <SEP> 9 <SEP> 7 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 125 <SEP> 7 <SEP> 8 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 2 <SEP> 1 <SEP> 2 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 3 <SEP> 4 <SEP> 3 <SEP> 9 <SEP> 9 <SEP> 9 <tb> Ic <SEP> 500 <SEP> 7 <SEP> 6 <SEP> 3 <SEP> 6 <SEP> 3 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 250 <SEP> 7 <SEP> 7 <SEP> 4 <SEP> 9 <SEP> 7 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 125 <SEP> 9 <SEP> 9 <SEP> 6 <SEP> 9 <SEP> 8 <SEP> 3 <SEP> 2 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 9 <SEP> 9 <SEP> 7 <SEP> 9 <SEP> 9 <SEP> 3 <SEP> 2 <SEP> 4 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> D <SEP> 500 <SEP> 9 <SEP> 9 <SEP> 7 <SEP> 9 <SEP> 9 <SEP> 5 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 250 <SEP> 9 <SEP> 9 <SEP> 7 <SEP> 9 <SEP> 9 <SEP> 6 <SEP> 2 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 125 <SEP> 9 <SEP> 9 <SEP> 8 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 3 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 4 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> 9 <tb> EMI20.1 <tb> Verbindung <SEP> = <SEP> y <SEP> < <SEP> m <SEP> - <SEP> u <SEP> m <SEP> m <SEP> < 0 <SEP> fl <SEP> m <SEP> b <SEP> c <tb> <SEP> h' <SEP> (O <SEP> o <SEP> o <SEP> O <SEP> rr <SEP> 9 <SEP> 5 <SEP> L < <SEP> e <SEP> n <tb> <SEP> No. <SEP> Q <SEP> t <SEP> ± <SEP> $ <SEP> r <SEP> X <SEP> W <SEP> t <tb> <SEP> 11 <tb> <SEP> P, <SEP> 3 <SEP> n <SEP> m <SEP> o <SEP> Z <SEP> W <SEP> o <SEP> o <SEP> n <tb> <SEP> S <SEP> v <SEP> e <SEP> y <SEP> H <SEP> <tb> <SEP> a <SEP> IDr(D1Q <tb> <SEP> 8 <SEP> r <SEP> r- <SEP> =r' <SEP> i <tb> <SEP> mcD <SEP> G <SEP> rpr <SEP> r <SEP> co <tb> <SEP> =1 <SEP> m <SEP> o <SEP> nr <tb> <SEP> 250 <SEP> 1 <SEP> 2 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 8 <SEP> 9 <tb> <SEP> 125 <SEP> 3 <SEP> 2 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 4 <SEP> 3 <SEP> 3 <SEP> 4 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 500 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 7 <SEP> 9 <tb> <SEP> 2 <SEP> 250 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 7 <SEP> 9 <tb> <SEP> 125 <SEP> 2 <SEP> 2 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 7 <SEP> 6 <SEP> 3 <SEP> 4 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <SEP> i <tb> <SEP> 500 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> I <SEP> I <SEP> I <SEP> 1 <SEP> 9 <SEP> 8 <SEP> 9 <tb> <SEP> 4 <SEP> 250 <SEP> 1 <SEP> 1 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 4 <SEP> 250 <SEP> 1 <SEP> 1 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 125 <SEP> 3 <SEP> 2 <SEP> 2 <SEP> 3 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 6 <SEP> 2 <SEP> 3 <SEP> 4 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> W <tb> <SEP> 500 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 250 <SEP> j <SEP> 1 <SEP> 2 <SEP> 2 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 5 <SEP> 125 <SEP> 4 <SEP> 3 <SEP> 2 <SEP> 3 <SEP> 1 <SEP> I <SEP> 1 <SEP> I <SEP> 999 <tb> <SEP> I <tb> <SEP> 60 <SEP> 7 <SEP> 4 <SEP> 3 <SEP> 6 <SEP> 2 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 250 <SEP> 6 <SEP> 3 <SEP> 6 <SEP> 4 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 250 <SEP> 6 <SEP> 3 <SEP> 6 <SEP> 4 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 6 <tb> <SEP> 125 <SEP> 8 <SEP> 5 <SEP> 6 <SEP> 9 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 1 <SEP> 9 <SEP> 9 <SEP> 9 <tb> <SEP> 60 <SEP> 9 <SEP> 9 <SEP> 6 <SEP> 9 <SEP> 5 <SEP> 1 <SEP> 1 <SEP> 2 <SEP> 9 <SEP> 9 <SEP> 9 <tb> Im pre-emergent-Test wurden ebenfalls gute Ergebnisse erzielt, wobei Verbindung No. 4 am besten abschnitt.
Patentansprüche 1. Neue herbizid wirksame 4-(p-Trifluormethylphenoxy) &alpha;-phenoxy-propionsäure-alkoxyalkylamide der Formel I EMI21.1 <tb> <SEP> CHn <tb> CF30 <SEP> O-CH-C-NH-alkylen-O-R <SEP> zuO <SEP> -CH <SEP> - <SEP> -NH <SEP> - <SEP> Iky <SEP> len <SEP> - <SEP> R <SEP> (I) <tb> <SEP> 1' <tb> <SEP> 0 <tb> worin alkylen eine gerade oder verzweigte gesättigte Kohlenwasserstoffkette mit 1 bis 4 C-Atomen und R einen Alkylrest mit 1 bis 4 C-Atomen bedeuten. 2. 4-(p-Trifluormethylphenoxy)-a-phenoxy-propionsäure- alkoxyalkylamide gemäss Patentanspruch 1, dadurch gekennzeichnet, dass alkylen in der Formel 1 die Aethylenkette -CH2-CH2- oder eine gerade oder ver zweigte Propylenkette darstellt. 3. Die Verbindung 4-(p-Trifluormethylphenoxy)-a phenoxy-propionsäure-N-(2-methoxy)-äthylamid gemäss Patentanspruch 1. 4. Die Verbindung 4-(p-Trifluormethylphenoxy)-a-phenoxy propionsäure-N- (3-methoxy) -propyl- (2) -amid. 5. Verfahren zur Herstellung der neuen 4-(p-Trifluor methyl-phenoxy)-&alpha;-phenoxy-propionsäure-alkoxyalkyl- amide der Formel I des Patentanspruchs 1, dadurch gekennzeichnet, dass man ein Halogenid oder einen niederen Alkylester der 4-(p-Trifluormethyl-phenoxy)- o-phenoxy-propionsäure mit einem Alkoxyalkylamin der Formel III H2N-alkylen-O-R (III) worin alkylen und R die unter Formel I gegebenen Bedeutungen haben, in an sich bekannter Weise umsetzt. 6 Verfahren zur Herstellung der neuen 4-(p-Trifluormethyl phenoxy)-&alpha;-phenoxy-propionsäure-alkoxyalkylamide der Formel I des Patentanspruchs 1, dadurch gekennzeichnet, dass mZn den Hydroxy-diphenyläther oder ein Salz desselben von der Formel IV EMI22.1 worin Y Wasserstoff oder das Aequivalent eines Alkalimetall- oder Erdalkalimetallkations bedeutet, mit einem &alpha;-Halogen-propionsäure-alkoxyalkylamid der Formel V EMI23.1 <tb> <SEP> CH <tb> <SEP> 3 <tb> Hal-CR-CO-NH-alkylen-O-R <SEP> (V) <tb> in Gegenwart eines säurebindenden Mittels umsetzt. 7. Herbizides Mittel, dadurch gekennzeichnet, dass es als wirksame Komponente ein 4-(p-Trifluormethyl phenoxy)-&alpha;-phenoxy-propionsäure-alkoxyalkylamid der Formel I des Pstentanspruci 1 enthält. 8. Die Verwendung der 4-(p-Trfffluormethyl-phenoxy)-a- phenoxy-propionsäure-alkoxyalkylamide der Formel 1 des Patentanspruchsl zur Bekämpfung von monocotylen Unkräutern. 9. Die Verwendung gemäss Patentanspruch 8 zur selektiven Bekämpfung von monocotylen Unkräutern in Kultur- pflanzenbeständen.
CIBA-GEIGY AG
BOHNER, BEAT, DR.; ROHR, OTTO, DR.; Böhner, Beat, Dr.
EP-0003067-B1
3,067
EP
B1
DE
19,811,104
1,979
20,100,220
new
C25D13
C08C19
C09D5, C08C19, C08F20, C08G59, C08F236, C09D121
C08C 19/40, C09D 5/44B, C08G 59/32B, C09D 5/44C
COATING COMPOSITION FOR CATHODIC ELECTRODEPOSITION
1. A coating material which is adapted to be deposited on a cathode and comprises water-soluble or water-dispersible polymeric film-forming substances which are adjusted to contain cations, and, if desired, conventional additives, characterized in that the polymeric film-forming substance is a reaction product of a copolymer (A) of a) 40 to 90 % by weight of a diene having 4 to 8 carbon atoms, b) 60 to 10 % by weight of a copolymerizable, ethylenically unsaturated monomer which contains epoxy groups, c) 0 to 50 % by weight of a copolymerizable ethylenically unsaturated monomer which contains no epoxy groups, with a secondary amine (B), wherein the amino group has been quarternated with organic or inorganic acid.
Kathodisch abscheidbares mDerzugsmittel- Die Erfindung betrifft ein kathodisch abscheidbares Uberzugs- mittel auf Basis eines Diencopolymerisats. Es ist bekannt, Überzüge, insbesondere Einbrennüberzüge, auf elektrisch leitenden, insbesondere metallenen Körpern herzustellen, indem aus wässrigen Lösungen bzw. wässrigen Dispersionen von Salzen carbonsaurer anionischer Polymerer auf den Körpern die Polymeren in Form von Uberzügen mittels Anaphorese elektrochemisch abgeschieden und gegebene^=alls an- schliessend eingebrannt werden0 Eine Eigenart des Anaphorese Verfahrens ist, dass nicht nur die Polymeren auf den Körpern (Anode) abgeschieden werden, sondern auch an den Körpern naszierender Sauerstoff sich entwickelt und (sofern die Körper aus unedlem Metall bestehen) Metallionen in Lösung gehen können. Die beiden letztgenannten Erscheinungen sind oft von Nachteil, da naszierender Sauerstoff die Polymeren in nachteiliger Weise chemisch verändern kamrs und Metallionen die Wasserfestigkeit der Uberzüge herabsetzen sowie die Überzüge verfärben können. Letzteres ist insbesondere der Fall bei Körpern aus Kupfer oder Kupferlegierungen. Es ist eine Eigen tumLichkeit des Kataphorese-Verfahrens, dass zwar ebenfalls au den Körpern (Kathode) die Polymeren abgeschieden werden, je- doch an den Körpern Wasserstoff sich entwickelt und (auch wenn die Körper aus unedlem Metall bestehen) keine Metall ionen in Lösung gehen. Da Wasserstoff die Polymeren im allgemeinen kaum in nachteiliger Weise chemisch verändert, ist insoweit das Hersiellen von Uberzügen mittels Kataphorese von Vorteil gegenüber dem Herstellen von Uberzügen mittels Anaphorese. Aus DT-PS 12 76 260 ist ein Verfahren zur Herstellur von Überzügen aus elektrisch leitenden Körpern bekannt, wobei aus wassrigen Lösungen bzw. Dispersionen von Salzen stickstoffbasischer kationischer Polymerer die Polymeren auf den lei wenden Körpern kathodisch abgeschieden und anschliessend eingebrannt werden. Aus DT-OS 20 57 799 ist ein Verfahren und überzugsmittel für die elektrophoretische Beschichtung bekannt, worin eine Zu samner,setzung verwendet wird, die ein aminhaltiges Harz in Xombination mit einem vollständig verkappten Isocyanat ent holt. Das dort verwendete Harz kann quaternäre Ä=iioniumsalz- gruppen enthalten, leitet sich aber nicht von einem Epoxyharz ab und ist nicht selbsthärtend, Aus C-B-PS 14 26 222 sind Uberzugsmittel für die kataphore- 0 tische Beschichtung bekannt, wobei die Uberzugsmischung amBrige organische oder anorganische Säure, sowie ein spezielles Harz enthält. Dieses Harz ist ein Reaktionsprodukt eines Copolymerisats aus 5 bis 50 % äthylenisch ungesättigten, Epoxigruppen enthaltenden Monomers und 50 bis 95 96 ungesättigtes Vinylmonomer oder Acrylmonomer ohne Epoxigruppen, mit einem sekundären Amin. Das vorbekannte Copolymerisat ist beispielsweise ein Glycidylmethacrylat/Styrol-Copolymerisat Die bisher für die kathodische Abscheidung entwickelten Uberzugsmittel weisen jedoch hinsichtlich der Eigenschaften der damit erhaltenen Uberzüge noch einige Nachteile auf. Besonders die Haftfestigkeit der Uberzüge auf dem Untergrund, ihre Elastizität und ihre Korrosionsbeständigkeit sind verbesserungsbedürftig. Der Erfindung liegt die Aufgabe zugrunde, kathodisch abscheidbare Uberzugsmittel herzustellen, deren Uberzüge auf dem Substrat eine verbesserte Haftfestigkeit und Elastizität neben guter Härte und Korrosionsbeständigkeit aufweisen0 Die Erfindung löst die Aufgabe mit einem kathodisch abscheidbaren Uberzugsmitte: auf Basis wasserlöslicher oder in Wasser dispergierbarer, kationisch eingestellter polymerer Filmbildner, wobei das Uberzugsmittel gegebenenfalls übliche Zusätze enthält. Das kathodisch abscheidbare Uberzugsmittel der vorliegenden Erfindung ist dadurch gekennzeichnet, dass der polymere Filmbildner ein Reaktionsprodukt eines Copolymerisats (A) aus a) 4 bis 8 C-Atolne aufweisendem Dien b) Epoxigruppen enthaltendem copolymerisierbarem äthylenis ch ungesättigtem Monomer, sowie gegebenenfalls c) copolymerisierbarem äthylenisch ungesättigtem Monomer, das keine Epoxigruppen enthält, mit sekundärem Amin (B) ist, wobei die Aminogruppe mit organischer oder anorgarlis;cher Säure quaterniert worden ist. Geeignete Dien-Komponenten des Copolymerisats sind 1,3-Butadien, 2-Methylbutadien-7,3, 2,3-Dimethylbutadien-1,3 oder Chloropren. Der Anteil des Diens im Copolymerisat betrigt 40 bis 90 Gew.-%. Vorzugsweise enthält das Copolymerisat 1,3-Butadien. Das Copolymerisat enthält ferner als wesentliche Komponente ein Epoxigruppen enthaltendes copolymerisierbares äthylenisch ungesättigtes Monomer. Der Anteil dieses Monomers im Copolymerisat beträgt 10 bis 60 Gew.-%. Bevorzugte Rpoxzgruppen enthaltende Monomere sind beispielsweise der Glycidylester der Acryl- oder Methacrylsäure. Weiterhin können auch Vinyloder Allylester von epoxidierten ungesättigten Fettsäuren eingesetzt werden, wie 2,3-Epoxi-buttersäureallylester. Ferner Glycidylester von Dicarbonsäuren, wie Maleinsäure- allyl-glycidylester oder Phthalsäure-allyl-glycidylester. Schliesslich eignen sich auch Diolefine, deren eine Doppelbindung epoxidiert worden ist, wie Vinyläthylenoxid, 1-Methyl 1 -vinyl-äthylenoxid, 3,4-Epoxi-l-vinylcyclohxan, Glycidylallyläther. Die Aminogruppe des Reaktionsproduktes entstammt sekundären Aminen, die mit der Epoxigruppe umgesetzt worden sind. Geeignete sekundäre Amine können gleiche oder verschiedene, gegebenenfalls substituierte Alkyl-, Cycloalkyl- oder Arylreste mit 1 bis 20 Kohlenstoffatomen enthalten, beispielsweise Diäthylamin, Diisopropylamin, Dibutylamin, Morpholin, Piperidin, Pyrrolidin, ebenso Alkanolamine, z.B. Diäthanolamin, Diisopropanolamin. Die Menge des Amins für die Umsetzung mit dnn Epoxigruppen wird so ausgewählt, dass sie mindestens ausreichend ist, um dem Harz nach Reaktion mit einer Säure einen kationischen Charakter zu verleihen. In manchen Fäden werden im wesentlichen alle Epoxigruppen mit Amin umgeset:t. Es können aber auch überschüssige Epoxigruppen im Harz verbleiben, die später unter Einwirkung von Wasser zu Hydroxylgruppen hydro lysl^-en, Gegebenenfalls kann die Umsetzung des Amins mit der Epoxigruppe vor der Polymerisation erfolgen. Hierfür wird das Amin mit den Epoxigruppen enthaltenden Monomeren gemischt und, falls dies erforderlich ist, auf mässig erhöhte Temperatur erw2rmt, z.B. auf etwa 50 bis 110 C. Die Wasserlöslichkeit oder Dispergierbarkeit des erfindung gemässen Uberzugsmittels ist durch die Behandlung des Reaktionsproduktes aus dem Copolymerisat und dem sekundären Amin mit orO=nischer Säure, wie Ameisen-, Essig-, Propion-, Milchoder Buttersäure, oder durch Behandlung mit anorganischer Säure, wie Bor-, Salz-, Phosphor- oder Schwefelsäure herbei geführt. Die Menge an Säure zur Neutralisation des Amins wird so g ält, dass sie ausreichend ist, um das Harz in Wasser löslich oder dispergierbar zu machen, wobei es vorteilhaft ist, einen pH-Wert der wässrigen Lösung zwischen etwa 3 und 8 einzustellen. Das mit dem sekundären Amin zur Reaktion gebrachte Copolymerisat des erfindungsgemässen Uberzugsmittels kann gegebenenalls noch ein copolymerisierbares, äthylenisch ungesättigtes Monomer enthalten, welches keine Epoxigruppen enthält. ComonorQre dieser Art dienen gewünschten Falles der Eigenschaftsverbesserung des polymeren Films, wie Verbesserung des :aftve mögens, der Härte oder Abriebfestigkeit. Geeignete Co acnomere vorgenannter Art sind beispielsweise stickstoffhaltige äbnylenisch ungesättigte aromatische, aliphatische oder cy'oaliphatische Monomere, wie Vinylpyridin, Dimethylamino äthylacrylat, 1-Vinylpyrrolidin-2. Ferner Acrylate oder irethyl2crylate, wie Butylacrylat, Methylmethacrylat. Weiterhin Vinylacetat, Styrol. Comonomere der genannten Art, die keine Epoxigruppen enthalten, können in dem Copolymerisat bis zu einem Anteil von 50 Gew.-% enthalten sein. Eine für das erfindungsgemässe Uberzugsmittel zweckmässige Zussammensetzung des Copolymerisats besteht aus a) 40 bis 90 Gew.-% Dien, vorzugsweise Butadien-1,32 b) 60 bis 10 Gew.-% Epoxigruppen enthaltendem copoly nerisierbarem äthylenisch ungesättigtem Monomer, vorzugsweise Glycidyl(meth)acrylat, c) 0 bis 50 Gew.-% copolymerisierbarem äthylenisch i:iigesättigtem Monomer,- das keine Epoxigruppen enthält. Die Herstellung des Copolymerisats erfolgt nach üblichen Meh2ode7n, zweckmässig durch Lösungspolymerisation in organischer, gegebenenfalls geringe Mengen Wasser enthaltenden Lösungsmitteln unter Verwendung radikalischer Katalysatoren2 beispielsweise Benzoylperoxid. Die Umsetzung der Epoxigruppe des Copolymerisats mit sekun deren Amin erfolgt in an sich bekannter Weise unter Erwärmen und Rühren, beispielsweise bei 80 C während 2 Stunden. Die -sserlöslichen Salze des Reaktionsproduktes können bei spielsseise hergestellt werden, indem Säuren mit diesen in Berührung gebracht werden. Es ist jedoch auch möglich, die Säurekomponente bereits vor oder während der Polymerisation mit den Komponenten der Copolymerisate in Berührung zu bringer. Das Herstellen der wässrigen Lösungen bzw. wässrigen Disper sio-=n der Salze kann wiederum nach üblichen Methoden erfolgen. Eine geeignete Methode besteht beispielsweise darin, aus Lösungen der Polymerisate in organischen Lösungsmitteln und aus Wasser Dispersionen herzustellen und diese dann mit der Säurekomponente zu versetzen. Eine weitere geeignete Methode besteht beispielsweise darin, die Salze der Poly merisate als solche oder in Form ihrer Lösungen in organi scher Lösungsmitteln in Wasser einzubringen. Im allgemeinen ist es besonders zweckmässig, die Arbeitsbedingungen insgesamt so zu zählen, dass die Gesamtmenge der Salze in Form einer wässrigen Lösung vorliegt oder eine grössere Teilmenge in Form einer wässrigen Lösung und eine kleinere Teilmenge in Form einer Dispersion. Es ist ferner im allgemeinen zweckEaBig, wenn der pH-Wert der Lösungen bzw. Dispersionen auf einen Wert von 1 bis 8, vorzugsweise von 3 bis 8, eingestellt ist. Die waBrigen Lösungen bzw. wässrigen Dispersionen des salzartigen Reaktionsproduktes können zusätzlich andere, in Wasser lösliche bzw. in Wasser dispergierbare und im Gemisch mit den Salzen mittels Kataphorese elektrochemisch abscheidbare Bindemifite1 enthalten. Als solche eignen sich beispfelsweise Aminoplastkondensate, Phenoplastkondensate, Epoxidharze, Alkydharze oder Gemische solcher Bindemittel. Die Gewichtsmenge dieser zusätzlichen anderen Bindemittel soll zweckrmässigerweise nicht grösser sein als die Gewichtsmenge der salzartigen Reaktionsprodukte der Copolymerisate. Die Lösungen bzw. Dispersionen können ferner auch mittels Kataphorese elektrochemisch abscheidbare Hilfsstoffe enthalten, wie Pigmente, Häftungskatalysatoren und Mittel zur Verbesse- rung des Verlaufes. Das Herstellen von Uberzügen aus den wässrigen Lösungen bzw. wässrigen Dispersionen auf elektrisch leitenden, insbesondere metallenen Körpern erfolgt mittels Kataphorese durch elektrochemische Abscheidung und gegebenenfalls anschliessendes Ein br=en. Auch hierbei kann nach üblichen idethoden gearbeitet werden: Die Körper werden in die Lösungen bzw. Dispersionen eingebracht und als Kathode geschaltet; ein weiteres elektrisch leitendes Medium wird ebenfalls in Berührung mit den Lösungen bzw. Dispersionen gebracht und als Anode geschaltet. Das Uberziehen erfolgt zweckmässigerweise bei einer Gleich spannung von 2 bis 300, vorzugsweise 20 bis 150 Volt. Die Temperatur kann zweckmässigerweise von 10 bis 50, vorzugsweise von 20 bis 400C betragen. Die Zeit des Uberziehens beträgt im allgemeinen etwa 0,5 bis 3 Minuten. Nach dem Auftragen der überzüge werden die überzogenen Körper aus den Lösungen bzw. Dispersionen entfernt, mit Wasser gespült und zum Einbrennen der Uberzüge 5 bis 180, vorzugsweise 20 bis 60 Minuten auf Temperaturen von 80 bis 2500C, vorzugsweise 120 bis i800C, gehalten. Das erfindungsgemässe kathodisch abscheidbare Uberzugsmittel eignet sich besonders zum Herstellen von Einbrennüberzügen auf metallenen Körpern, wobei es von besonderem Vorteil ist, dass nicht nur Körper aus Eisen und Eisenlegierungen, wie Karosserieteile, mit hochwertigen Uberzügen versehen werden können, sondern auch Körper aus Kupfer oder Kupferlegierungen. Das erfindungsgemässe Uberzugsmittel ist ohne wei teren Zusatz durch thermische Behandlung härtbar. Der entstehende Film zeichnet sich besonders durch hohen Glanz, gute Cnemikalien-, Wasser-, Alkali- und Korrosionsbeständlg- keit aus. Es ist ein weiterer Vorteil des erfindungsgemässen woDerzugsmittels, dass durch geeignete Wahl der Polymerisationsbedingungen eine Optimierung des Copolymerisats möglich ist. So kann beispielsweise das Gelzichtsverhältnis der Monomeren so eingestellt werden, dass nach teilweiser Neutralisation des aminogruppenhaltigen Copolymerisats ein pH-Wert der wässrigen Lösung von 6 bis 8 erhalten wird, wodurch Korrosionsprobleme der Lackbadinstallation vermieden werden. Weiterhin ist es ein wesentlicher Vorteil des erfin durgsgeässen Oberzugsmittels, dass durch Variation des Ge ichWsverhältnisses der Monomeren bei der Polymerisation die Ladungsdichte im Polymerisat beeinflusst werden kann. Dies hat einen besonderen Einfluss auf die spezifische Leit fähigkeit der wässrigen Harzlösung und damit auf den Umgriff bei der Beschichtung von kompliziert geformten Metallteilen. Ein weiterer wesentlicher Vorteil des erfindungsgemässen Uberzugsmittels ist, dass durch geeignete Wahl der Polymerisationsbedingungen das Molekulargewicht des Polymerisats im Hinblick auf eine gute Filmoberfläche beim Härten des über- zuges eingestellt werden kann. Bekanntlich werden bei der elektrophoretischen Abscheidung grosse Gasmengen an den Elektroden frei, die eine Porosität des Filmes bewirken können. Diese muss durch ein geeignetes Verlaufen des abgeschiedenen Filmes während des Härtungsvorgangs ausgeglichen werden. Für die Fähigkeit zum Verlauf ist in besonderer Weise die Viskosität des Harzes entscheidend, die wiederum in entscheidendem Masse vom Molekulargewicht abhängt. Hier liegt ein wesentlicher Vorteil des erfindungsgemässen aber zugsmittels, indem bei der Polymerisation der Monomeren das Molekulargewicht des Polymerisats durch die Änderung vo,l Monomerkonzentration, Initiatorkonzentration, Temperatur urd eventuell er Zusatz von Überträgern stark beeinflusst werten kann. Ein besonderer Vorteil des erfindungsgemässen Uerzugsmfttels ist ausserdem die hohe Elastizität des abge scr'edenen Filmes. Diese ist in entscheidendem Masse durch den hohen Anteil an Kohlenstoffdoppelbindungen in der Pon-y erkette innerhalb der Dienkomponente gegeben. Diese Elastizität ist besonders bei Lacküberzügen von Vorteil auf Oberflächen, die einer späteren Verformung unterliegen. Die Erfindung wird in den nachstehenden Beispielen näher erläutert. 3¯ szrel 1 In einer 0,7 1 Glasflasche werden 150 g Toluol, 1,9 g rnzoylperoxid, 45 g Glycidylmethacrylat und 105 g Butadien1,3 zusammengegeben. Die Flasche wird verschlossen und 12 Stunden bei 750C geschüttelt. Anschliessend wird die Lösung riit Iiethanol versetzt und das sich abscheidende Polymer im Vakuum bei 400C getrocknet. 100 g dieses flüssigen Polymers werden in einem Dreihals- kolben mit Rührer und Rückflusskühler unter Stickstoff mit 24 g Diäthylamin versetzt und 2 Stunden bei 80 0C gerührt. Das Produkt wird anschliessend mit 40 g Äthylenglykolmono- butyläther vermengt, mit 15 g Milchsäure versetzt und mit 840 g voll entsalztem Wasser verdünnt. Die klare wässrige Lösung wird mit Triäthylamin auf einen pH-Wert von 6,2 ein gestellt. Aus der so hergestellten Lösung wird das Harz mit einer Gleichspannung von 150 Volt auf einem als Kathode geschalteten Eisenblech innerhalb von 2 Minuten abgeschieden. Der Film wird sodann 15 Minuten bei 1 850C eingebrannt und bildet dann einen gleichmässigen, harten und fest haftenden Belag. 3 issiel 2 In einer Flasche werden 150 g Toluol, 1,9 g Benzoylperoxid, 45 g Glycidylallyläther, 28 g Vinylpiperidin und 105 g 3utaden-1,3 zusammengegeben und die Flasche verschlossen. Bei 75 0C wird der Inhalt 24 Stunden geschüttelt, anschliessend mit Methanol versetzt und das sich abtrennende Polymer im Vakuum bei 400C getrocknet. 100 g des getrockneten Produktes werden anschliessend mit 12 g Essigsäure und 50 g Äthylenglykolmonobutyläther vermengt und mit 1 000 g voll entsalztem Wasser verdlinnt. Die Lösung wird mit Ammoniaklösung auf einen pH-Wert von 5,9 eingeftellt. Aus dieser wässrigen Harzlösung wird auf einem als Kathode geschalteten Eisenblech mit einer Gleichspannung von 150 Volt innerhalb von 2 Minuten ein Polymerfilm abgeschieden, der nach einer 15 minütigen Härtung bei 1800C eine Schichtdicke von 18/um hat. Der Überzug ist glatt, hart und glänzend. BeisDiel 3 Aus dem in Beispiel 1 hergestellten Copolymerharz wird eine Pigmentpaste hergestellt. Hierzu werden 400 Gew.Tle. des mit Milchsäure neutralisierten Copolymers mit 30 Gew.Tln. Titandioxid, 15 Gew.-Tln. Aluminiumsilikat und 2 Gew.Tln. Russ zusammengegeben und auf einem Dreiwalzenstuhl zu einer homogenen Masse verrieben. 50 Gew.Tle. dieser Pigmentpaste werden mit 100 Gew.Tln. des in Beispiel 1 hergestellten 70 siegen Harzes gemischt und mit 850 Gew.Tln. Wasser verdünnt. Diese Lösung hat einen pH-Wert von 6,7 und eine Leitfähigkeit von 1 600/u S cm 1. Mit einer Gleichspannung von 100 Volt wird in 2 Minuten auf einem als Kathode geschalteten Eisenblech ein Lackfilm abgeschieden, der nach einer 15 minütigen Härtung bei 1800C eine Schichtdicke von 14um hat. 3eisznel 4 Aus 100 g Butadien-1,3, 45 g Glycidylmethacrylat, 25 g Diäthanolamin und 2 g Azo-iso-butyronitril wird wie in Beispiel 1 beschrieben in 150 g Toluol ein Copolymer hergestellt. Das Produkt wird mit 40 g Äthylenglykolmonobutyläther und 8 g Essigsäure (95 %ig) versetzt und anschliessend mit 850 g voll entsalztem Wasser zu einer klaren Lösung verdünnt. Die Lösung hat einen pH-Wert von 6,8. Aus dieser Lösung wird mit einer Gleichspannung von 170 Volt auf einem als Kathode geschalteten Eisenblech, das mit einer Zikphosphatschicht überzogen ist, innerhalb von 1,5 Minuten ein Polymerfilm abgeschieden, der bei 1850C 15 Minuten lang in einem Ofen gehärtet wird. Die Filmdicke beträgt 16/um. Die Elastizität und Haftung des Filmes auf der Metalloberfläche wird im Erichsen Tiefungstest untersucht. Die Eindrucktiefe beträgt sowohl vor als auch nach einer zweitägigen Wärmelagerung bei 1000C mehr als 10 mm. Im Salzsprühtest nach DIN 50 021 zeigt ein angeritztes Prtiftlech nach 504 Stunden weniger als 1 mm Unterwanderung, Beispiel 5 Aus 100 g Butadien-1,3, 35 g Glycidylmethacrylat, 15 g 2-Viny1pyridin, 16 g Diäthylamin und 1,5 g Benzoylperoxid wird ein Copolymerisat wie in Beispiel 1 beschrieben in 150 = Toluol als Lösungsmittel bei 75 C hergestellt. Das Produkt wird mit 40 g Äthylenglykolmonobutyläther und 15 g milchsäure versetzt und mit 800 g voll entsalztem Wasser verdünnt. Wie in 3eispiel 4 beschrieben, wird aus dieser Lösung auf einem phosphatierten Eisenblech ein Polymerfilm mit einer Gleichspannung von 120 Volt abgeschieden. Der Film hat nach dem Einbrennen bei 1800 C eine sicke von 14/um, zeigt nach 2 Tagen Wärmelagerung bei 100 0C eine Eindrucktiefe von mehr als 10 mm bis zum ersten Abplatzen des Filmes von der Metalloberfläche und zeigt nach 504 Stunden Lagerung im Salzsprühtest nach DIN 50 021 eine Unterwanderung von weniger als 1 mm.
PATENTANSPRU CHE 1. Kathodisch abscheidbares ttberzugsmittel auf Basis wasser löslicher oder in Wasser dispergierbarer, kationisch ein gestellter polymerer Filmbildner, sowie gegebenenfalls üblichen Zusätzen, dadurch gekennzeichnet, dass der poly mere Filmbildner ein Reaktionsprodukt eines Copolymeri- sats (A) aus a) 4 bis 8 C-Atome aufweisendem Dien, b) Epoxigruppen enthaltendem copolymerisierbarem äthylenisch ungesättigtem Monomer, sowie gegebenenfalls c) copolymerisierbarem äthylenisch ungesättigtem Monomer, das keine Epoxigruppen enthält, mit sekundärem Amin (B) ist, wobei die Aminogruppe mit organischer oder anorganischer Säure quaterniert worden ist. 2. Uberzugsmittel nach Anspruch 1, dadurch gekennzeichnet, dass das Copolymerisat aus a) 40 bis 90 Ges.¯% Dien, b) 60 bis 10 Gew.-% Epoxigruppen enthaltendem Monomer, c) 0 bis 50 Gew.-% copolymerisierbarem äthylenisch ungesättigtem Monomer, das keine Spoxigruppen enthält, besteht. 3. Überzugsmittel nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass das Spoxigruppen enthaltende äthy lenisch ungesättigte Monomer der Glycidylester der Acryl- oder Methacrylsäure; der Vinyl- oder Allylester einer epoxidierten ungesättigten Fettsäure; ein Diolefin, dessen eine Doppelbindung epoxidiert ist; oder der Vinyl oder Allylester einer Monoglycidylesterdicarbonsäure ist. 4. Überzugsmittel nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Dien Butadien und/oder Isopren ist. 5. Uberzugsmittel nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass das Copolymerisat aus a) 40 bis 90 Gew.-% Dien, b) 60 bis 10 Gew.,% Glycidyl(meth)acrylat, c) 0 bis 50 Gew.-% copolymerisierbarem äthylenisch ungesättigtem Monomer, das keine Rpoxigruppen enthält, besteht. 6. Uberzugsmittel nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass das mit dem Copolymerisat umgesetzte sekundäre Amin gleiche oder verschiedene, gegebenenfalls substituierte Alkyl-, Cycloalkyl- oder Arylreste mit 1 bis 20 C-Atomen enthält. 7. ttberzugsmittel nach den Ansprüchen 1 bis 6, dadurch gekennzeichnets dass das sekundäre Amin Dimethylamin, DiSthylamin, Diäthanolamin, Diisopropylamin oder Diiso propanolamin ist. 8. Überzugsmittel nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass als quaternisierende organische Säure Ameisen¯, Essig-, Propion-, Milch- oder Butter säure oder als anorganische Säure Bor-, Salz-, Phosphor¯ oder Schwefelsäure verwendet worden ist.
METALLGESELLSCHAFT AG
LINDEN, RENE; QUACK, GUNTHER, DR. DIPL.-CHEM.; STEINFORT, KLAUS, DR. DIPL.-CHEM.; Linden, René; Quack, Günther, Dr. Dipl.-Chem.
EP-0003079-B1
3,079
EP
B1
EN
19,810,401
1,979
20,100,220
new
H01L33
H01S3
H01S5, H01L29, H01L33
H01L 29/201, H01S 5/323, H01L 33/00D3B, H01L 33/30
INFRA RED LIGHT EMISSIVE DEVICES
In (Sb0.1As0.9) light emissive diodes and lasers are grown on Ga Sb substrates to give lattice matching. Ga Sb has higher band-gap, high refractive index therefore gives electrical, but not optical, confinement required for laser action. Both confinement types provided by sandwiching active layer between layers of (Al0.6Ga0.4)Sb. In (Sb0.1As0.9) emits at approximately 4µm, but emission can be shifted by increasing the proportion of In Sb and restoring the lattice match by the addition of another compound semiconductor e.g. Ga As for longer wavelength emission of In P or Al As for shorter wavelength emission.
I A RED LIGHT EMISSrVE DEVICES This invention relates to infra-red light emissive devices, and in particular to such devices having active light emissive regions of the ternary solid solution In(Sb, As) and related multicomponent (quarternary or higher) solid solutions. Light emissive devices have been made that had an active light emissive region of In(Sb, As) grown epitaxially upon an In As substrate. A problem with this type of construction is that the addition of In Sb to In As to form a solid solution has the effect of changing the lattice spacing. Therefore a graded interlayer was necessary between the active region and the substrate, but even this did not entirely remove the strain from the active region which was relatively heavily dislocated. The present invention is directed to the problem of lattice mismatch. According to the present invention there is provided an infra-red light emissive device having an active light emissive region of material of the ternary In(Sb, As) solid solution having a lattice spacing matched with that of Ga Sb, which material is epitaxially grown directly or indirectly upon a substrate of Ga Sb. The The invention also provides an infra-red light emissive device having an active light emissive region of material of a multicomponent, quarternary or higher, solid solution having a lattice spacing matched with that of Ga Sb. and based upon the ternary =n(Sb, As) solid solution, which material is epitaxially grown directly or indirectly upon a substrate of Ga Sb. Ga Sb has the same lattice constant as a particular compound of In(Sb, As), approximately In(Sb, 1AS0.9 therefore In(Sbo lAsO 9) grown on a Ga Sb substrate is substantially strain free. There follows a description of infra-red light emissive devices embodying the invention in preferred forms. The description refers to the accompanying drawings in which: Figure 1 is a graph depicting the variation.of lattice spacing and band-gap with composition for a number of ternary solid solutions of compound semiconductors, Figure 2 depicts a schematic cross-section through a light emissive diode embodying the invention, Figure 3 is a graph depicting the variation in dielectric constant of the (Al, Ga)Sb solid solution with composition, and Figures 4 and 5 depict schematic cross-sections through two further constructions of device embodying the present invention. Referring to Figure 1, and in particular to the In(Sb, As) line between In As and In Sb, it can be seen that the addition of progressively more In Sb to In As has the effect of progressively increasing the lattice spacing at a relatively rapid rate. (The four hatchings on this line, and each of the others, mark the 20, 40, 60 and 80% points respectively.) The rate of increase in lattice spacing is for instance much more rapid than that produced by adding Al As to Ga As to form (Al, Ga)As. This shows why the growth of In(Sb, As) upon an In As substrate is much more difficult than growing (Al, Ga)As upon a substrate of Ga As. However, also from Figure 1 it is seen that Ga Sb has the same lattice constant as a particular point on the In(Sb, As) line corresponding approximately to In(Sbo.l As Therefore substantially strain free In [ Sbg1As0.9) can be grown upon a Ga Sb substrate. This enables structures of the type depicted schematically in Figure 2 to be grown. A Ga Sb substrate 20 of one conductivity type is provided, and then the material of layers 21 and 22 is grown epitaxially upon the substrate 20. Layer 21 has the same conductivity type as the substrate while layer 22 is arranged to have the opposite conductivity type in order to form a p-n junction between them. The growth may be performed by the conventional methods of compound semiconductor material epitaxy. We prefer to use liquid phase epitaxy, and to use for this purpose a graphite slider boat system. From Figure 1 it can be seen that In(Sbg.1AS0.9) has a band gap of about 0.3 eV and therefore the radiation produced in the vicinity of a p-n junction formed in this material will be at a wavelength of about 4pin. The actual value of the emission wavelength may be shifted by going from the ternary In(Sb, As) solid solution to a quaternary or higher solid solution by increasing the proportion of In Sb and adding a further compound semiconductor material in sufficient quantity to restore the lattice spacing to its original value matching that of Ga Sb. To a first approximation the rate of change of lattice spacing and of band gap provided by adding a certain proportion of for instance Ga As to In(Sb, As) is the same as adding that proportion of Ga As to In As. In other words, referring to Figure 1, the effect of adding Ga As to In(Sb, As) is to a first approximation given by a translation of the Ga(As, Sb) curve so that its In As end lies on the appropriate part of the In(Sb, As) curve. It is to be noted that the In(Sb, As) curve is not so steep at its lower end as the top end of the Ga(As, Sb) curve. Therefore, by increasing the proportion of In Sb in In (Sb, As) above In(Sb0#1As0#9) and then adding sufficient Ga As to restore the lattice spacing to the In(Sbo lAsO g) value, it can be seen that the band gap is reduced and hence the emission wavelength increased. Conversely it can be seen that, because the In(As, P) curve and the (Al, In)As curve are neither as steep as the In (As, Sb) curve, the compensation of additional In Sb with the appropriate amount of In P or Al P will have the effect of increasing the band gap and hence reducing the emission wavelength. Therefore the device of Figure 1 may employ multicomponent, quaternary of higher, solid solution epitaxial layers 21 and 22 in order to provide a wavelength of emission greater or less than that of the ternary In (Sb, As) composition with a lattice spacing matching that of Ga Sb. This multicomponent solid solution will The one having a lattice spacing matched with that of G; Sb and based upon the ternary In(Sb, As) system. It will be noted that Ga Sb has a higher band gap than In(Sb, As) and therefore the heterojunction formed between the substrate 20 and layer 21 will serve to confine minority carriers. For some applications it may therefore be advantageous similarly to confine minority carriers on the opposite side of the p-n junction by the use of an additional layer (not shown in Figure 2) of Ga Sb on top of layer 22. By analogy with injection lasers based on (Al, Ga)As it might superficially be expected that it should be possible to construct a laser with an In(Sb, As) layer sandwiched between a pair of layers of Ga Sb. However although the two heterojunctions of such a structure are effective in confining minority carriers they do not provide the requisite optical guidance. This is because the refractive index of Ga Sb (3.83 at 4pm) is greater than that of In As (3.51 at 4pm) and greater than that of In(Sb, As). This problem may be resolved by the use of (Al, Ga)Sb in place of Ga Sb. Figure 3 depicts the variation of optical frequency dielectric constant (equal to the square of the refractive index) for different compositions in the (Al, Ga)Sb solid solution. In order to provide optical confinement at a heterojunction the material bounding the active region must have a refractive index less than that of the active region, preferably about 1% less. Therefore by adding Al Sb to Ga Sb it is possible to reduce the refractive index to an acceptable value. Typically this will occur in the region of (Alo 6GaO )Sb. (Al, Ga)Sb appears to be more stable than (Al, Ga)As with respect to atmospheric attack, and it is found that (Al Ga 4)Sb is stable in air at room temperature. 0.6 0.4 Referring again to Figure 1, it is seen that the lattice spacing of (Al, Ga)Sb and (Al, Ga)As both change with composition at substantially the same slow rate. Therefore, with an active region lattice spacing matched with that of Ga Sb, it is possible, without introducing undue strain, to vary the composition of (Al, Ga)Sb within relatively wide limits so as to adjust the strength of optical guidance to the desired value. Figure 4 depicts a laser which is functionally analo#ous with the single heterostructure (Al, Ga)As laser. The laser is grown by epitaxy upon a Ga Sb substrate 40 and includes two, or optionally three, epitaxial layers 41, 42 and 43. Layer 41 has the opposite conductivity type to that of the substrate 40, and is made of material having the same lattice spacing as the substrate and it is made of In(Sb, As) or of a multicomponent, quaternary or higher, solid solution based on In(Sb, As). Layer 42 has the same conductivity type as layer 41, and is made of (Al, Ga)Sb containing a sufficient proportion of Al Sb to reduce its refractive index beneath that of layer 41 so as to provide the requisite amount of optical confinement in addition to minority carrier confinement. Layer 43 has the same conductivity type as layer 42 and is an optional capping layer of Ga Sb which may be provided to protect the underlying layer 42 from atmospheric attack. This will be the more necessary if layer 42 contains a particularly large proportion of Al Sb which would make it more vulnerable to atmospheric attack. In this construction the heterojunction formed between the substrate 40 and layer 41 merely provides electrical confinement whereas that between layers 41 and 42 provides both electrical and optical confinement. Figure 5 depicts a laser which is functionally analogous with the double heterostructure (Al, Ga)As laser. This is essentially similar to that previously described with reference to Figure 4, but includes an additional layer 50 of (Al, Ga)As of the same conductivity type as the substrate 40 which is located between the substrate and layer 41 which in this instance may have either conductivity type. This layer 50 is of a composition providing it with a refractive index the desired amount less than that of layer 41 to provide the requisite optical guidance. In this way electrical and optical confinement is provided at both the heterojunctions flanking the active region provided by layer 41. The constructions depicted do not show any particular means for lateral confinement of photons or minority carriers in the active light emissive region. It will however be readily apparent that many of the techniques developed for such confinement in relation to (Al, Ga)As solid solutions will be applicable with little or no modifications to semiconductor devices constructed in accordance with the teachings of the present invention.
CLAIMS: 1. An infra-red light emissive device having an active light emissive region of material of the ternary In(Sb, As) solid solution having a lattice spacing matched with that of Ga Sb, which material is epitaxially grown directly or indirectly upon a substrate of Ga Sb. 2. An infra-red light emissive device having an active light emissive region of material of a multicomponent, quarternary or higher, solid solution having a lattice spacing matched with that of Ga Sb and based upon the ternary In(Sb, As) solid solution, which material is epitaxially grown directly or indirectly upon a substrate of Ga Sb. 3. A light emissive device as claimed in claim 2 wherein the active region is or (Ga, In)(Sb, As). 4. A light emissive device as claimed in claim 2 wherein the active region is of (Al, In) (Sb, As). 5. A light emissive device as claimed in claim 2 wherein the active region is of In(Sb, As, P). 6. An infra-red light emissive device as claimed in any preceding claim wherein said active light emissive region is directly flanked upon at least one side by a layer of (Al, Ga)Sb having a composition that provides said layer with a refractive index less than that of the active region. 7. An infra-red light emissive device as claimed in claim 6 wherein said active region is sandwiched directly between a pair of layers of (Al, Ga)Sb both layers having a composition that provides each layer with a refractive index less than that of the active region. 8. A light emissive device as claimed in any preceding claim wherein the device is constructed for laser operation.
INTERNATIONAL STANDARD ELECTRIC CORPORATION
GOODMAN, CHARLES HOWARD LUDLOW
EP-0003082-B1
3,082
EP
B1
EN
19,821,215
1,979
20,100,220
new
B29C5
B29C11, B29C1
B44C3, B41M1, B41M7, B29C41, B29C70
B41M 7/00, B29C 41/20, B44C 3/08, B29C 41/04, L29C93:00, B41M 1/30, B29C 70/78
METHOD AND APPARATUS FOR ROTATIONALLY MOULDING A DECORATED ARTICLE
A mould for producing a decorated article comprises a base part with a mould cavity and a lid part co-operating with but being movable away from the base part, the surface of the lid part facing the base part being substantially planar or part-cylindrical and extending beyond the wall (12). The wall (12) preferably has a knife edge (13) to provide a score line for flashing. The method of producing the article comprises the steps of locating in a predetermined position on the lid part a carrier (15) having ink (18) thereon, charging the base part with plastics material, locating the lid part in a predetermined position on the base part so that the carrier (15) extends beyond the co-operating wall (12) of the base part, and rotationally moulding the article.
TITLE: MOULDED ARTICLES This invention relates to rotationally decorated moulded articles and to a method and a mould for producing such articles. Previously, decorated moulded articles have been produced by first moulding the article and printing the decoration thereon. This has proved expensive, particularly if multi-coloured printing is required. In the case of decorated playballs, it is known to insert in the bottom of the mould before moulding a decorated insert of a plastics material which has the desired printing thereon, the material of the insert being compatible with that of the playball. W7hen moulded, the insert is embedded in and fused with the finished playball. However, it is particularly difficult to properly locate and retain the insert in position. An object of the invention is to provide a method b¯rwçhich a decorated article having a high level of quality can be produced relatively inexpensively. The method permits accurate location of the decoration on the article. In accordance vith one aspect of the present invention, there is provided a method of producing a decorated article using a mould comprising a base part with a mould cavity and a lid part co-operating with but being movable away from the base part, the surface of the lid part facing the base part being substantially planar or part-cylindrical, characterised in that said method comprises the steps of locating in a predetermined position on the lid part a carrier having ink thereon, charging the base part with plastics material, locating the lid part in a predetermined position on the base part so that the carrier extends beyond the co-operating wall of the base part, and rotationally moulding the article. In accordance with another aspect ov the invention there is provided a method according to claim 1, wherein the co-operating wall of the base part hat aknife-edge, characterised in that said method includes the step of removing after moulding the portion of the carrier which extends beyond the co-operating wall of the base part and which has been scored or cut through by the knife edge during moulding. Preferably1 the co-operating walls of the base mould part present a knife edge which is engageable with the lid part, the knife edge scoring or cutting through the carrier during moulding to avoid the necessity of pre-cutting the carrier to the shape of the base part of the mould. The knife edge is preferably a thickness less than 1/32 inches (0.794 cm). The carrier can be of any simple staple, for example rectangular, and is preferably located relative to the lid part by suitable locating means, for example projections on the lid part which co-operate with holes in the carrier. The carrier is preferably plastics material which is during the moulding operation fused with the plastics material of the article. The carrier plastics material is preferably transparent and may be above the ink layer in the finished article, in which case it forms a protective layer. It is presently preferred, however, that the carrier plastics material is below the ink layer in which case it serves to bond the ink layer to the substrate of the article and it may be opaque At least part of said surface of the lid part is preferably polished to enable the carrier to be attached thereto by suction. The polished surface provides a gloss finish on the corresponding surface of the article. The surface may be formed on a removable support plate which supports the carrier facing the base part. The said surface may be etched or engraved to provide a relieved pattern on the corresponding surface of the article. The surface may additionally or alternatively have recesses which will be filled during moulding by the plastics material in the mould and which provide protuberances on the surface of the article for a further decorative effect. In accordance with another aspect of the invention, there is provided an article made in accordance with the method of the invention. An embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which: Figure 1 is a side elevation of a moulding apparatus having a plurality of moulds, Figure 2 is a diagrammatic cross-sectional view of a mould of Figure 1, Figure 3 is a plan view illustrating a printed carrier sheet for use with the moulds, Figure 4 is a cross-sectional view of an article formed using the mould of Figure 2, Figure 5 is a plan view of a base part of a modified mould for making interlocking articles, Figure 6 is a perspective view of a blank formed in accordance with the invention for producing a toy house, and Figure 7 is an enlarged detail cross-sectional view of part of the blank of Figure 6. The moulding apparatus comprises a frame 1 having two arms 2,3 which are pivotally interconnected by a hinge 4 at one end and which have at the other end a releasable connection 5 which may take any suitable form, for example a bolt passing through co-operating eyes formed in depending members 6. One arm 2 of the frame has attached thereto base parts 8 of moulds 9 and the other arm 3 carries lid parts 10 of the moulds, the lid parts being attached to the arm 3 by supports 11. Preferably, the frame has eight moulds 9 arranged in two side-by-side rows of four, in which case one lid part 10 may co-operate with two side-by-side base parts. As best seen in Figure 2, the upper edge of the side wall 12 of each base part 8 is formed as a knife edge 13 which co-operates with the lid part 10. The lid part 10 has two spigots or projections 14 which serve to locate a carrier sheet 15, such as is illustrated in Figure 3, in which locating holes 16 have been punched. Alignment of the holes 16 with the projections 14 ensures that the carrier sheet 15 will be properly located for the moulding process as will be described below. The carrier sheet 15 comprises a thin plastics layer 17 having printing 18 thereon and at least part of the lower surface of the lid part is polished to permit the un-printed zone of the carrier sheet to adhere by suction to the lid part. Preferably that part of the lid adjacent the printed zone on the carrier sheet is also highly polished to provide a high gloss finish on the printed part of the finished article. To mould the article the arms 2,3 of the frame are unlocked and the frame opened to permit each carrier sheet 15 to be located on a lid part 10 using the locating projections and holes. Each carrier sheet is smoothed out to remove any air bubbles between the lmd part 10 and the carrier sheet 15, which adheres to the lid part by suction. Plastics material to form the base or substrate 21 of the article, which is for example polyvinyl chloride (P.V.C.) in the form of powder or plastisol, is introduced into each mould base part 8, and the arms 2,3 closed and locked together so that they attain the predetermined positions illustrated in Figure 1. The connection of the arms of the frame ensures that the lid parts and corresponding base parts are in perfect register and the printing 18 is correctly positioned with respect to the mould base part 8. The mould assembly is rotated and heated in known manner and during the molding process the knife edge 13 of each mould scores or cuts the carrier sheet along the edge 19 of the finished article. During the moulding process the carrier sheet 15 acts as a gasket between the base and lid parts of the mould and prevents leakage of the material from within the mould. After moulding, the frame is opened and each article is removed from its mould and the outer part 20 of the carrier sheet beyond the edge 19 of the finished article is simply removed by hand without the need for a further cutting operation. Although shown as a sharp edge, the knife edge 13 may have a substantial thickness and yet still cut or score the carrier sheet. For example, the thickness of the knife edge may be about 1/32 inches, (0.794 cm). In the illustrated embodiment, the plastics layer 17, which is preferably of P.V.C. or other material compatible with the material in the mould, is located adjacent the base part with the ink layer 18 in contact with the lid part. It has been found that the ink layer 18 and the plastics layer 17 tend to fuse with each other and with the substrate 21 and the ink layer 18 is practically irremovable. Optionally, the ink layer could be facing the base part. In this case, the fusion of the ink layer and plastics layer with the substrate is not so good and it is possible, although difficult, to insert an implement or fingernail beneath the ink layer in the finished article and lift the layer away from the substrate 21. Figure 5 illustrates a modified form of mould base part which is divided into sections 23 by internal walls 24 arranged to provide any desired shape of sections. The walls are preferably less than 1/32 inch (0.794cm) thick and have the same effect of scoring or cutting the carrier sheet as the knife edges 13 of the side walls of the base part. The sections 23 are preferably of the same volume, and may conveniently be the same shape, and equal amounts of plastics material are introduced into the respective sections to provide the substrate. The moulding operation is similar to that described above. It will be appreciated that utilising this mould base part the finished article comprises a plurality, four as illustrated, of parts which interlock in the manner of jigsaw pieces. When interlocked the printing of one part registers perfectly with the printing of an adjacent part. Furthermore the gap if between the parts which is the same as the thickness of walls 24 facilitates assembly and separation of the parts. Figure 6 shows an article which is formed using a mould base part similar to that of Figure 5, but in which dividing walls 24 are an inverted V-shape and do not engage with the lid part during the moulding process. The resultant article has V-shaped grooves 25 so that each section is separated by a thin portion 26 of material which forms a hinge. The illustrated article is in the form of a blank for construction into a house, the printing on the undersurface of the blank, as seen in Figure 6, being of brickwork, doors and windows etc, to be visible when the blank is made up. To make up the blank, each of the wall sections 27 is folded about its hinge and a base (not shown) is inserted in a groove 28 formed in each wall section. The end wall sections have locking means, in the illustrated case in the form of co-operating tongue 29 and groove 30, which lock the end wall sections together. The roof sections 31 are then folded over about their hinges 26 and locked in places by suitable locking means (not shown) or by adhesive. The house may be used as a money box in which case a slot 32 is provided in the roof. It will be appreciated that although a blank for a house is illustrated, other articles, for example a boat or a train, could be made from suitable blanks. Instead of polishing the inner surface of the lid part 1 of a removable polished plate, which can be readily replaced, may be attached to the underside of the lid part. Furthermore, the polished surface may be engraved or be provided with recesses to provide a relieved surface on the finished article. Although described as flat, the said surface may be part cylindrical. The above-described method can be carried out by relatively unskilled operatives. The carrier sheet need only be located on a similar sized and shaped lid part using the simple locating means. After the moulding operation and release of the article from the mould, it is necessary only to remove the flashing of the carrier sheet, which is scored or cut through to permit easy removal. The moulded article may be provided with a squeaker in known manner and may take any suitable form or shape. In a particular example the article is in the shape of the outline of a cartoon-type character and the printing can provide precise detail of the character. In another example, the article takes the form of a greetings card with the printing taking the form of a picture and suitable wording. The printing may be in any desired combination of colours. It will be appreciated that the bottom wall of the base part 8 of each mould may be provided by a part (not shown) sirilar to lid part 10 to enable an article with decoration on both sides to be produced. The bottom wall may receive a carrier having a decoration which is the same as, or different from, the decoration on the lid part 10. The part forming the bottom wall may have some or all of the features of the lid part 10 described above. The above-described article has a level of quality which has hitherto proved impracticable.
CLAIMS 1. A method of producing a decorated article using a mould comprising a base part with a mould cavity and a lid part co-operating with but being movable away from the base part, the surface of the lid part facing the base part being substantially planar or part-cylindrical, characterised in that said method comprises the steps of locating in a predetermined position on the lid part a carrier having ink thereon, charging the base part with plastics material, locating the lid part in a predetermined position on the base part so that the carrier extends beyond the co-operating wall of the base part, and rotationally moulding the article. 2. A method according to claim 1, wherein the co-operating wall of the base part has a knife-edge, characterised in that said method includes the step of removing after moulding the portion of the carrier which extends beyond the co-operating wall of the base part and which has been scored or cut through by the knife edge during moulding. 3. A method according to claim 1 or 2, characterised in that the carrier is of plastics material on which the decorative ink is printed. 4. A method according to claim 3, characterised in that the plastics material of the carrier is transparent or translucent and is located adjacent the surface of the lid part with the ink layer facing the base part. 5. A method according to claim 3, characterised in that the carrier is located on the lid part with the ink layer facing said surface of the lid part. 6. A method according to any of claims 3 to 5, characterised in that at least a part of the surface of the lid part is polished, and including the step of securing the plastics carrier to the polished part of the surface by suction. 7. A mould having a base part with a mould cavity and a lid part co-operating with but being movable away from the base part, characterised in that locating means for locating the lid part in a predetermined position relative to the base part, that the surface of the lid part facing the base part is substantially planar or partcylindrical, and that the lid part extends beyond the cooperating walls of the base part. 8. A mould according to claim 1, characterised in that the co-operating walls of the base part present a knife edge which is engageable with the lid. 9. A mould according to claim 7 or 8 characterised in that said mould has internal walls which separate the base part into individual mould sections. 10. A mould according to claim 9, characterised in that the internal walls are engageable with the lid part. 11. A mould according to claim 9, characterised in that the internal walls are spaced from the lid part to provide flexural hinge portions in the moulded article. 12. A mould according to any of claims 7 to 11, characterised in that the lid part comprises means for locating an ink-carrier in a predetermined position relative to the lid part. 13. A mould according to claim 12, characterised in that the carrier locating means comprise a plurality of spigots co-operable with corresponding holes in the carrier. 14. A mould according to any of claims 7 to 13, characterised in that at least part of said surface of the lid part is polished. 15. A mould according to claim 14, characterised in that only the portion of the said surface of the lid part which extends beyond the co-operating walls of the base part is polished. 16. A mould according to claim 14 or 15, characterised in that said polished surface is provided by-a removable plate. 17. A mould according to any of claims j to 16, characterised in that the base part comprises a further such lid part and a portion separating said lid parts. 18. A moulding apparatus comprising a plurality of moulds according to any of claims 7 to 17, characterised in that said moulds are mounted in a frame which provides said means for locating the lid parts relative to the base parts, said frame having two pivotally connected arms, one arm carrying the mould lid arts and the other arm carrying the base parts, the two arms being lockable in a closed position in which the lid parts engage the cooperating walls of the base parts. 19. An article produced by a method according to any of claims 1 to 6.
THE METTOY COMPANY LIMITED
CRANE, JOHN CHARLES
EP-0003083-B1
3,083
EP
B1
EN
19,820,106
1,979
20,100,220
new
B01D11
C07C179
C07C409, C07C407, C07C67, B01D11
B01D 11/04M3, B01D 11/04M, C07C 409/26
LIQUID-LIQUID EXTRACTION
The invention provides a process and apparatus for liquid-liquid extraction in which a first liquid phase is passed continuously through a series of extraction stages (10) whilst a second liquid phase is passed continuously through the series in counter-current to the first phase. In each stage the second phase is dispersed as by a sieve plate (11) and then allowed to coalesce into a settled body (14) from which the second phase is withdrawn and passed to the next adjacent stage. The invention is characterised by the fact that the flows of the two phases in each stage are generally transverse to each other. Preferably the first phase flows through the series of stages under gravity whilst the second phase is pumped (16) from stage to stage to control its inter-stage transfer. The invention combines the features of separate control of residence time characteristics of an extraction column with the safety aspects inherent in a mixer/settler battery.
Background of the Invention The present invention relates to a process and apparatus for contacting two immiscible liquid phases, for example in the organic extraction of an aqueous phase. The invention has particular, but not exclusive, relevance to, and will be described with respect to, the preparation of peracids (by which we mean herein pero#;carboxylic acids). The use of such peracids is well known in the epoxldation of alkenes, especially lower alkenes. Those skilled in the art of liquid-liquid extraction will readily understand what other processes the present invention can be applied to. Description of the Prior Art The general techniques of extraction of a substance from a first liquid phase with a second and immiscible liquid phase are ell known. Normally such extraction is carried out using counter-current techniques. The two main classes of apparatus used are known as extraction columns and .mixer-settlers . One advantage of extraction columns is that different residence times can be used for the two phases but one disadvantage is that imperfect contacting of the two phases ma; occur due chiefly to non-uniform flow of the phases, particularly in large columns. One advantage of mixer-settlers is that efficient contacting is ensured. However in conventional mixer-settlers operating under steady state conditions, the residence times of the two phases are normally the same regardless of the relative rates of flow of the two phases, unless special recycling stages are provided. An alternative technique is called cross-current extraction and is described in Liquid-liquid Extraction by L. Alders 2nd Ed. 1959, published by Elsevier Publishing Company. However for the reasons stated therein on page 66 this has severe defects and is described in Chemical Engineers Handbook by Robert H. Perry 5th Ed. published by McGraw-Hill Book Company at page 15-15 under the more appropriate name of simple multistage contact . Summary of the Invention It is an object of the present invention to provide a process and apparatus for liquid-liquid extraction. According to the present invention, there is provided a process for licuid-liquid extraction, comprising passing a first liquid phase continuously through a series of extraction stages, passing a second liquid phase continuously through said series in counter-current to the first phase and, in each said stage, effecting dispersal of the second phase in the first phase and allowing coalescence and separation of the second phase into a settled body from which the second phase is withdrawn and passed under control to the next adjacent stage as aforesaid, characterised in that the flows of the two phases in each stage are generally transverse to each other. According to a further aspect of the present invention, there is provided a liquid-liquid extraction apparatus comprising a plurality of vessels arranged in a series, means to introduce a first liquid phase into the first vessel of the series and to cause or permit it to flow through the series, means to withdraw the first phase from the last vessel of the series, means to introduce a second liquid phase into said last vessel, and means to withdraw the second phase from the first vessel of the series, dispersing means for said second phase in each of the vessels adapted to effect dispersal of the second phase throughout the first phase in each vessel, a space in each vessel permitting coalescence of said second phase, means for collecting such settled second phase and means for permitting or causing transfer of such collected second phase to the next adjacent vessel in the series for introduction thereinto, characterised in that the flows of the to phases in each stage are generally transverse to each other. In the preferred arrangement, with all the vessels in a common horizontal plane, the first phase flows generally horizontally through each vessel and throughout the serieC whilst the second phase flows generally vertically in each vessel from the dispersing means, there being a single dispersal in each vessel. This arrangement must be clearly distinguished from cross-current extraction as above described since the flows of the two phases through the overall system are countercurrent. Pump means will normally be required to convey the second phase from vessel to vessel, the pump means also conveniently serving to control the transfer of the second phase from stage to stage. Preferably, in accordance with common practice in conventional columns, the second phase (which forms the dispersed phase) is the phase having the larger volume passing through the apparatus in unit time. The difference in specific gravities of the two phases will determine whether the dispersed phase moves upwardly or downwardly in each vessel. Dispersion of the second phase may be effected by suitable dispersing means for example spray head, sieve plates, or the like, but it will be understood that the dispersion is not effected by a stirrer or the like in such a way as to prevent coalescence of the second phase which takes place in the same vessel and not in a separate vessel or compartment as is common in a mixer/settler . Nevertheless each vessel may be provided with agitation means, for example a stirrer or sparge pipe, for use only under shutdown conditions. The dispersed phase may have its flow pulsed. Application to preparation of peracids The general preparation of peracids by the reaction of a carboxylic acid with hydrogen peroxide in an aqueous medium is well known. It is also known that such peracids can be extracted into organic solvents. One process for the preparation of peracids is disclosed in DOS 2602776 (GC36). In alternative process is disclosed in BP 1 425 077. As prviosly mentioned, a well-known use of peracids is -n epoxidation, and the present invention is particularly suitable for integration with such a process. More specisically therefore a feature of the invention is that it can be used to extract a peracid into organic solution from an aqueous solution. Moreover the aqueous solution of the peracid may be generated in situ by supplying an aqueous solution of hydrogen peroxide in countercurrent to an organic solution of a carboxylic acid. Comparison with the Prior Art The most relevant forms of prior art are the conventional sieve plate column and the conventional mixer/settler battery. In general the present invention can be considered to be a hybrid between these two conventional extraction devices. Thus it behaves and can be controlled in much the same way as a sieve plate column but without suffering from the defects known to exist in sieve plate columns. On the other hand the physical disposition of the stages is similar t# a mixer/settler battery with the known advantages of that arrangement but without the disadvantage of the restriction on residence time in a mixer/settler battery. Thus if we compare the present process with the prior art, from a technical standpoint, upon the assumption that the peracid is perpropionic acid, and the solvent is propylene dichloride, these being the preferred compounds for reasons which will appear, the specific gravity of the aqueous phase is influenced by the concentration of sulphuric acid which also influences the rate of the reaction. The optimum concentration of sulphuric acid, with respect to the extent and rate of the reaction, gives a specific gravity to the aqueous phase which is so high compared with the organic phase that the depth of the organic phase below the plates in a conventional column is such that there is a risk of breakthrough of uncoalesced phases, unless the aperture size of the sieve plate is reduced to a value as to make the formaticn of a stable emulsion probable. These related problems are particularly pronounced in large diameter columns (cross-sectional area greater than 10 square meters) since, as is known in such columns which are used in large scale production, there is an increased risk of local maldistribution of the phases. Moreover with such large columns it is difficult to prevent streaming of the aqueous phase. It is therefore calculable that with the selected reactants it would be difficult to operate a large conventional column with the required degree of efficiency. Moreover although in theory runaway decomposition of the peroxidic reactant and product is unlikely, nevertheless it is possible and the consequences of such a decomposition are such that severe damage to the plant might occur. Since there is a possibility of such decomposition, steps must be taken to control it and these steps are difficult and expensive on very large columns. Thus it will be known that it is difficult to remove heat generated within a column and difficult to dump the contents of a multiplate column rapidly. Moreover since decomposition inevitably leads to gas generation and this gas is constrained by high hydrostatic pressure, additional problems are posed. Thus in the preferred apparatus of the present invention the arrangement is such as to ensure that in each vessel of the series, the organic phase is distributed by a sieve plate as efficiently as is reasonably practicable and that the droplets of organic phase can rise through the aqueous phase and coalesce to form a settled body of the organic phase resting above the aqueous phase. It will be apparent that this settled body can be arranged to be of any convenient depth which is not in general determined by the resistance to flow imposed by the sieve plate of the next higher stage, as happens in conventional columns. It is therefore possible to ensure that only settled phase is passed to the sieve plate in each stage. This transfer will normally be by a pump and is effected under control in such a way as to maintain a proper depth of settled phase in each vessel. Thus the above-described problems of hydrodynar.lc instabIlity which are found in large conventional columns are minimised. The effect of minimising the hydrodnamic instabilities is also inherently to minimise the risk of chemical instabilities which chiefly arise when phases have not had time to react and equilibrate in each stage. Nevertheless, should instability occur in the apparatus of the present invention, its effect will normally be confined to a single vessel since the generated gas cannot pass from vessel to vessel. It is therefore only necessary to isolate the vessel in which the malfunction takes place and if necessary the contents of that vessel can be dumped in known fashion. It will be appreciated that this is a much simpler, quicker and easier operation than dumping the entire contents of a conventional column. Finally, it will be apparent that, unlike conventional mixer-settlers, the residence times of the two phases can be separately controlled. This is particularly advantageous where reaction takes place simultaneously with extraction. The apparatus of the present invention is therefore capable of being designed so as to be easier to control, more efficient and safer than a conventional large diameter column. In this way the apparatus of the present invention closely resembles a battery of mixer-settlers but it achieves the desired technical result without incurring the disadvantages known in mixer-settlers. Generalised Description of the Process It will be apparent from the above that the present invention has particular advantage in extraction processes operating on a large scale; in processes in which there is a risk of chemical instabilities; in processes in which a chemical reaction takes place simultaneously with the extraction process; and in processes in which, for example due to large specific gravity differential, there is a risk of hydrodynamic instabilities. Such processes are conveniently exemplified by the reaction of hydrogen peroxide with carboxylic acids to generate peracids and their extraction into an organic solvent. The invention will therefore be particularly described with reference to such a process. The organic solution of a peracid is useful, for example, in the epoxidation of an alkene to give an oxirane or epoxide and such end use will be envisaged in the description of the process. It will be appreciated that the process to be described uses an aqueous phase but it should be understood that two immiscible organic liquid phases could also be used in the invention. Selection of the carboxylic acid As used herein, the term carboxylic acid has its normal meaning but it is necessary to emphaslse that in practising the invention a proper selection of the carboxylic acid and organic solvent is desirable in order to provide optimum efficiencies. However with the guide lines given herein such selection is within the ability of one skilled in the art. It is clearly necessary to select a carboxylic acid which is sufficiently soluble in water to permit the reaction to take place and such that it and the peracid are also sufficiently soluble in the organic solvent to permit extraction to take place. Moreover the carboxylic acid and peracid should not undergo undesirable side reactions. For these reasons we prefer to use unsubstituted monocarboxylic acids having at least two but less than six carbon atoms. The preferred carboxylic acids are acetic and propionic acids. Selection of the solvent The process to be described in detail is one in which the extraction into the organic phase takes place simultaneously with the reaction to form the peracid, but substantially the same criteria apply to separate reaction and extraction stages. The prime function of the organic solvent is to provide a discrete organic phase in which the carboxylic acid and peracid are soluble. Additional desirable criteria for the organic solvent are a low solvent power for water, a low solubility in aqueous sulphuric acid and non-reactivity under the conditions of the reaction in the presence of the other reactants. It will be understood that although various solvents are listed herein, the selection of a solvent for practical use#must depend on the precise process and reactants, and on the end use for the peracid. The solvent may be a halogenated, e.g. fluorinated or chlorinated, aliphatic, cycloaliphatic or aromatic hydrocarbon for example : dichloromethane, trichloromethane, tetrachloromethane, chloroethane, l,l-dichloroethane, 1 ,2-dichloroethane, l,l,l-trichloroethane, l,l,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, l-chloropropane, 2-chlororopane, l,l-dichloropropane, 1,2-dichloropropane, 1,3-dichloropropane, 2,2,-dichloropropane, l,l,l-trichloropropane, 1,1,2-trichloropropane, 1,1,3-trichloropropane, 1,2,2-trichloropropane, 1,2,3-trichloropropane, tetrachloropropanes, or chloro-substituted butanes, pentances or hexanes, cyclohexyl chloride or chlorobenzene. Chlorinated hydrocarbons, although normally considered very inert, may give rise to chloride species, which in the presence of water and/or sulphuric acid can be very corrosive. It may therefore be desirable to select the solvent from among non-chlorinated hydrocarbons, such as aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons a > .d alkyl-aryl hydrocarbons for example decane, heptane, cycloheptane, benzene, toluene or xylene. Other solvents, known generally in the art of peracids may be used. A solvent mixture can be used, for example that known as petroleum ether which is a mixture of aliphatic hydrocarbons or mixtures of solvents mentioned individually above. It is not necessary that the organic solvent should be a saturated compound provided that any unsaturation is not epoxidisable under the conditions of the process. Of all the solvents listed herein, the most preferred are l,2-dichloroethane (ethylene diochloride), 1,2-dichloropropane (propylene dichloride) and benzene. production of peracid Before describing the plant cf the present invention it is convenient to describe, in general terms, the reaction itself. In the reaction an aqueous phase, comprising sulphuric acid, hydrogen peroxide and water, and an organic phase, comprising carboxylic acid and organic solvent, are passed to the counter-current extraction apparatus. The components will partition between the two phases and, in the aqueous phase, the reaction of hydrogen peroxide with carboxylic acid to give peracid will be catalysed by the sulphuric acid. This reaction is normally slow to reach equilibrium but is accelerated by the extraction of the peracid into the organic phase. In addition to its function as catalyst; the sulphuric acid also has the function of adjusting the specific gravity of the aqueous phase to assist separation of the phases. The relative specific gravity of the organic and aqueous phases will determine their direction of movement in separation after admixture. However care should be taken, as is known, that the concentration of the sulphuric acid is maintained so as to be sufficient for catalysis insufficient to cause degradation of any of the organic components by dehydration, etc. Optimisation of the sulphuric acid concentration on chemical ana extraction criteria tends to lead to relative densitites, plate dimensions, residence times, etc which are difficult to handle in conventional apparatus but which pose few problems in the apparatus of the present invention. The aqueous solution removed from the extraction device has, in effect, had some or all of its hydrogen peroxide replaced by water. It is therefore desirably concentrated by the removal of water and recycled after addition of hydrogen peroxide. Production of peracid - general conditions Dealing with this part of the invention in more detail and as applied specifically to the preparation of perpropionic acids, using propylene dichloride as the organic solvent, an aqueous phase is supplied to the extraction device to pass therethrough. This aqueous phase comprises sulphuric acid, hydrogen peroxide and water. The proportion of sulphuric acid is desirably between 30% and 60% by weight and is preferably approximately 40% by weight. Conveniently for operating reasons the sulphuric acid is derived from 75% by weight sulphuric acid solution in water which forms a feedback from the purification stages which will be described hereinafter, together with make-up acid. The hydrogen peroxide is conveniently between 108 and 35 by weight of the aqueous phase and in practice 29% is very satisfactory. This hydrogen peroxide is very conveniently supplied as approximately 70% by weight solution in water. Water makes up the third component of the aqueous phase and its proportions can readily be found by difference. The organic phase is fed into the extraction device to pass in counter-current with the aqueous phase and comprises, for the production of perpropionic acid, a solution of propionic acid in propylene dichloride. The concentration of the propionic acid is preferably between 15 and 30 of the organIc phase and desirably 20. The relative viume of the aqueous and organic phases passing through the apparatus in unit time and their concentrations together set the ratio between hydrogen peroxide and propionic acid. This ratio may be from 1:0.5 to 1:4 by moles but is conveniently about 1:1.4, the stoichiometrical ratio being 1:1. It may be convenient to carry out a further extraction of the aqueous phase leaving the extraction device using fresh organic solvent in order to extract substantially all of both propionic acid and perpropionic acid from the aqueous effluent. It may also be convenient to effect a back-wash operation on the organic phase m order to remove dissolved hydrogen peroxide. This latter can be effected by dividing the aqueous feed to the device into two portions, one being primarily dilute sulphuric acid and the other primarily hydrogen peroxide, and introducing these two portions at spaced locations in the device. Similarly the hydrogen peroxide feed can be divided into two or more portions introduced at spaced locations. The reaction proceeds naturally at a satisfactory rate so that operation at natural temperatures is satisfactory. Natural temperature is to some extent dependent on a scale effect since only little heat is evolved on mixing and reaction. Since the reaction is not markedly temperature sensitive no special steps are needed and a temperature of 0-30 C is satisfactory. As a guide to the election of a reactant/solvent system for the production of the peracid, reference should be made to Table 1 which shows some relevant data. TABLE Lolling point Solubility pK x 105 C Density in water g/cc Carboxylic acids formic 17.7 101 1.22 acetic 1.8 118 1.04 Co propionic 1.3 141 0.99 Co n.butyric 1.5 163 0.96 Co caproic 1.4 205 0.93 6 n.heptoic 1.3 223 0.92 6 chloracetic 140 189 1.28 v a-chlorpropionic 147 186 1.28 Co S-chlorpropionic 10 204 - s Solvents chloroethane 13.1 0.90 6 ethylene dichloride 83.5 1.235 6 tetrachloroethane 146 1.60 # propylene dichloride 96 1.16 # chlorobenzene 132 1.11 i cyclohexylchloride 142 1.00 i trichlorethylene 87 1.462 6 tetrachlorethylene 121 1.623 i decane 174 0.73 i heptane 98 0.68 i cyclohexane 81 0.78 i TABLE I <RTI ID=13.1> (continued) ¯ Boiling point Solubility pK x 105 OC Density in water g/oc Solvents (continued) benzene 80.1 0.88 6 toluene 1110 0.87 i ethylacetate 77 0.90 s ethyl propionate 99 0.89 6 nitrobenzene 211 1.20 6 di n-propyl ether 91 0.74 6 petroleum ether 80-100 0.8 i Notes to Table 1 1. TheEK figures are for aqueous solution at 250C. 2. The symbols for solubility are taken from Handbook of Chemistry and Physics; The Chemical Rubber Co; 46th Ed. Description of the preferred embodiment In order that the invention may more readily be understood one embodiment of the same will now be described by way of example and with reference to the accompanying drawings, wherein: Figure 1 illustrates the general concept, Figure 2 is a side elevational section of a single cell, Figure 3 is a section through the cell in Figure 2 taken on the line III-III of Figure 2, Figure 4 is a top plan view showing an arrangement of four cells, and Figure 5 is a diagramatic representation of a complete peracid generator. Referring firstly to Figure 1 of the drawinys, it will be seen that the plant comprises a series of individual cells each of which is equipped with a sieve plate 11 adjacent to the base and with an inlet 12 for organic phase located in such a position that organic phase collects at 13 below the sieve plate 11 in the conventional manner. The organic phase passes through the sieve plate 11 and collects as an upper organic layer 14 at the top of the cell. The organic phase is withdrawn from the layer 14 via an outlet 15 and is passed by a pump 16 to the next adjacent cell. Similarly each cell is provided with an aqueous phase inlet 17 and an aqueous phase outlet 18 so arranged that the aqueous phase passes through each cell of the seri esbut in countercurrent with the organic phase, the outlet 18 of one cell being connected to the inlet 17 of the next cell, the movement of the two liquids in each cell being transverse to each other. Figure 2 shows the arrangement of a single cell in greater detail. It will be seen that the cell comprises a conventional tank 10 having side walls 20 and a base 21, the tank having a lid 36 to prevent accidental ingress of material and a freely opening cover 37 to a vent 38 so that effectively there can be no build-up of pressure in the cell. There is a free space 22 between the lid 36 and the upper surface of the liquid in the cell. The upper level of liquid within the cell 10 is defined by a weir 23 which is arranged to guard the organic phase outlet 15 and ensure firstly that the level of liquid within the cell 10 is maintained correctly and secondly that only organic phase passes out of the outlet 15. Unless the geometry otherwise makes it unneccessary, it may be convenient to have a baffle 24 arranged adjacent to the organic phase inlet 17 in order to prevent streaming of the aqueous phase from the inlet 17 to the outlet 18 without proper mixing within the cell. However we prefer if possible to arrange for the geometry of the cells to be such that adequate mixing is promoted by the cell design and no separate baffle is needed. It will be understood that the cell illustrated in Figure 2 operates in exactly the same way as a single stage in a multiplate column but without the constraints imposed by adjacent plates. Thus for example in the construction of the present invention, the depth of the organic layer 13 below the sieve plate 11 does not have to be the same as the depth of the organic layer 14 at the top of the cell. Such variation is not generally possible in a conventional column. It will be seen from Figure 1 that the aqueous phase flows from cell to cell without requiring any inter-cell pumping. The organic phase however overflows from the top of one cell and requires to be pumped in order to introduce it into the base of the next cell. Although conventional mechanically or electrically driven pumps could be used, the power requirements are so small that it is possible to use alternative forms of pump. The form that we prefer is known as a gas lift pump and is illustrated in Figure 2. Organic phase enters the pump through a side limb 25 coupled to the outlet 15 of the previous stage and enters the open limb of a U-tube 26. The second limb of the U-tube 26 contains a gas injector 27 which forces a gas/liquid mixture up to a disengaging chamber 28. The gas is separated in the disengaging chamber 28 and is taken away by a line 29 for recycle, whilst the organic liquid flows by gravity down a pipe 30 to the inlet 12. A suitable gas for the gas lift is nitrogen. It will be apparent that the efficiency of the operation of the gas lift as a pump depends upon the level of the Liquid in the U-tube 26 and this in turn depends upon the rate of overflow over the weir 23 of the preceding stage. The system is therefore inherently self-compensating. In the event that the plant has to be shut down for any reason, there will be a tendency for a continuing reaction to take place in the individual cells which could overheat since there is no flow of liquid through them under shut down conditions. If the design is such that it is desirable to remove this heat and therefore reduce the tendency to runaway reaction, each of the cells may be equipped with a helical cooling coil and a stirrer. Under normal operation of the cells the stirrer will be inoperative and the coil ineffective. However under shut down conditions coolant is supplied to the coil and the stirrer is activated so that each cell is effectively converted to a cooled, stirred tank. Figure 3 illustrates an alternative arrangement in which coolant tubes 31 are located adjacent to one wall of the cell as a vertical bank with adjacent vertical baffles 32 and 32a which define, with the side wall of the cell, vertical cooling channels 33 and 33a for the aqueous and organic phases respectively. These cooling channels 33 and 33a terminate as is shown, below the upper surfaces of each liquid phase. If additicnal flow through the channel is required in place of the downwards thermosiphon effect, gas, for example the nitrogen or other gas used in the gas lift pumps, can be supplied to a sparge pipe 34 at the base of the coolant channel 33. It will be appreciated that under shut down conditions the gas lift pumps are inoperative If dumping of the contents of any selected vessel is necessary, this can be effected through operation of a dump valve 39. An alternative construction to Figure 1 which obviates the need for the baffle 24 shown in Figure 2 is illustrated in Figure 4. the sieve plates being omitted for clarity. In this arrangement, the cells are located side by side and are, comparatively speaking, long and thin. The organic phase moves as indicated through the pipes 30 (the pumps not being shown), whilst the construction is such as to cause the aqueous phase to flow in a sinuous manner through the series of cells, the inlets and outlets 17, 18 being replaced by apertures 35. Thus from the point of view of the aqueous phase, the arrangement can be considered as a plug flow reactor. It will readily be seen by reference to Figure 4 that the flow of aqueous phase can be controlled by the simple expedient of controlling the flow from the final stage in accordance with an interface controller on the first stage. As previously explained the arrangement of weirs and gas lift pumps inherently controls the organic phase. It will also be understood that, as in a column, the residence times of the two phases need not be the same. In this way the plant of the present invention differs very markedly from the mixer-settler arrangement, A suitable arrangement for a complete plant is illustrated in Figure 5. Purely by way of example the plant has been illustrated as having 27 separate cells arranged in three series but it should be understood that one or two of these series may be replaced by one or more conventional columns generally as described in the said DOS. The plant illustrated in Figure 5 is intended for use with an epoxidation plant to which it supplies a solution of peracid in organic solvent and from which it receives separate recycle streams of carboxylic acid in organic solvent and of organic solvent. More specifically the plant illustrated in Figure 5 is intended for the manufacture of perpropionic acid, using propionic acid as the carboxylic acid, and using propylene dichloride as the solvent. The three series of cells are arranged to operate in series and in countercurrent. The main reaction takes place in the centre series of cells, conveniently called the reaction stage 102. The organic phase from the reaction stage 103 and the aqueous phase to treatment in an organic backwash stage 101. Aqueous hydrogen peroxide is supplied to the right hand of the reaction stage 102 by means of a line 104 from a hydrogen peroxide storage tank 105. Aqueous sulphuric acid is also supplied to the right hand end of the reaction stage 102 by a line 106, being in fact a recycle phase as will be apparent hereinafter. Aqueous sulphuric acid is also supplied to the right hand end of the reaction stage 102 by a line 107 from the left hand end of the acid backwash stage 103. The hydrogen peroxide, sulphuric acid and water supplied by the lines 104, 106 and 107 together constitute the aqueous phase. An organic solution of propionic acid in propylene dichloride is supplied to the left hand end of the reaction stage 102 by a line 108 from the right hand end of the organic backwash stage 101. Fresh propionic acid in propylene dichloride from a make-up storage tank 110 is also supplied to the left hand end of the stage 102 by a line 109. Finally a recycle phase comprising propionic acid in propylene dichloride is supplied to the left hand end of the reaction stage 102 by a line 111. The propionic acid and organic solvent provided by lines 108, 109, and 111, to the left hand end of the reaction stage 102, together constitute the organic phase. The organic and aqueous phases pass through the stage 102 in counter-current flow and will react to produce perpropionic acid, which is extracted into the organic phase. Thus an aqueous solution comprising sulphuric acid and water is taken from the left hand end of stage 102 by a line 112 and is taken to the right hand end of the organic backwash stage 101. Solvent, substantially free of propionic acid, is supplied to the left hand end of the stage 101 by a line 113 and passes in counter-current to the aqueous solution in order to backwash it and strip from it as much propionic acid as possible. The conditions are such that the aqueous effluent from the backwash stage 101 which is taken from the left hand end by line 114 contains substantially no propionic acid, perpropionic acid or hydrogen peroxide. The organic solution from the right hand end of the stage 102 comprises a solution of perpropionic acid in propylene dichloride and is taken by a line 115 to the left hand end of the stage 103 which acts as an aqueous backwash stage. The right hand end of the stage 103 is provided with fresh sulphuric acid in aqueous solution by a line 116 from a make-up tank 117, this sulphuric acid passing out of the stage 103 by the line 107. The function of this aqueous acid backwash is to strip the organic phase flowing through the stage 103 to remove from it as much of the unreacted hydrogen peroxide as possible. The organic solution of perproptnic acid leaves the right hand end of the acid backwash stage 103 by a line 118 as product. The aqueous solution taken from the left hand end of the organic backwash stage 101 by the line 114 is to be utilised at least in part as a recycle stream, but it will b appreciated that this aqueous solution contains too much water for direct recycle since the original hydrogen peroxide content has reacted to give water. The line 114 therefore leads to a distillation column 151 where the aqueous solution is distilled in order to provide a light fraction which is substantially water and which is taken off by a line 152 and passed to waste. The heavy fraction from the column 151 comprises sulphuric acid in water and could conveniently be redistilled in order to remove high boiling impurities which would otherwide accumulate in the aqueous phase. however in the preferred arrangement a bleed from the aqueous phase is taken from the heavy fraction from the distillation column 151 by a line 153 and the remainder is passed back by the line 106 to the right hand end of the stage 102. The stages 101, 102 and 103 preferably operate at normal temperature, that is to say without any added heating or cooling, and under normal hydrostatic pressure. The column 151 operating in the recycle stream can conveniently operate at a temperature and pressure of 1300C and 100 torr. respectively. In a practical embodiment of the invention the apparatus was substantially identical to the figure 4 arrangement except that 6 cells or vessels were provided. Each cell was of length 5 metres and width 2.5 metres, the whole being arranged within a 15 metre shell. The height of each cell was 3.3 metres, the upper surface of the liquid being 2.6 metres from the base so as to give a free space of 700mm. below the lid. The apparatus was made of grade 316 stainless steel. The sieve plates 11 were spaced 200 mm from the base 21, and were mounted on levelling feet in order to ensure that they were truely horizontal. Each plate had approximately 12,000 holes 3mm in diameter and arranged on a 30mm square pitch. Under normal operating conditions the interface between the aqueous and organic phases was 2.4 metres from the base of the apparatus so as to give a settled layer of organic phase of approximately 200 mm depth. In order to emphasise the difference between this device and a mixer/settler battery, the designed residence time for the aqueous phase was 80 minutes per stage, giving a total residence time of 480 minutes whilst the designed residence of the organic phase was about 3 minutes per stage giving a total residence time of 18 minutes. Because of the relatively large settled organic phase the organic phase spent a larage part of its residence time out of contact with the aqueous phase and the total contact time was probably of the order of 1Q minutes. However, the aqueous phase was in contact with the organic phase for substantially the same length of time as its residence time. By scale up from a smaller plant, the steady state flows to the first vessel of stage 102 comprised, in tonnes per hour: Hydrogen peroxide (100%) 8.1 Sulphuric acid (ion%) 12.8 Water 7.7 The total aqueous volume inflow was approximately 19 cubic metres per hour. The aqueous outflow volume in line 112 was 18.6 cubic metres per hour,and comprised in tonnes per hour: Hydrogen peroxide 0.18 Sulphuric acid 12.8 Propionic acid 1.3 Perpropionic acid 0.2 Water 11.6 The organic inflow at 30 to the last vessel of the stage 102 comprised, in tonnes per hour, Propionic acid 26.2 Propylene dichloride 96.7 Perpropionic acid 0.16 The total organic volume inflowwas approximately 110 cubic metres per hour. The organic outflow volume in line 115 was 112 cubic metres per hour and comprised, in tonnes per hour, Perpropionic acid 19.9 Propylene dichloride 96.7 Propionic acid 8.52 Hydrogen peroxide 0.4 If the same reaction were to be carried out in a conventional sieve plate column this would require not less than 20 plates for 600 mm spacing, that is to say a column approximately 12 m high and approximately 4 m in diameter. Such a column would be difficult and expensive to construct and control.
Claims 1. A process for liquid-liquid extraction, comprising passing a first liquid phase continuously through a series of extraction stages, passing a second liquid phase continuously through said series in counter current to the first phase and, in each said stage, effecting dispersal of the second phase in the first phase and allowing coalescence and separation of the second phase into a settled body from which the second phase is withdrawn and passed under control to the next adjacent stage as aforesaid, characterised in that the flows of the two phases in each stage are generally transverse to each other. 2. A process according to claim 1, wherein a single dispersal and coalescence is effected in each stage. 3. A process according to claims 1 or 2, wherein the first liquid phase flows substantially horizontally throughout the series of stages and the second liquid phase flows substantially vertically in each stage, being passed from stage to stage under control. 4. A process according to any of claims 1 to 3 and for the extraction of a peracid, wherein the first liquid phase comprises an aqueous solution of the peracid and the second liquid phase comprises an organic solvent for the peracid, thereby to produce an organic solution of the peracid. 5. A process according to any of claims 1 to 3 and for the production of a peracid, wherein the first liquid phase comprises an aqueous solution of hydrogen peroxide and the second liquid phase comprises a solution of a car boxylic acid in an organic solvent, whereby the peracid is generated by reaction in the aqueous phase between the carboxylic acid and hydrogen peroxide and is extracted into the organic solvent. 6. A process according to any of the preceding claims, wherein the first liquid phase flows through the series of stages under gravity. 7. Liquid-liquid extraction apparatus comprising a plurality of vessels arranged in a series, means to introduce a first liquid phase into the first vessel of the series and to cause or permit it to flow through the series, means to withdraw the first phase from the last vessel of the series, means to introduce a second liquid phase into said last vessel,means to withdraw the second phase from the first vessel of the series, dispersing means for said second phase in each of the vessels adapted to effect dispersal of the second phase through out the first phase in each essel, e space in each vessel permitting coalescence of said second phase, means for collecting such settled second phase and means for permitting or causing transfer of such collected second phase to the next adjacent vessel in the series for introduction thereinto, characterised in that the flows of the two phases in each stage are generally transverse to each other. 8. Apparatus according to claim 7, wherein each vessel has a single dispersing means. 9. Apparatus according to claim 8 or 9, wherein the first liquid phase flows substantially horizontally throughout the vessels of the series and the second liquid phase flows substantlll vertically in each stage, being transferred from stage to stage under control. 10. Apparatus according to claim 9 and for use where the first liquid phase is an aqueous. phase and the second liquId phase is an organic phase lighter than the aqueous phase, wherein the dispersing means are located adjacent the base of each vessel. 11. Apparatus according to claims 9 or 10, wherein the arrangement is such that the first liquid phase flows through the series of vessels under gravity. 12. Apparatus according to any of claims 7 to 11, wherein each vessel includes a weir to control the level of liquid therein. 13. Apparatus according to any of claims 7 to 12, wherein the means to pass the second phase from vessel to vessel comprise pump means. 14. Apparatus according to claim 13, wherein a gas lift pump is provided for each vessel to vessel transfer. 15. Apparatus according to any of claims 7 to 14, wherein cooling means are provided in each vessel together with agitation means to cause a forced flow of liquid over the cooling means under shut-down conditions. 16. Apparatus according to claims 14 and 15, wherein the agitation means use gas diverted from the gas lift pumps. 17. Apparatus according to any of claims 7 to 16, wherein dumping means are provided adjacent to the base of at least some of the vessels. 18. Apparatus according to any of claims 7 to 17, in the form of a generally rectangular tank having substantially vertical inner partitions defining the said vessels. 19. Apparatus according to any of claims 7 to 18, wherein the vessels are substantially open at their tops, whereby they are freely vented. 20. Apparatus according to any of claims 7 to 19, wherein the dispersing means is a static sieve plate and the dispersed second phase flows substantially vertically from the dispersing means to the space where it coalesces.
PROPYLOX (SOCIETE ANONYME)
HILDON, ANTHONY MACDONALD
EP-0003084-B1
3,084
EP
B1
EN
19,820,224
1,979
20,100,220
new
C07D307
C07D405, A61K31, C07D413
C07D307, A61K31, C07D493, A61P1
C07D 307/94, M07D307:32C, M07D307:94, M07D493:10, C07D 307/33, M07D493:10+307B+307B+2, C07D 493/10
SPIROBENZOFURANONE COMPOUNDS, PROCESSES FOR THEIR PREPARATION AND THEIR USE AS MEDICINES
Novel spiro coumpounds of the formula: wherein Ring A represents a benzene ring or a naphthalene ring, the ring being unsubstituted or substituted by at least one of lower alkyl, nitro, halogen, amino which may optionally itself be substituted, hydroxyl which may optionally itself be substituted, acyl and sulphamoyl, have gastric secretion inhibitive, antiinflammatory and analgesic activities, and are of value as drugs.
Title Spirobenzofuranone Compounds This invention relates to spiro compounds having a novel skeletal structure, which are of use as medicines and as intermediates for the production of medicines. The invention also relates to methods of producing these novel spiro compounds. More particularly, this invention relates to novel sniro compounds of the formula: EMI1.1 wherein Ring A represents a benzene ring or a naphthalene ring, the ring being unsubstituted or substituted by at least one of lower alkyl, nitro, halogen, amino, which may optionally itself be substituted, hydroxyl which may optionally itself be substituted, acyl and sulphamoyl, and to methods of producing these novel spiro compounds. The optional substituents of Ring A (as defined above) are now described in detail. Examples of the lower alkyl group include alkyl grips of 1 to 6 carbon atoms (e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec.-butyl, tert.-butyl, n-pentyl, iso-pentyl, n-hexyl, 2-methylpentyl or 2-ethylbutyl). The halogen may be chlorine, bromine, fluorine or iodine. Examples of the amino group, which may optionally be substituted, include amino, mono- or di-alkylamino, acylamino, sulphonylamino and cycloamino. The monoor dialkylamino group may be amino which is monoor di-substituted by alkyl groups of 1 to 4 carbon atoms, such as e.g., methylamino, ethylamino, npropylamino, iso-propylamino, n-butylamino, dimethylamino, diethylamino, di-n-propylamino or methylethylamino. The acylamino group may, for example, be alkanoylamino containing 2 to 4 carbon atoms (e.g. acetylamino, propionylamino, n-butyrylamino or iso-butyrylamino). The sulphonylamino group may, for example, be alkanesulphonylamino containing 1 to 4 carbon atoms (e.g. methanesulphonylamino or ethanesulphonylamino). As the cycloamino group, there may be mentioned 5or 6-membered cycloamino groups which may contain N or 0, for example, pyrrolidinyl, piperidino, piperazinyl or morpholino. The piperazinyl group may have a substitutent at the nitrogen atom of its 4-position, such as an alkyl group containing 1 to 4 carbon atoms (e.g. methyl or ethyl), a phenyl-Cl 4 alkyl group (e.g. benzyl) or an alkanoyl group containing 2 to 4 carbon atoms (e.g. acetyl or propionyl). As examples of the hydroxyl group which may optionally be substituted, there may be mentioned hydroxyl, alkoxy, aralkyloxy or acyloxy. The alkoxy group preferably contains 1 to 6 carbon atoms (e.g. methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, isobutoxy, sec.-butoxy- or tert.-butoxy), and the alkoxy group may be further substituted, for example, by monoor di alkylamino groups (e.g. methylamino, ethylamino, dimethylamino or diethylamino). The aralkyloxy group may, for example, be a phenyl-Cl 4 alkyloxy group (e.g. benzyloxy or phenethyloxy). The acyloxy group is preferably an alkanoyloxy group containing 2 to 6 carbon atoms (e.g. acetyloxy, propionyloxy, n-butyryloxy or iso-butyryloxy), or benzoyloxy group, for instance. The acryl groups may, for example, be an alkanoyl group of 2 to 6 carbon atoms (e.g. acetyl, propionyl, n butyl3;1 or iso-butyryl) or benzoyl. The substituents of Ring A (up to 4 at a maximum) may be present in various substitutable positions on Ring A, and may be the same or different. When A is benzine, the A Ring is preferably substituted at its 5- or 6-position (the 5-position is the more desirable), by an amino group which may optionally be substituted (especially a mono- or di-Cl 4 alkylamino group), or by an acyl group (especially a C24 alkanoyl group). The spiro compound (I) of the present invention may be produced, for instance by, decarboxylating a compound of the formula: EMI3.1 wherein Ring A is as defined hereinbefore. This reaction is normally carried out in the presence of a catalyst which assists in the decarboxylation. Among preferred catalysts for this purpose are metal halides (e.g. sodium chloride, sodium bromide, sodium iodide, potassium bromide, potassium chloride or potassium iodide). and quaternary ammonium salts (e.g. tetramethyl-ammonium bromide). The reaction temperature is normally from 1000C to 2000 C, and preferably from 1400C to 1600C, although the reaction may be conducted at higher or lower temperatures if it is desired to control the reaction velocity. Purging the reaction vessel with an inert gas (e.g. N2 or argon)- is sometimes effective in preventing side reactions and improving yields. This reaction is normally carried out in a suitable solvent. While any solvent that will not interfere with the reaction may be employed, it is normally advantageous to employ a solvent having a boiling point higher than the reaction temperature (e.g. dimethyl sulphoxide, N,Ndimethylformamide or hexamethylphosphoramide). Among the spiro compound (I) of this invention, those having a substituent or substitutents on Ring A can also be produced by subjecting a compound (I) wherein Ring A is unsubstituted, or a compound (I) having at least one hydrogen atom on its Ring A, to a per se conventional alkylation, nitration, halogenation or acylation, depending on the kinds of the then intended substituents. A compound (I) wherein the substitutent(s) on Ring A is (are) an amino group (s) can be produced also by subjecting a compound (I) wherein the position(s) to which an amino group(s) is (are) to be introduced is(are) occupied by a hydrogen atom(s), to a nitration reaction and, then to a reduction reaction such as catalytic reduction reaction. Further, it is also possible to replace the substituent(s) on Ring A of a compound (I) with other substituent(s) by reactions known per se. Thus, a compound (I) wherein the substituent(s) is(are) monoor di-alkylamino group(s) can be produced by, for example, subjecting a compound (I) wherein the substituent(s) is(are) an amino group(s) to reductive alkylation, i.e., to reduction with a metal hydride such as sodium cyanoborohydride, or to catalytic reduction in the presence of a carbonyl compound (e.g. formaline, acetaldehyde or acetone), or to a reaction with an alkyl halide to cause mono- or dialkylation. A compound (I) having mono- or dialkylamino group(s) can also be produced by subjecting a compound (I) wherein the substituent(s) is(are) a nitro group(s), to catalytic reduction with a catalyst such as platinum oxide or Raney nickel in the presence of the above-mentioned carbonyl compound. The above-mentioned production of the compound (I) having a mono- or di-alkylamino substituent(s) may, for example, be illustrated by the following reaction scheme: EMI5.1 [wherein n is 1 or 2 and R1 represents mono or di-alkyl amono as defined hereinbefore.] The contemplated compound (I) obtained in the foregoing manner can be isolated from the reaction mixture and purified by conventional procedures (e.g. distillation, recrystallization or column chromatography). According to the types of substituents on Ring A, the compound (I) may be isolated as pharmaceutically acceptable salts. For example, when an amino group (e.g. amino, mono- or di-alkylamino or cycloamino) is present as the substituent, the compound (I) can be isolated as an acid addition salt (e.g. a mineral acid salt such as the hydrochloride or hydrobromide, or an organic acid salt such as the citrate or oxalate), or when the suostitutent is a hydroxyl group, the compound (I) can be isolated as an alkali metal salt (e.g. the sodium salt or potassium salt. The spiro compounds (I) according to this invention are compounds having a novel skeletal structure, which exhibit gastric secretion inhibitive, anti inflammatory, analgesic and other actions in mammalian animals (e.g. man, rat, mouse, guinea pig), for instance, and are of value as anti-ulcer, antiinflammatory, analgesic and other drugs for the management of peptic ulcers, acute or chronic gastritis, lumbago, arthritis and other diseases. In such medicinal applications, each compound (I) can be safely administered orally or parenterally, either as it is or as formulated with pharmaceutically acceptable carriers or diluents known per se into suitable dosage forms such as tablets, powders, capsules, injections and suppositories. While the recommended dosage depends on the subject, the condition, the route of administration, etc., the normal oral dosage for the treatment of peptic ulcers or acute or chronic gastritis is about 1 mg. to 20 mg. as compound (I) per kg body weight per dose, to be given from once to 3 times daily. The starting compound (II) which is employed in the practice of ths invention can be prepared by the following synthesis route or by any process analogous EMI6.1 EMI7.1 (wherein Ring A is as defined hereinbefore) The following pharmacological test, and the following reference and working examples are intended to describe this invention in further detail but should not be considered to limiting the scope of this invention in any way. Pharmacological Test The pharmacological activity of the compounds (I) of this invention was assayed by a gastric-juicesecretion-inibition test with rats, the results of which are as follows. In accordance with the method described in Gastroenterology 2, 43(1945), the inhibition of gastric-juice-secretion was evaluated by means of pylorus ligated rats. Five each of male Sprague-Dawley rats (each weighing 100-130 g). were used for the control and five test groups. Each animal was deprived of food for 18 hours before the test, except for drinking water. The pylorus of each animal was ligated under aneasthesis with ether, and each test compound was then intraduodenaley administered to the animals of each test group at a dosage of 50 mg./kg. Three hours after the ligation, the animals were sacrificed. The gastric secretions of the tested animals were collected and subjected to centrifuging for 10 minutes (3,500 r.p.m.), and the volume of gastric juice was measured. The results are shown in the table below. The compounds were administered orally to ICRtype mice in groups of five animals at a dosage of 500 mg./kg. so as to examine acute toxicity. No mouse was dead during 7 days in any group. Table - Inhibition of Gastric-Juice Secretion in Rats EMI8.1 Dose Inhibition of (i.d.mg./kg.) Secretion (ç) 5-Ct 50 48 5-NO2 50 57 5-N(CH3)2 50 78 4-Br, 5-NH2 50 53 5-NHS02CH3 50 68 Reference Example 1 25 g. of a-bromo-y-butyrolactone were added dropwise under ice-cooling to a mixture of 15.2 g. of methyl salicylate, 12 g. of sodium hydroxide and 150 mQ. of N,N-dimethylformamide. The resulting mixture was stirred at room temperature for 28 hours. The reaction mixture was made acidic by the addition of dilute hydrochloric acid and extracted with ethyl acetate. The extract was washed with water, dried and concentrated under reduced pressure. The residue was dissolved in 30 mL. of methanol; 150 m . of a 20% aqueous solution of sodium hydroxide were then added dropwise and the solution was stirred at 550C for 30 minutes. The reaction mixture was made acidic with 60 mL. of concentrated hydrochloric acid, the resulting precipitate (salicylic acid) was filtered off and the filtrate was extracted with ethyl acetate. The extract was washed with water, dried and concentrated under reduced pressure. The residue was dried in vacuo over phosphorus pentoxide for 24 hours, after which it was recrystallized from ethyl acetate-n-hexane (2:1). By the above procedure, there were obtained 8.0 g of a-{(2-carboxy phenyl)oxy]-y-butyrolactone as colourless needles melting at 113-1150C. (as determined by the Hot-Plate method; in all the examples hereinafter, the same method was applied to the determination of melting points.) Elemental analysis, for C11H10 0 Calcd. : C, 59.46; H, 4.54 Found : C, 59.21; H, 4.51 Reference Example 2 Using 18.7 g of methyl 5-chlorosalicylate, the procedure of Reference Example 1 was repeated to obtain 9.3 g of &alpha;-[(2-carboxy-4-chlorophenyl)oxy]-&gamma;- butyrolactone as colourless needles melting at 159 160.5 C. Elemental analysis, for CllH9Ct05 Calcd. : C, 51.48; H, 3.53; C#, 13,82 Found : C, 51.22; H, 3.50; C#, 13.70 Reference Example 3 To a solution of 16.6 g of methyl 3-methylsalicylate in 200 mL of dimethylformamide were added 5.3 g of sodium hydride (50 suspension in Bayol 85 trade mark). Then, under ice-cooling, a solution of 18.2 g of cr-bromo-y-butyrolactone in 10 mt of dimethylformamide was added dropwise. The mixture was stirred at room temperature for 10 hours, after which time it was diluted with a small amount of water and distilled under reduced pressure to remove the solvent. 60 m L of a 20% aqueous solution of sodium hydroxide was added to the residue and the resulting mixture was stirred at 50-600C for one hour. The reaction mixture was made acidic with 40 mQ of concentrated hydrochloric acid, and the precipitated crystals were collected by filtration to recover the unreacted 3methylsalicylic acid. The filtrate was extracted with ethyl acetate, washed with water, dried and distilled under reduced pressure to remove the solvent. The residue was dried over phosphorus pentoxide at 500C for 12 hours, after which it was recrystallized from ethyl acetate-hexane. By the above procedure there were obtained 12 g of a-[(2-carboxy-6-methylphenyl)oxy]- -butyrolactone as colourless needles melting at 129-131 C. Elemental analysis, for C12H1205 Calcd. : C, 61.01; H, 5.12 Found : C, 61.00; H, 5.12 Reference Example 4 Using 22 g of methyl 3,5-dichlorosalicylate, the reaction procedure of Reference Example 3 was repeated to yield 14 g of a-[(2-carboxy-4,6-dichloro phenyl)oxy]-y-butyrolactone as colourless crystals melting at 117-120 C. Elemental analysis, for CllH8C2205 Calcd. : C, 45.38; H, 2.77 Found : C, 45.43; H, 2.66 Reference Example 5 30.7 g of a-bromo-y-butyrolactone were added under cooling with ice to a mixture of 32 g of methyl 5-benzyloxysalicylate, 17 g of anhydrous potassium carbonate and 500 me of acetone and the resulting mixture was refluxed for 15 hours. After cooling, the acetone was distilled off and 10% methanolic sodium hydroxide was added to the residue to achieve hydroly sis The reaction mixture was made acidic with hydrochloric acid and extracted with ethyl acetate. The extract was washed with water, dried over anhydrous sodium sulphate and distilled to remove the solvent. The residue was dissolved in dioxane (300 mL)-benzene (200 me), and the resulting solution was refluxed in the presence of p-toluene-sulphonic acid (30 g), with the resulting water being continuously distilled off. The solvent was distilled off and the residue was diluted with water and extracted with ethyl acetate. The extract was washed with water, dried and concentrated to remove the solvent. The residue was recrystallized from ethyl acetate. By the above procedure, there was obtained a-[(2-carboxy- 4-benzyloxyphenyl)oxy]-y-butyrolactone as colourless needles, m.p. 120-1220C. Yield: 21.5 g. Elemental analysis, for C18Hl606 Calcd. : C, 65.85; H, 4.91 Found : C, 65.86; H, 4.96 Reference Example 6-12 The following compounds were produced by a procedure similar to that described in Reference Example 5. EMI11.1 EMI12.1 <tb> <SEP> Elemental <SEP> Analysis <tb> <SEP> (Upper <SEP> Compound <SEP> mp <SEP> MolecularUpper <SEP> rank: <SEP> Calcd <tb> <SEP> Refer- <SEP> Compound <SEP> m.p. <SEP> Molecular <SEP> Lower <SEP> rank: <SEP> Found <tb> <SEP> ence <SEP> R <SEP> ( C) <SEP> formula <SEP> C <SEP> H <tb> <SEP> Exampl <tb> l <tb> <SEP> 6 <SEP> 5-OCH3 <SEP> 130-133 <SEP> C12H1206 <SEP> 57.14 <SEP> 4.80 <tb> <SEP> 57.08 <SEP> 4.75 <tb> <SEP> 7 <SEP> 4-OCH3 <SEP> 129-132 <SEP> C12H1206 <SEP> 57.14 <SEP> 4.80 <tb> <SEP> 57.04 <SEP> 4.78 <tb> <SEP> 8 <SEP> 4-COCH3 <SEP> 155-158 <SEP> C13H1206 <SEP> 59.09 <SEP> 4.58 <tb> <SEP> 58.98 <SEP> 4.48 <tb> <SEP> 9 <SEP> 3-OH <SEP> 189-198 <SEP> H10O6 <SEP> 55.46 <SEP> 4.23 <tb> <SEP> (decomp.) <SEP> C11 <SEP> 55.51 <SEP> 4.10 <tb> <SEP> 10 <SEP> 4,5- <SEP> < <SEP> 183-187 <SEP> C <SEP> H <SEP> O <SEP> 66.17 <SEP> 4.44 <tb> <SEP> (decomp.) <SEP> 15 <SEP> 12 <SEP> 5 <SEP> 66.06 <SEP> 4.22 <tb> <SEP> 11 <SEP> 4-C6Hl3 <SEP> 98-100 <SEP> H2205 <SEP> 66.65 <SEP> 7.24 <tb> <SEP> C17 <SEP> 66.50 <SEP> 7.28 <tb> <SEP> 12 <SEP> -CH(CH) <SEP> 124-126 <SEP> C14H1605 <SEP> 63.62 <SEP> 6.10 <tb> <SEP> 32 <SEP> u5 <SEP> 124 <SEP> 126 <SEP> 63.60 <SEP> 63 <SEP> 62 <SEP> 6.18 <tb> Reference Example 13 51 g. of Methyl 4-acetylamino-5-chloro-2-hydroxybenzoate and 36.8 g. of anhydrous potassium carbonate were suspended in 350 m. of N,N-dimethylformamide. 55 g. of a-bromo-y-butyrolactone were added to the suspension, and the resulting mixture was stirred at 600C for 12 hours. The solvent was evaporated off under reduced pressure. The residue was diluted with water and extracted with ethyl acetate. The extract was washed with water, dried and concentrated to remove the solvent. The residue was dissolved in chloroform, and subjected to column chromatography on silica gel, using chloroform as the eluent. The product was recrystallized from methanol. By the above procedure, there was obtained a-[(5-acetylamino-4- chloro-2-methoxycarbonylphenyl)oxy]-&gamma;-butyro1actone as pale yellow prisms, m.p. 118-1190C. Yield 32 g. Elemental analysis, for C14H 14O6NC Calcd. : C, 51.31; H, 4.31; N, 4.27 Found : C, 51.24; H, 4.26; N, 4.16 Reference Example 14 63 g of Methyl 4-acetylamino-2-hydroxybenzoate were reacted in the same manner as in Reference Example 13. The product was subjected to column chromatography on silica gel and separated into two fractions. The crystals obtained from the first fraction were recrystallized from methanol to give 6-acetylamino-4', 5'-dihydrospiro[benzo[b]-furan]-2' ,3-dione as colourless plates, m.p. 220-2340C. Yield 1.4 g. Elemental analysis, for C1 3H11O N Calcd. : C, 59.77; H, 4.24; N, 5.36 Found : C, 59.71; H, 4.21; N, 5.28 From the second fraction there was obtained a-[(5- acetylamino-2-methoxyearbonylphenyl)oxy]-Y-butyrolactone as a pale yellow oil. Yield: 35 g. This only product can be subjected to the subsequent reaction step without further purification. NMR(CDC3)6: 2,10(3H, s, NCOCH3), 2.65(2H, m, CH2), 3.83(3H, s, COOCH3), 4.45(2H, m, OCH2), 4.98 (1H, t, OCHCO), 7.09(1H, d, aromatic ring H), 7.66(1H, s, aromatic ring H), 7.73(1H, d, aro matic ring H) Reference Example 15 24.4 g. of a-C(2-Carboxy-6-methylphenyl)oxy]-y- butyrolactone were added to 120 m#. of fuming nitric acid at a temperature not higher than -40 C. The reaction solution was poured into ice water, and the precipitating crystals were collected by filtration, washed with water and dried. The crystals were recrystallized from methanol. By the above procedure there was obtained a-[(2-carboxy-6-methyl-4-nitro phenyl)oxy]-y-butyrolactone as pale yellow prisms, m.p.2100C(decomp.) Yield: 20.3 g. Elemental analysis, for C12H11 0 7N Calcd. : C, 51.25; H, 3.94; N, 4.98 Found : C, 51.16; H, 3.93; N, 4.82 Reference Example 16 3.04 g. of Methyl salicylate were reacted with a-bromo-7-butyrolactone in the same manner as in the corresponding step of Reference Example 13. The product was recrystallized from methanol to afford 3.3 g of -[(2-methoxyearbonylphenyl)oxy]-Y-butyro- lactone as colourless needles melting at 62-87GC. Elemental analysis, for C12Hl205 Calcd. : C, 61.01; H, 5.12 Found : C, 60.98; H, 4.99 Reference Example 17 A mixture of 1.3 g. of a-[(2-carboxyphenyl)oxy]y-butyrolactone, 15 mt. of acetic anhydride and 3 mt of triethylamine was stirred in nitrogen gas streams at 1400C for 3.5 hours, at the end of which time the solvents were distilled off under reduced pressure. Colume chromatography was carried out on the residue using 32.5 g. of silica gel and carbon tetrachlorideacetone (10:1). The fraction corresponding to the contemplated compound was taken, concentrated under reduced pressure and recrystallized from n-hexaneethyl acetate (3:1). By the above procedure there were obtained 633 mg. of 4', 5'-dihydrospiro[benzo [b]-furan-2(3H), 3'(21H)-furan]-2',3 -dione as colourless needles melting at lll-lll.50C. Elemental analysis, for C11H8 04 Calcd. : C, 64.70; H, 3.95 Found : C, 64.74; H, 3.70 Reference Examples 18-29 The following compounds were produced by a procedure similar to that described in Reference Example 17. EMI15.1 EMI15.2 <tb> <SEP> Elemental <SEP> analysis <tb> Reference <SEP> Compound <SEP> m.p. <SEP> (Upper <SEP> rank: <SEP> Calcd. <tb> Example <SEP> No <SEP> R <SEP> ( C) <SEP> Lower <SEP> rank: <SEP> Found <tb> <SEP> Molecular <tb> <SEP> formula <SEP> C <SEP> H <SEP> N <tb> <SEP> 18 <SEP> 5-C# <SEP> <SEP> 132.5- <SEP> C11H7C#04 <SEP> <SEP> 55.36 <SEP> 2.96 <tb> <SEP> 133 <SEP> 55.49 <SEP> 2.79 <tb> <SEP> 19 <SEP> 7-CH3 <SEP> 103 <SEP> C12Hl004 <SEP> 66.05 <SEP> 4.62 <tb> <SEP> 103 <SEP> - <SEP> C121110 <SEP> 66.31 <SEP> 4.63 <tb> <SEP> 20 <SEP> 5-C#,7-C# <SEP> <SEP> 157 <SEP> - <SEP> C11H6C#2 <SEP> <SEP> 48.38 <SEP> 2.21 <tb> <SEP> 159 <SEP> 48.47 <SEP> 2.14 <SEP> <tb> <SEP> 04 <SEP> <tb> <SEP> 21 <SEP> 5-OCH2Ph <SEP> 138 <SEP> - <SEP> C18H1405 <SEP> 69.67 <SEP> 4.55 <tb> <SEP> 139 <SEP> 5 <SEP> <SEP> 69.67 <SEP> 4.39 <tb> <SEP> 22 <SEP> 6-OCH <SEP> 106 <SEP> - <SEP> C12Hl005 <SEP> 61.54 <SEP> 4.30 <tb> <SEP> 3 <SEP> 108 <SEP> 61.62 <SEP> 4.22 <tb> <SEP> 23 <SEP> 5-OCH3 <SEP> 120 <SEP> C12H10O5 <SEP> 61.54 <SEP> 4.30 <tb> <SEP> 122 <SEP> 122 <SEP> 61.31 <SEP> 4.24 <tb> <SEP> 24 <SEP> 5-COCH3 <SEP> 132 <SEP> C13H10O5 <SEP> 63.41 <SEP> 4.09 <tb> <SEP> 134 <SEP> 13H10O5 <SEP> 5 <SEP> 63.57 <SEP> 4.02 <tb> <SEP> 25 <SEP> 4-0C0CH3 <SEP> 135 <SEP> - <SEP> C13H10O6 <SEP> 59.54 <SEP> 3.84 <tb> <SEP> 137 <SEP> 59.55 <SEP> 3.68 <tb> Table continued EMI16.1 <tb> <SEP> Elemental <SEP> analysis <tb> Reference <SEP> Compound <SEP> m.. <SEP> Upper <SEP> rank: <SEP> Calcd. <tb> Example <SEP> No. <SEP> R <SEP> ( c) <SEP> Lower <SEP> rank: <SEP> Found <tb> <SEP> Molecular <tb> <SEP> formula <SEP> C <SEP> H <SEP> N <tb> <SEP> 70.86:3.96 <tb> <SEP> 26 <SEP> 5,6-68 <SEP> - <SEP> C15H1004 <tb> <SEP> 170 <SEP> 70.83;3.6g <tb> <SEP> I <tb> <SEP> 27 <SEP> 5-No,,7- <SEP> 127 <SEP> C12H,06N <SEP> 54.76 <SEP> 3.45 <SEP> 3.32 <tb> <SEP> 29 <SEP> 5-CH( <SEP> CH3) <SEP> 2 <SEP> 71 <SEP> C14Hl4 4 <SEP> 68.28 <SEP> 5.73 <tb> <SEP> 3 <SEP> 68.39 <SEP> 5.67 <tb> (Ph represents phenyl.) Reference Example 30 A mixture of 23 g. of a-[(5-acetylamino-4-chloro 2-me thoxycarbonylphenyl ) oxy ]-y-butyrolactone , 46 m±. of triethylamine and 230 mE. of acetic anhydride was heated at 1200C for 5 hours. The solvents were evaporated off under reduced pressure, and the residue was poured into ice-water. The precipitating crystals were collected by filtration, washed with water and dried, followed by recrystallization from ethyl acetate to give 6-diacetylamino-5-chloro-4',5'-dihydrospiro [benzo[b]furan-2(3H), 31(2'H)-furan]2' ,3-dione melting at 181-185 C. Yield: 6.8 g. Elemental analysis, for C15Hl206NCt Calcd. : C, 53.34; H, 3.58; N, 4.15 Found : C, 53.08; H, 3.49; N, 4.12 Reference Example 31 39 g. of a-[(5-Acetylamino-2-methoxycarbonyl- phenyl)oxy]-y-butyrolactone were reacted in the same manner as in Reference Example 30, whereby 1.8 g of 6-acetylamino-41 ,5'-dihydrospiro[benzo[b]furan-2(3H), 3'(2'H)-furan]-2',3-dione melting at 220-2340C. and 2.7 g. of 6-diacetylamino-4',5'-dihydrospiro[benzo[b] furan-2(3H). 3'(2'H)-furan]-2',3-dione melting at 1780 C. were obtained. Elemental analysis, for C15Hl306N Calcd. : C, 59.40; H, 4.32; N, 4.62 Found : C, 59.49; H, 4.21; N, 4.34 Reference Example 32 1.1 g. of a-[(2-Methoxycarbonylphenyl)oxy]-y- butyrolactone were treated as in Reference Example 17 and the product was recrystallized from ethyl acetaten-hexane. By the above procedure there was obtained 4',5'-dihydrospiro[benzo[b]furan-2(3H),3'(2'H)-furan] -2',3dione as colourless needles, m.p.lll-111.5 C. Yield: 330 mg. Reference Example 33 To a solution of 0.408 g. of 4',5'-dihydrospiro [benzo[b]furan-2(3H), 3'(2'H)-furan]-2' ,3-dione in 3 m of concentrated sulphuric acid was added a mixture of 0.35 me . of nitric acid (d=1.42) and 0.36 m#. of concentrated sulphuric acid, dropwise under ice-cooling, and the resulting mixture was stirred for 2 hours. The reaction mixture was poured into ice-water and the precipitated crystals were collected by filtration, washed with water, dried and recrystallized from ethyl acetate. By the above procedure there were obtained colourless needles of 4',5'-dihydro-5-nitrospiro [benzo[b]furan-2(3H),3'(2'H)-furan]-2',3-dione. m.p. 199-22O0C. Elemental analysis, for CllH7N06 Calcd. : C, 53,02; H, 2.83; N, 5.62 Found : C, 52.89; H, 2.65; N, 5.55 Reference Example 34 A mixture of 4',5'-dihydrospiro[benzo[b]furan- 2(3H), 3'(2'H)-furan]-2',3-dione (3 g.) and cbloro- sulphonic acid was stirred at room temperature and, then, at 4O0C for 1.5 hours. The reaction mixture was poured into ice-water, whereupon white crystals were separated. The crystals were dissolved in tetrahydrofuran, aqueous ammonia (2.2 met.) was added and the mixture was stirred under ice-cooling for 5 minutes. The powdery precipitates were filtered off, the filtrate was concentrated under reduced pressure and the residue was recrystallized from ethanol-water. By the above procedure, there was obtained 5-sulphamoyl 4? ,51-dihydrospiro[benzo[b]furan-2(3H),3' (2?H)furan] -2',3-dione as colourless needles, m.p.202-215 C. Yield: 2.8 g. Elemental analysis, for C11H906NS Calcd. : C, 46.64; H, 3.20; N, 4.95 Found : C, 46.39; H, 3.14; N, 4.87 Example 1 A mixture of 1.75 g. of 4', 5'-dihydrospiro [benzo[b]-furan-2(3H) ,3' (2'H)-furan]-2' ,3-dione, 552 mg. of sodium chloride and 9 mL. of dimethylsulphoxide was stirred in nitrogen gas streams at 1550C for 2 hours. The reaction mixture was poured into ice-water (ca 150 nte.) and the precipitate was recovered by filtration, washed with water and recrystallized from ethanol-water (3:2). By the above procedure there were obtained 1.21 g. of spiroLbenzo[b]-furan-2(3H), 1'cyclopropane]-3-one as colourless needles melting at 89-90.5 C. Elemental analysis, for C10H802 Calcd. : C, 74,99; H, 5003 Found : C, 74.71; H, 4.96 Examples 2-15 The following compounds were produced by a procedure similar to that described in Example 1. EMI19.1 Elemental Analysis Melting Example Compound Point Molecular Upper rank: Calcd. No. R ( C) formula Lower rank: Found C H N 2 5-C R 120-121 C10H7C#02 61.71 3.63 2 61.68 3.50 3 7-CH3 126-129 H1002 75.84 5.79 C11 75.76 5.80 4 5-CS 116-118 C10H6Cl2O2 52.43 2.64 7-C# 52.65 2.61 5 5-NO2 107-110 CloH7NO4 58.54 3.44 6.83 58.85 3.50 6.6s 6 5-OCH2Ph 114-116 C17H1403 76.67 5.30 76.53 5.18 7 69.46 5.30 7 6-OCH3 95-97 C11H10O3 69.46 5.30 8 5-OCH3 86-88 CllH1003 69.46 5.30 69.31 5.13 9 5-COCH3 100-103 C12H10O3 71.28 4.99 9 5-COCH3 71.07 C12H10O3 71. 28 4.82 Example 2-15 continued EMI20.1 <tb> <SEP> Elemental <SEP> Analysis <tb> <SEP> Melting <tb> Example <SEP> Compound <SEP> Point <SEP> Molecular <SEP> Upper <SEP> rank:Calcd. <tb> <SEP> No. <SEP> R <SEP> ( C) <SEP> formula <SEP> Lower <SEP> rank:Found <tb> <SEP> C <SEP> H <SEP> N <tb> <SEP> 10 <SEP> 4-OCOCH3 <SEP> 68-71 <SEP> C12H10O4 <SEP> 66.05 <SEP> 14.62 <tb> <SEP> 11 <SEP> 5-SO2NH2 <SEP> 228-239 <SEP> C10H904NS <SEP> 50.20 <SEP> 3.79 <SEP> <SEP> 5.86 <SEP> <tb> <SEP> (subli- <SEP> 50.19 <SEP> 3.71 <SEP> <SEP> 5.79 <SEP> <tb> <SEP> mation) <tb> <SEP> 12 <SEP> 5-NO2 <SEP> 160-162 <SEP> C11H904N <SEP> 60.27 <SEP> 4.14 <SEP> 6.39 <SEP> <tb> <SEP> 7-CH3, <SEP> 60.17 <SEP> 4.14 <SEP> 6.48 <tb> <SEP> 13 <SEP> 5-CH(CH3)2 <SEP> b.p. <SEP> - <SEP> 113 <SEP> 02 <SEP> 77.20 <SEP> 6.98 <SEP> <tb> <SEP> 32 <SEP> (0.4mnHg <SEP> <RTI ID=20.9> C13H14 <SEP> 77.20 <SEP> 7.11 <SEP> <tb> <SEP> 14 <SEP> 6-NHAC <SEP> 171-178 <SEP> C12H11 <SEP> <SEP> N <SEP> 66.35 <SEP> 5.10 <SEP> 6.45 <tb> <SEP> C12H11O3N <SEP> 66.30 <SEP> 5.00 <SEP> <SEP> 6.20 <tb> <SEP> 15 <SEP> 5-(C#, <SEP> 185-188 <SEP> C12H10O3 <SEP> 57.27 <SEP> 4.01 <SEP> 5.57 <tb> <SEP> NC# <SEP> 57,03 <SEP> 3,86 <SEP> 5,46 <tb> (Ph represents phenyl and Ac represents acetyl) Example 16 4',5'-Dihydrospiro[naphtho[2,3-b]furan-2(3H),3' (2'H)-furan]-2',3-dione (1.2 g.) was reacted in the same manner as in Example 1 and the reaction product was recrystallized from methanol. By the above procedure there was obtained spiro [naphtho [2,3-b]furan-2(3H),l'- cyclopropane]-3-one as colourless needles, m.p. 127-129 C. Yield: 0.75 g. Elemental analysis, for C14H1002 Calcd. : C, 79.98; H, 4.79 Found : C, 79.89; H, 4.65 Example 17 5-Hexyl-4',5'-dihydrospiro[benzo[b]furan-2(3H), 3'-(2'H)-furan]-2' ,3-dione was decarboxylated in the same manner as in Example 1 to yield 5-hexylspiro [benzo[b]furan-2(3H),l'-cyclopropane]-3-one as a pale yellowish oil. film -l IR max cm : 1700(CO). S32(CDC & ) 6: O.87(3H, t, CH3), 1.36(8H, b, CH2), 1,59 (4H, m, cyclopropane), 2.63(2H, t, nuclear CH2), 7.02(1H, d, nuclear H), 7.40(1H, d, nuclear H), 7.48(1H, s, nuclear H). Elemental analysis, for C16H2002 Calcd. : C, 78.65; H, 8.25 Found : C, 78.37; H, 8.36 Example 18 0.94 g. of spiro[benzo[b]furan-2(3H), 1'cyclopropane]-3-one was dissolved, in 30 me. of acetic anhydride, and, at 60-700C, 5.6 g. of copper nitrate were added. The resulting solution was stirred overnight. The reaction mixture was poured into ice-water and extracted with ethyl acetate. The extract was washed with water, dried and distilled to remove the solvent. The residue was fractionated by column chromatography on silica gel into two fractions: (1) The first fraction was recrystallized from ethyl acetate-n-hexane to yield 5-nitrospriro[benzo[b]furan2(3H), l'-cyclopropane]-3-one as colourless prisms melting at 107-110 C. Elemental analsis, for CloH7NO4 Calcd. : C, 58.54; H, 3.44; N, 6.83 Found : C, 58.85; H, 3.50; N, 6.68 (2) The second fraction was recrystallized from ethyl acetate-hexane to yield 7-nitrospiro[benzo[b]furan-2 (3H), l'-cyclopropane]-3-one as colourless needles melting at 131-1340C. Elemental analysis, for C10H7N04 Calcd. : C, 58.54; H, 3.44; N, 6.83 Found : C, 58.42; H, 3.37; N, 6.65 Example 19 Spiro[benzo[b]furan-2(3H) ,l'-cyclopropane]-3 one (7.0 g.) was added in small portions to fuming nitric acid (70 me.) previously cooled to -500C to -600C. After stirring for 20 minutes, the reaction mixture was poured into ice-water and the precipitated crystals were collected by filtration, washed with water and recrystallized from ethanol. By the above procedure there was obtained 5-nitrospiro[benzo[b] furan-2(3H),l'-cyclopropane]-3-one as colourless prisms, m.p.107-1100C, Yield: 7.3 g. This product was in good agreement with the crystals obtained in Example 18. The mother liquor resulting from the recrystallization was subjected to column chromatography on silicagel for purification, and then recrystallized from methanol to afford 5,7-dinitrospiro[benzo]b]furan-2 (3H),l'-cyclopropane]-3-one as pale yellow needles melting at 158-1610C. Elemental analysis, for C10H606N2 Calcd. : C, 48.01; H, 2.42; N, 11.20 Found : C, 48.03; H, 2.33; N, 11.01 Example 20 5.4 g. of 6-Nethoxyspiro[benzo[b]furan-2(3H),l'- cyclopropane]-3-one were dissolved in a mixture of 25 mQ. acetic anhydride and 7 mi. of glacial acetic acid. While keeping the reaction temperature at 10-15 C, 3 mQ. of fuming nitric acid (d=1.52) were added dropwise to the mixture. After stirring for 30 minutes, the reaction mixture was poured into ice-water. The resulting precipitates were collected by filtration, washed with water and recrystallized from ethanol. By the above procedure, there was obtained 6-methoxy-5 nitrospiro[benzo[b]furan-2(3H),l1cyclopropane]-3- one as pale yellow prisms melting at 160-163 C. Yield: 4.5 g. Elemental analysis, for CllHgN05 Calcd. : C, 56.17; H, 3.86; N, 5.96 Found : C, 56.44; H, 3.76; N, 5.80 Example 21 190 mg. of 6-Methoxyspiro[benzo[b]furan-2(3H), l'-cyclopropane]-3-one were added to 2 me. of fuming nitric acid )d=1.52) at -500C while stirring. After 10 minutes, the reaction solution was poured into icewater, and then extracted with ethyl acetate. The extract solution was washed with an aqueous solution of sodium bicarbonate, and then with a saturated saline solution, followed by drying over anhydrous sodium sulphate. Crystals obtained by evaporating the solvent were recrystallized from methanol. By the above procedure, there were obtained 20 mg. of 6-methoxy-5, 7-dinitrospiro[benzo[b]furan-2(3H),l-cyclopropane] -3-one as pale yellow plates melting at 121-1240C. Elemental analysis, for C11H807N2 Calcd. : C, 47.15; H, 2.88; N, 10.00 Found : C, 46.86; H, 2.79; N, 9.83 Example 22 A solution of 5-nitrospiro[benzo[b]furan-2(3H),l- cyclopropane]-3-one (7.2 g.) in ethanol was stirred in the presence of platinum dioxide and in hydrogen gas streams. After the hydrogen absorption had ceased, the catalyst was filtered off and a small amount of HCL diethyl ether was added to the residue, followed by recrystallization from ethanol. By the above procedure there was obtained 5-aminospiro[benzo[b]furan-2(3H) ,l'- cyclopropane]-3-one hydrochloride as light-brown needles melting at 139-1420C. Elemental analysis, for C10H19 02N.HC± Calcd. : C, 56.75; H, 4.76; N, 6.62 Found : C, 56.67; H, 4.83; N, 6.67 Example 23 7-NitrospiroEbenzo[b]furan-2(3H),l t -cyclopropane] -3-one was reacted in the same manner as in Example 22 and the reaction product was recrystallized from ethanol. By the above procedure there was obtained 7-aminospiro [benzo[b]-furan-2(3H),l'-cyclopropane]-3-one as pale brown crystals melting at 135.80C. Elemental analysis, for C10H19 02N Calcd : C, 68.56; H, 5.18; N, 8.00 Found : C, 68.42; H, 5.11; N, 7.74 Example 24 1.0 g. of 6-Methoxy-5-nitrospiro[benzo[b]furan 2(3H), l'-cyclopropane]-3-one was reacted in the same manner as in Example 22, and the reaction product was recrystallized from ethanol. By the above procedure, there were obtained 415 mg. of 5-amino-6-methoxyspiro [benzo[b)furan-2(3H),l'cyclopropane]-3-one as pale brown prisms melting at 175-177 C. Elemental analysis, for CllEllNO3 Calcd. : C, 64.38; H, 5.40; N, 6.83 Found : C, 64.39; H, 5.49; N, 6.71 Example 25 219 mg. of 7-Methyl-5-nitrospiro[benzo[b]-furan -2(3H),1'-cyclopropane]-3-one were subjected to catalytic reduction as in Example 22, and the reaction product was recrystallized from ethanol-water. By the above procedure there were obtained 74 mg. of 5 amino-7-methylspiro[benzo[b]furan-2(3H),l'-cyclo- propane]-3-one as yellow needles melting at l3814l0C. Elemental analysis, for C11H1102N Calcd. : C, 69.82; H, 5.86; N, 7.40 Found : C, 69.66; H, 5.71; N, 7.43 Example 26 250 mg. of 5,7-Dinitrospiro[benzo[b]furan-2 (3H),l'-cyclopropane]-3-one, 50 mg. of platinum di oxide and 20 m # of ethanol were stirred in a stream of hydrogen for 1.25 hour under atmospheric pressure. Oxalic acid was added to the reaction mixture, and the catalyst was removed by filtration. The filtrate was concentrated under reduced pressure until its volume became about 3 me. Ether was added to the concentrate, and the resulting powder was collected by filtration. The powder was dissolved in ethanol. To the ethanolic solution was added activated charcoal for decolouration, followed by the addition of ether. The precipitating powder was collected by filtration to obtain 5,7-diaminospiro[benzo[b]furan2(3H),l'- cyclopropane]-3-one.l/2 oxalatemonohydrate as a yellish brown powder. Elemental analysis, for C10H1002N2.¸(COOH)2.H20 Calcd : C, 52.17; H, 5.17; N, 11.06 Found : C, 52.12; H, 4.69; N, 10.87 The use of hydrochloric acid instead of oxalic acid in the above procedure gives 5,7-diaminospiro [benzo[b]furan-2(3H), l'cyclopropane]-3-oneXhydro- chloridemonohydrate melting at a temperature not lower than 3000C. Elemental analysis, for C10H1002N2.HCLH2O Calcd. : C, 49.08; H, 5.35; N, 11.45 Found : C, 48.80; H, 5.13; N, 11.64 Example 27 Carbobenzyloxy chloride (30 % toluene solution, 7 g.) was added under ice-cooling to a solution of 5¯aminospiro[benzo[blfurall-2(3H),l'-cyclopropane]-3- one (1.55 g.) in pyridine (13.5 m < ¯) and the resulting mixture was stirred for one hour. The reaction mixture was poured into ice-hydrochloric acid (14 m;.) and extracted with ethyl acetate. The extract was washed with water, dried and concentrated to remove the solvent. The residue was recrystallized from ethanol. By the above procedure there was obtained 5-benzylosUrcarbollylaminospiro[benzo[b]furan-2(3H), l'-cyclopropanel-3-one as pale yellow needles, m.p. ll8-l190C. Yield: 1.57 g. Potassium hydroxide powder (0.57 g.) and methyl iodide (1 m#.)were added to a solution of this product in acetone (30 ml.) and the resulting mixture was stirred under ice-cooling for 30 minutes and, then, at room temperature for 4 hours. Dilute hydrochloric acid was added to this reaction mixture, followed by, extraction with ethyl acetate. The extract was washed with water, dried and distilled under reduced pressure to remove the solvent. The residue was chromatographed on a column of silica gel and the fraction eluted with chloroform was recrystallized from ethanol. By the above procedure there was obtained 5-(N-benzyloxycarbonyl-N-methylamino)spiro[benzo[b]furan-2(3H),l'- cycolpropane]-3-one as colourless needles melting at 79-810C. Yields: 1.44 g. This product was dissolved in methanol, (129 m), and, in the presence of 5% palladium-on-carbon, the solution was stirred in hydrogen gas streams for 30 minutes. The catalyst was filtered off, the filtrate was concentrated under reduced pressure and the residue was dissolved in ethanol, followed by the addition of HCQ-diethyl ether. By the above procedure there was obtained 5-methylaminospiro [benzo[b]furan- 2(3H),l'-cyclopropane]-3-one hydrochloride as yellow needles melting at 141-1440C. Elemental analysis, for C11H11O2N.HC.+H20 Calcd. : C, 56.29; H, 5.58; N, 5.97 Found : C, 56.38; H, 5.15; N, 6.07 Example 28 5-Aminospiro[benzo[b]furan-2(3H) ,l '-cyclopropane] -3-one (1.75 g.) and 37 formalin (14 mQ) were dissolved in acetonitrile, and, under ice-cooling, lithium cyanborohydride (1.52 g.) was added to the solution portionwise. The mixture was stirred at room temperature for 40 minutes, after which it was neutralized with acetic acid and then stirred for 2.5 hours. The solvent was distilled off under reduced pressure, an aqueous solution of sodium hydroxide was added to the residue and the mixture was extracted with chloroform. The extract was washed with water, dried and concentrated to remove the solvent. The residue was chromatographed on silica gel, eluation being carried out with chloroform. To the eluate was added HC2-di- ethyl ether, followed by recrystallization from ethanol. By the above procedure, there was obtained 5-dimethylaminospiro[benzo[b]furan-2(3H),l'-cyclo- propane]-3-one hydrochloride as light-brown needles melting at 136-1400C. Yield: 0.546 g. MMR(D20) 6 : 1.67(2H, m, CH2), 1.93(2H, m, CH2), 3,37 (6H, s, CH3), 7.43(1H, d, aromatic ring H), 7.93 (2H, m, aromatic ring H) Elemental analysis, for C12Hl302H.NCf Calcd. : C, 60.13; H, 5.89; N, 5.85 Found : C. 60.19; H, 5.72; N, 6.00 Example 29 A mixture of 35 g. of 5-nitrospiroLbenzo[b ] furan-2(3H),l'cyclopropane]-3-one, 60 ml. of 370p formalin, 30 ml. of acetic acid, 3 g. of platinum dioxide and 500 m4. of ethanol was subjected to reduction at room temperature under a hydrogen pressure of 20 kglcm2. After stopping the hydrogen absorption, the catalyst was removed by filtration, and the filtrate was concentrated under reduced pressure. The concentrate was dissolved in chloroform, and washed with 2N NaOH and then with water, followed by drying. Chloroform was removed by evaporation under reduced pressure, and the resulting oily substance was crystallized from methanol to obtain 26 g. of 5-dimethylami noLb7s}iroLben o]fur n-2(3H),lseyclopropane]-3-one as yellow cubic crystals melting at 96.5-97.50 C. Elemental analysis, for C12Hls02N Calcd. : C, 70.91; H, 6.45; N, 6.89 Found : C, 71.06; H, 6.39; N, 6.71 Example 30 5-Aminospiro[benzo[b]furan-2(3H),l'cyclopropane] -5-one (1.75 g.) and acetaldehyde (3 m4.) were dissolved in methanol (105 m#.). The methanolic solution was stirred for 22 hours in a hydrogen stream in the presence of platinum dioxide. After removal of the catalyst by filtration, the solvent was evaporated off, and the residue was subjected to column-chromatography on silica gel, using carbon tetrachloride - ethyl acetate (10 : 1) as the eluent. The first fraction was converted to the hydrochloride with ether saturated with hydrogen chloride, the product being recrystallized from ethanol - ether. By the above procedure, there was obtained 5-dietbylaminospiro[benzo[b]furan-2(3H), l'-cyclopropane]-3-one hydrochloride as pale yellow needles melting at 172-1760C. Yield: 0.86 g. Elemental analysis, for C14Hl702H.HCR Calcd. : C, 62.80; H, 6.78; N, 5.23 Found : C, 62.79; H, 6.85; N, 5.10 The second fraction was converted to the hydrochloride with ether saturated with hydrogen chloride, the product being recrystallized from ethanol-ether to yield 5-ethylaminospiro[benzo[b]furan-2(3H),l'cyclopropane]-3-one hydrochloride 1/4 hydrate as pale yellow needles melting at 155-1600C. Yield: 0.129 g. Elemental analysis, for C12H1302NHC11/4 hydrate as pale yellow needles melting at 155-1600C. Yield: O. 129 g. Elemental analysis, for C12Hl302NHCt 1/4H20 Calcd. : C, 59.02; H, 5.98; N, 5.73 Found : C, 58.94; H, 5.86; N, 5.73 Example 31 A mixture of 5-aminospiro[benzo[b]furan-2( 3H), l'-cyclopropane]-3-one(3.0 g.), 1,4-dibromobutane (3.7 g.), sodium bicarbonate (2.89 g.) and N,N-dimethylformamide (150 mQ.) was heated under reflux for one hour. The reaction mixture was diluted with water and extracted with ethyl acetate. The extract was washed with water, dried and concentrated to remove the solvent. The residue was chromatographed on silica gel, elution being carried out with chloroform. The first fraction thus obtained was distilled under reduced pressure to recover yellow crystals (1.74 g.). Following the addition of HCP-diethyl ether, the product was recrystallized from ethanol. By the above procedure there were obtained yellow needles of 5-(l-pyrrolidinyl)spiro[benzo[b]furan-2(3H), l-cyclopropane]-3-one hydrochloride. m.p.l360C. Elemental analysis, for C14Hl502N.HCp Calcd. : C, 63.27; H, 6.07; N, 5.27 Found : C, 63.26; H, 6.10; N, 5.26 Example 32 A suspension of 5-aminospiro[benzo[b]furan-2 (3H),l'cyclopropane]-3-one (2.62 g.), bis(2-iodoethyl) ether (5.4 g.) and sodium bicarbonate (3.75 g.) in N,N-dimethylformamide (150 mp.) was stirred at 120140 C for 2.5 hours. The reaction solution was poured into water and extracted with ethyl acetate. The extract was washed with water and dried and the solvent was removed by evaporation. The residue was subjected to column-chromatography on silica-gel using chloroform-ethanol (99:1) as the eluent. The eluate was concentrated by evaporation of the solvent under reduced pressure to give yellow crystals (1.12 g.),to which HC- ether was added, and was then recrystallized from ethanol - ether to obtain 5-morpholinospiroEbenzo [bgfuran-2(3H),1'-cyclopropane]-3-one hydrochloride as pale brown needles, melting at 128-1310C. Yield: 0.927 g. Elemental analysis, for C14H1503N.HC Calcd. : C, 59.68; H, 5.73; N, 4.97 Found : C, 59.59; H, 5.60; N, 4.95 Example 33 5-AminspiroEbenzoEb]furan-2(3H),l'-cyclopropane3 -3-one (1.75 g.) was allowed to react with N-benzyl ss,ss'-diiododiethylamine (6.8 g.) and sodium bicarbonate (4 g.) in the same manner as in Example 32 to obtain 5-(4-benzyl-1-piperazinyl)spiro[benzo[b]furan-2-(3H), l'-cyclopropane]-3-one as yellow needles melting at 125-125.5 C. Yield: 0.831 g. Elemental analysis, for C21 11220 2N2 Calcd : C, 75.42; H, 6.63; N, 8.38 Found : C, 75.26; H, 6.78; N, 8.41 Example 34 5-Aminospirotbenzo[bgfuran-2(3H)s1'cyclopropane] -3-one (1.75 g.) was allowed to react with N-ethyl-B, ss'-diiododiethylamine (5.84 g.) and sodium bicarbonate (4 g.) in the same manner as in Example 32 to obtain 5-(4-ethyl-1-piperazinyl)spiro[benzo[b]furan-2(3H),l' -cyclopropane]-3-one oxalate 1/2 hydrate as yellow needles melting at 175-1790C. Elemental analysis, for C16H2002N2.C2H204.jH2O Calcd. : C, 58.20; H, 6.24; N, 7.54 Found : C, 58.00; H, 6.56; N, 7.24 Example 35 5-Aminospiro[benzo[b]furan-2(3H) ,11-cyclopropane] -3-one (0.875 g.) was acetylated with acetic anhydride (7 m4.) and acetic acid (7 m#.) and the acylation product was recrystallized from ethanol. By the above procedure there was obtained 5-acetylaminospiro [benzo[b]furan-2(3H), l'-cyclopropane]-3-one as yellow prisms melting at 211-2120C. Yield: 0.426 g. Elemental analysis, for C12H110 3N Calcd. : C, 66.35; H, 5.10; N, 6.45 Found : C, 66.37; H, 5.12; N, 6.38 Example 36 To a solution of 5-aminospiro[benzo[b]furan -2 (311) ,1'-cyclopropane]-3-one (0.519 g.) in pyridine (5 mQ .) was added methanesulphonyl chloride (0.28 m# .) under ice-cooling, followed by stirring. The reaction mixture was poured into cooled dilute hydrochloric acid and extracted with ethyl acetate. The extract was washed with water, dried and concentrated to remove the solvent. The residue was recrystallized from ethanol. By the above procedure there was obtained 5-methylsulphonylaminospiro[benzo[b]furan-2(3H), l'-cyclopropane]-3-one as colourless needles melting at 152-1540C. Yield 0.38 g. Elemental analysis, for C11H11O4NS Calcd. : C, 52.16; H, 4.38; N, 5.53; S, 12.66 Found : C, 52.20; H, 4.37; N, 5.32; S, 12.56 Example 37 A 10 Gh aqueous solution of sodium hydroxide was added to 4-acetoxyspiro[benzo[b]furan-2(3H),l'-cyclo- propane]-3-one, and the resulting mixture was stirred at room temperature. The reaction mixture was made acidic with hydrochloric acid and extracted with ethyl acetate, The extract was washed with water, dried and distilled to remove the solvent. The residue was recrystallized from petroleum ether. By the above procedure there was obtained 4-hydroxyspiro [benzo[b]furan-2(3H),l'-cyclopropane]-3-one as yellow needles, m.p. 100-1090C. Elemental analysis, for C10H8O3 Calcd. : C, 68.18; H, 4.58 Found : C, 68.38; H, 4.42 Example 38 To a solution of 1.09 g. of 6-acetylaminospiro [benzo[b]furan-2(3H),l'-cyclopropane]-3-one in 50 m4 of methanol was added 0.8 g. of potassium hydroxide, and the resulting mixture was refluxed for 0.5 hour. The solvent was evaporated off under reduced pressure. Water was added to the residue, and the precipitating crystals were collected by filtration, washed with water and dried. The crystals were recystallized from methanol to obtain 6-aminospiroLbenzo[b]furan- 2(3H),l'-cyclopropane]-3-one as colourless prisms melting at 188-189 C. Elemental analysis, for CloH902N Calcd. : C, 68.56; H, 5.18; N, 8.00 Found : C, 68.34; H, 5.05; N, 7.88 Example 39 6-Acetylamino-5-chlorospiro[benzo[b]furan-2(3H)s l'-cyclopropane]-3-one (1.8 g.) was reacted in the same manner as in Example 38 and the reaction product was recrystallized from methanol. By the above procedure, there was obtained 6-amino-5-chlorospiro [benzoLb]furan-2(3H),lt-cyclopropane]-3-one as yellow plates, m.p.2010C. Yield: 1.5 g. Elemental analysis, for CloH802NCQ Calcd. : C, 57.29; H, 3.85; N, 6.68 Found : C, 57.24; H, 3.74; N, 6.67 Example 40 5-Benzyloxyspiro[benzo[b]furan-2(3H),l'-cyclo- propane]-3-one (3.3 g.) was debenzylated by catalytic reduction in methanol. By this procedure, there was obtained 5-hydroxyspiro[benzo[bgfuran-2(3H),l'- cyclopropane]-3-one as pale yellow needles, m.p. 180-1850C. Yield : 1.8 g. Elemental analysis, for C10H803 Calcd. : C, 68.18; H, 4.58 Found : C, 68.12; H, 4.44 Example 41 A mixture of 4-hydroxyspiro [benzo [b]furan-2( 3H), l'-cyclopropane]-3-one (0.176 g.), potassium carbonate (0.276 g.), -diethylaminoethyl chloride (0.215 g) and N,N-dimethylformamide (5 mQ .) was stirred at room temperature for 3 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The extract was washed with water, dried and distilled to remove the solvent. The residue was purified by column chromatography on silica gel, using chloroform as the eluent. The product was treated with HC saturated diethyl ether and the resulting hydrochloride was recrystallized from ethanol-diethyl ether. By the above procedure there was obtained 4-(2 diethylaminoethyloxy)spirotbenzo[b]furan-2(3H),l'- cyclopropanl-3-one hydrochloride as colourless needles, m.p. 160-1680C. Yield: 0.221 g. Elemental analysis, for C16H21O3N.HC# Calcd. : C, 61.63; H, 7.11; N, 4.49 Found : C, 61.38; H, 7.23; N, 4.38 Example 42 5-Hydroxyspiro[benzo[b]furan-2(3H),l'-cyclo- propane]-3-one (1.06 g.) was reacted in the same manner as in Example 41 to obtain 5-(2-diethylamino ethyloxy)spiro[benzorb]furan-2(3H),l'-cyclopropane]- 3-one as a colourless oil. Nuclear magnetic resonance spectrum (6 , in deuteriochloroform): 1.07(6H, t, CH3), 1.63(4H, m, 2',3t-CH2), 2.64(4H, q, NCH2CH3), 2.88(2H, t, NCH2CH20), 4.04(2H, t, -CH20), 6.95 7.40(3H, m, aromatic ring H). Example 43 5-Aminospiro[benzo[b]furan-2(3H),l'-cyclo- propane]-3-one (0.747 g.) and calcium carbonate (0.47 g.) were suspended in a mixture of carbon tetrachloride (20 m.) and methylene chloride (5 m#.). The suspension was cooled to -170C, and then bromine (0.22 mp.) was added dropwise thereto, followed by stirring for 45 minutes. The reaction mixture was poured into icewater, and then extracted with ethyl acetate. The extract was washed with water and dried. The solvent was evaporated off, and the residue was recrystallized from ethanol-water. By the above procedure there was obtained 5-amino-4-bromospiro[benzo[b]furan-2(3H),l'- cyclopropane]-3-one was yellow needles melting at 1671700C. Yield: 0.6 g. Elemental analysis, for ClOH802NBr Calcd. : C, 47.27; H, 3.19; N, 5.51 Found : C, 47.58; H, 3.12; N, 5.64 Example 44 A suspension of 5-dimethylaminpspiro[benzo[b] furan-2(3H),l'-cyclopropane]-3-one (0.455 g.) and calcium carbonate (0.246 g.) in carbon tetrachloride (10 m2.) was reacted in the same manner as in Example 43 to obtain 4-bromo-5-dimethylaminospiro[benzo[b] furan-2(3H),1'-cyclopropane]-3-one as brown needles melting at 79-81 C. Yield: 0.213 g. Elemental analysis, for C12Hl202NBr Calcd. : C, 51.08; H, 4.29; N, 4.97 Found : C, 50.87; H, 4.13; N, 5.03 Example 45 A solution of 5-aminospiro[benzo[b]furan-2(3I), l'-cyclopropane]-3-one (0.181 g.) and pyridine (0.083 mg.) in tetrahydrofuran (5 m4.) was cooled to -170C. Iodobenzenedichloride (0.282 g.) which had been prepared by a conventional method and dissolved in tetrahydrofuran (1.5 me.), was added dropwise to the solution over 50 minutes, followed by stirring for 1 hour. The reaction mixture was poured into ice-water and extracted with ethyl acetate. The extract was washed with water and dried, and the solvent was evaporated off. The residue was subjected to columnchromatography, using chloroform as the eluent. The first fraction was concentrated under reduced pressure to remove the solvent. By the above procedure, there was obtained 5-amino-4-chlorospiro[benzo[b]furan-2 (3H),l'cyclopropane]-3-one as yellow crystals. Yield: 0.038 g. Mass spectrum : C12H1202NCQ, molecular ion peak (209) Examples of preparations ready for administration When the compound of this invention is intended for use as an anti-ulcer, types of suitable preparations can be exemplified as follows. 1. Tablet (1) 5-AcetylspirobenzobJfuran-2 50 g. (3H),l'cyclopropaneJ-3-one (2) Lactose 50 g. (3) Corn-starch 29 g. (4) Magnesium stearate 1 g. 1000 tablets 130 g. Components (1) and (2) and 17 g. of the cornstarch (3) were granulated together with a paste prepared from 7 g. of the corn-starch. To these granulg were added the remaining 5 g. of the cornstarch and component (4). The mixture was then compressed by a tabletting machine to prepare 1000 tablets of 7 mm. diameter, each containing 50 mg. of (1). 2. Capsule (1) 5-I)imethylaminospiro[benzo[b]furan-2(3H), l'-cyclopropane]-3-one 50 g. (2) Lactose- 100 g. (3) Cellulose fine powder 45 g. (4) Magnesium stearate 5 g. 1000 capsules 200 g. All the materials were mixed and filled into 1000 capsules (gelatin capsule No.3 defined in Japanese Pharmacopoeia, 8th edition) to prepare capsules each containing 50 mg. of (1).
CLAIMS- 1. A spiro compound of the formula: EMI37.1 wherein Ring A represents a benzene ring or a naphthalene ring, the ring being unsubstituted or sub stituted by at least one of lower alkyl, nitro, halogen, amino, which may optionally itself be substituted, hydror l, which may optionally itself be substituted, acyl and sulfamoyl. 2. A compound according to claim 1, wherein Ring A is substituted by at least one of amino, mono- or dialkylamino and cycloamino. 3. A compound according to claim 2, which is in the form of a pharmaceutically acceptable acid addition salt. 4. A compound according to claim 1, wherein Ring A is benzene and the substituent of the benzene ring is di-Cl 4 alkylamino or C26 alkanoyl. 5. A compound according to claim 4, wherein the substituted position is the 5-position of the benzene ring. 6. Spiro-[benzo[b]furan-2(3H), l'-cyclopropane]-3- one. 7. 5-acetylspiro[benzo[b]furan-2(3H), l'-cyclo propane]-3-one. 8. Spiro-[naphtho[2,3-b]furan-2(3H),l-cyclopropane] -3-one. 9. 5-Nitro-spiro[benzo[b]furan-2(3H),l'-cyclopro- pane]-3-one. 10. 5-Amino-spiro[benzo[b]furan-2(3H) , 1'-cyclopro- pane]-3-one. 11. 5-Methyl-aminospirotbenzo[b]furan-2(3H),l'- cyclopropane]--3-one. 12. 5-Dimethylaminospiro[benzo[b]furan-2(3H),l'- cyclopropane]-3-one. 13. A pharmaceutical composition which comprises (A), as an active ingredient, an effective amount of the spiro compound as defined in claim 1, and (B) a pharmaceutically acceptable carrier or diluent therefor. 14. A method of producing a spiro compound of the formula: EMI38.1 wherein Ring A represents a benzene ring or a naphthalene ring, the ring being unsubstituted or substituted by at least one of lower alkyl, nitro, halogen, amino, which may optionally itself be substituted, hydroxyl, which may optionally itself be substituted, acyl and sulphamoyl, which method comprises decarboxylating a compound of the formula: EMI38.2 wherein Ring A is as defined above; and optionally converting the compound (I) to an acid addition salt when at least one amino substituent is present on Ring A and to an alkali metal salt when at least one hydroxyl group is present on Ring A. 15. A method of producing a spiro compound of the formula: EMI39.1 wherein R1 is mono- or di-alkylamino and n is 1 or 2, which method comprises: (1) subjecting a compound of the formula: EMI39.2 wherein n is as defined above, to reduction, and then the resulting compound of the formula: EMI39.3 wherein n is as defined above, to reductive alkylation or alkylation with an alkyl halide; or (2) subjecting a compound of the formula (Ia) to reductive alkylation; and optionally converting the compound (Ic) to an acid addition salt thereof 16. The use in the treatment of animals, including humans of a compound (I) on acid addition salt thereof as claimed in any of claims 1 to 13, or composition as claimed in claim 13 or product of a method as claimed in claim 14 or 15.
TAKEDA CHEMICAL INDUSTRIES, LTD.
HIROSADA, SUGIHARA; ISUKE, IMADA; MITSURU, KAWADA; WATANABLE, MASAZUMI
EP-0003089-B1
3,089
EP
B1
FR
19,810,812
1,979
20,100,220
new
B41F23
F26B15
F26B15, B41F23
B41F 23/04C2B, F26B 15/08B
DRIER FOR SILKSCREEN PRINTED SHEETS
1. A drier for silk-screen printed sheets, comprising an endless conveyor (1) moving about horizontal shafts (3) supported by a frame and to which are fixed hurdles adapted for receiving the sheets, and a device (6) for blowing air on these latter so as to dry them during their movement on the conveyor, characterized in that the edge (8) of each hurdle (7) adjoining the conveyor is bent and carries a series of fastening clips (9) adapted to grip the corresponding edge of a sheet (11) on this hurdle and control means are provided for causing automatically in a single action the opening of the clips (9) of each hurdle (7), successively before withdrawal of a dried sheet, the clips (9) closing again under the action of a resilient return member (15) after introduction of a wet sheet (11) on each hurdle (7).
Séchoir Dour feuilles imprimées Dar sérigraDhie La présente invention a pour objet un séchoir pour feuilles imprimées par sérigraphie. Comme on le sait, le séchage des feuilles imprimées par sérigraphie se fait à l'heure actuelle, soit manuellement en empilant les unes sur les autres des claies de séchage sur chacune desquelles est disposée une feuille, soit mécaniquement au moyen de séchoirs dans lesquels on souffle de l'air sur les feuilles en mouvement. Un premier type de réalisation connu est ainsi constitué par un tunnel rectiligne à l'intérieur duquel est disposé un tapis tournant, un dispositif de chauffage à infrarouge ou autre étant complémentairement placé dans le tunnel en association avec un système de ventilation de l'air. A la sortie du tunnel, les feuilles sont sèches et sont retirées de la machine. Ces tunnels sont extrêmement encombrants, consomment en outre une grande quantité d'énergie de chauffage, ce qui rend leur exploitation onéreuse, ils empêchent un repérage précis parce que la chaleur dessèche et par conséquent déforme les feuilles. Enfin, ils obligent à ne se servir que de séries d'encres étudiées pour eux, limitant ainsi le choix de l'utilisateur. Un second type de réalisation connu consiste en un convoyeur sans fin tournant autour d'axes placés à ses extrémités, et qui porte des claies sur lesquelles on pose les feuilles imprimées. Ce type de séchoir est aussi long que les tunnels à air chaud pulsé, du fait que seul un courant d'air très faible ou nul permet aux feuilles seulement posées de rester en place. Un autre inconvénient de ce type de séchoir est que les feuilles insuffisamment rigides touchent la claie précédente, ce qui limite la possibilité d'utilisation. L'invention a pour but de remédier à ces inconvénients en réalisant un séchoir du second type précité, c'està-dire comportant un convoyeur sans fin porté par un châssis et auquel sont fixées des claies adaptéès pour recevoir les feuilles, ainsi qu'un dispositif de soufflage d'air sur celles-ci pour les sécher pendant leur déplacement sur le convoyeur. A cet effet, conformément à l'invention, le séchoir comprend un système de pinces d'amarrage de chaque feuille sur sa claie de support, associé à des moyens pour ouvrir et refermer automatiquement ces pinces à la fin du cycle de séchage d'une feuille,afin de permettre le retrait de cette dernière du séchoir. Dans ces conditions, les feuilles sont solidement amarrées à leurs claies de support, et ne tendent pas à glisser lorsque les claies pivotent à l'une ou l'autre extrémité du séchoir. Suivant un mode de réalisation de l'invention, chaque ensemble de pinces pour le maintien d'une feuille sur sa claie est constitué par une rangée de lames coudées, montées rotativement autour d'axes parallèles au côté attenant de la claie, et ces lames sont sollicitées élastiquement vers la feuille par des organes de rappel pour maintenir la feuille appliquée contre la claie. Pendant son cycle de séchage, chaque feuille est donc solidement maintenue appliquée sur la claie associée par cette rangée de lames coudées, qui sont automatiquement relevées à la fin du cycle par le dispositif d'ouverture automatique précité, lequel est agencé pour provoquer cette ouverture seulement lorsque les feuilles sont à lthorizontale. Celles-ci peuvent ainsi être agrippées par des moyens mécaniques connus en soi pour être retirées du séchoir, sans avoir auparavant glissé sur la claie. D'autrcs particularités et avantages de l'invention apparaîtront au cours de la description qui va suivre. Aux dessins annexés donnés à titre d'exemple non limitatif, on a représenté une forme de réalisation du séchoir selon l'invention. la figure 1 est une vue en perspective d'un séchoir du type visé par l'invention la figure 2 est une vue en perspective partielle à échelle agrandie d'une extrémité du séchoir de la figure 1, montrant un ensemble de pinces d'amarrage équipant une claie la figure 3 est une vue en élévation à grande échelle, montrant la cinématique de l'ouverture automatique d'une pince d'amarrage réalisée conformément à l'invention pour équiper le séchoir des figures 1 et 2. La figure 4 est une vue d'une pince en perspective. En se reportant aux figures 1 et 2, on voit un séchoir pour feuilles imprimées par sérigraphie, comportant un convoyeur ans fin 1, constitué de façon connue en soi par deux chaînes telles que 2 tournant dans des plans verticaux parallèles, autour d'axes terminaux 3 superposés, auxquels sont solidarisées des roues dentées 4. Ce convoyeur 1 est porté par un châssis 5 au milieu duquel est disposé un dispositif 6 de soufflage d'air d'un type connu en soi. Au convoyeur 1, sont fixées un ensemble de claies 7 constituées par des cadres rectangulaires destinés à recevoir chacun une feuille imprimée à sécher. Chaque claie 7 est fixée par son armature aux deux chaînes du convoyeur. Un système approprié leur permet d'être inclinées d'environ 25 degrés dans la partie supérieure du séchoir, tout en restant verticales dans la partie inférieure. les claies avec leurs feuilles imprimées à sécher sont introduites dans le séchoir par l'extrémité de gauche sur la figure 1, tournent autour de l'extremité de droite en passant dans un capot visible à la figure 1, puis reviennent sous le convoyeur 1 jusqu a l'entrée du séchoir pour être retirées après avoir été séchées par l'air pulsé provenant du dispositif 6. le trajet suivi par les claies 7 est symbolisé par les flèches portées sur la figure 2. Conformément à l'invention,le séchoir comprend pour chaque claie 7, un système de pinces 9 d'amarrage de chaque feuille 11 sur sa claie 7 de support, associé à des moyens pour ouvrir et refermer automatiquement ces pinces 9 à la fin du cycle de séchage d'une feuille 11, afin de permettre le retrait de cette dernière du séchoir par un dispositif non représenté. Chaque ensemble de pinces 9 est ainsi constitué, dans l'exemple représenté, par une rangée de lames coudées 12 (figure 3), montées rotativement autour d'axes ou goupilles 13 parallèles au c8té attenant de la claie 7, solidaire du convoyeur sans fin 1. les lames 12, métalliques de préférence, sont coudées dans l'exemple représenté en formant un angle d'environ 120 degrés, les axes 13 étant placés à l'intérieur de cet angle, et supportant les lames 12 par l'intermédiaire d'oreilles 14 solidaires des lames et dans lesquelles sont enfilés les axes 13. les lames coudées 12 sont sollicitées élastiquement vers la feuille 11 par des organes de rappel, pour maintenir la feuille 11 appliquée contre la claie 7. Dans l'exemple décrit, l'organe élastique de rappel de chaque pince 9 est un fil-ressort 15 enroulé autour de l'axe 13 entre les deux oreilles 14, et dont une extrémité 15a prend appui sous le bord 8 de la claie 7, tandis que son autre extrémité 15b est en appui contre une partie correspondante de la lame coudée 12. le fil-ressort 15 exerce ainsi sur la branche de la lame 12 avec laquelle il est en contact par son extrémité 15b, une sollicitation élastique tendant à faire pivoter cette lame 12 autour de l'axe 13 vers la claie 7, comme indiqué par les flèches f sur la figure 3. Ce couple élastique est transmis à la feuille 11 par un ressort hélicofidal 16 fixé à l'extrémité de la branche de la lame coudée 12 située en regard de la claie 7, ce ressort 16 étant appliqué contre la feuille 11 sous l'action du fil-ressort 15. Le bord profilé 8 fait partie de l'armature métallique constituant la claie 7, et il est réalisé en S de façon que l'une de ses petites branches 8a soit sensiblement parallèle à la surface de la claie 7, et serve de butée pour la lame 12, en limitant la grandeur de la force élastique de serrage appliquée sur la feuille 11 par le lame 12 et son ressort associé 16. tes moyens d'ouverture et de fermeture automatiques de chaque ensemble de pinces 9 porté par des axes 13, comprennent, dans l'exemple de réalisation représenté à la figure 3, une série de têtes telles que 17, agencées pour coopérer avec les lames coudées 12 et solidarisées avec un support transversal 18 porté par le châssis du séchoir. Le support 18 est constitué par un organe tubulaire disposé transversalement et dont l'axe 24 est parallèle aux tringles 13, au voisinage de l'extrémité d'entrée du convoyeur 1. La rangée de têtes 17 est solidarisée avec le support 18 par des tiges 19 soudées aux têtes 17 et au support 18. Ce dernier est en outre pourvu d'un bras transversal 21 pouvant coopérer avec un organe de manoeuvre du support 18 en rotation autour de son axe, cet organe étant ici un vérin 22 . La tige 23 de celui-ci peut ainsi, lorsqu'elle est actionnée, faire pivoter le bras 21, et par conséquent le support 18 et l'ensemble des têtes 17 dans des plans verticaux parallèles, autour de l'axe transversal 24 du support 18, pour amener les têtes 17 de la position représentée à la figure 3 jusqu'à une position mettant en contact les têtes 17 avec les lames 12 de la claie 7 représentée horizontalement, jusqu'à obtenir l'ouverture des pinces de cette claie 7 - soit une rotation du support 18 dans le cas représenté à la figure 3, de 21 degrés environ dans le sens inverse des aiguilles d'une montre. Cette rotation, donc ltouverture des pinces 9, s'opère à la fin du cycle de séchage lorsqu'une claie, chargée d'une feuille 11 sèche, vient de prendre la position horizontale, permettant ainsi le retrait de la feuille 11. Comme on le voit à la figure 3, la séquence d'ouverture et de fermeture automatiques d'une pince 9 se passe de la manière suivante. La claie pivotant du bas vers le haut dans le sens indiqué par la flèche R, s'arrête à l'horizontale tandis que sa lame 12 se trouve à proximité de la tête associée 17 du dispositif d'ouverture automatique. La tige 23 du vérin 22 s'élève, et fait pivoter le support 18 qui entraîne la tête 17 et provoque l'ouverture des pinces 9, par pression des têtes 17 Sur les lames 12 associées, cette pression venant contrarier l'action des fils-ressorts 15. la lame 12 et son ressert 16 basculent autour de l'axe 13 et s'écartent progressivement de la feuille 11 etdela claie 7. Pendant ce temps, les moyens précités non représentés retirent de façon connue en soi la feuille 11 de sa claie de support. La claie horizontale ainsi débarassée de sa feuille 11 va monter d'un cran et reçoit alors une nouvelle feuille humide. On voit sur la figure 3 la position référencée A, dans laquelle la pince 9 est complètement ouverte, le ressort 16 étant écarté de la feuille 11, laquelle est inclinée d'environ 25 degrés sur l'horizontale avec sa claie 7 de support, au moment de l'introduction d'une nouvelle feuille dans le séchoir. La rotation de la claie 7 et de sa rangée de pinces 9 se poursuivant autour de l'axe 24, les lames 12 sont maintenues ouvertes par les têtes 17 jusqu a ce qu'elles échappent au contact de ces têtes, par une nouvelle manoeuvre du vérin 22, ce qui a pour effet de refermer les pinces 9 sur la nouvelle feuille humide venant d'être introduite (position référencée B sur la figure 3). te système d'amarrrage par les pinces réalisé selon l'invention permet avantageusement de maintenir solidement les feuilles à sécher pendant toute la durée de leur cycle de séchage, et en particulier à la fin de celui-ci, lorsque les feuilles pivotent jusqu'à l'horizontale pour être retirées de l'appareil. Celles-ci ne risquent donc pas de se détacher ou de glisser vers l'extérieur de la claie avant d'être agrippées par le dispositif de préhension et de retrait. L'avantage essentiel du séchoir selon l'invention réside dans le fait que la solide fixation de chaque feuille permet de souffler sur celles-ci un important débit d'air ambiant, au lieu d'air chaud comme dans les tunnels à tapis. On supprime ainsi toute énergie de chauffage, ce qui réduit notablement le coût d'exploitation. De plus, l'absence de chaleur évite la déformation des feuilles, ce qui autorise des tirages où les. couleurs peuvent se repérer entre elles d'une manière beaucoup plus précise que lorsqu'on utilise un tunnel à air chaud. En outre, du fait que grâce à la fiabilité du dispositif d'amarrage constitué par les pinces selon l'invention, on peut ventiler avec une force accrue, les feuilles sèchent plus rapidement. Corrélativement un nombre inférieur de claies est nécessaire pour sécher une quantité déterminée de feuilles dans un intervalle de temps donné, ce qui permet de diminuer l'encombrement de la machine en diminuant le nombre de claies qu'elle peut contenir. l'invention n'est pas limitée à la forme de réalisation décrite et peut comporter des variantes d'exécution. Notamment, le dispositif d'ouverture et de fermeture automatiques peut être réalisé de toute autre façon équivalente à celle décrite et représentée à la figure 3, par exemple en disposant des cames fixes à peu près analogues aux têtes 17 et sur lesquelles les pinces viendraient s'ouvrir au moment d'atteindre l'horizontale.
REVENDICATIONS DE BREVET 1. Séchoir pour feuilles imprimées par sérigraphie, comportant un convoyeur sans fin porté par un châssis et auquel sont fixées des claies adaptées pour recevoir les feuilles, et un dispositif de soufflage d'air sur celles-ci pour les sécher pendant leur déplacement sur le convoyeur, caractérisé en ce qu'il comprend un système de pinces d'amarrage de chaque feuille sur sa claie de support, associé à des moyens pour ouvrir et refermer automatiquement ces pinces au début et à la fin du cycle de séchage d'une feuille, afin de permettre l'introduction et le retrait de cette dernière du séchoir. 2. Séchoir selon la revendication 1, caractérisé en ce que chaque ensemble de pinces pour le maintien d'une feuille sur sa claie est constitué par une rangée de lames coudées, montées rotativement autour d'axes parallèles au côté attenant de la claie, et en ce que ces lames sont sollicitées élastiquement vers la feuille par des organes de rappel pour maintenir la feuille appliquée contre la claie. 3. Séchoir selon la revendication 2, caractérisé en ce qu un ressort , notamment hélicoidal, est fixé à l'extrémité de chaque lame coudée située en regard de la claie, et est appliquée contre la feuille sous l'action de l'organe élastique de rappel. 4. Séchoir selon l'une des revendications 2 et 3, caractérisé en ce que l'organe élastique de rappel de chaque pince est un fil-ressort enroulé autour de l'axe de la pince, et dont une extrémité prend appui sous le bord de la claie, tandis que son autre extrémité, est en appui contre une partie correspondante de la lame coudée, et exerce sur celle-ci une sollicitation-tendant à la faire pivoter autour de l'axe vers la claie. 5. Séchoir selon l'une des revendications 2 à 4, caractérisé en ce que les moyens d'ouverture et de fermeture automatiques de chaque ensemble de pinces porté par les axes précités comprennent une série de têtes agencées pour coopérer avec les lames coudées, et solidarisées avec un support transversal porté par le châssis du séchoir, ce support pouvant pivoter autour de son axe pour amener les te es d'une position levée à une position abaissée, dans laquelle elles sont placées par rapport aux lames coudées de telle façon que celles-ci s'ouvrent sur la claie horizontale et se referment, ou restent ouvertes par la suite dans au moins une position consécutive de la claie. 6. Séchoir selon la revendication 5, caractérisé en ce que le support des têtes d'ouverture et de fermeture automatique des pinces est manoeuvré par un vérin par l'ir.- termédiaire d'un bras de liaison, ce vérin pouvant faire pivoter le support et sa rangée de têtes pour faire effectuer à celles-ci les opérations d'ouverture et de fermeture des pinces.
DAVID, BERNARD; SILIUM SOCIETE FRANCAISE A RESPONSABILITE LIMITEE
DAVID, BERNARD
EP-0003094-B1
3,094
EP
B1
EN
19,820,512
1,979
20,100,220
new
B65B17
B65D71, B65D5, B65G1, B65B51
B65D85, B65D5, B65B51, B65B17
B65B 51/06F, B65B 17/02, B65D 5/02D, B65D 85/62
A METHOD OF SEALING AND RETAINING BOXES STACKED UPON EACH OTHER IN A PREDETERMINED POSITION
Method of handling parallelepipedic objects such as boxes and the like. To avoid sliding of the boxes (1) relatively to each other when stacked, the boxes are provided with a tape (14) made of a plastic foil with a friction increasing surface.
Method of handling parallelepipedic objects This invention relates to a method at the storage, transport and other handling of parallelepipedic objects, particularly boxes, cartons and the like. The invention more definitely relates to a handling method, at which objects are stacked, for example, in the form of load units or on pallets, and at storage. It is a problem well-known that objects, particularly boxes of corrugated board or cartons with smooth surfaces when being stacked have a tendency of sliding relatively to each other. As a result thereof, the stack gets disarranged and, in the worst case, collapses. In view of the high requirements of today on rational handling of goods, which when being in the form of boxes substantially are handled as pallet loads by means of trucks, such instable stacks constitute a serious problem, because re-stacking can take place only by tedious manual work. As regards boxes of corrugated board, several proposals have been made in recent years for solving the problem. According to one proposal, the corrugated board is treated in the corrugated board machine by coating with a colloidal solution of silicon or aluminium oxide, which increases the stiffness of the fibres in the surface of the paper sheet and thereby produces an irregular fibre networ::, whch provides a certain friction effect. The method, however, gives rise to difficult problems and breakdowns in corrugated board mills, particularly as a result of the silicon dioxide, because the material solidifies and builds up incrustrations in the application equipment. It was found, moreover, that the material has a corroding effect on the remaining machine equipment. Modified silicon oxides, it is true, which facilitate cleaning have been tested, but the high costs of such modifi cations so far have limited their use. As regards the aluminium oxide, it gives rise to troublesome dusting problems. According to another proposal, the corrugated board is coated with organic solvents increasing the friction. Hereby, however, the printability of the corrugated board is deteriorated substantially, and it becomes for most of the materials smeary and troublesome to handle. It also had been suggested to bring about ruggedness of the corrugated board surface by mechanical treatment. The ruggedness is obtained by puncturing the outer liner layer prior to its application, whereby on the resulting corrugated board sheet projections are formed. Such projections, however, are effective only upon contact with a rough or uneven surface. At greater loads, for example at the stacking of heavy boxes, the projections are depressed, and the friction effect does not come off. Another method of preventing stacked boxes from sliding relatively to each other is to treat the top of boxes after their completed packaging with a non-drying adhesive agent. When sufficient amounts of the agent are applied, certainly the boxes are retained very effectively against each other, but quite naturally both the application of the agent and the handling of the boxes after the breaking of the stack involve considerable inconveniencies. Finally, a method can be mentioned at which stacked boxes are retained to each other by applying adhesive spots in the form of socalled hot-melt. This method has the disadvantage that it is very difficult later on to separate the boxes from each other without destroying them. At present, boxes most often are transported on pallets. In such cases the problem is solved by fixing the load by means of a shrinking or stretching film. This, certainly, holds the load together in an effective manner, but is very expensive and does not solve the problem when the plastic film is broken, for example at the handling of the pallet-loads and their storage with the receiver. According to the present invention the problem is solved thereby, that the surfaces of the objects to be handled and be brought into contact with other objects in a stack or with a support are provided with a strip of a tape made of a plastic foil with rough surface. When the objects are cartons, boxes or the like with sealable cover, for example so-coiled slot boxes, the sealing can be effected by means of the friction increasing tape. It is per se previously known to make plastic foils with rough surfaces, so-called non-skid plastic foils, which have been used for wrapping wood packages carried by sea. The foil is manufactured by co-extruding two plastic films, to one of which an expanding agent is added which forms cells in the film. The foil is subjected to stretching, whereby the cells break and on the final film an irregular pattern w5th retiform elevotions is formed, rendering the foil as rugged a desired. The invention is described in greater detail in the following by way of an embodiment and with reference to the accompanying drawing. The drawing shows in a schematic manner the closing of a slot-box 1 along a plurality of stations 2,3,4,5, at which the cover tips 6,7, 8,9 in turn are folded inward so that at the last station 5 the closed box is obtained. The box is moved from here to a station 10 for sealing the cover, which is carried out by means of a friction tape 11 according to the invention. The tape is taken from a supply reel 12 and passed over suitable means for sealing the cover tips 7 and 9. The sealing finally is ensured by applying with rollers 13 or other suitable means pressure to the applied tape strip 14. If desired, also the lower side of the box can be provided with a tape stip from a reel 15. The invention is not restricted to the embodiment shown, but can be varied within the scope of the invention idea.
Claims: 1. A method of retaining objects stacked upon each other in a predetermined position relative to each other during the storage, transport or other handling of the objects, mainly in order to prevent the objects from sliding relatively to each other or to a support, characterized in that the objects are provided with a tape made of Q plastic foil with a friction increasing surface. 2. A method according to claim 1, characterized in that the foil is provided with rough retiform elevations. 3. A method according to claim 1, characterized in that the objects are cartons, boxes or the like with sealable cover, for example so-called slot-boxes, and that the sealing is carried out with the friction increasing tape.
SCA DEVELOPMENT AKTIEBOLAG
SVENSSON, BENGT ERIK
EP-0003100-B1
3,100
EP
B1
DE
19,810,826
1,979
20,100,220
new
H01F1
C01G49, G11B5
G11B23, C01G49, G11B5, H01F1, G11B21
G11B 5/706C6D2B
FERRIMAGNETIC IRON OXIDE AND METHOD OF MANUFACTURING THE SAME
1. Thermally stabilized ferrimagnetic iron oxides with coercive field strengths of 2.78-3.98 x 10**4 A/M which, upon incorporation into a magnetic tape show an improvement of at least 6 dB in the ratio of the recording level at a frequency of 10 K c/s to background noise according to DIN 45405 in relation to the reference tape according to DIN 45513, section 6/1976, obtainable by dehydrating, tempering and reducing needle-shaped alpha-FeOOH, which has been obtained, at a pH value of below 7, by precipitation from iron (II) salt solutions and oxidation, to iron oxide, the oxidation being terminated on reaching a pH value below 4, characterized in that the alpha-FeOOH has a crystallite size of from 12-22 mm before dehydration and is protected against sintering by chemical stabilization, and in that it contains 0.1-5 % by weight of Cd, Pb, Ca, Mg, Zn, Al, Cr, W, P (expressed as P2 O5 ) and/or B (expressed as B2 O3 ), based on Fe3 O4 .
Ferrimagnetisches Eisenoxid und Verfahren zu dessen Herstellung Die vorliegende Erfindung betrifft ein hochkoerzitives ferrimagnetisches Eisenoxid, das Verfahren zu dessen Herstellung und die Verwendung in magnetischen Aufzeichnungsträgern. Die Entwicklung magnetischer Materialien zur Signalaufzeichnung, speziell zur Audio- und Videoaufzeichnung, geht in die Richtung höher koerzitiver Materialien, damit höhere Speicherdichten und eine verbesserte Wiedergabe im Bereich kurzer Wellenlängen erreicht wird. Um dieses Ziel zu erreichen, sind viele Wege vorgeschlagen worden. Es wird zum Beispiel Cr02 eingesetzt. Aufgrund der chemischen Instabilität und anderer bekannter Nachteile ist der Anwendungsbereich Jedoch eingeschränkt. Weiterhin wird magnetisches Eisenoxid mit Kobalt dotiert, um die Koerzitivfeldstärke zu erhöhen. Durch die mit der Kobaltdotierung bewirkte hohe Magnetostriktion wird die thermische und mechanische Stabilität der magnetischen Eigenschaften Je- doch negativ beeinflusst. Koerzitivfeldstärken bis 488 Oe sind auch schon an reinen Eisenoxiden gemäss der britischen Patentschrift 1 385 777 gemessen worden, Jedoch ist das Rauschen von mit derartigem Material hergestellten Tonbändern für moderne Anwendungen, z B. fur Cassetten-Systeme nicht befriedigend. Speziell die Tonbänder für Cassetten-Systeme erfordern ein gutes Rauschniveau. Es ist also wünschenswert, magnetische Aufzeichnungsmateria- lien bereitzustellen, die neben hohen Koerzitivkräften, urad damit guten Wiedergabeeigenschaften im Bereich hoher Frequenzen, ein niedriges Rauschniveau aufweisen. Die durch die Bandherstellung über die Oberflächenglätte beeinflussbare Wiedergabe der hohen Frequenzen steht Jedoch in reziproker Abhängigkeit vom Rauschniveau. Wenn bei gegebenem Bandmaterial das Rauschniveau verringert wird, verschlechtert sich die Wiedergabe bei hohen Frequenzen und umgekehrt, wenn durch bessere Bandglätte die Wiedergabe bei hohen Frequenzen verbessert wird, ftlhrt dies zu einem Anstieg des Rauschniveaus. Will man nun die Dynamik bei hohen Frequenzen wirkungsvoll verbessern, so muss man den Anteil des Rauschens, das vom Pigment verursacht wird, verringern. Die verbesserten Pigmenteigenschaften lassen sich dann als Summe der Verbesserun- gen im Rauschniveau und der Wiedergabe bei hohen Frequenzen angeben. Als Mass für die Wiedergabe der hohen Frequenzen dient die maximale Wiedergabe spannung bei einer Frequenz von 10 k Hz (Aussteuerbarkeit), die kurz als U10 k,max bezeichnet wird. Als Messwert für das Rauschen wird dasRuherauschen (RG) nach DIN 45405 angegeben. Zur Eliminierung von Parametern und Konstanten der Messgeräte werden beide Messwerte nicht direkt miteinander verglichen, sondern mit einem Bezugsband nach DIN 45513, zur Zeit Teil 6/1976. Dabei werden die Messwerte auf die entsprechenden Messwerte des DIN-Bezugsbandes bezogen und in dB angegeben. Die Gesamtverbesserung der Hohendynamik, d. h. dss Verhältnis der maximalen Wiedergabespannung bei 10 k Hz zum Ruherauschen nach DIN 45405 ergibt sich als Summe der Verbesserungen des Ruherauschens gegenüber dem Bezugsband und der Verbesserung der Aussteuerbarkeit gegenüber dem Bezugsband. Gegenstand der vorliegenden Erfindung sind thermisch stabilisierte ferrimagnetische Eisenoxide mit Koerzitivfeldstärken von 350 - 500 Oe, die nach Einarbeitung in ein Magnetband ein gegenüber dem Bezugsband gemäss DIN 45 513, Teil 6/1976 ein um mindestens 6 dB verbessertes Verhältni: der Aussteuerbarkeit bei einer Frequenz von 10 k Hz zum Ruherauschen nach DIN 45 405 aufweisen. Die erfindungsgemässen ferrimagnetischen Eisenoxide können eines oder mehrere der Cd, Pb, Ca, Mg, Zn, Al, Cr, W, P (gerechnet als P205) und/oder B (gerechnet als B205) in Mengen von 0,1 bis 5 Gew. -,¯ enthalten. Vorzugsweise sind die neuen ferrimagnetischen Eisenoxide vom Magnetit-Typ mit Zink und Phosphor stabilisiert, wobei Gehalte von 0,3 bis 3 Gew. -% Zink und 0,3. bis 3 Gew. -% Phosphor, berechnet als P205, bezogen auf Fe304 besonders gute magnetische Eigenschaften ergeben. Die neuen Magnetite eignen sich für alle magnetischen Aufzeichnungsträger, da sie insbesondere bei Kobaltfreiheit eine gute Wiedergabe hoher Frequenzen ermöglichen ohne thermische und mechanische Instabilität. In Kombination mit anderen magnetischen Eisenoxiden eignen sich die neuen magnetit besonders zur Herstellung von Mehrschichtbändern, die mit Rekordern üblicher HF-Vormagnetisisrung hervorragende Audio-Aufzeichnungseigenschaften besitzen und Cr02-Bänderr insoweit überlegen sind. Daneben weisen die neuen Magnetite gegenUber herkömmlichen magnetischen Eisenoxiden ein um 2 - 6 dB verbessertes Ruherauschen auf. Gegenstand der vorliegenden Erfindung ist auch das Verfahren zur Herstellung dieser neuen Eisenoxide vom Magnetittyp. Das Verfahren ist dadurch gekennzeichnet, dass ein thermisch stabilisiertes ok-FeOOH mit einem Länge : Breite Verhältnis von 1 : 10 bis 1 : 30 mit einer Teilchengrösse, die üblicherweise als Keim zur#-FeOOH-Pigmentherstellung benutzt wird (12 bis 22 nm) bei pH-Werten kleiner als 7 aus Fe(II)-Salzlösungen gefällt, vor der Entwässerung gegen Versinterung geschützt, entwässert, getempert und zum Fe304 reduziert wird. Die thermische Stabilisierung des c & FeOOH wird vorzugsweise durch Dotierung des ffi -FeOoH, besonders bevorzugt während der Herstellung mit anorganischen Kat- und/oder Anionen durchgefUhrt. Hierfür eignen sich neben den Elementen Cd, Pb, Ca, Mg, Al, Cr, W und B insbesondere P und Zn. Eine besonders gute Stabilisierung wird mit einer Kombination von P und Zn erreicht, wobei Mengen von 0,3 - 3 Gew.-% P, gerechnet als P205, bezogen auf Fe304 und 0,3 bis 3 Gew.-% Zn, bezogen auf Fe304, ausreichend sind. Die Zugabe der Stabilisatoren erfolgt vor oder während der Ausfällung des &alpha; -FeOOH in den zur Dotierung notwendigen Mengen in Form ihrer wasserlöslichen Salze. Es ist Jedoch auch möglich, die Dotierung durch Auffällung und gegebenenfalls Temperung auf das gefällte und oxydierte bzw. wieder reduzierte FeOOH bzw. Fe304 zu bewirken. Vorzugsweise wird die Dotierung mit einem Schutz des FeOOH gegen eine Versinterung der Einzelkristalle während der Umwandlung in magnetisches Oxid kombiniert. Hierfür wird vor der Entwässerung direkt in der von ihrer Herstellung stammenden 6-FeOOH-Suspension ein Uberzug aus Hydroxiden des Chroms oder Aluminiums bzw. aus Phosphaten und/oder Boraten und/oder Wolframaten oder auch eine Kombination aus den genannten Ionen aufgefällt. Die Herstellung dieser schützen- den Uberzuge erfolgt in an sich bekannter Weise, z. B. nach dem Verfahren der belgischen Patentschrift 828 540. Die Nachbehandlung durch Umhüllung der Teilchen führt nicht nur zu einem Schutz vor Versinterung, sondern während der nachfolgenden thermischen Vorgänge auch zu einer zusätzlichen Dotierung. Die zur Stabilisierung eingesetzten Metallionen werden der Fe(II)-Salzlösung in Form von wasserlöslichen Salzen zugegeben, vorzugweise als Sulfate und/oder Chloride. Besonders gute Ergebnisse werden durch Auffällung von Phosphaten, bevorzugt Eisenphosphaten, erzielt. Es werden Mengen, die zu einem Gesamtgehalt des FeOOH an P, gerechnet als P205 von 0,3 bis 3 Gew.-%, bezogen auf Fe304, PUhren eingesetzt, wobei vorzugsweise ein Teil des Phosphors während der Herstellung des#-FeOOH eingebracht wird. Eine weitere Verbesserung der Eigenschaften lässt sich ggf. erreichen, wenn diese Phosphordotierung während der Herstellung des X-FeOOH bei gleichzeitiger Anwesenheit von Zinksalzen erfolgt. Die Herstellung des O(-FeOOH durch Fällung aus sauren Fe(II)-Salzlösungen mit anschliessender Oxydation durch Einblasen sauerstoffhaltiger Gase in die Fällungssüspension erfolgt ebenso wie die anschliessende Trocknung, Entwässerung und Reduktion zum Fe304 in an sich bekannter Weise, z. B. nach der US-Patentschrift 3 931 025 mit dem Unterschied, dass das Verfahren nach der Keimherstellung bei Erreichen einer Teilchengrösse von 12 - 22 nm abgebrochen wird. Die Fällung und Oxydation des basischenFe(II)-Salzes erfolgt bevorzugt aus FeSQ4-haltiger Lösung bei pH-Werten kleiner als 7. Die Oxydation wird bei Erreichen eines pH-Wertes kleiner als 4 abgebrochen und der oben beschriebenen Behandlung gegen Versinterungen unterworfen. Als Alkalien können Carbonate oder Hydroxide eingesetzt werden. Vorzugsweise wird NaOH eingesetzt. Bei Verwendung von Phosphor als Stabilisator wird dieses vorzugsweise durch Auflösen von NaH2PO4 ¯ 2 H20 in einer kleinen Menge des Lösungsmittels gemeinsam mit den Alkalien zu der Eisen- und gegebenenfalls Zinksulfat enthaltenden Lösung hinzugegeben. Das ausgefällte Eisen(II) wird durch Hindurchleiten von 2 bis 8 Liter Luft pro Stunde und Liter Fällungslösung unter intensivem Rühren oxydiert. Die Oxydation wird vorzugsweise bei Temperaturen von 40 bis 800C durchgeführt bis die Suspension eine gelb-braune Farbe angenommen hat. Anstelle von Luft kann auch Sauerstoff-angereicherte Luft zur Oxydation eingesetzt werden. Die Auffällung von Eisen-Phosphat auf die Oberfläche der Suspensionsteilchen zum Schutz gegen Versinterung erfolgt durch langsame Zugabe von in etwas destilliertem Wasser aufgelöstem Phosphat, vorzugsweise Pyrophosphat. Das erhaltene modifizierte alpha-Fe0OH wird abfiltriert, su3- fatfrei gewaschen, bei Temperaturen wenig oberhalb l000C getrocknet, bei Temperaturen zwischen 250 und 4000C entwäs sert und einer Temperung bei Temperaturen zwischen 400 und 9000C unterzogen. Diese Temperaturbehandlung erstreckt sich vorzugs- weise über einen Zeitraum von 0,5 bis 2 Stunden bei Tempera- turen von 650 bis 8500C. Die so erhaltene Vorläuferverbindung wird in üblicher Weise bei 400 bis 5000C in feuchtem Wasserstoff, z. B. in einem wirbelbett, zum Fe304 reduziert. Gegebenenfalls kann eine weitere Temperung bei 600 bis 8000C unter Stickstoff oder vorzugsweise Kohlendioxid angeschlossen werden, wodurch eine weitere Verbesserung des erfindungsgemässen Pigmentes erreicht wird. Die anschliessende Abkühlung des Pigmentes muss zur Verhinderung einer Reoxydation unter nicht-oxydierenden Bedingungen erfolgen. Nach dem Abkühlen des Pigmentes wird zweckmässigerweise eine Behandlung mit Stickstoff-organischen Verbindungen zur Verhinderung der Oxydation an Umgebungsluft nach einem noch unveröffentlichten Vorschlag der Anmelderin angeschlossen. Als stickstoff-organische Verbindungen sind insbesondere gegebenenfalls Amin-substituierte Heterozyklen, wobei mindestens eines der Heteroatome ein Stickstoffatom ist,geeignet. Bevorzugt werden Morpholin, 1,2,4-Trlazol, 3-Amino-1,2,4 Triazol und/oder N-(2-hydroxyäthyl-)piperazin eingesetzt. Die vorliegende Erfindung wird durch die folgenden Beispiele näher erläutert. Dabei sind Jeweils die magnetischen Pulverwerte und die rdntgenographische mittlere Xristallit- grösse, die etwa dem Nadeldurchmesser entspricht, angegeben. Die Soerzitivfeldstärken ¯wurden Jeweils in einem Feld von ca. 4000 Oe bestimmt. Die gemäss ren Herstellungsbeispielen erhaltenen Magnetpigmente urden Jeweils nach dem unten angegebenen Verfahren zu Magnetbandern verarteitet. Die an diesen Magnetbändern gemessenen Werte der Koerzitiv- feldstärken, der Verbesserung der Aussteuerbarkeit bei der Frequenz von 10 kHz th V10 k, max) und die Verbesserung des Rauschsignals ( RG) Jeweils gegenüber dem Bezugsband nach DIN 45513, Teil 6/1976 sind in der nachfolgenden Tabelle angegeben. Die Verbesserung der Höhendynamik (¯ HD) ergibt sich als Summe von 6 U10 k, max und 3RG. Die Einarbeitung der Pigmente in Magnetbänder zur Feststellung der magnetischen Aufzeichnungs- bzw. Wiedergabeeigen schaften erfolgt in Anlehnung an die britische Patentschrift 1 080 614 durch 3 1/2-stündige Mahlung von 22,4 Gewichtsteilen des magnetischen Oxids mit 8,0 Gewichtsteilen PVC/ PVA-Mischpolymerisat, 1,3 Teilen #lsäure, 0,88 Teilen komplexen organischen Phosphorsäureestern und 67 Teilen Butyl-/Äthylacetat im Verhältnis 1 : 1 in einer Perlmühle. Anschliessend wird der Lack auf einer ca. 23 /um dicken Polyesterfolie vergossen. Die magnetische Schicht hat eine Stärke von ca. 12 /um und enthält ca. 15 g/m2 Magnetpigment. Beispiel 1: Eine wässrige Lösung mit 1800 g FeS04 und 28,8 g ZnS04 in 18 1 wird mit 2 1 einer wässrigen Lösung mit 584 g Na0H und 14,1 g NaH2P04 . 2 H20 versetzt und unter intensivem Rühren mit 80 - 100 l/h Luft bei 55 0C oxidiert. Der analytisch ermittelte Ausfällungsgrad ergibt sich zu ca. 63 %. Die rdnt- genografisch ermittelte mittlere Kristallitgrösse ist 17,5 nm. Die Suspension wird unter Rühren und weiterem Lufteinleiten mit einer Lösung von 12,7 g Na4P2Q7 in 400 ml destilliertem Wasser in 30 Minuten versetzt und 30 Minuten nachgerührt. Nach Sulfatfrei-Waschen und Trocknen bei 1200C wird das Produkt bei 3000C entwässert und 30 Minuten bei 7800C getempert, anschliessend bei 460 - 4800C in 60 Minuten zu Feld04 mit feuchtem Wasserstoff reduziert, mit N2 gespült und unter C02 30 Minuten bei 7500C getempert. Der Sauer stoffpartialdruck über C02 ist bei 1000 K (entspricht 7270C)mit 9,7.10 8 atm niedrig genug, dass eine Oxydation mit Sicherheit verhindert wird. Die am Pulver ermittelter Magnetwerte sind: EMI9.1 bei einer mittleren Kristallitgrösse von 32 nm (röntgenografisch bestimmt). Beispiel 2a: 325 1 einer FeSO4-Lösung mit 32,7 kg FeSO4 und 0,925 kg ZnS04 . 7 H20 werden bei 550C mit einer Lösung von 0,256 kg NaHLP04 ¯ 2 H20 in ca. 2 1 H20 und 30 1 Natronlauge mit 10,5 kg NaOH versetzt. Unter intensivem Rühren wird mit 1,4 m3 Luft/h und 4,5 m3 N2/h begast, oxydiert bis die Suspension eine gelb-braune Färbung angenommen hat. Ein Teil der Suspension, enthaltend 1130 g FeOOH wird mit einer Lösung von 21,2 g Na4P207 in 0,8 1 H20 bei 800C inuer- halb von 30 Minuten unter RUhren versetzt und 30 Minuten nachgerührt. Es wird Sulfat-frei gewaschen und getrocknet. Das behandelte &alpha; -FeOOH wird 30 Minuten bei 7500C getempert, bei 460 - 4800C mit feuchtem Wasserstoff reduziert und unter N2 abgekühlt. EMI9.2 EMI9.3 Kristallitgrösse: 23 nm Beispiel 2b: Das magnetische Oxid aus Beispiel 2a wird 30 Minuten bei 7000C unter Magnetwerte: EMI9.4 Kristallitgrösse: 32 nm Beispiel 3: Mit dem Magnetit aus Beispiel 2b wird ein Doppeischichtband hergestellt. Für die Unterschicht wird auf eine 12 /um dicke Folie aus Polyaethylenterephthalat ein Lack aus einem (¯-Fe2#-Pigment, wie es üblicherweise in hochaussteuerbaren Magnetogrammträgern verwendet wird, der folgenden Zusammensetzung: Zusammensetzung Gewichts-Teile magnetisches Pigment Koerzitivkraft am Pulver 315 Oe 6,80 Polyätherurethan 0,74 Reaktionsprodukt aus Polytetramethylenglykol, Butandiol-1,4 und Diphenyl 1. thandi is ocyanat OH-gruppenhaltiges Mischpolymerisat aus Vinylchlorid/Vinylacetat 0,80 organischer Phosphorsäureester 0,11 Tetrahydrofuran 8,5 Dichloräthan-1,2 4,5 Hexakismethoximelamin 0,07 Dodecylbenzolsulfonsäure 0,10 in einer Trockenschichtdicke von 4/um aufgetragen. Nach Trocknung und Kalanderung wurde ein wie oben hergestellter Lack mit dem Magnetit aus Beispiel 2b mit einer Trockenschichtdicke von 21um aufgetragen. Gegenüber dem Bezugsband gemäss DIN 45513, Teil 6/1976 wurden folgende Messwerte erzielt: EMI10.1 Die Dynamik bei 333 Hz ist mit + 54 dB gegenüber dem hochaussteuerbaren Bezugsband um +2 dB zusätzlich verbessert. Tabelle: Beispiel IHC (Oe) #U10 k, max #RG #HD Pulver Band dB dB dB 1 433 430 +6 +2,5 2a 364 372 +3,5 +4,0 2b 425 404 +4,5 +3,0 A 360 307 +1,0 -1,0 +0 B 450 385 +1.5 0 T 308 S - 315 + O #O In Vergleichsbeispiel A ist ein handelsübliches Eisenoxid eingesetzt mit 0,35 Gew.-% Zink und ca. 0,90 Gcw.-% P205, wie es in der DT-PS 2 347 486 beschrieben wird und unter der Bezeichnung AC 5064 der Firma Bayer AG im Handel erhältlich ist. In Vergleichsbeispiel B ist ein hochkoerzitives ebenfalls handelsUbliches Eisenoxid eingesetzt mit etwa 0,6 Gew.-% P205, wie es in der DT-PS 2 122 312 beschrieben wird und unter der Bezeichnung Bayferrox 8180 der Firma Bayer AG erhältlich ist. Die Verbesserung gegenüber diesen hochwertigen magnetischen Oxiden ist klar ersichtlich.
PatentansDrUche: 1) Thermisch stabilisierte ferrimagnetische Eisenoxide mi Koerzitivf#eldstärken von 350 - 500 Oe, die nach Einarbeitung in ein Magnetband ein gegenüber dem Rezugsband gemäss DIN 45513, Teil 6/1976 um mindestens 6 dB verbessertes Verhältnis der Aussteuerbarkeit bei einer Frequenz von 10 kHz zum Ruherauschen nach DIN 45405 aufweisen. 2) Ferrimagnetische Eisenoxide nach Anspruch 1 gekennzeictnet durch einen Gehalt von 0,1 bis 5 Gew.-% an Cd, Pb, Ca, Mg, Zn, Al, Cr, W, P (gerechnet als P205) und/cder B (berechnet als B203), bezogen auf Fe304. 3) Ferrimagneti°che Eisenoxide nach Anspruch 1 oder 2 gekennzeichnet durch einen Gehalt von 0,3 bis 3 Gew.-% Zink und 0,3 bis 3 Gew.-% P gerechnet als P205, jeweils bezogen auf a Fe304. 4) Ferrimagnetische Eisenoxide nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine röntgenographisch bestimmte mittlere Kristallitgrösse zwischen 20 und 35 nm. 5) Verfahren zur Herstellung der Eisenoxide nach einem der Ansprüche 1 bis 4 durch Entwässern, Tempern und Reduktion von durch Fällung aus Eisen(II > -salzlösungen und Oxydation gewonnenem nadelförmigem ( & FeOOH zu Eisenoxid, dadurch gekennzeichnet, dass die Fällung und Oxydation bei einem pH-Wert unter 7 durchgeführt wird, bei Erreichen eines pH-Wertes von kleiner als 4 die Oxydation abgebrochen wird und das PeOOR vor der Entwässerung durch chemische Stabilisierung gegen Versinterung geschützt wird. 6) Verfahren nach Anspruch 5, dadurch gekennzeichnet, daS die Stabilisierung durch gleichzeitige Fällung von 0,1 bis 5 Gew.-% Cd, Pb, Ca, Mg, Zn, Al, Cr, W, P (gerechnet als P205) und/oder B (gerechnet als B205), bezogen auf Fe304 erfolgt. 7) Verfahren nach Anspruch 5 oder 6, dass die Stabilisierun; durch Auffällung der Stabilisierungssubstanzen auf das gebildete FeOOH noch in der Fällungasuspension erfolgt. 8) Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass zur Stabilisierung Zink- und/oder Phosphor verbindungen in Form wasserlöslicher Verbindungen der Fällungssuspension zugegeben werden. 9) Verfahren nach einem der AnsprUche 5 bis 8, dadurch gekennzeichnet, dass das zur Überführung in Eisenoxid einge setzte G-FeOOH röntgenographisch ermittelte mittlere Kristallitgrössen zwischen 12 und 22 nm aufweist. 10) Verfahren nach einem der Anspruche 5 bis 9, dadurch gekennzeichnet, dass das erhaltene Eisenoxid einer weiteren Temperung unter C02 und/oder N2 bei 600 bis 8000C während eines Zeitraumes von 0,2 bis 5 Stunden unterworfen wird.
BAYER AG
BUXBAUM, GUNTER, DR.; HAHNKAMM, VOLKER, DR.; PRINTZEN, HELMUT, DR.
EP-0003103-B2
3,103
EP
B2
EN
19,861,210
1,979
20,100,220
new
E21B10
E21B4
E21B10
E21B 10/38
DOWN-THE-HOLE DRILL
This invention concerns down-the-hole drilling, where there is a persistent problem in providing an adequately controlled flow of flushing fluid to the face of the drill bit. In known down-the-hole drills turbulence and closed circuits of the flushing fluid tend to erode the bit and reduce its lifespan. The invention seeks to lessen these drawbacks by providing for the flow of flushing fluid to be divided into a component directed along a first cavity (22, 24) which terminates at the face (18) of the bit and another component directed along a second cavity (28, 30) which terminates above the face and is deflected up the drill hole. Weakening of the bit is avoided if there is at most one bore through the bit for flushing fluid.
DC^.r.- OTv D?TTXING THIS INVENTION relates to down-the-hole drilling and provides improvements in the provision of flushing fluid in the vicinity of the bit head of a down-the-hole drill in order to facilitate the removal of rock chips from the hole. The fluid will normally be air but could be an air-liquid mixture or, in a purely hydraulic drill, liquid only. In a down-the-hole drill, the hammer mechanism acts directly on a drill bit at the bottom of the hole and the forces on the bit are direct and large. It is therefore necessary to use a bit of considerable strength. Flushing fluid is supplied to the bit, often through a generally axial hole which extcnds through the shan of the bit to the face which acts on the floor of the hole, and sometimes through a series of grooves extending generally longitudinally along the shank of the bit and terminating at the face. It is also known (from lest German patent 1 238 864) to provide a pair of flushing holes in the bit, the holes leading from passages in the drill body to the top of the head and passing through the head. The holes are located opposite each btlier. It is hoever undesirable for the bit of a down-the-hole drill to be weakened by numerous internal cavities, so that a bit formed with two or more generally longitudinal holes through it is not as strong as may be wished. Two holes are however generally considered desirable where the bit is of the blade type, being provided because of the symmetry of the crucifora blade arrangement at the face of the bit. Apart from being structurally relatively weak, this arrangement also leads to undesirable turbulence and to closed air circuits at the bit head, which in turn lead to premature wear of the bit. In another arrangement (knows from United States patent 3 225 841) a central bore in the bit is provided, terminating in an orifice at the centre of the face. There is also a series of downwardly sloping passages extending from the central bore to the sides of the bit, where the passages end in grooves which direct the flushing air downwards to sweep the face of the bit. This arrangement suffers from the structural weakness inherent in bits with several internal cavities, and there is again considerable turbulence at the face, where the streams of flushing fluid converge, and hence premature wear. In out-of-the-hole drilling technology it is common to provide a longitudinal channel for flushing fluid along the drill stem or string which extends from the drill body to the bit. In such drills the head of the bit is usually considerably larger in diameter, compared to the diameter of the stem behind it, than is the case in down-the-hole drills, where the reduction in cross-sectional area of the apparatus directly behind the head of the bit is relatively slight since the casing housing the hammer mechanism is located immediately above the bit. In out-of-the-hole drilling, the reduction in cross-section mentioned above has the consequence that the flushing fluid tends to diffuse into the space in the hole immediately behind the head, slowing down the overall flow. This has an unfavourable effect on the flushing action since the velocity of the flushing fluid should be maintained if the fluid is to perform a proper seping action. To overcome this problem of out-of-the-hole drilling, it is known (for example from United Kingdom patent 1,071,418) to provide a central longitudinal bore through the drill bit, extending to the centre of the face, and also a series of further bores which extend from the central longitudinal cavity through the side wall of the bit, some being sloped towards the face and others away from the face. This arrangement divides the stream of flushing fluid and creates a venturi effect in which there is a high-pressure region at the face itself. Chips from the face are drawn from this area into a low-pressure region further up the hole where they are entrained in the rapidly moving stream of flushing fluid and conveyed up the hole. In such drills the bit is naturally weakened by the presence of multiple bores and such bits would be inapplicable in down-the-hole drilling. i!oreover the characteristics of the fluid available for flushing are entirely different compared with down-the-hole drills The less marked difference in relative areas between the head and the zone behind the head also reduces the theoretical desirability of the venturi effect. An object of the invention is to provide in down-the-hole drilling means for improving the control of the flushing action of the flushing fluid and thereby making drilling more efficient than in known equipment and reducing wear of the bit. The invention provides a bit for a down-the-hole drill, the bit having a shank and a head and being formed with at least two cavities for conveying flushing fluid from the interior of the drill to the exterior, the first of the cavities extending to the face of the head, characterised in that the second cavity terminates above the face and is adapted to deflect upwards the flushing fluid which it conveys. The second cavity is conveniently a groove in the material of the bitw terminating in a zone above the level of the head and extending generally transversely with respect to the axis of the bit. The first and second cavities also preferably extend independently of each other in the bit, and preferably not more than one of them is a bore. There may be a plurality of the first and second cavities. The invention-is particularly but not exclusively suitable for button bits, where the existence of the buttons allows a freer f.DW of fluid at the bit face than occurs in blade-type bits. The flow of flushing fluid to the face of the bit is preferably leaser than the flo of fluid deflected up the hole. Ir. the drawings: Figure 1 is a simplified fragmentary longitudinal section through the lower end of a down-the-hole drill fitted with a bit of the invention; Figure 2 is an underplan view of the bit of Figure 1; Figure 3 is a view similar to Figure 1 of a further embodiment of the invention; Figure 4 is a view of the bit of Figure 3, similar to the vie of Figure 2; and Figure 5 is a semi-section of the bit of Figures 4 and 5 showing a longitudinal flushing groove in it. In Figure 1, a pneumatic down-the-hole drill includes a casing 10 ha;ing a lower end into which is fitted a bit 12 of the invention, seen only fragmentarily. The bit 12 has a shank 14 and a head 16. The upper part of the shank is conventional as regards the manner in which it is supported in the casing 10. The face 18 of the bit is adapted to carry a series of buttons fiz.ed in blind holes 20, the buttons being removed for the sake of simplicity. The arrangements for imparting percussive force to the bit and for rotating the drill assembly in the hole are conventional. The shank 14 has an internal bore 22 which extends axially from the upper tip of the bit and merges near the head 16 with an oblique bore 24 having a mouth 26 in the face 18. The casing 10 of the drill includes an internal longitudinal groove 28 which extends along the full length of the shank 14 and which carries flushing air. It terminates at the end of the casing 10, where the flushing air is directed into a groove or channel 30 fonned in the material of the bit 12 in the surface abutting the lower edge of the casing 10 and so shaped as to deflect the air arriving from the groove 28 outwards into the hole and upwards in it, thus backs up the hole. The groove 30 shown, which leaves the drill at right angles to its vertical axis, is suitable for this purpose. The passages 22, 24, 28 and 30 are so sized in relation to the air supply in the drill that somewhat less than half the air flow, and preferably about 25%, arrives at the face of the bit through the bores 22, 24, the remainder being directed through the passage 28 and deflected by the groove 30 up the hole. The result is that a low pressure area is created in the hole at the level of the groove 30, and air and rock chips from below are drawn upwards into this zone and from it blown out of the hole. The effect is to reduce turbulence and to allow a steadier and more controlled flow of air across the force of the bit. The removal of chips is thus more effective in the face area. In the version of Figures 3 - 5, a drill casing 110 is fitted with a bit 112 that includes a shank 114 and a head 116. The head 116 has a face 118 with buttons (not shown) fixed in holes 120. The drill casing 110 has on one side an internal groove 122 which at its lower end joins a bore 124 formed obliquely in the material of the head of the bit and ends in a mouth 126 in the face 118. There is no axial bore in the shank of the bit, but a longitudinal groove 128 on its side surface registers with the groove 122 in the wall of the casing 110 of the drill to form a passage of approximatelY the same cross-sectional area as the bore 124. Thus flushing air in the interior of the drill is conveyed through the passage defined by the grooves 122, 128 into the bore 124 and finally emerges in the drill hole through the mouth 126, where it has a flushing action. As is best seen in Figures 4 and 5, the shank 114 of the bit 112 is provided, at 900 angular displacement round the axis of the shank from the bore 124, with a further groove 130 which extends the full length of the shank and joins a deflection groove 132 formed in the head of the bit. The groove 130 registers with a suitably shaped groove (not illustrated) in the inner surface of the casing 110 so that a further passage down the shank is created for air which passes out of the drill assembly through the deflection groove 132 and passes up the hole, creating a low pressure area below it to attract upwards air and rock chips. The combined action of the air stream directed into the floor of the hole and that deflected upwards from the floor of the groove 132 is much as was described in relation to the embodiment of Figures 1 and 2. .''ote that in both the embodiments mentioned above the flushing cavity extending to the face of the bit is completely independent of the cavity supplying flushing air to the exterior of the bit above the face. This arrangement naturally calls for the air supply in the mechanism of the drill body above the bit to be divided into t?!O streams. among further variants (not illustrated) of the invention is one in which the air supply to the face-of the bit is delivered not through a bore but through a groove in the external surface of the bit, the groove following the general outline of the bit and terminating in an off-centre zone in the face. The second cavity may in this case be a bore in the bit but is preferably a further groove in the shank, conveniently one which registers with another groove forn'.edin the casing, and terminating in a transverse extension such as the grooves 30 or 132 illustrated. In another variant there is not one but a plurality of cavities supplying flushing fluid from the interior of the drill to points on the periphery of tire bit above the face for deflection up the hole to create a low-pressure zone drawing chips from belo. In preliminary trials of drills of the invention under practical operating conditions it has been found that erosion and wear of the bit have been substantially reduced, in some cases increasing the life of the bit by more than 20 compared to comparable known bits. It would seem that the chief advantage of the invention is that it improves the control which can be exerted of the flushing action at the face by reducing or eliminating turbulence and closed air circuits, the venturi effect explained above being a secondary advantage.
Claims: 1. A bit fr a down-the-hole drill, the bit having a shank and a head and being formed with at least two cavities for conveying flushing fluid from the interior of the drill to the exterior, a first of the cavities extending to the face of the head, characterised in that the second cavity terminates above the face and is adapted to deflect upwards the flushing fluid which it conveys. 2. The bit of claim 2, characterised in that the floor of the second cavity, where it leaves the bit, makes an included angle not greater than substantially 900 with the axis of the shank of the bit above such passage. 3. The bit of claim 1 or claim 2, characterised in that the second cavity comprises'a groove in the surface of the bit adapted to abut the lower edge of the casing of the drill. 4. The bit of any of the above claims, characterised in that the first and second cavities extend independently of each other in the bit. 5. The bit of any of the above claims, characterised in that there is a plurality of second cavities terminating above the face. 6. The bit of any of the above claims, characterised in that all the cavities are grooves formed in the exterior surface of the bit. 7. The bit of any of claims 1 to 6, in which one of the cavities is a bore extending through at least a part of the bit, characterised in that this is the only bore for flushing fluid in the bit. 8. The bit of any of the above claims, characterised in that it is a button bit. 9. The bit of any of the above claims, characterised in that the first cavity is adapted to convey approximately one half or less of the flushing fluid to the face. 10. The bit of claim 9, characterised in that the first cavity is adapted to convey approximately 25 o of the flushing fluid to the face. 11. The bit of any of the above claims, in combination with a drill having at its lower end a casing adapted to contain the bit.
BOART INTERNATIONAL LIMITED
MCENERY, JAMES OLIVER; MORTON, FRANK WILLIAM; O'DEA, JOHN JOSEPH
EP-0003109-B1
3,109
EP
B1
EN
19,811,202
1,979
20,100,220
new
B25J5
null
F22B37
R22B271:12, R22B273:42, F22B 37/00C2B, R22B271:06, R22B273:46M1C1M13
A CAMLOCK FOR REMOTE ACCESS MANIPULATOR
This invention relates to a camlock for engaging the inside of tubular members to suspend apparatus from the tubular members. The camlock comprises a movable spacer (154) disposed on a slidable member (152) between two expandable metal rings (158, 160). The relative motion of the spacer and slidable member causes the metal rings to be expanded against the inside of the tubular member thereby supporting the apparatus. The metal rings have a thin wall with internal ribs (202) that fit closely to the slidable member. The internal ribs act as stops (208) on the inside of the metal rings so as to prevent their overexpansion.
A Camlock for Remote Access ,lanipulator This invention relates to an improved camlock for supporting equipment from a tubular member. There are many situations in which a hazardous environment limits human access to various locations. One such situation occurs in the inspection and renair of nuclear steam generators. A typical nuclear steam generator comprises a vertically oriented shell, a plurality of U-shaped tubes disposed in the shell so as to form a tube bundle, a tube sheet for supporting the tubes at the ends opposite the U-like curvature, and a dividing plate that cooperates with the tube sheet forming a primary fluid inlet plenum at one end of the tube bundle and a primary fluid outlet plenum at the other end of the tube bundle. The primary fluid having been heated by circulation through the nuclear reactor core enters the steam generator through the primary fluid inlet plenum. From the primary fluid inlet plenum, the primary fluid flows upwardly through first openings in the U-tubes near the tube sheet which supports the tubes, through the U-tube curvature, downwardly through second openings in the U-tubes near the tube sheet, and into the primary fluid outlet plenum. At the same time, a secondary fluid, known as feedwater, is circulated around the U-tubes in heat transfer relationship therewith thereby transferring heat from the primary fluid in the tubes to the secondary fluid surrounding the tubes causing a portion of the secondary fluid to be converted to steam. Since the primary fluid contains radioactive particles and is isolated from the secondary fluid by the U-tube walls and tube sheet, it is important that the U-tubes and tube sheet be maintained defect-free so that no breaks will occur in the U-tubes or in the welds between the U-tubes and the tube sheet, thus preventing contamination of the secondary fluid by the primary fluid. Occasionally, it is necessary to either inspect or repair the U-tubes or tube sheet welds by way of access through the primary fluid inlet and outlet plena. For this purpose manholes are provided in the vertical shell so that working personnel may enter the inlet and outlet plena to perform operations on the U-tubes and tube sheet. However, since the primary fluid which is generally water contains radioactive particles, the inlet and outlet plena become radioactive which thereby limits the time that working personnel may be present therein. Accordingly, it would be advantageous to be able to perform operations of the U-tubes and tube sheet without requiring the presence of working personnel. There are several mechanisms known in the art that attempt to provide a solution to this problem, but none of them have been able to completely solve the problem. In United States Patent No. 3,913,452 to C. T. ;tard et awl0, issued October 21, 1975 and entitled Remote Movable Platform , there is described a remotely movable carriage which serves as a mobile platform from which remotely initiated and controlled inspection and work operations might be performed on the tubes in a nuclear steam generator. The carriage includes a stepping mechanism which interacts with a member, such as a tube sheet, relative to which the carriage moves in generally parallel relationship. The stepping mechanism may employ selectively extensible fingers for lateral engagement with the openings in the members. In addition, an extension device may be employed for remotely handling the carriage through the manhole during installation and removal. In monitoring the location of the carriage, various techniques may be used such as television or, preferably, techniques which initially establish the location of the carriage relative to the tube sheet when first placed against the undersurface of the tube sheet and which then plot and monitor the movement of the carriage across the tube sheet surface. While the patent to Ward et al. does describe one type of remote access device, it does not completely solve the problem of remote access operation on members such as tube sheets. For example, should there be a power loss during operation the plotting and monitoring mechanism may not be capable of reestablish ing the location of the carriage. Furthermore, should a substantial number of tubes in one area be plugged by deposits, the Ward device might not be able to traverse the plugged area. Another device for inspecting a tube sheet is described in United States Patent No. 4,004,698 to B. Gebelin, issued January 25, 1977, entitled Device for Positioning a ember on a Tubular Plate. The device comprises two perpendicular arms capable of relative motion for transporting the member along the tube sheet. while the two perpendicular arms are capable of movement along a rectangular coordinate array of tubes, difficulty would be encountered in avoiding large areas of plugged tubes. It is the principal object of this invention to provide an improved cam lock for supporting equipment from a tubular member. With this object in view, the invention resides in a camlock for supporting equipment from a tubular member, comprising bearings mounted on a support plate; an inner housing rotatably mounted on said bearings; a central member disposed within said inner housing and having a cup member attached to the top portion thereof so as to form a step that allows said cup member to rest on said inner housing; a first slider member disposed within said cup member and capable of relative motion with respect to said cup member and a first biasing means arranged between said first slider member and said cup member for urging said first slider member against said cup member; a second slider member slidably disposed within said cup member and said central member and capable of contacting said first slider member, said cup member, said second slider member and said central member defining a first annular chamber therebetween for accommodating a first fluid for forcing said second slider member downwardly with respect to said cup member; a third slider member disposed within said second slider member capable of sliding relative to said second slider member and having a contact mechanism formed near the top end thereof; a fourth slider member being an integral portion of said third slider member slidably disposed within said second slider member and said central member with said fourth slider member, said second slider member, and said third slider member defining a second annular chamber for accommodating a second fluid for forcing said third slider member downwardly with respect to said second slider member thereby causing said contact mechanism to contact said tubular member and to support said support plate therefrom; and a second biasing means arranged between said second slider member and said fourth slider member for urging said fourth slider member against said second slider member thereby tending to close said second annular chamber; said second slider member and said central member defining a third annular chamber between the bottom of said second slider member and central member for accommodating a third fluid for forcing said second slider member upwardly toward said equipment thereby causing said third slider member and said fourth slider member to be moved upwardly. In accordance with a preferred embodiment of this invention, a remote access manipulator comprises a camlock or a locking mechanism capable of self-alignment for performing operations on equipment located in areas where human access is limited, The manipulator further comprises a slave carriage located in the equipment on which the operation is to be performed for carrying tools and inspection devices for performing operations on the equipment. Where the equipment is a tube sheet of a nuclear steam generator, the slave carriage is capable of inserting self-aligning camlocks into the openings in the tube sheet for supporting the slave carriage therefrom and for advancing the slave carriage across the tube sheet to thereby position tools in relationship to the openings in the tube sheet. A master carriage is located in a scale model of the equipment and electrically connected to the slave carriage for controlling the movement of the slave carriage such that manual manipulation of the master carriage is automatically translated into movement of the slave carriage. The manipulator further comprises a slave manipulator arm used to move the slave carriage into and out of the equipment on which the operation is to be performed in conjunction with a master manipulator arm located in the scale model for controlling the movement of the slave manipulator arm. A camlock for engaging the inside of tubular members thus suspending apparatus from the tubular member comprises a movable spacer disposed on a slidable member between two metal rings. This relative motion of the spacer and slidable member causes the metal rings to be expanded against the inside of the tubular member thereby suspending the apparatus from the tubular member. The metal rings have a thin wall with internal ribs that fit closely to the slidable member thereby maintaining the metal rings parallel to the slidable member. The internal ribs act as stops on the inside of the metal rings so as to prevent the overexpansion of the metal rings yet allowing sufficient expansion thereof to enable close contact with the tubular members. The camlock may be used to support a remote access manipulator for performing operations on a nuclear steam generator. The invention will be better understood from the following description of exemplary embodiments thereof when taken in conjunction with the accompanying drawings, wherein: Fig, 1 is a partial cross-sectional view in elevation of a typical steam generator; Fig. 2 is a diagram showing the slave carriage and slave manipulator arm in a plenum of a steam generator along with the master carriage and master manipulator arm in an inverted scale model of a steam generator; Fig. 3 is a partial cross-sectional view in elevation of a manipulator arm and carriage extending through a manway of a steam generator; Fig. 4 is a partial cross-sectional view in elevation of the slave manipulator arm and slave carriage in a plenum of a steam generator; Fig, 5 is an end view of a manipulator arm and track; ; Fig. 6 is a partial cross-sectional view in elevation of a tube sheet and slave carriage; Fig. 7 is a plan view of a slave carriage and tube sheet; Fig. 8 is a cross-sectional view in elevation of a camlock in the withdrawn position; Fig. 9 is a cross-sectional view in elevation of a camlock in the inserted unlocked position; Fig. 10 is a cross-sectional view in elevation of a camlock in the inserted unlocked abutting position; Fig. II is a cross-sectional view in elevation of a camlock in the inserted locked position; Fig. 12 is an enlarged cross-sectional view in elevation of a cam lock in the inserted locked position; Fig. 13 is a bottom end view of a camlock; Fig. 14 is a top view of one of the metal rings; Fig. 15 is a partial cross-sectional view in elevation of one of the metal rings; and Fig. 16 is an exploded perspective view of one of the metal rings. In a tube-type steam generator, a tube sheet supports a bundle of heat transfer tubes. A remote access manipulator is used to perform operations on equipment located in areas where human access is limited such as a tube sheet of a steam generator. Referring to Fig. 1, a nuclear steam generator referred to generally as 20, comprises an outer shell 22 with a primary fluid inlet nozzle 24 and a primary fluid outlet nozzle 26 attached thereto near its lower end. A generally cylindrical tube sheet 28 having tube holes 30 therein is also attached to outer shell 22 near its lower end. A dividing plate 32 attached to both tube sheet 28 and outer shell 22 defines a primary fluid inlet plenum 34 and a primary fluid outlet plenum 36 in the lower end of the steam generator as is well understood in the art. Tubes 38 which are heat transfer tubes shaped with a U-like curvature are disposed within outer shell 22 and attached to tube sheet 28 by means of tube holes 30. Tubes 38 which may number about 7,000 form a tube bundle 40. In addition, a secondary fluid inlet nozzle 42 is disposed on outer shell 22 for providing a secondary fluid such as water while a steam outlet nozzle 44 is attached to the top of outer shell 22. In operation, the primary fluid which may be water having been heated by circulation through the nuclear reactor core enters steam generator 20 through primary fluid inlet nozzle 24 and flows into primary fluid inlet plenum 34. From primary fluid inlet plenum 34 the primary fluid flows upwardly through the tubes 38, in tube sheet 28, up through the U-shaped curvature of tubes 38, down through tubes 38 and into primary fluid outlet plenum 36 where the primary fluid exits the steam generator through primary fluid outlet nozzle 26. While flowing through tubes 38, heat is transferred from the primary fluid to the secondary fluid which surrounds tubes 38 causing the secondary fluid to vaporize. The resulting steam then exits the steam generator through steam outlet nozzle 44. On occasion, it is necessary to inspect or repair tubes 38 or the welds between tubes 38 and tube sheet 28 to assure that the primary fluid which may contain radioactive particles remains isolated from the secondary fluid. Therefore, manholes 46 are provided in outer shell 22 to provide access to both primary fluid inlet plenum 34 and primary fluid outlet plenum 36 so that access may be had to the entire tube sheet 28. Referring now to Fig. 2, the remote access manipulator comprises a master carriage 48, master manipulator arm 50, slave carriage 52, and slave manipulator arm 54. Master carriage 48 and master manipulator arm 50 are located in a scale model of the equipment on which operations are to be performed such as a scale model of a steam generator while slave carriage 52 and slave manipulator arm 54 are located in the actual steam generator 20. Master carriage 48 and master manipulator arm 50 are connected by cables to control box 56 which is also connected to slave carriage 52 and slave manipulator arm 54. Slave manipulator arm 54 is movably mounted on slave track 58 which extends through manhole 46 and into approximately the center of primary outlet plenum 36 such that slave manipulator arm 54 may be advanced into and out of steam generator 20 along slave track 58. Likewise, master manipulator arm 50 is movably mounted on master track 60 which extends through the scale model of the manhole and into the scale model of the steam generator. The controls of the remote access manipulator are such that the scale model of the steam generator along with master carriage 48 and master manipulator arm 50 are located remote from the actual steam generator, thereby eliminating the radiological problems associated with personnel access. Working, personnel may then manually move master carriage 48 and master manipulator arm 50 to a desired location while slave carriage 52 and slave manipulator arm perform the same movement in the actual steam generator. In this manner, operations may be performed on the actual steam generator with greatly reduced personnel radiation exposure. Referring to Figs. 3 - 5, slave manipulator arm 54 is shown extended through manhole 46 with slave carriage 52 attached to the end thereof. It should be noted that while only slave carriage 52 and slave manipulator arm 54 are shown in Fig. 3, Fig. 3 also represents master carriage 48 and master manipulator arm 50 since they are substantially similar. Slave manipulator arm 54 comprises a base 62 having cam rollers 64 attached thereto. Cam rollers 64 are disposed in track 5 along with a chain (not shown) so that base 62 may be advanced along track 58 by advancing the chain in the desired direction. Track 58 is supported from the bottom of the steam generator by stand 66. First segment 68 is rotatably mounted on base 62 such that first segment 68 may rotate about a vertical axis through base 62. Base 62 contains a potentiometer chosen from those well known in the art that senses the angle of rotation between first segment 68 and base 62. First segment 68 is connected to second segment 70 by a first dovetail joint 72 so that the segment may be easily assembled or disassembled. Second segment 70 has a first rotatable joint 74 which allows a portion of second segment 70 to rotate about a horizontal axis through first rotatable joint 74. Similarly, third segment 76 is attached to second segment 70 by second dovetail joint 78 and has a second rotatable joint 80 similar to first rotatable joint 74. Likewise, fourth segment 82 is attached to third segment 76 by third dovetail joint 84 and has a third rotatable joint 86 similar to first rotatable joint 74. Fourth segment 82 also has a remotely actuated gripper mechanism or a fourth dovetail joint 88 which allows the manipulator arm to be attached to the carriage or tools. First rotatable joint 74, second rotatable joint 80, third rotatable joint 86 and the rotatable joint between base 62 and first segment 68 of the slave manipulator arm 54 may be powered by hydraulic vane-type rotary actuators with integral potentiometers to sense the angle of rotation. Hydraulic rotary actuators may be chosen because of their lightweight characteristic which increases the maneuverability of the slave manipulator arm 54. Of course, flexible conduits 90 are provided to conduct the hydraulic fluid from a fluid source to the rotary vane actuators under control from control box 56. Since the master manipulator arm 50 is powered manually there is no need for rotary actuators in the master manipulator joints. However, potentiometers similar to those in the slave manipulator arm 54 are present in the master manipulator arm 50. Manual movement of the master manipulator arm 50 by the working personnel is sensed by the potentiometers therein and relayed to a servo control module located in control box 56 which may be chosen from those well known in the art, such as a servo control module from Moog Incorporated which sends a command signal to the slave manipulator arm 54 rotary actuators that causes the rotary actuators to move in a direction to eliminate the difference in reading between the potentiometers of the master and slave manipulator arms. Such signals thereby cause the slave manipulator arm to replicate the movement of the master manipulator arm. Accordingly, by properly moving the master manipulator arm with master carriage attached, the slave manipulator arm with attached slave carriage can be made to move the slave carriage 52 from outside the steam generator to attachment with tube sheet 28 of the steam generator as shown in Figs. 3 and 4. It should be noted that for ease of operator control, the master carriage, master manipulator arm, scale model, and corresponding controls may be arranged inversely to the slave arrangement, thereby allowing the operator to more easily view the master scale model. In addition, closed circuit television may be provided as an auxiliary check on the location of the slave apparatus and to provide assistance during docking operations. Figs. 6 and 7 illustrate slave carriage 52 in its engagement with a tube sheet 28. While only slave carriage 52 is shown, it is to be understood that master carriage 48 is similar to it. The main difference between slave carriage 52 and master carriage 48 lies in the fact that master carriage 48 is manually movable while slave carriage 52 mechanically replicates the manual movements of master carriage 48. As can be seen in Figs. 6 and 7, slave carriage 52 comprises a body 92 which serves as the central portion of the carriage. Body 92 has a first camlock 94 which is capable of engaging the interior of a tube 38 of tube sheet 28 for suspending slave carriage 52 beneath tube sheet 28. Body 92 also has an end effector attachment 96 on the end thereof for holding tools for inspecting or repairing tube sheet 28 or tubes 38. End effector attachment 96 may be a dovetail joint or other gripper device that is capable of firmly engaging a work tool. when an end effector such as a work tool has been attached to end effector attachment 96 by slave manipulator arm 54, slave carriage 52 is capable of traversing tube sheet 28 for positioning the end effector at an appropriate location under the control of master carriage 48 and master manipulator arm 50. Still referring to Figs. 6 and 7, body 92 has a first housing 98 rotatably attached thereto. First housing 98 has a first end 100 which is rotatably disposed within body 92 and a second end 102 that extends outwardly from body 92. A first motor 104 is located within first end 100 and provides first housing 98 with the capablity of rotating with respect to body 92. First end 100 also has an angle sensing potentiometer disposed therein for determining the angle of rotation of first housing 98 with respect to body 92. 8.aster carriage 48 similarly has an angle sensing potentiometer that senses its angle. Of course, master carriage 48 does not have motors therein because it is manually operated. Manual movement of master carriage 48 is sensed by its potentiometer and relayed to control box 56. A servo control module such as one from Moog Incorporated and located in control box 56 determines if there is a difference between the reading of the potentiometers in the slave carriage and master carriage and commands the slave carriage motors to rotate until there is no difference in potentiometer readings. Thus, manual movement of master carriage 48 is translated into mechanical movement of slave carriage 52. A second housing 106 has a first portion 108 similarly rotatably disposed around second end 102 of first housing 98 and a second portion 110 extending outwardly from first portion 108. Second portion 110 has a second camlock 112 attached thereto which is similar to first camlock 94. Second housing 106 also has a second motor 114 disposed within first portion 108 that provides second housing 106 with the capability of rotating with respect to first housing 98. Another angle sensing potentiometer is located in second housing 106 for detecting-its angle of rotation in a manner similar to the potentiometer of first housing 98. Likewise, a third housing 116 and a fourth housing 118 are connected to body 92 on a side opposite first housing 98 and second housing 106. Third housing 116 may be identical to first housing 98 while fourth housing 118 may be identical to second housing 106 with fourth housing 118 having a third camlock 120 disposed therein. As is illustrated in Fig. 7, both master carriage 48 and slave carriage 52 are capable of placing the camlocks in numerous locations which allows the slave carriage 52 to be able to traverse tube sheet 28 in an unlimited number of directions. The carriages are also capable of traversing a tube sheet 28 with an irregular tube hole configuration or an uneven tube sheet surface. As described previously, movement of the housings is accomplished by manual manipulation of master carriage 48 which is translated into mechanical movement of slave carriage 52. Similarly, insertion and withdrawal of the camlocks of master carriage 48 is manually accomplished and translated by electronic relays and sensing devices into mechanical movement of the slave carriage camlocks. The operation of slave carriage 52 is such that only one camlock is withdrawn while the other two camlocks remain engaged in tube sheet 28. With the one camlock withdrawn, the manipulation of the master carriage can position the withdrawn camlock in a new position. When in the new position the camlock can be inserted in a tube 38 and another camlock withdrawn and repositioned. In this manner, the slave carriage can be made to traverse the entire tube sheet 28. Moreover, with all three camlocks locked into tube sheet 28, body 92 is capable of rotating about first camlock 94 so as to position end effector attachment 96 with a tool attached thereto in a number of different locations. Such movements of slave carriage 52 serve to position an end effector such as work tool in appropriate locations to perform operations on the sheet 28. Referring now to Figs. 8 - 13, one of the camlocks of slave carriage 52 is shown in the withdrawn position. The camlock comprises an outer housing 122 with bearings 124 which mounts inner housing 126 within outer housing 122 in a rotatable manner. Of course, outer housing 122 corresponds to any of body 92, second housing 106, or fourth housing 118 wherein there is disposed a camlock. Bearins 124 enable outer housing 122 to rotate about the camlock even though the cam lock has been inserted in a tube 38. A central member 128 is disposed within inner housing 126 but is not fixedly attached thereto. A cup member 130 is attached to the top portion of central member 128 so as to form a step 132 that allows cup member 130 to rest on inner housing 126 at step 132. Since central member 128 is attached to cup member 130, the weight of central member 128 is also transmitted to inner housing 126 by means of step 132. It should be noted that cup member 130 is not attached to inner housing 126 at step 132 but merely rests thereon at step 132 and is capable of relative motition at the interface. Cup member 130 acts to contact tubes 38 so as to determine the location of the carriage with respect to the tube sheet 28, Still referring to Figs. 8 - 13, a first slider member 134 is disposed within cup member 130 and is capable of relative motion with respect to cup member 130. A first biasing mechanism 136 which may be a coil spring with a stop is arranged between cup member 130 and first slider member 134 so as to urge first slider member 134 against cup member 130 along first interface 138. In addition, first slider member 134 has a first ledge 140 for engaging members disposed therein. A second slider member 142 is slidably disposed partially within cup member 130 and within central member 128. A sliding seal 144 which may be an O-ring is located between cup member 130 and second slider member 142 for sealing the members together while allowing relative motion therebetween. Second slider member 142, cup member 130, and central member 128 define a first annular chamber 146 for accommodating a fluid such as air for forcing second slider member 142 downwardly with respect to cup member 130. A first channel 148 is provided in fluid communication with first annular chamber 146 for introducing a fluid thereinto. Second slider member 142 also has a second ledge 150 for engaging first ledge 140 of first slider member 134 that causes first slider member 134 to contact tube sheet 28 as shown in Fig. 10. A third slider member 152 is disposed within second slider member 142 and is capable of sliding relative thereto. h spacer 154 is attached to the top portion of third slider member 152 and a cap 156 is attached to the top end of third slider member 152. A first metal ring 158 is disposed around third slider member 152 and between cap 156 and spacer 154 while a second metal ring 160 is located around third slider member 152 and between spacer 154 and second slider member 142. First metal ring 158 and second metal ring 160 generally fit loosely around third slider member 152 and may have a slot therein or they may have a plurality of slots that extend substantially the length of the ring for accommodating radial expansion. However, when third slider member 152 is drawn downwardly relative to second slider member 142, the beveled edges of cap 156, spacer 154, and second slider member 142 cause both first metal rin 158 and second metal ring 160 to expand. At this point, third slider member 152 will be disposed within a tube 38 so that the expansion of the metal rings 158 and 160 will cause the rings to contact the interior of a tube 38, thus locking the camlock in place as shown in Figs. 10 - 12. a Again referring to Figs. 8 - 13, a fourth slider member 162 which may be an integral portion of third slider member 142 (as shown in the drawings) or a separate member attached to third slider member 152 is slidably disposed within second slider member 142 and central member 128. Fourth slider member 162, second slider member 142, and third slider member 152 define a second annular chamber 164 for accommodating a fluid such as oil for forcing third slider member 152 downwardly with respect to second slider member 142 which initiates the expansion of rings 158 and 160. A second channel 166 is provided in fourth slider member 162 for introducing the fluid into second annular chamber 164 while a third channel 168 is provided for removing the fluid therefrom. Of course, both second channel 166 and third channel 168 may be used simultaneously to introduce the fluid into second annular chamber 164. Generally, second channel 166 is larger in diameter than third channel 168 so that gases that may be present in second annular chamber 164 may be bled off through third channel 168 while the oil is introduced through second channel 166, In addition, a second biasing mechanism 170 which may be a coil spring is arranged between second slider member 142 and fourth slider member 162 for urging fourth slider member 162 against second slider member 142 thereby tending to close second annular chamber 164. Furthermore, a third annular chamber 172 is defined between the bottom of second slider member 142 and central member 128 for accommodating a fluid such as air for forcing second slider member 142 upwardly toward tube sheet 28 which also causes third slider member 152 and fourth slider member 162 to be moved upwardly, The fluid may be introduced into third annular chamber 172 through a fourth channel 174 which may also serve to remove the fluid therefrom. It is to be observed that it is the action of introducing a fluid such as air into third annular chamber 172 that causes third slider member 152 to be inserted into a tube 38 of tube sheet 28. Likewise, it is this action which causes second slider member 142 to force first slider member 134 against tube sheet 28. When third slider member 152 has thus been inserted into a tube 38, introduction of a fluid into second annular chamber 164 causes third slider member 152 to move slightly doqnward relative to second slider 142, thus expanding rings 158 and 160 which causes the mechanism to be tightly locked into tube 38. Still referring to Fig. 8, an outer member 176 is attached around central member 128 and has a fifth slider member 178 slidably disposed therein. Fifth slider member 178 has a beveled head 180 formed on the top end thereof that conforms to the curvature of inner housing 126. A fourth annular chamber 182 is defined by outer member 176, fifth slider member 178 and central member 128 for accommodating a fluid such as oil. Channel and valves (not shown) are also provided for conducting the fluid to fourth annular chamber 182. when the fluid has been introduced into fourth annular chamber 182, fifth slider member 178 is forced upwardly against inner housing 126. This procedure is normally performed when third slider member 152 has been locked in a tube 38 in which case the contact of fifth slider member 178 against inner housing 126 will cause inner housing 126 to become aligned with third slider member 152, thus aligning the camlock with the particular tube 38. A third biasing mechanism 184 which may be a coil spring is arranged between outer member 176 and fifth slider member 178 so as to urge fifth slider member 178 downwardly. When the fluid pressure is released fr-om fourth annular chämber 182-, third biasing mechanism 184 causes fifth slider member 178 to move downwardly with respect to outer member 176. Referring now to Figs. 8 and 13, a first sensor 186 is attached to central member 128 so as to be able to contact fourth slider member 162. A second sensor 188 is also attached to central member 128 but at ninety degrees around fourth slider member 162. When fourth slider member 162 is in the down position first sensor 186 contacts the normal diameter of fourth slider member 162 as shown in Fig. 8 while second sensor 188 is contacting first notch 190 in fourth slider member 162. However, when fourth slider member 162 is moved upwardly a short distance first sensor 186 will still contact the normal diameter of fourth slider member 162 as will second sensor 188 rather than first notch 190. When fourth slider member 162 is fully inserted, first sensor 186 will contact second notch 192 while second sensor 188 will still contact the normal diameter of fourth slider member 162. Thus, the sensors together can determine if fourth slider member 162 is fully down, partially inserted or fully inserted. The controls for the camlocks may be chosen from those well known in the art such as a rotary stepping switch from C. P. Clare and Company of Chicago, Illinois, and may be located in control box 56. Referring now to Figs. 12 and 14 - 16, first metal ring 158 and second metal ring 160 comprise approximately 0,75 inch diameter steal rings that are capable of being expanded but have sufficient resiliency to be capable of numerous expansions and contractions without failure and while maintaining their original size and shape. The metal rings have a longitudinal slot 200 that extends the entire length of the metal ring and extends completely therethrough which allows the metal ring to expand without permanently being deformed. Metal rings 158 and 160 also have approximately 15 - 30 ribs 202 formed on the inside thereof. Ribs 202 have a first side 204 that has a thickness of approximately 0,30 inch and a spacing therebetween of approximately 0,30 inch. Ribs 202 also have a substantially flat outside surface 206 that remains substantially parallel to the inside surface of tube 38 for supporting slave carriage 52 therefrom. In addition, ribs 202 have a first flat surface 208 and a second flat surface 210 at the ends thereof for contacting either the top end of second slider member 142, spacer 154, or cap 156, thereby preventing overexpansion of metal rings 158 and 160. The metal rings also have a first ramp 212 and a similar second ramp 214 at the ends thereof that allow the top end of second slider member 152, spacer 154, or cap 156 to slide along the inside of the metal rings, thus expanding them into contact with a tube 38. However, the provision of first flat surface 208 and a second flat surface 210 stops the advancement of the members thereby preventing overexpansion of the metal rings. Were it not for flat surfaces 208 and 210, overexpansion of metal rings 158 and 160 could occur if the camlocks were activated outside a tube 38 or if the camlocks encountered an unexpected obstruction, These problems are eliminated by flat surfaces 208 and 210. Furthermore, ribs 202 with the spacing therebetween, allow easy expansionof te metal rings 158 and 160 while providing greater.reeiiiency than would a solid metal ring alone. When it is desired to inspect or repair a nuclear steam generator, the steam generator primary fluid inlet and outlet plena are drained and a manhole is opened giving access to one of the plena. The slave track 58 is then introduced through manhole 46 and bolted into place. Slave manipulator arm 58 is then assembled on the portion of track 58 that extends out of steam generator 20. Next slave manipulator arm 58 is cranked into the steam generator along track 58 by means of a chain. At this point the master manipulator arm 50 is coordinated with slave manipulator arm 54 so that the position of master manipulator arm 50 on the scale model corresponds to the position of slave manipulator arm 54 in steam generator 20. Of course, the scale model is positioned upside down with respect to the steam generator as shown in Fig. 2 so that the operator may have better access to the scale model. Master manipulator arm 50 is then manually moved by the operator into any desired position which results in slave manipulator arm 54 being similarly positioned. Next, master carriage 48 is attached to master manipulator arm 50 and slave carriage 52 is attached to slave manipulator arm 54 as shown in Fig. 3. waster manipulator arian 50 is then moved so that master carriage 48 is plugged into the scale model of the tube sheet which results in slave manipulator arm 54 and slave carriage 52 attaining the position as indicated in Fig. 4. The camlocks of master carriage 48 are then manually locked into the scale model of the tube sheet which causes the camlocks of slave carriage 52 to also become locked into the tube sheet 28. At this point, the manipulator arms (both the master and the slave) are disconnected from the end effector attachment 96, and are extended outwardly through manhole 46 where a chosen tool is attached to the end of slave manipulator arm 54 such as fourth dovetail joint 88 while a scale model of the tool is attached to master manipulator arm 50. The slave manipulator arm 54 is then caused to attach the tool to end effector attachment 96 and release the tool from fourth dovetail joint 88. In so doing, a tool is mechanically handed through manhole 46 to slave carriage 52 without operator exposure to the irradiated interior of steam generator 20. In this position, slave carriage 52 may then traverse tube sheet 28 so as to place the tool on end effector attachment 96 in proper relationship with a chosen location of tube sheet 28. At this point all camlocks are in a locked position as shown in Fig. 11 but with first annular chamber 146 closed. In order to traverse tube sheet 28 it is necessary to withdraw one camlock as shown in Fig. 8 so that the withdrawn camlock can be moved as indicated in Fig. 7. Because of the rotatability of the members of slave carriage 52 any camlock may be withdrawn and moved as long as the other two camlocks are locked in place thus suspending slave carriage 52 from tube sheet 28, The camlock of master carriage 48 that has been withdrawn is then positioned over the selected tube and manually inserted; this causes the corresponding slave camlock to function as follows. Referring to Figs. 8 and 9, air is introduced into third annular chamber 172 which causes second slider member 142, third slider member 152, and fourth slider member 162 to move upwardly toward tube sheet 28 as shown in Fig. 9. As second slider member 142 moves upwardly, second ledge 150 contacts first ledge 140 which causes first slider member 134 to contact tube sheet 28 around the chosen tube 38 as shown in Fig. 10. In this position, third slider member 152 has been inserted into tube 38. Then oil is introduced under pressure into second annular chamber 164 which forces fourth slider member 162 downwardly with respect to second slider member 142. Since third slider member 152 is attached to fourth slider member 162, third slider member 152 is also forced downwardly with respect to tube sheet 28 and second slider member 142. The downward motion of third slider member 152 causes the beveled edges of cap 156 and spacer 154 to contact first metal ring 158 and second metal ring 160 thereby causing the rings to expand and contact the inner side of tube 38, thus locking itself in place as shown in Figs. 11 and 12. Withdrawal of a camlock may be done by reversing this procedure. Since each tube 38 may have a slightly different alignment with respect to other such tubes 38, it is desirable to be able to align each camlock with the tube 38 in which it has been inserted. To thus align the locked camlock, oil is introduced into fourth annular chamber 182 which forces beveled head 180 against inner housing 126. The beveled sides of beveled head 180 together with the corresponding sides of inner housing 126 causes inner housing 126 to shift into alignment with third slider member 152 which is in alignment with tube 38 into which it has been inserted. Of course, third biasing mechanism 184 will return fifth slider member 178 to its lowered position upon release of the air from fourth annular chamber 182. In this manner any camlock may be locked into any open tube 38. By moving one camlock at a time as described above and then another camlock in the same manner, slave carriage 52 can be made to traverse the entire tube sheet 28. Furthermore, the rotatability of the joints of slave carriage 52 enables slave carriage 52 to move in any direction and enables it to skip a tube 38 that may be plugged, Such movements of slave carriage 52 are used to position tools that have been attached to end effector attachment 96 so that operations my be performed in the steam generator. Because there exists a certain amount of slack or looseness among the members of slave carriage 52 and because slave carriage 52 is suspended beneath tube sheet 28, gravity tends to cause the members of slave carriage 52 to sag in relationship to tube sheet 28. As slave carriage 52 traverses the tube sheet this sagging of the members could accumulate to the point where the camlocks of slave carriage 52 would no longer be able to engage a tube 38 which would result in the carriage falling from the tube sheet. To avoid this problem it is advisable to have a mechanism whereby the sag of slave carriage 52 is eliminated after each move, thus main tannin the carriage at a constant distance from tube sheet 28. The invention described herein is capable of eliminating this problem. With two camlocks locked in place, the third camlock is withdrawn and moved to a new position. At this point, air is introduced into third annular chamber 172 of the third camlock which causes third slider member 152 to be inserted as previously described Then the air is released from third annular chamber 172 of both of the other camlocks while air is introduced into both first annular chambers 146 of these to camlocks. Since the oil pressure in the second annular chambers 164 of both of these camlocks is greater than the air pressure in their first annular chambers 146 and since the friction force on rings 158 and 160 is sufficient to hold third slider member 152 in place, the introduction of air into first annular chambers 142 causes central member 128 to be raised rather than third slider member 152 to be withdrawn. The raising of central member 128 also causes inner housing 126 and outer housing 122 to be raised relative to tube sheet 28. Since this is occurring on the two locked camlocks the effect is to raise slave carriage 52 relative to tube sheet 28. Next, oil is introduced into second annular chamber 164 to lock it in place. Then air is introduced into third annular chamber 172 of all three camlocks which causes central member 128 to be moved downwardly with respect to third slider member 152 which causes the bottom portion of cup member 130 to contact second slider member 142 thus eliminating first annular chamber 146. In this manner, the cumulative sag among members is avoided. Therefore, the invention provides a remote access manipulator for performing operations on equipment located in areas where human access is limited.
What we claim is: 1. A camlock for supporting equipment from a tubular member, comprising: bearings (124) mounted on a support plate (122); an inner housing (126) rotatably mounted on said bearings (124); a central member (128) disposed within said inner housing (126) and having a cup member (130) attached to the top portion thereof so as to form a step (132) that allows said cup member (130) to rest on said inner housing (126); a first slider member (134) disposed within said cup member (130) and capable of relative motion with respect to said cup member (130) and a first biasing means (136) arranged between said first slider member (134) and said cup member (130) for urging said first slider member (134) against said cup member (130); a second slider member (142) slidably disposed within said cup member (130) and said central member (128) and capable of contacting said first slider member (134), said cup member (130) and said second slider member (142) and said central member (128) defining a first annular chamber (146) therebetween for accommodating a first fluid for forcing said second slider member (142) downwardly with respect to said cup member (130); a third slider member (152) disposed with said second slider member (146) capable of contact mechanism (158, 160) formed near the top end thereof; a fourth slider member (162) being an integral portion of said third slider member (152) slidably disposed within said second slider member (142) and said central member (128) with said fourth slider member (162), said second slider member (142), and said third slider member (152) defining a second annular chamber (164) for accommodating a second fluid for forcing said third slider member (152) downwardly with respect to said second slider member (142) thereby causing said contact mechanism (158, 160) to contact said tubular member (38) and to support said support plate (122) therefrom; and biasing means (170) arranged between said second slider member (142) and said fourth slider member (162) for urging said fourth slider member (162) against said second slider member (142) thereby tending to close said second annular chamber (164); said second slider member (142) and said central member (128) defining a third annular chamber (172) between the bottom of said second slider member (142) and central member (128) for accommodating a third fluid for forcing said second slider member (142) upwardly toward said equipment thereby causing said third slider member (152) and said fourth slider member (162) to be moved upwardly. 2. A camlock as defined in claim 1 wherein it further comprises an outer member (176) disposed around said central member (128) with a fifth slider member (178) slidably disposed therebetween and defining a fourth annular chamber (182) therebetween for accommodating a fourth fluid for forcing said fifth slider member (178) upwardly against said inner housing (126) thereby causing said inner housing (126) to become aligned with said third slider member (152) thus causing said slave carriage (52) to become properly positioned with respect to said tubular member (38); and third biasing means (184) arranged between said outer member (176) and said fifth slider member (178) for urging said fifth slider member (178) downwardly. 3. A camlock as defined in claim 1 wherein said contact mechanism (158, 160) comprises a cap (156) attached to the top end of said third slider member (152), at least one metal ring (158, 160) disposed around said third slider member (152) between said cap (156) and said second slider member (142), said cap (156), said at least one metal ring (158, 160) and said second slider member (142) causing said at least one metal ring (158, 160) to expand into contact with said tubular member (38) when said third slider member (152) is drawn downwardly. 4. A camlock as defined in claim 1 wherein said contact mechanism comprises a spacer (154) attached to the top portion of said third slider member (152) with a cap (156) attached to the top end of said third slider member (152); a first metal ring (158) disposed around said third slider member (152) between said cap (156) and said spacer (154); and a second metal ring (160) disposed around said third slider member (152) and between said spacer (154) and said second slider member (142), said cap (156), said spacer (154), and said second slider member (142) causing said first metal ring (158) and said second metal ring (160) to expand into contact with said tubular member (38) when said third slider member (152) is drawn doamazardly 5. A camlock as defined in claim 3 or 4 wherein it further comprises a first sensor (186) attached to said central member (128) and extending into contact with said fourth slider member (162); and a second sensor (188) attached to said central member (128) at a location nicety degrees to said first sensor (186), said first (186) and second (188) sensors being capable of determining the vertical location of said fourth slider member (162) with respect to said central member (128). 6. A camlock as defined in claim 3 or 4 ;.therein said metal ring (158, 160) has a substantially smooth outer surface and having a longitudinal slot (200) extending the entire length of said ring (158, 160) and extending completely therethrough for allowing said ring (158, 160) to expand; a plurality of longitudinal ribs (202) on the inside of said ring (158, 160) for providing resiliency to said ring (158, 160); a first flat surface (208) on the top end of said ribs (202) and a second flat surface (210) on the bottom end of said ribs (202) for preventing over expansion of said rins (158, 160); and at least one ramp (212, 214) exten ding from the outer surface of said ring (158, 160) to said flat surface (2C8, 210) for allowing said cap (156) and said second slider member (142) to slide along said ramp (212, 214) to said flat surface thereby expanding said ring (158, 160) into contact with said tubular member (38) with said flat surface (208, 210) preventing overexpansion of said ring (158, 160).
WESTINGHOUSE ELECTRIC CORPORATION
WILHELM, JOHN JOSEPH; YOUNG, ROBERT ROCHESTER
EP-0003131-B1
3,131
EP
B1
EN
19,840,425
1,979
20,100,220
new
B21D28
H02G3
B21D51, H02G3, B21D28
H02G 3/08B1K, B21D 28/10, B21D 51/38B
PULL-OUT BLANK IN A SHEET METAL CABINET WALL
A pull-out blank for creating an opening in a cabinet wall (1) is composed of a pair of parallel-running score lines (2, 3) surrounding the blank proper. The strip (4) defined by the score lines (2, 3) is transversely scored in at least one place (5), providing a weak spot that may be punched with a pointed tool in order to force one end of the strip (4) away from the sheet metal (1). A pair of pliers may be used to pull the strip (4) out of the cabinet wall (1), whereby the blank proper is also removed.
Pull-out Blank for a Cabinet Wall The invention relates to a form of tear-out opener wherein two areas of sheet metal are separated from each other by tearing out an interjacent strip in the same material and wherein the material is provided with score lines along the longitudinal edges of the strip, primarily by deformation. Lids using this principle are known from tin cans manufactured from tin plate. In previous designs the strip is provided with a grip or handle part at the nlace where it is designed to be pulled first. An object of the present invention is to provide an opener of the said kind which is not limited to tin plate, but which works with sheet metal. The opener is characterised in that the interjacent strip is provided with at least one score line across the longitudinal direction. Such an opener, which is not provided with a grip or handle part, can be opened by first striking the area of the strip adjacent to the transverse score line with a pointed tool, e.g. a chisel, thereby separating the strip from the surrounding metal and providing an end which can be gripped with a set of pliers. Subsequently it is possible to tear out and wind up the strip from the other side of the plate. This pre-supposes that there is free access to both sides of the plate. A tear-out opener of this kind can, therefore, be used, for example, in steel cabinets for electrical installations which are designed with a series of pull-out blanks, enabling holes to be created for lead-in connections, depending on the application and mode of installation. This provides for a simple method of opening the holes necessary for a certain installation, the remaining holes staying closed and sealed, with no parts protruding. In an embodiment of this invention the opener is made of metal or other material which yields by deformation and the sheet metal may be partly pre-cut to facilitate opening. The special advantage of this embodiment is that it makes it possible to produce a pull-out blank in thicker sheet metal; firstly, because such a material can be partly pre-cut with great accuracy and secondly, because it will be easy to tear off the remaining part of the material in the cut by means of pliers, even though the material is several times thicker than in existing tear-out openers in thin tin plate. The decisive factor is that the strip which is used can be held firmly by means of the pliers and, since the surrounding material is several times thicker than the material in the cut, it provides good support for leverage of the pliers and at the same time ensures a perfect tear. The invention will be further described in the following with reference to the accompanying drawing, in which: Fig. 1 shows an area of sheet metal provided with a circular pull-out blank according to the invention, Fig. 2 shows a section along the line II- II in Fig. 1, Fig. 3 shows a section along the line III- III in Fig. 1, and Fig. 4 shows a similar section to that in Fig. 3, but according to another embodiment of the invention. Fig. 1 shows an area of sheet metal 1 which may constitute part of the wall in a cabinet. In plate 1 there are two concentric circular pre-cut curves 2 and 3 which limit a tear-out strip 4. In the embodiment shown, the pre-cut curves 2 and 3 are formed by means of a partial cut or incomplete punching along the curves 2 and 3, as shown in Fig. 3. However, there is nothing to prevent the pre-cut curves from being obtained in any other well-known manner for making grooves in a material. The strip itself is provided with a score line along the line 5, as shown in Fig. 2. The embodiment shown in Figs. 1, 2 and 3 works in the following way. If a circular opening is desired in plate 1 along the outer pre-cut curve, strip 4 should be cut at line 5 by means of a chisel, until one end of strip starts to protrude on the other side of the plate. Strip 4 can then be twisted and pulled out by means of pliers, until the whole of the circular plate is free. As mentioned above, the invention is not limited with regard to score lines of a special design. A different example is shown in Fig. 4. It is obvious that the holes may have any shape suited to the purpose in question. If, for instance, it is not a requirement that the walls of a cabinet be sealed when no blank has been pulled out, then the deformation along the line 5 made at the time of manufacture may be so large that the ends to be gripped by pliers already sufficiently protrude. By having these ends disposed on the inside of the cabinet wall, one may obtain the double advantage of only having to grip and pull in order to obtain an opening and of enabling aligned openings to be made in cabinets already mounted side by side by pulling out blanks from the respective insides of the adjacent cabinets. In other words, since access to the outside of the cabinets is not required, it is not necessary to once again remove a whole cabinet to provide aligned openings. Pull-out blanks can, according to this invention, be made in steel plate which is more than 0.5 mm thick. The tear-out method of removing the pull-out blank works well for plates that are 1.5 mm thick. Naturally, the opener can also be used for plates thinner than this.
Claims: 1. A pull-out blank in relation to two areas in sheet metal (1) being separated by tearing out an interjacent strip (4) in the same material, this material being cro- vided with score lines along the longitudinal edges (2,3) of the strip (4), primarily by deformation, c h a r a c t e r i s e d in that the interjacent strip (4) is provided with at least one score line (5) across the longitudinal direction. 2. A pull-out blank as claimed in claim 1, primarily made of metal or another material which yields by deformation, c h a r a c t e r i s e d in that the score lines along the longitudinal edges (2,3) of the strip (4) are made by partially cutting the material.
AKTIESELSKABET LAUR. KNUDSEN NORDISK ELEKTRICITETS SELSKAB
JUST, KRISTIAN
EP-0003136-B1
3,136
EP
B1
DE
19,811,021
1,979
20,100,220
new
B65D5
null
B65D5
B65D 5/46B2
BOX WITH FOLDABLE BOTTOM
1. Folding box with carrying handles consisting of a one-piece cardboard or paperboard blank, with a folding bottom, two end walls and two longitudinal walls with longitudinal closing flaps attached to their top edges, whereby the flaps trapezoidally narrow starting from the respective folding line, and with end closing flaps which are attached at bending lines to the top edge of the end walls and via diagonal foldings to the longitudinal closing flaps and which are designed so as to fold inwards - by 90 degrees relative to the end walls - when the box is made up, characterized by the following features : a) the end closing flaps (8, 9) are relatively short in relation to the length measured between the folding line and the free shorter trapezoid side of the longitudinal closing flaps (6, 7) ; b) when the box is closed, the free ends of the longitudinal closing flaps (6, 7) overlap ; c) carrying handle holes (11, 12) are provided in the centre area of the longitudinal closing flaps ; d) when the box is closed, those parts of the carrying handle holes (11, 12) which face the free end of the longitudinal closing flaps (6, 7) substantially fit over each other. e) a tongue (13) is attached at a first bending line (14) to the short free trapezoid side of the first longitudinal closing flap (6) ; f) a tab (15) is provided on the tongue (13) in the centre area and on that side of the first bending line (14) which faces the main section of the first longitudinal closing flap (6) ; g) the carrying handle hole (12) of the second longitudinal closing clap (7) is provided with a cut-out (16) on the inner edge facing its free trapezoid side for inserting the tab (15).
Faltbodenschachtel Die Erfindung betrifft eine Faltbodenschachtel mit Tragegriffen, zum Beispiel als Obst- oder Gemüsekorb, aus Karton oder Pappe, bestehend aus einem einteiligen Zuschnitt mit zwei Längswänden, zwei Seitenwänden und einem Faltboden. Letzterer kann dabei aus an die Längsund Seitenwände angelenkten Längs- und Stirnklappen zusammengesetzt sein, wobei zweckmässig eine der Längsklappen so verlängert ist, dass sie nahezu die ganze Bodenfläche innen abdeckt. Obst- und GemUsrkörbe werden bisher in der Regel aus Hol und/oder Wellp@ppe hergestellt. Diese Verpackungsart ist aufwendig sowohl beim Konfektionieren als auch beim Transport, da selbst im zuammengelegten Zustand stegen de ertleblichen Materialstärke ein entsprechender Platz gebrasicht wird. Der Errindung liegt die Aufgabe zugrunde, eine - insbesondere als Obst- oder Gemüsekorb verwendbare - Faltschachtel eingangs genannter Art zu schaffen, die ganz und gar aus Pappe bzw. Karton besteht. Die erfindungsgemässe Lösung besteht bei einer Faltbodenschachtel mit Je zwei Längs- und Seitenwänden sowie einem Faltboden darin, dass an den oberen Rand der Längswände angelenkte und sich trapezförmig von der Jeweiligen Anlenklinie aus verJüngende Längsverschlussklappen mit sich überlappenden freien Enden vorgesehen sind, dass gegenüber der zwischen der Anlenklinie und der freien, kürzeren Trapezseite der Längsverschlussklappen gemessene Länge relativ kurze Seitenverschlussklappen über Biegelinien sowohl an den oberen Rand der Stirnwände als auch über Diagonalfaltungen an die Längsverschlussklappen angelenkt sind und dass die Stirnverschlussklappen bei aufgerichteter - gegebenenfalls offener oder verschlossener 0 Schachtel zum Einklappen nach innen um 90 relativ zu den Stirnwänden ausgebildet sind. Durch die Erfindung wird erreicht, dass nach dem Verschliessen bzw. schon bei entsprechender Verformung der Verschlussklappen die Stirnverschlussklappen um einen Winkel von 900 relativ zu den Stirnwänden nach innen geneigt fixiert werden. Dadurch werden zunächst die Stirnwände gegen ein Ein- bzw. Ausbeulen stabilisiert. Ferner wird die rechtwinklige Ausrichtung der Verpackung im ganzen unterscützt. Schlresslich werden dadurch auch die Längswände beim ±;itieben der Verpackung bzw. Schach tei gegen ein Eindrücken und damit ein Beschadigen des Verpackungsinhaltes weitgehend gesichert. Gleichzeitlg bilden die beiden stirnseitig um 900 eingeschlagenen und an die LDn3sver-chlussklappnn über Diagonalraltangen bzw. -perforationen angelenkten sowie in ihrer Lage fixierten Stirnverschlusslaschen die Stapelborde für die gegebenenfalls Jeweils darüberzustellende Verpackung bzw. Schachtel. Einzelheiten sowie Verbesserungen und weitere Ausbildungen der Erfindung werden anhand der schematischen Zeichnung eines Ausführungsbeispiels beschrieben; darin zeigen: Fig. 1 einen flachliegenden Zuschnitt zum Herstellen der erfindungsgemässen Faltbodenschachtel; Fig. 2 eine aufgerichtete Faltbodenschachtel mit an einer Stirnwand eingeschlagener und an der anderen Stirnwand noch ungefalteter Stirnver schlusslasche; und Fig 3 eine verschlossene Faltbodenschachtel. Die erfindungsgemässe Faltbodenschachtel besteht gemäss flachliegendem Zuschnitt nach Fig. 1 oder gemäss der aufgerichteten Stellung nach Fig. 2 aus zwei Längswänden 1 und 2, zwei Stirnwänden 3 und 4 und einem Faltboden 5. Letzterer ist aus mehreren an die unteren Ränder der Längs- und Stirnwände 1 bis 4 angelenkten unteren Längsund Stirnklappen zusammengesetzt, wobei eine der Längsklappen 5a des Bodens so verlängert sein kann, dass er nahezu die gesamte Innenfläche des Bodens abdeckt. An die oberen Kanten der Längswände 1 und 2 sind trapez- förmig zugescnittene Längs erschlussklappen 6 und 7 angelenkt. Die Län.gsverschiusskiappen 6 und 7 sind in Richtung senkrecht zu ihrer diege- oder Anlenklinle so breit, Cass sie sich in d?r MItte der Schachtel (im verschlossenen Zustand) auf der Breit des Handgriffs t:ber- lappen. An die Stirnwände 3 und 4 sind Stirnverschluss klappen 8 und 9 angelenkt, die über Diagonalfaltungen 10 mit den Längsverschlussklappen 6 und 7 verbunden sind. Die relativ schmalen sowohl mit den Stirnwänden 9 und 4 als auch über Diagonalfaltungen 10 mit den Längsverschlussklappen 6 und 7 verbundenen Stirnverschlussklappen 8 und 9 tragen erheblich zur Stabilisierung der gesamten Schachtel bei, da sie sowohl die Fläche der Stirnwände 3 und 4 als auch dieJenigen der Längswände 1 und 2 abstützen. Auch können die Stirnverschlussklappen 8 und 9 als Stapelborde beim Übereinandersetzen mehrerer gleichartiger Verpackungen benutzt werden. Im mittleren Bereich der tängsverschlussklappen 6 und 7 sind Tragegriff löcher 11 und 12 vorgesehen, deren Umrandungen am freien Ende der Längsverschlussklappen 6 und 7 im wesentlichen deckungsgleich aufeinander legbar sind (vgl. Fig. 3). An die kurze, freie Trapezseite der einen, ersten Längsverschlussklappe 6 ist eine Lasche 13 über eine erste Biegelinie 14 angelenkt. An die Lasche 13 ist im mittleren Bereich und auf der dem Hauptteil der ersten Längsverschlussklappe 6 zugewandten Seite der ersten Biegelinie 14 eine Zunge 15 angeschnitten. Ferner weist das Tragegriffloch 12 der anderen, zweiten Längsverschlussklappe 7 an dem deren freier Trapezseite zugewandten inneren Rand eine zum Einführen der Zunge 15 ausgebildete Ausbuchtung 16 auf. Da die Zunge 15 bei leichtem Umschlagen der Lasche 13 nach ausser frei wird (siehe Fig. 2) also innenwand absteht, greift die Zunge 15, wenn die erste Langsvershlussklappe 6 über die zweite Lär?sierschlussklappe 7 gelegt wird, in den Ausschnitt 16 der letzteren ein. Die beiden Längsverschlussklappen 6 und 7 weisen ausser den Tragegrifflöchern 11 und 12 beispielsweise Je zwei 3elüftungs bzw. EinsichtdfRr.wngsen 17 auf. Die an die erste Längsverschlussklappe 6 angelenkte Lasche 13 weist eine parallel zu der ersten Biegelinie 14 ausserhalb der freien Trapezseite der Längsverschlussklappe 6 verlaufende zweite Biegelinie 18 auf, derart, dass die Lasche 13 über diese zweite Biegelinie 18 bei Einführen der Zunge 15 in den Ausschnitt 16 des Grifflochs 12 der zweiten Längsverschlussklappe 7 in dieses Griffloch 12 hineinkrempelbar ist. Zum endgültigen Verschliessen und Sichern der Abdeckung der Faltbodenschachtel weist die Lasche 13 der ersten Längsverschlussklappe 6 seitliche Uberstände 19 auf, deren gegenseitiger Abstand grösser als die parallel zur freien Trapezseite der zweiten Längsverschlussklappe 7 gemessene Breite von deren Tragegriffloch 12 ist. Die Lasche 13 kann also beim Hineinkrempeln in das Griff loch 12 mit Hilfe ihrer überstände 19 in dem Griffloch 12 arretiert werden. Zum Verstärken des Tragegriffs der Faltbodenschachtel kann ferner eine Grifflochverstärkungslasche 20 dienen, die an der Innenseite des äusseren Randes des Griff lochs 11 der ersten Längsverschlussklappe 6 über eine dritte Biegelinie 21 anlenkbar ist. Diese Grifflochverstärkungslasche 20 wird vorzugsweise beim Tragen des Gebindes nach innen abgewinkelt. Zweckmässig sind dabei die Lasche 13 und die -rifrlocverstärkungslasche 20 so ausgebildet, dass sie, insbesondere schräg, gegeneinander liegen. Das Betätigen, ir.sFesondere das rRnen und Schliessen der Längsverschlussklappen 6 und 7 der- Faltbodenschachtel wird 0rleichter't, wenn in den Anlenklinien zwischen den Längswterschlussk1 spen 6 und 7 und den Längswänden 1 und 2 Perforationen oder Einschnitte 2 vorgesehen sina. Liste der Bezugszeichen 1, 2 = Längswände 3, 4 = Stirnwände 5 = Bodenlaschen 5a = breite Bodenlasche 6, 7 = Längsverschlussklappen 8, 9 = Stirnverschlussklappen 10 = Diagonalfaltung 11,12 = Tragegrifflöcher 13 = Lasche 14 = erste Biegelinie 15 = Zunge 16 = Ausschnitt 17 = Sichtlöcher 18 = zweite Biegelinie 19 = Uberstände 20 = Grifflochverstärkungslasche 21 = dritte Biegelinie
Faltbodenschachtel Patentansprüche: 1) Faltbodenschachtel mit Tragegriffen, zum Beispiel als Obst- oder Gemüsekorb, aus Karton oder Pappe, be stehend aus einem einteiligen Zuschnitt mit zwei Längswänden, zwei Stirnwänden und einem Faltboden, dadurch gekennzeichnet, dass an den oberen Rand der Längswände (1, 2) angelenkte und sich trapezförmig von der jeweiligen Anlenklinie aus verJüngende Längsverschlussklappen (6, 7) mit sich überlappenden freien Enden vorgesehen sind, dass gegenüber der zwischen der Anlenklinie und der freien, kürzeren Trapezseite der Längsverschlussklappen (6, 7) ge messenen Länge relativ kurze Stirnverschlussklappen (8, 9) über Biegelinien sowohl an den oberen Rand der Stirnwände (3, 4) als auch über Diagonalfaltungen (10) an die Längsverschlussklappen (6, 7) angelenkt sind und dass die Stirnverschlussklappen (8, 9) bei aufgerichteter Schachtel zum Einklappen nach innen um 900 relativ zu den Stirnwänden (3, 4) - ausge bildet sind. 2) Schachtel nach Anspruch 1, dadurch gekennzeichnet, dass im mittleren Bereich der Längsverschlussklappen (6, 7) Tragegrifflöcher (11, 12) vorgesehen sind, deren Umrandungen am freien Ende der Längsverschluss klappen 'm wesentlichen deckungsgleich aufeJnand¯; legbar sind, dass an die kurze freie T;apezseite der einen, ersten Längsverschlussklappe (6) ei: :e Tasche (13) über eine erste Biegelinie (14) angelenkt ist, dass an der Lasche xlD) im mittle@en Bereich und auf der dem Hauptteil der ersten Längsverschlussklappe (6) zugewandten Seite der ersten Biegelinie (14) eine Zunge (15) angeschnitten ist und dass das Tragegriff loch (12) der anderen, zweiten Längsverschlussklappe (7) an dem deren freier Trapezseite zugewandten inneren Rand eine zum Einführen der Zunge (15) ausge bildete Ausbuchtung (16) aufweist. 3) Schachtel nach Anspruch 1 und 2, dadurch gekenn zeichnet, dass die an die erste Längsverschlussklappe (6) angelenkte Lasche (13) eine parallel zur ersten Biegelinie (14) ausserhalb der freien Trapezseite der Klappe verlaufende zweite Biegelinie (18) aufweist und dass die Lasche (13) über diese zweite Biegelinie (18) bei Einführen der Zunge (15) in den Ausschnitt (16) des Tragegrifflochs (12) der zweiten Längsver schlussklappe (7) in dieses Griffloch hineinkrempelbar ist. 4) Schachtel nach Anspruch 9, dadurch gekennzeichnet, dass die Lasche (13) der ersten Längsverschlussklappe (6) seitliche Überstände (19) aufweist, dass der gegen seitige Abstand der Uberstände (19) grösser als die parallel zur freien Trapezseite der zweiten Längs verschlussklappe (7) gemessene Breite von deren Trage griffloch (12) ist und dass die Lasche (13) beim Hineinkrempeln in das TrageSriffloch (-2) der zweiten LängsverschluSklappe (() r.lit Hilfe der Überstnde (19) arretierbar ist. 5) Schachtel nach jenem oder mehreren der Ansprüche 1 bis 4, dadurch gekenroseicknet, dass an die Innenseite des äusser±-n Randes des Tragegriff lochs (11) der ersten Längsverschlussklappe (6) eine Grifflochverstärkungs- lasche (20) über eine dritte Biegelinie (21) ange lenkt ist und dass die Grifflochverstärkungslasche (20), insbesondere beim Tragen der Schachtel, gegen die nach innen gekrempelte Lasche (13) abwinkelbar ist. 6) Schachtel nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die die Längsver schlussklappen (6, 7) mit den Längswänden (1, 2) ver bindenden Anlenklinien Perforationen oder Einschnitte (22) aufweisen.
HERZBERGER PAPIERFABRIK LUDWIG OSTHUSHENRICH GMBH & CO KG
ELLENRIEDER, FRANZ; HUBERT, PETER; MEIER, KURT
EP-0003140-B1
3,140
EP
B1
DE
19,800,903
1,979
20,100,220
new
C07C17
C07C19
C10M141, C09K15
M10M211:02, M10M223:042, M10M207:404, M10M211:08, M10M211:022, M10M223:04, M10N240:40, M10M207:10, M10M207:40, C09K 15/32B, M10M207:34, C10M 141/10, M10M290:02, M10M211:06, M10M207:28, M10M207:042, M10M207:282, M10N240:401, M10M223:041, M10M207:24
PROCESS FOR THE STABILISATION OF POLYCHLORO-ALKANES AND STABILISER COMBINATIONS
1. Process for high temperature stabilization of polychloralkane with stabilizer combinations on the basis of epoxides, characterized in that a stabilizer combination of the following composition a) 10 to 90 % by weight of a1 ) cycloaliphatic epoxides (epoxide oxygen exclusively linked to cycloaliphatic rings), a2 ) mixed cycloaliphatic-aliphatic epoxides (differently linked epoxide oxygen), a3 ) glycidyl esters of cycloaliphatic carboxylic acids (epoxide oxygen exclusively linked to side chains), a4 ) glycidyl esters of cycloalliphatic alcohols (epoxide oxygen exclusively linked to side chains), or a5 ) cycloaliphatic epoxide ethers (epoxide oxygen exclusively linked to cycloaliphatic rings) and b) 90 to 10 % by weight of tertiary esters of phosphorous acid with b1 ) longer chain, linear or branched aliphatic monoalcohols, b2 ) polyalcohols, b3 ) phenol, or b4 ) alkyl phenols having 8 to 18 carbon atoms in the alkyl chains, is added to polychloralkanes having 8 to 30 carbon atoms and a chlorine content of 10 to 70 % by weight.
Verfahren zur StabiLsierung von Polychloralkanen und Stabilisatorkornbinationen Polychloralkane werden im allgemeinen als Weichmacher in Kunststoffen und Anstrichmitteln mit flammhemmenden Eigenschaften verwendet. In erheblichem Umfang werden Polychloralkane aber auch in Schmierstoffen als Hochdruck zusatz zur Verbesserung der Schmiereigenschaften eingesetzt. Für die Verwendung in Schmierstoffzubereitungen werden an die Polychloralkane erhöhte Anforderungen hinsichtlich ihrer Temperaturbeständigkeit Verfärbung und Abspaltung von Salzsäure - gestellt So wird für die Verwendung in sog. Pilgerolen für den Rohrzug oder auch für hochbelastete Räumöle an die Polychloralkane die Forderung gestellt, dass diese in Kontakt mit Eisen oder anderen Schwermetallen bei 150 0C über längere Zeit stabil bleiben, d.h. sich nicht unter Salzsäureabspaltung zersetzen und dass sie keine Korrosionen an den Metallen hervorrufen. Während in den genannten Schmierstoffen die Konzentrationen an Polychloralkanen sehr hoch sind, meist über 50 Gew.-%, enthalten normale Automaten-Schneidöle im allgemeinen nur einige Gewichtsprozent Polychloralkane. Die an diese Öle gestellte Forderung ist, dass in genormten Tests bei Zusatz von Wasser in Kontakt mit Metallen ebenfalls keine Korrosionen auftreten. Man könnte dies zwar durch den Zusatz von basischen Erdalkali-Petrolsulfonaten, die als Korrosionsinhibitoren für Schmier stoffe an sich bekannt sind, erreichen, verstösst damit jedoch gegen eine andere Forderung, nämlich die, dass die Schneidöle praktisch aschefrei sein müssen. Es ist bekannt, die Wärmestabilität von Polychloralkanen durch Zusatz von Epoxidderivaten von Fettsäureil oder son prlanzlichen epoxidierten Ölen zu verbessern. Ferner weL- den auch Verfahren zur Stabilisierung von Polychloralkanen mit Ixombinationen von epoxidierten Fettsäureestern mit tertiären Aminen, Schiffschen Basen oder Phenylglycidyl äthern beschrieben (DE-OS 2 115 874). Diese Verfahren haben den Nachteil, dass die Stabilisierung nicht ausreicht, wenn die Polychloralkane für spezielle Verwendungszwecke bestimmt sind. Darüber hinaus bilden sich beim Einsatz von Kombinationen aus epoxidierten Fettölen und Aminen sowie won Aminen allein (DRP 685 125) gefärbte Anlagerungsprodukte mit den Polychloralkanen. Die Verwendung von Stabilisatorkombinationen, bestehend aus Epoxidderivaten von Säuren oder von Epoxidderivaten von Estern dieser Säuren oder von epoxidierten pflanzlichen Ölen und organischen oder anorganischen Magnesiumver- bindungen, ist aus der DE-AS 1 935 744 bekannt. Diese Kombinationen haben den Nachteil, dass sie nicht aschefrei sind und man ausserdem auch mit ihnen nicht den geforderten hohen Stabilitätsgrad der Polychloralkane für spezielle Anwendungen erreichen kann. Asinger beschreibt in Die petrochemische Industrie , Band 1, Seite 674 (1971) die Verwendung von 1,2-Epoxi-3phenoxypropen als Stabilisierungsmittel für Polychloralkane. Diese Verbindung ergibt zwar, wie auch die andc#ren genannten Epoxidverbindungen, einen ausreicheilden Stabill- tätsgrad für die Verwendung der Polychloralkane auf dem Weichmacher- und Flammschutzgebiet, erfüllt aber nicht die Anforderungen, die an ein hochtemperaturstabiles Polychloralkan für die Verwendung in Schmierstoffen gestellt werden. Es wurde nun gefunden, dass man Polychloralkane mit dem geforderten, hohen Stabilitätsgrad erhalten kann, wenn man die Polychloralkane mit Kombinationen, bestehend aus bestimmten Epoxidverbindungen und organischen tertiären Phosphiten stabilisiert. Die vorliegende Erfindung betrifft somit ein Verfahren zur Hochtemperaturstabilisierung von Polychloralkanen mit Stabilisatorkombinationen auf Basis von Epoxiden, welches dadurch gekennzeichnet ist, dass man Polychloralkanen, die 8 bis 30 Kohlenstoffatome und einen Chlorgehalt von 10 bis 70 Gewichtsprozent aufweisen, eine Stabilisatorkombination folgender Zusammensetzung zufügt: a) 10 bis 90 Gewichtsprozent a1) cycloaliphatische Epoxide (Epoxidsauerstoff asschliess- lich an cycloaliphatischen Ringen gebunden), a2) gemischt cycloaliphatisch-aliphatische Epoxide (Epoxid sauerstoff unterschiedlich gebunden), a3) Glycidylester cycloaliphatischer Carbonsäuren (Epoxid sauerstoff ausschliesslich an den Seitenketten gebunden), a4) Glycidyläther cycloaliphatischer Alkohole (Epoxidsauer stoff ausschliesslich an den Seitenketten gebunden) oder a5) cycloaliphatische Epoxyäther (Epoxidsauerstoff aus schliesslich an cycloaliphatischen Ringen gebunden) und b) 90 bis 10 Gewichtsprozent tertiäre Ester der phosphorigen Säure mit b1) längerkettigen, geradlinigen oder verzweigten alipha tischen Monoalkoholen, b2) Polyalkoholen, b3) Phenol oder b4) Alkylphenolen, die 8 bis 18 Kohlenstoffatome in den Alkylketten aufweisen. Es war überraschend und nicht zu erwarten, dass die erf in- dungsgemässe Stabilisierung der Polychloralkane erheblich wirkungsvoller ist als eine Stabilisierung nach dem Stand der Technik nur mit Epoxiden bzw. mit Epoxiden und Magnesiumsalzen, nachdem tertiäre organische Phosphite allein überhaupt keine stabilisierende Wirkung in Polychloralkanen zeigen. Man musste vielmehr damit rechnen, dass der Zusatz von Phosphiten die Stabilisierungswirkung der Epoxide eher verschlechtern würde, da unter den scharfen Test-Bedingungen Reaktionen zwischen Phosphit und Epoxid nicht auszuschliessen waren. Dass dies nicht der Fall ist, sondern sogar eine Art Synergismus zwischen Epoxid und Phosphit vorliegt, war keineswegs vorhersehbar. Geeignete Epoxide sind solche, die im Molekül einen oder mehrere cycloaliphatische Ringe und ausser diesen und den Epoxidgruppen nur aliphatische Reste enthalten. Nach der Stellung der Epoxigruppen zum cycloaliphatischen Ring lassen sich folgende Untergruppen unterscheiden LtKunst- stoffhandbuch, Band 11, S. 247 ff (1971), Herausgeber: Vieweg, Reiher und Scheurlen/: a) Epoxide, bei denen der Epoxysauerstoff ausschliesslich an cycloaliphatischen Ringen gebunden ist, z.B. Dicyclo pentadiendioxid (I) oder Äther cycloaliphatischer Esoxi- alkohole, wie Bis-(2,3-epoxicyclopentyl)-äther(V), b) Epo xide mit ausschliesslich an den Seitenketten gebundenem Epoxidsauerstoff, z.B. der Diglycidylester der Hexahy drophthalsäure (III) und das Bis-(glycidyl-oxymethyl) tricyclodecan (IV), c) Epoxide mit unterschiedlich gebundenen Expoxisauer stoffatomen, wie z.B. Vinylcyclohexendioxid (in). Im Rahmen der vorliegenden Erfindung sollen die geeigneten Epoxide als cycloaliphatische Epoxide (I), gemischt cycloaliphatisch-aliphatische Epoxide (II), Glycldyl- ester cycloaliphatischer Carbonsäuren (III), Glycidyl äther cycloaliphatischer Alkohole (IV) und cycloali phatische Epoxyäther (V) bezeichnet werden. Struktur einiger typischer Vertreter siehe anliegendes Formel blatt. Bevorzugt wird die Verbindung (III). Unter tertiären organischen Phosphiten werden verstanden: neutrale Ester der phosphorigen Säure mit längerkettigen geradlinigen oder verzweigten aliphatischen Monoalkoholen, bevorzugt solchen mit 8 bis 20 C-Atomen, wie z.B. n-Octanol, 2-Äthylhexanol, 2-Dodecanol, Isodecanol, mit Polyalkoholen, wie z.B. Pentaerythrit, mit Phenol oder mit Alkylphenolen mit C8- bis C18-Alkylketten, wie Nonylphenol oder Dodecylphenol. Das Phosphoratom kann mit gleichen oder auch mit unterschiedlichen alkoholischen Resten verknüpft sein. Genannt seien beispielsweise die folgenden Phosphite: Diphenylisodecylphosphit, Diphenylisooctylphosphit, Triisodecylphosphit, Trilaurylphosphit, Phenyldiisodecylphosphit, Diisodecylpentaerythrityl-diphosphit und bevorzugt Tris- (nonylphenyl) -phosphit. Die erfindungsgemäss zu stabilisierenden Polychloralkane sind Chlorierungsprodukte von im wesentlichen paraffinischen, verzweigten oder geradkettigen Kohlenwasserstoffen, insbesondere den letztgenannten, mit 8 bis 30 C-Atomen im Molekül, bevorzugt von technischen Paraffinschnitten mit beispielsweise 10 bis 13, 14 bis 17, 18 bis 24 und gegebenenfalls bis zu ca. 30 C-Atomen, deren Chlorgehalt zwischen 10 und 70 Gew.-% liegen kann. In den Stabilisatorkombinationen, die in Mengen von 0,2 bis 5, vorzugsweise 0,5 bis 2 Gew.-%, bezogen auf das Polychloralkan, diesem zugesetzt werden, kann sich das Mengenverhältnis von Epoxid zu Phosphit in weiten Grenzen bewegen, die für das Epoxid zwischen 10 und 90 Gew.-% und hieraus folgend für das Phosphit bei 90 bis 10 Gew.-% liegen. Bevorzugt werden Kombinationen im Gewichtsverhältnis Epoxid zu Phosphit wie 5 : 1 bis 1 : 4, insbesondere 2 : 1 bis 1 : 2, eingesetzt. Die Stabilisierung der Polychloralkane erfolgt zweck mässigerweise unmittelbar nach beendeter Chlorierung durch Einarbeiten der Stabilisatorkombination in das noch warme Chlorierungsprodukt. Man erreicht auf diese Weise optimale Stabilitätsgrade. Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung und zeigen ihre Vorteile auf. Die angegebenen Mengen sind stets Gewichtsmengen. Beispiel 1 Einem Polychloralkan, das durch Chlorierung eines Paraffin schnittes mit 10 bis 13 C-Atomen erhalten worden war, einen Chlorgehalt von ca. 56 % und eine Jodfarbzahl von 0,5 be sass, wurden unmittelbar nach seiner Fertigstellung Proben entnommen, die noch warm mit Stabilisatorkombinationen gemäss der Erfindung stabilisiert bzw. zum Vergleich mit bekannten Stabilisatoren versetzt wurden. Die einzelnen Proben wurden sodann einem Hochtemperaturstabilitätstest unterworfen, bei dem wie folgt vorgegangen wird: In ein Reagenzglas mit 28 mm lichter Weite und einer Höhe von 200 mm werden 50 g des stabilisierten Polychlor alkans und 2 g Eisenspäne, sog. Herert-Späne, herge stellt aus Stahl gemäss British Standard 970/EN 8, wie sie für den Korrosionstest nach der Britischen Norm IP 125 verwendet werden, eingewogen. Die Späne werden vor Ge brauch mit Trichloräthylen und anschliessend mit Aceton gewaschen und getrocknet. Das Reagenzglas wird in ein Beizbad eingetaucht, so dass das Polychloralkan vollständig von der Heizflüssigkeit umspült ist. Die Temperatur wird auf 1500C + 10C einge stellt. Während der gesamten Testzeit werden 2,5 1 Luft/ Stunde durch das Polychloralkan geblasen. Als Kriterium für die thermische Stabilität des Produktes wird die Zeit angegeben, nach der das Produkt schwarz ist, d.h. eine Jodfarbzahl nach DIN 6162 von über 1 100 angenominen hat. Ein weiteres Kriterium ist der Zustand der Eisenspäne hinsichtlich aufgetretener Korrosionen. In der nachstehen den Tabelle werden die Ergebnisse der Untersuchungen auf geführt. Die enthaltenen Stabilisatormengen sind in Gew.-% bezogen auf das Polychloralkan, angegeben. Die Beispiele 1a, 1j und 1k sind Vergleichsbeispiele entsprechend dem Stand der Technik, Beispiel 1l zeigt, dass Phosphit allein völlig ungeeignet ist. Vers. Stabilisator und Menge Temperungs- Jodfarb- Korrosion Nr. (Gew.-%) zeit (Stdn.) zahl 1 a 1 % epoxidiertes Sojaöl 0,5 > 1100 ja (ca. 5,8 % Epoxisauerstoff) 5 1 b 1 8 Hexahydrophthalsäure- 20 5 nein diglycidylester 1 % TNPP +) 1 c 1 % Hexahydrophthalsäure- 72 > 1100 nein diglycidylester 1 % TNPP +) 10 1 d 1 % Hexahydrophthalsäure- 15 40 nein diglycidylester 1 % Diphenyl-iscortyl- phosphit 1 e 1 % Hexahydrophthalsäure- 15 30 nein 15 diglycidylester 1 % Trilaurylphosphit 1 f 1 % Hexahydrophthalsäure- 15 40 nein diglycidylester 1 % Bis-(nonylphenyl) phenylphosphit 20 1 g 1 % Vinylcyclohexendioxid 15 60 nein 1 % TNPP +) 1 h 1 % Tetrahydropnthalsäure- 15 30 nein diglycidylester 1 % TNPP +) 25 1 i 1 % <RTI ID=8.7> Bis-(glycidyloxymethyl)- 37 100 nein tricyclodekan 1 % TNPP +) 1 j 1 % epoxidiertes Sojaöl 1,25 > 1100 ja 0,23 8 Magnesiumstearat ++) 3fl 1 k 2 % epoxidiertes Sojaöl 4,75 > 1100 Da 0,23 % Magnesiumstearat ++) 1 1 2 % Trisnonylphenylphosphit 0,5 > 1100 Da 35+) TNPP = Trisnonylphenylphosphit ++) entsprechend 100 ppm Beispiel 2 Wie in Beispiel 1 beschrieben, wurde ein unterschiedlich stabilisiertes Polychloralkan mit 10 bis 13 C-Atomen und einem Chlorgehalt von 70 Gew.-% untersucht. Es wurden folgende Ergebnisse erhalten: Vers Stabilisator und Menge Temperungs- Jodfarb- Korro Nr. (Gew.-%) zeit (Stdn.) zahl sion 2 a 2 % epoxidiertes Sojaöl 5,5 > 1100 ja 0,5 % Hexahydrophthal säurediglycidylester 2 b 1 % epoxidiertes Sojaöl 2 > 1100 ja 2 c 1 % Hexaliydrophthalsäure- 23,5 130 nein diglycidylester 1 % TNPP +) 2 d 1 % Hexahydrophthalsäure- 23 160 nein diglycidylester 2 % TNPP +) 2 e 1 % Hexahydrophthalsäure- 23 250 nein diglycidylester 4 4 % TNPP +) +) TNPP = Trisnonylphenylphosphit Beispiel 3 Nach den Angaben des Beispiels 1 wurde ein Polychloralkan mit der Kohlenstoffkettenlänge C17- bis C24 vom Chlorgehalt ca. 42 % geprüft. Die Ergebnisse sind in nachstehender Tabelle zusammengestellt. Vers. Stabilisator und Menge Temperungs- Jcdfarb- Korro- Nr. (Gew-%) zeit (Stdn.) zahl sion 3 a 1 % epoxidiertes Sojaöl 0,5 ) 1100 ja 3 b 1 % Hexahydrop#thalsäure- 10 > 1100 nein diglycidylester 1 % ck TNPP +) +) TNPP = Trisnonylphenylphosphit Beispiel 4 Für die Verwendung von Polychloralkanen in sog. Pilger ölen wird ein Temperungstest in Anlehnung an eine Vorschrift der Firma Mannesmann-Demag-Meer durchgeführt, wo- bei das zu prüfende Produkt über 72 Stunden bei 150 0C in Kontakt mit Eisen getempert wird. Beurteilungskriterien sind die Verfärbung des Produktes und Korrosionen an dem Metall. Bei diesem Test wird folgendermassen verfahren: In ein 250-ml Becherglas werden 200 g des zu prüfenden Polychloralkans eingewogen. Ein sog. Kesternichblech aus Stahl Ck 22 nach DIN 17200 in der Abmessung 100 x 50 x 3 mm wird in das Polychloralkan eingetaucht, so dass es sich zur Hälfte in dem Polychloralkan und zur anderen Hälfte ausserhalb der Flüssigkeit befindet. Das Kesternichblech wird vor Gebrauch mit Schleifpapier Körnung 100 geschliffen und mit Aceton gewaschen. Nach Ablauf der Testzeit sollen an dem Blech in der Eintauchzone und in der Dampfphase keine Xorrosionen festzustellen sein. Das Polychloralkan soll nach dem Versuch in Verdünnung 1 : 20 mit Benzol (1 Teil Polychloralkan + 20 Teile Benzol) eine Jodfarbzahl nach DIN 61 62 von nicht über 7 aufweisen. In der nachstehenden Tabelle sind einige Ergebnisse mit unterschiedlichen, gemäss der Erfindung stabilisierten Polychloralkanen aufgeführt. Zum Vergleich wurden die ErgeSnisse von Polychloralkanen mit bekannten Stabilisatoren aufgenommen ( 4b, 4c, 4e). Korrosion Vers. Polychloralkan Stabilisator und Jodfarb- Ein- Dampf Nr. Menge (Gew.-%) zahl tauch- phase zone 4 a C10-C13-Paraffin 1 % Hexahydro- 1 keine keine ca. 56 % Cl phthalsäuredi ca. glycidylester 1 % TNPP +) 4 b C10-C13-Paraffin 1 % epoxidiertes#1100 ja ja ca. 56 8 Cl Sojaöl 4 c C10-C13-Paraffin 0,5 % Hexahydro- 100 ja ja phthalsäure ca. 70 % Cl diglycidyl ester 2 % epoxidiertes Sojaöl Sojaöl 4 d C 01 Paraffin1 %Hexahydropht- ca. 70 % Cl halsäuredi- glycidylester 1 % TNPP +) 4 e C14-C17 Paraffin 1%epoxidiertes)1100 ja ja ca. 56 % Cl Sojaöl 4 f C14-C17-Paraffin- 1 % Hexxhydro- 3 nein nein phthal säure- ca. 56 % Cl diglycidyl- ca . diglycidyl ester 1 % TNPP +) +) TNPP = Trisnonylphenylphosphit Beispiel 5 Wie in der Beschreibung erwähnt, werden in Metallbearbei tungsflüssigkeiten für Automatenarbeiten häufig geringe Mengen Polychloralkane (meist unter 10 Gew.-%) zur Verbesserung der Schmierwirkung eingesetzt. Seitens der verbrauchenden Industrie besteht die Forderung, dass die Automatenöle praktisch aschefrei sind und in bestimmten Korrosionstests bei Gegenwart von Wasser und verschiedenen Metallen keine Korrosionen verursachen. Erfindungsgemäss stabilisiertes Polychloralkan wurde einem derartigen Korrosionstest entsprechend der Vorschrift des Volkswagenwerkes unterworfen, bei dem wie folgt verfahren wird: 98 ccm des zu prüfenden Schmierstoffes werden mit 2 ccm Wasser 1 Minute mit 2000 U/min. vermischt. Für die Tests werden Stahl und Kupfer benötigt. Der Stahl wird einem Kugellager mit dem Kurzzeichen 6210 entnommen (Rillenkugellager ohne Füllnuten einreihig 6210; Wellendurchmesser 50 mm, Aussendurchmesser 90 mm, Breite 20 mm). Das Kugellager wird in Viertel aufgeschnitten. Zum Test wird das Viertel des inneren Ringes benutzt. Das Kupferblech mit den Abmessungen 50 x 5 x 1 mm muss aus Elektrolytkupfer hergestellt sein. Die Prüfkörper werden mit Normalbenzin fett- bzw. ölfrei gewaschen und mit Filtrierpapier abgerieben. Nach dem Trocknen wird die Innenseite des Ringviertels mit Schleifpapier 00 aufgerauht. Der Prüfkörper wird dann nochmals a gewaschen und mit Filtrierpapier getrocknet. Danach ist der Prüfkörper fertig zum Einsatz. Das Kupferblech wird in gleicher Weise vorbereitet wie der Stahlkörper. Das - wie oben beschrieben -- hergestellte Öl-Wasser Gemisch befindet sich in einem 400 ccm-Becherglas hoher Form. Die Prüfkörper werden in das Becherglas so eingelegt, dass sie sich nicht berühren. Das Becherglas wird mit einem Uberglas abgedeckt und in einen Trockenschrank gestellt, der auf 1000C eingestellt ist. Die Testdauer beträgt 48 Stunden. Nach dem Test darf sich in dem Öl- Wasser-Gemisch kein Schlamm gebildet naben. Der Stahl darf keine Rostansätze, das Kupfer nur leichte Anlauffarbe zeigen. Nach diesem Test wurden erfindungsgemäss stabilisierte Polychloralkane in einer Schmierstofformulierung, bestehend aus 2,5 bzw. 5 Gew.-% Polychloralkan, 5 Gew.-% Fettöl (Spermtöl) und 87,5 Gew.-% bzw. 85 Gew.-% Mineralöl (Type Coray 50/Esso AG) unter Zusatz der o.a. Wassermenge untersucht. Die Ergebnisse sind in der nachstehenden Tabelle aufgeführt. Vers. Menge (Gew.-%) und Stabilisierung Korrosion Schlamm Nr. Art des Polychlor- des Polychlor- Stahl Kupfer alkans im Schmier alkans mit stoff 5 a 2,5 % C14-C17- 1 % epoxidier- ja Anlauf ja Paraffin tem Sojaöl 56 % Cl 5 b 2,5 % C14-C17- 1 % Hexahydro- nein nein nein Paraffin phthalsäure- 56 % C1 diglycidyl ester 1 % TNPP +) 5 c 5 % zu C14-C17- 1 % Hexahydro nein nein nein Paraffin ptha1säure- 56 % Cl diglycidyl ester 1 % TNPP +) +) TNPP = Trisnonylphenylphosphit
Patentansprüche: 1. Verfahren zur Hochtemperaturstabilisierung von Poly chloralkanen mit Stabilisatorkombinationen auf Basis von Epoxiden, dadurch gekennzeichnet, dass man Poly chloralkanen, die 8 bis 30 Kohlenstoffatome und einen Chlorgehalt von 10 bis 70 Gewichtsprozent aufweisen, eine Stabilisatorkombination folgender Zusammensetzung zufügt: a) 10 bis 90 Gewichtsprozent a1) cycloaliphatische Epoxide (Epoxidsauerstoff aus schliesslich an cycloaliphatischen Ringen gebunden), a2) gemischt cycloaliphatisch-aliphatische Epoxide (Epoxidsauerstoff unterschiedlich gebunden), a3) Glycidylester cycloaliphatischer Carbonsäuren (Epoxidsauerstoff ausschliesslich an den Seiten ketten gebunden), a4) Glycidyläther cycloaliphatischer Alkohole (Epoxid sauerstoff ausschliesslich an den Seitenketten ge bunden) oder a5) cycloaliphatische Epoxyäther (Epoxidsauerstoff ausschliesslich an cycloaliphatischen Ringen ge bunden) und b) 90 bis Gewichtsprozent tertiäre Ester der phos phorigen Säure mit b1) längerkettigen, geradlinigen oder verzweigten aliphatischen Monoalkoholen, b2) Polyalkoholen, b3) Phenol oder b4) Alkylphenolen, die 8 bis 18 Kohlenstoffatome in den Alkylketten aufweisen. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stabilisatorkombination in einer Menge von 0,2 bis 5 Gew.-%, bezogen auf das Polychloralkan, zugesetzt wird. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Stabilisatorkombination den Polychlor alkanen unmittelbar nach deren Herstellung in der Wärme zusetzt. 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch ge kennzeichnet, dass die Stabilisatorkombination aus dem Diglycidylester der Hexahydrophthalsäure und Tris nonylphenylphosphit besteht. 5. Stabilisatorkombinationen für die Hochtemperatur stabilisierung von Polychloralkanen mit einem Chlor gehalt von 10 bis 70 Gew.-% welche durch Chlorieren von Paraffinkohlenwasserstoffen mit 8 bis 30 C-Atomen erhalten worden waren, bestehend aus a) 10 bis 90 Gewichtsprozent a1) cycloaliphatischen Epoxiden (Epoxidsauerstoff ausschliesslich an cycloaliphatischen Ringen ge bunden), a2) gemischt cycloaliphatisch-aliphatische Epoxiden (Epoxidsauerstoff unterschiedlich gebunden), a3) Glycidylestern cycloaliphatischer Carbonsäuren (Epoxidsauerstoff ausschliesslich an den Seiten ketten gebunden), a4) Glycidyläthern cycloaliphatischer Alkohole (Epoxid sauerstoff ausschliesslich an den Seitenketten gebunden) oder a5) cycloaliphatische Epoxyäther (Epoxidsauerstoff ausschliesslich an cycloaliphatischen Ringen ge bunden) und b) 90 bis 10 Gewichtsprozent tertiären Estern der phosphorigen Säure mit b1) längerkettigen, geradlinigen oder verzweigten aliphatischen Monoalkoholen, b2) Polyalkoholen, b3) Phenol oder b4) Alkylphenolen, die 8 bis 18 Kohlenstoffatome in den Alkylketten aufweisen.
HOECHST AKTIENGESELLSCHAFT
LANDAU, HELMUT
EP-0003142-B1
3,142
EP
B1
EN
19,820,728
1,979
20,100,220
new
F16L33
B21D39
F16L33
F16L 33/207B
HOSE FITTING AND METHOD OF ASSEMBLY
This disclosure relates to a fitting including a nipple (10), a collar (11) attached to the nipple, and a socket (12). The collar and the nipple are secured together by forming one or more beads (17, 18) on the nipple. The socket (12) is attached to the nipple, collar and a length of hose (27) by crimping the socket into tight contact with the hose and into interlocking engagement with the collar (11). A plurality of sockets of different sizes may be provided to accommodate different hose designs. A socket appropriate for a specified hose design is selected and assembled with the hose and nipple.
THIS INVENTION relates to a hose fitting including a nipple, a collar attached to the nipple, and a socket. The invention also relates to a method of assembling such a fitting and a hose, comprising the steps of positioning the nipple in clamping jaws to hold it stationary, placing the collar on the nipple and securing the collar to the nipple. A hose coupling or fitting is shown in U.S. Patents No. 3,924,883 and No. 4,006,524, wherein a tubular nipple is fitted with a reinforcing sleeve, and an outer metal socket is clamped to the nipple and the sleeve. The fitting is attached to a hose by positioning the end of the hose in a space between the sleeve and the socket, and then crimping the socket inwardly. The foregoing construction is disadvantageous in that it requires a reinforcing sleeve and, generally, a particular size fitting will work well with only one style or size of hose. It is among the objects of this invention to provide an improved fitting and method of assembly, which eliminates the foregoing disadvantages. According to one aspect of the invention there is provided a hose fitting comprising a tubular nipple, a collar positioned on said nipple and tightly assembled with said nipple, a socket positioned around said nipple and at least partially overlying said collar, characterised in that said collar, and said socket are formed separately and said socket and said ccllar include interengageable means for securing said socket to said collar upon reduction in the diameter of said socket as by crimping, and said collar and said nipple are tightly assembled by bead means formed on said nipple and engaging said collar. In preferred embodiments, a plurality of interchangeable sockets are provided, each having engaging means of the same size, said collar having engaging means for receiving said engaging means of a selected socket, each of said sockets further having a hose engaging portion of a different internal diameter whereby said fitting may be used with different size hose by selecting a socket having the appropriate internal diameter. According to another aspect of the invention there is prov-ded a method of assembling a fitting and a hose, said fitting comprising a nipple, a collar and a socket, comprising the steps of positioning said nipple in clamping jaws to hold said nipple stationary, placing said collar on said nipple and securing said collar to said nipple, characterised by forming beads on said nipple to secure said nipple to said collar, forming said socket separately from said collar and positioning said socket over said hose, inserting said nipple into said hose, moving said socket over the end portion of said hose and at least partially over said collar, and crimping said socket tightly on to said hose and said collar. Embodiments of the invention are described below, by wr of example, with reference to the accompanying drawings, where in: Figures 1, 2 and 3 are vies in axial section illustrating steps in assembling a hose with a fitting embodying the present invention; Figures 4, 5, 6 and 7 are views, in axial section, illustratIng the process of making a fitting embodying the invention; and Figures A and 9 are axial views which illustrate the formation of another kind of fitting embodying the invention A fitting in accordance with the present invention is designed for use in an application requiring metal tubing, and comprises a tubular nipple 10, a collar 11 which is secured to the outer surface of the nipple 10, and a socket 12 which extends over the forward end of the nipple 10 and is secured to the collar 11. The nipple 10 is advantageously formed from the end section of the metal tubing, thereby eliminating the need for forming a fitting separate from the tube and fastening the tube to the fitting by a brazing operation, as was frequently the practice in prior art constructions. The end section of the nipple 10 has a plurality of axially spaced annular serration or ribs 16 formed thereon as by a rolling operation or by machining. The collar 11 is fastened to the outside of the nipple 10 rearwardly of the serrations 16, the collar 11 being held in place between two beads 17 and 18 formed on the nipple. The bead 17 is located forv-ardly of the collar 11 and abuts the forward side of the collar, whereas the other bead 18 is located at and abuts the rearward side of the collar. The rear bead 18 preferably has an arcuate or curved outer surface 19 which fits into a mating curved recess 21 on the inner rearward corner of the collar 11. The collar 11 further includes an annular recess or groove 22 in its outer peripheral surface adjacent the forward side thereof, which is utilised in securing the socket 12 to the collar 11 as will be described. The socket 12 is secured to the nipple 10 as by crimping, and it has an initial or uncrimped configuration, shown in Figures 1 and 2, and a final or crimped configuration, shorn in Figure 3. The socket is tubular and, initially, is sufficiently large in diameter to extend over the ribbed portion of the nipple 10 and over the outer diameter of a length of hose 27 having an inner flow passage 26. The hose 27 may be of the type which is made of a plastic, rubber or a rubber-like composition, and, in the present example, a layer 25 of reinforcement is embedded in it. WEile the outer peripheral surface of the socket 12 may be smooth, the inner peripheral surface is preferably provided with a plurality of annular ribs 28 which may be machined on the socket 12 and which helv to secure the hose 27 to the fitting. At the forward end of the socket 12 is a radially inwardly extending lip 29 having an axial dimension that is slightly less than the axial dimension of the annular groove 22 of the collar 11. As is best showy in Figure 2, the inner diameter of the lip 29 is initially slightly greater than the outer diameter of the forward portion 31 of the collar 11, so that the lip 29 may be moved, during assembly of the parts, rearwardly over the portion 31 and into radial alignment with the groove 22. The radial dimension of the rearward portion 32 of the collar 11 is preferably greater than the inner diameter of the lip 29 so that the portion 32 will act as a stop or abutment for the rearward end of the socket 12 when the socket 12 is moved to the position shown in Figure 2. When the rearward end of the socket 12 engages the portion 32 of the collar, the lip 29 is radiallv aligned with the annular recess 22. The fitting is assembled with the hose by first sliding the socket over the end of the hose 27 to approximately the position shown in Figure 1. The nipple 10 is then inserted into the passage 26 and forced toward the right as shown in Figures 1 and 2 until the end surface 36 of the hose 27 meets the bead 17. The socket 12 is moved toward the left relative to the collar 11 until it meets the portion 32 of the collar 11, and as previously mentioned, in this position the lip is radially aligned with the groove 22 of the collar 11. A high compressive force is then applied to the socket 12 to reduce its diameter to the final configuration shown in Figure 3. This may be accomplished by placing the fitting and the end of the hose in a crimping machine where the socket 12 is crimped radially inwardly. Figures 1 to 3 illustrate the construction where the hose 27 includes a relatively thick cover or layer on the outside of the rebiforcement 25. The compressive force is applied to the socket from the rearward end adjacent the lip 29 to aiproximatele the forward end which terminates in a skirt 3, and the diameter of the socket 12 is reduced sufficiently to tightly compress the hose 27 between the nipple 10 and the socket 12. The lip 29 of the socket 12 is forced inte the groove 22 of the collar 11 in order to attach the socket 12 to the collar 11. where the outer cover of the hose is relatively thick as shown, the forwardmost end of the socket 12 is bent to produce an outwardly flared skirt 37 (rigure 3), which eliminates a bulge in the hose cover and reduces the darer of damaging the hose 26 when the hose is bent close to ne fitting. In a construction where the hose has a relatively thin outer cover, the skirt 37 may be eliminated and the socket may be crimped uniformly throughout its Length. As shown in Figure 3, the compression applied to the hose 26 as a result of the crimping operation causes the end portion of the hose 27 to be tightly compressed and gripped beeen the socket 12 and the nipple 10, and the rearwardmost end portions of the inner lines and the outer cover of the hose 27 are forced or extruded into a pocket 38 (Figure 2) arom1d the bead 17. After crimping, the finished forms of the hose and fitting assembly is generally as shown in Figure 3. The outer diameter of the socket 12, after crimping, ma vanfrom assembly to assembly, depending upon such factors as the initial outer diameter of the hose 27 and the initial wall thickness of the socket 12. For a given hose inner diameter, the hose outer diameter may vary according to the pressure rating, a high pressure hose of course having a thicker reinforcement than a low pressure hose. The wall thickness of a socket 12 designed for a high pressure assembly will also normally be greater than for a low pressure assembly. For these reasons, the outer diameter of the socket 12 and the inner diameter of the lip 29, after crimping, may van; from assembly to assembly, but rize initial imier diameter of the lip 29 will preferably be the same for all sockets designed for use with a given nipple design. Regardless of the finished or cringed inner diameter of the lip 29, it will of course :e locked in leeX groove 22. Figures 4, 5, 6 and 7 illustrate a number of steps in the manufacture of the nipple 10 and of the attachment of the nipple 10 to the collar 11. The end portion of a length of metal tube first h- the annular ribs or serrations 16 formed on its outer urface as by a rolling or machining operation as previously mentioned. The tube, which forms the nipple 10, is then placed between two clamping jaws 38 and 39 which, when moved together, tightly grip the tube between them with the portion that forms the nipple 10 extending out from one side of the clamping jaws 38 and 39. A punch 41 having a cylindrical bore 42 formed therein is then positioned over the nipple 10. The diameter of the bore 42 is sized to produce a snug fit with the nipple 10, and the depth of the bore 42, measured from the end surface 43 of the punch 41 to the bottom 44 of the bore 42, is less than the length of the nipple. Thus, the bottom 44 of the bore 42 engages the end surface 46 of the nipple 10, and when the punch 41 is moved toward and up against the clamping jaws 38, the nipple 10 buckles in the area between the clamping jaws 38 and 39 and the surface 43, thereby forming the bead 18. The two clamping jaws 38 and 39 have an arcuate recess 47 formed therein on the inner corner which faces the surface 43, and the inner corner of the surface 43 also has an arcuate recess 48 formed therein. The two recesses 47 and 48 control the shape of the buckling of the nipple 10 and produce the curvature of the bead 18. After the bead 18 has been formed, the punch 41 is withdrawn from the nipple 10 and the previously formed collar 11 is then slipped over the nipple 10 and moved into engagement with the bead 18, as shown in Figure 6. As previously mentioned, the collar 11 has an arcuate recess 21 vcrm.ed therein which mates with the curved bead 18 as shown Figure 6. After the collar 11 is positioned on the nipple 10, a a second, and shorter, punch 51 having a cylindrical bore 52 is positioned over the end of the nipple 10. The bore also has a snug fit with the oute diameter of the nipple a and the depth of the bore 52, meRF '.- om the end surface 53 to the bottom 54 of the bore 52, is less than the distance from the forward surface of tli collar 11 to the forward end of the nipple 10. Thus, the end surface 53 of the punch 51 is initially spaced from the collar 11. Once again, the inner rearward corner 56 of the punch 51 has an arcuate recess formed therein. With the clamping jaws 38 and 39 tightly gripping the nile 'C, r0-ie punch 51 is moved toward the left as seen in Figure , thereby buckling the nipple 10 in the space between rhe punch 51 and the collar 11 and forming the second bead is as shown in Figure 7. The punch 51 is troved toward the left until its rearward face 53 engages the collar 11 which of course cannot move toward the left due to its engagement with the clamping jaws 38 and 39 and with the first formed bead 18. The nipple 10 buckles upwardly into the recess 56 of the punch 51 and the bead 17 is pressed tightly against the forward surface o the collar 11, thereby tightly fastening the collar 11 to the nipple 10. Thereafter, the punch 51 is removed and.t.je assembled nipple 10 and collar 11 are removed from the clamping jaws 38 and 39. The nipple and collar may then be assembled with the hose 26 and with the socket 12 as previously described. Figures 8 and 9 illustrate an alternative form of the nipple. This nipple 48 includes a length of tubing 49 which may be the same as the corresponding part shown in Figures 8 and 9. A collar 51 is positioned over the tubing 49, the collar 51 having an annular groove 52 in its outer peripheral and an annular groove 53 in its inner periphery. The groove 52 of course corresponds to the groove 22. The tubing 49 is secured to the collar 51 by expanding the tubing 49 into the groove 53. The tubing 49 is clamped between two jaws 56, and the collar 51 is positioned on the tubing. A punch 57 made up of a main part 58 and a tubular insert 59, is positioned over the right hand end of the The The insert fits snugly over the outer surface of the tubing, and the part 58 includes a tubular section 61 @@@@t fi@@ around the insert @@. A compression spring 62 is positioned between the insert 59 and the part 58 and holds the insert 59 against the collar 51. The part 59 also includes a central part 63 that engages the end of the tubing. It will be apparent that the outer surface of the tubing 49 is confined by the jaws 56, the collar 51 and the insert 59, except in the area of the groove 53. When the part 58 of the punch 57 is moved to the left relative to the jas 56, the tubing buckles outwardly into the groove 53, as shown in Figure 10. As the part 58 moves towards the left, the insert 59 slides into a recess 64 in the part 58 and the spring 62 compresses. The nipple 48 may be assembled with a socket and hose as described above. The groove 53 preferably is given a hook shape in the area indicated by the numeral 66, which helps to prevent the collar from being forced off of the tubing after the nipple is assembled with a hose and socket and high pressure is applied to the assembly. A fitting constructed and assembled in accordance with the present invention has a number of advantages over the prior art constructions. A nipple 10, having a collar 11 secured thereto, of a particular outer diameter may be used with a number of different hose designs and with a set of different sockets. The different hose designs which are usable with a particular size nipple 10 would all have the same internal diameter but may have different wall thicknesses. For a wall thickness of one dimension, a sleeve 12 is selected from the set having the appropriate diameter. For a hose having, for example, less radial thickness, a socket 12 may be used which has a smaller inner diameter. Consequently, a particular size of nipple 10 and collar 11 may be provided along with a number of different sockets 12 having a range of sizes. This makes it necessary only to stock sockets in different sizes for a particular inner diameter of hose, and it is not also necessary to stock the nipple 10 and collar 11 for each size socket. Tllis has another important advantage in that a socket 15 may be radially chosen for a articula size or design of hose which will result in a precisely controlled amowlt of compression on the hose 26 and the nipple 10. Further, the selected all thickness of the tubing used for the nipple 10 is large enough that the nipple will suffer little or no collapse when assembled with hose up to a preselected pressure rating. The amount of pressure applied to the nipple during assembly is determined by the thickness o the hose reinforcement 25 and by the amount of staging pressure needed to secure the hose to the fitting and meet the pressure rating of the assembly. Consequently, there is little or no danger of collapse of the nipple 10 when the socket 12 is crimped. This has the advantage of eliminating the need for a reinforcing sleeve on the nipple as is required in some prior art constructions. It should be apparent that modifications may be made n the apparatus and method while still falling within the scope of the present invention. For example, the collar 11 may be secured to the nipple 10 as by positioning the collar on the nipple and forming the two beads in a single pressing operation.
CLAIMS 1. A hose fitting comprising a tubular nipple (10) a collar (11) positioned on said nipple and tightly assembled with said nipple, a socket (12) positioned around said nipple and a least partially overlying said collar, characterised in that said collar, and said socket are formed separatly and said socket and said collar include interengageable means (22), (29) for securing said socket (12) to said collar (11) upon reduction in the diameter of said socket as b crimping, and said collar and said nipple are tightly assembled by bead means (17), (18) formed on said nipple (10) and engaging said collar (11). 2. A hosc- itting as claimed in claim 1, characterised in that said interengageable means (22), (29) comprises an annular groove (22) formed in the outer periphery of said collar (11) and a radial lip (29) on said socket (12) which extends inwardly into said groove. 3. A hose fitting as claimed in claim 1, characterised in that said bead means comprises to beads (17), (18) on said nipple (10), one of said beads being formed on each side of said collar (11). 4. A hose fitting as claimed in claim 1, characterised in that said collar (51) has a groove (33) formed in its inner periphery, and said bead means comprises a bead formed on said nipple and extending outwardly in said groove. 3. A hose fitting as claimed ill claim 1, and further characterised by a plurality of interchangeable sockets each having engaging means of the same size, said collar having engaging means for receiving said engaging means of a @@@@@@@@@ socket, each of said @@@ the further having a ho@@ en @gin ortion of a difficulty in that @@@meter wliereb said fitting may be used with different size hose by selecting a socket having the appropriate internal diameter. 6. A method of assembling a fitting and a hose (27), said fitting comprising a nipple (10), a collar (11) and a socket (12), comprising the steps of posirionin said nipple in clamping jazzs (38, 39) to hold salu tipple stationary, placing said collar (11) on said apple and securing said collar to said nipple, characterised by forming beads (17, 18) on said nipple to secure said nipple to said collar, forming said socket (12) separately from said collar and positioning said socket over said hose, inserting said nipple into said hose, moving said socket over the end portion of said hose and at least partially over said collar, and crimping said socket tightly onto said hose and said collar. 7. A method as claimed in claim 6, characterised by forming a set of sockets, all of said sockets of said set having a substantially identical collar engaging portion, each of said sockets of said set further having a hose engaging portion and said hose engaging portions having different sizes, selecting a socket from said set having a size to match the design of said hose, positioning said socket over said hose, positioning said nipple into said hose, and compressing said socket into tight engagement with said hose and into interlocking engagement with said collar.
STRATOFLEX, INC.
VYSE, GERRARD N.
EP-0003148-B1
3,148
EP
B1
EN
19,820,512
1,979
20,100,220
new
H01J9
C09K11, H01J29
C09K11, H01J29, H01J9
H01J 9/22B, C09K 11/02, C09K 11/77B
METHOD OF PRODUCING LUMINESCENT SCREENS, LUMINESCENT SCREENS PRODUCED BY THIS METHOD AND CATHODE-RAY TUBES INCLUDING SUCH LUMINESCENT SCREENS
A method of making a luminescent screen suitable for use in a cathode-ray tube which is operated with a highly loaded luminescent screen. A luminescent screen comprising a substrate (12) bearing a luminescent layer is produced by spraying a stable aerosol containing a solution (7A) of compounds which are converted on heating into a luminescent material onto the substrate (12) which is maintained at a temperature at which this conversion occurs.
method of producing luminescent screens, luminescent screens produced by this method and cathode-ray tubes including such luminescent screens . The invention relates to a method of producing a luminescent screen comprising a substrate bearing a luminescent layer, the substrate being heated to an elevated temperature and being contacted at said elevated temperature with a solution of compounds which are converted into luminescent materials at said elevated temperature. In addition, the invention relates to a luminescent screen produced by such a method and to a cathode-ray tube including such a luminescent screen. A method of the type defined in the preamble, wherein the substrate of the luminescent screen is sprayed uith the solution, is disclosed in German Offenlegungs schrift 2,516,206. This known method has the drawback that the luminescent layer has a non-uniform thickness and an insufficient adhesion to the substrate. The lack of a proper adhesion becomes especially apparent if the luminescent screen obtained must subsequently be subjected to a high temperature heat treatment. In such a heat treatment, which is usually necessary for obtaining the optimum luminescent properties, the luminescent layer may become detached, wholly or partially, from the substrate. A serious drawback of the screens produced by this known method is that when used in cathode-ray tubes, the luminescent screens must not be subjected to high excitation densities. When the screens are subjected to high excitation densities, the screens are also thermally highly loaded, and it appeared that partly owing to the above-mentioned poor adhesion, the heat conduction between the luminescent layer and the substrate is low, so that the screens become defective owing to burning of the luminescent layer and/or detachment of the luminescent layer from the substrate. In the currently used luminescent screens having a powder layer as the luminescent layer, and which are used extensively in conventional cathode-ray tubes for displaying television pictures, the excitation density has a value in the order of 0,01 W/cmê. The highest load permissible in special cases for screens having a powder layer is approximately 0.5 W/cmê. However, for some applications luminescent screens should be availabie which can be loaded much higher, for example to more than 5 W/cm2. Such highly loaded screens are used in cathoderay tubes for generating a very bright light spot. This light spot can be used as a moving or stationary light source or for forming a very bright picture. A very bright moving or stationary light source is, for example, required in a device for optically scanning an information track on an information carrier or in a film scanner for converting photographic pictures into television pictures. The formation of a very bright picture occurs in projection television tubes. Highly loadable luminescent screens can be made by means of a chemical gas transport reaction (chemical vapour deposition, CVD) or by epitaxial growth from a solution on a single crystal substrate (liquid phase epitaxy, LPE). Both methods have the drawback that they are relatively expensive and that their performance is very critical. In addition, a drawback of LPE is that this method requires a single crystal as the substrate which greatly limits the possibilities of choice of substrate. CVD has the drawback of being a very slow process. The invention is based on the recognition that hipilly loadable luminescent screens can be obtained by means of a method described in the preamble, if stringent requirements are imposed on the sizes of the liquid particles to be brought into contact with the substrate. A method according to the invention for producing a luminescent screen comprising a substrate bearing a luminescent layer, the method comprising the steps of heating the substrate to an elevated temperature and contacting the substrate at said elevated temperature with a solution of compounds which are converted at said elevated temperature into a luminescent material, is characterized in that the substrate is sprayed with a stable aerosol containing the solution as a disperse phase. The term aerosol is understood to mean a two phase system, one phase (the disperse phase) being dispersed as solid particle or as a droplet in the other phase (the dispersion medium), and the dispersion medium being in the form of a gas and/or a vapour. In this description and in the Claims, a stable aerosol is understood to mean such a two phase system wherein substantially no change occurs in the particle or droplet size distribution for at least 1 minute. A method according to the invention produces a luminescent screen, the luminescent layer of which has a very uniform thickness and a very good adhesion to the substrate. This is a result of the use of a stable aerosol containing very small liquid droplets which give rise to the formation of a large plurality of crvstallization nuclei on the substrate. Experiments showed that such an adhesion of the luminescent layer to the substrate can be obtained in a luminescent screen made by a method according to the invention, no difference is observed between the strength of the bond and that of the substrate itself. Owing to this good adhesion, the luminescent screens made by methods according to the invention have excellent thermal conduction between the luminescent layer and the substrate. Therefore they can be operated with high excitation densities because satisfactory heat discharge from the luminescent layer via the substrate is possible. An embodiment of a luminescent screen made by a method according to the invention is characterized in that the luminescent layer consists of adjacent, finegrained cyrstalline rods which are tightly bonded to the substrate and have their longitudinal axes oriented substantially perpendicularly to the surface of the substrate. An advantage of this embodiment is that the heat conduction in the luminescent layer is very high. A cathode-ray tube including a luminescent screen produced by a method according to the invention is suitable for screen loads exceeding 5 W/cmê and can be advantageously used in the applications specified above using highly loaded luminescent screens. Compared to the above-defined, knolm Crn and LPE methods, a method according to the invention has the advantage that it can be performed more cheaply and more easily. It is not necessary to use a single crystal as the substrate. In addition, a method according to the invention is suitable for automation and the rapid production of large quantities of screens. Different methods and devices are knolfn per se for preparing a stable aerosol such as is required in a method according to the invention. It is possible to atomize the relevant salt solutions pneumatically. Alternatively the solutions can be atomized by means of a vibrating valve or use can be made of an ultrasonic atomizer (see, for example, C.N. Davies, Aerosol Science, Academic Press, London, New York (1966)). In a method according to the invention, it is advantageous to use an aerosol having an average droplet size between 0.1 and 10 /um, and preferably between 0.5 and 5 /um. It was found that the best results were obtained with such an aerosol as regards Adhesion as well as heat conduction and also the growth rate of the layer. Said average droplet size can be obtained by passing the aerosol through one or more vessels where the drops which are too large are retained. An aerosol thus obtained is so stable that it can be easily passed via supply pipes to the substrate to be sprayed. Preference is given to a method according to the invention which is characterized in that a luminescent layer is produced of oxidic rare earth phosphors, starting from an aerosol consisting of solutions of nitrates, chlorides, acetylacetonates, alcoholates and/or phenolates of the composite elements in a polar organic solvent or in water. Oxidic rare earth phosphors are understood to mean luminescent materials consisting of oxidic compounds of one or more of the elements having an atomic number of 39 and from 57 to 71 inclusive. This group of materials comprises, for example, the oxides, silicates, borates, aluminates, vanadates, oxysulphides and oxyhalides of said elements. In addition, oxidic compounds activated by lanthanide elements, such as alkaline earth metal aluminates, are also considered to belo3Xg to this group. Suitable polar organic solvents are, for example, ethylene glycol monoethyl ether, acetyl acetone, dimethylformamide and butyl acetate. Silicate, aluminate and borate phosphors can be produced from aerosols consisting of organic compounds such as silanes, tetraethyl orthosilicate, aluminium acetylacetonate, tributyl borate and triisopropyl borate dissolved in such solvents. In a method according to the invention, the substrate is preferably kept at a temperature of 300-700 C during spraying. It was found that such a substrate temperature renders it possible for the aerosol droplets to land on the substrate, at least for the major part, still in the liquid form with the solvents and rates of supply of the aerosol normally used in practice. Evaporation and/or decomposition of the solvent on the substrate, whereafter decomposition of the salts and formation of the luminescent material takes place on the substrate, appears to promote the formation of properly adhering, uniform luminescent layers. In a method according to the invention a quartz, quartz glass or aluminium oxide substrate is preferably used. The aluminium oxide may be used in a densely sintered, polycrystalline form or in a monocrystalline form (sapphire, corundum). Said materials appear to furnish an excellent bond to the luminescent materials and can withstand high temperatures and temperature changes. In a method according to the invention, it is advantageous to subject the luminescent screen produced to a final heat treatment at 900-1500 C. Such a final heat treatment, which is known per se, may furnish a considerable improvement in the luminescent properties, because it furnishes an improvement in the crystalline structure of the luminescent layer. The invention will now be further explained with reference to a drawing and a number of embodiments. In the drawing, Figure 1 shows schematically an arrangement for performing a method according to the invention, Figure 2 shows schematicall and in crosssection a luminescent screen produced by a method according to the invention and Figure 3 shows, schematically, a cathode-ray tube having a luminescent screen, produced by a method according to the invention. In the arrangement shorn in Figure 1, an aerosol is formed by pneumatic atomization. To this end a carrier gas, generally air is passed through the system in the direction indicated by the arrow. The air passes, ill this sequence, through vessles 1 and 2, in which dust is retained, a flowmeter 3, a non-return bottle 4 and a wash bottle 5 filled with a solvent 5A which is the solvent used in a solution 7A of salts of the composite elements used to make the luminescent layer, and in which wash bottle 5 the air is moistened with this solvent 5A. The air flows through an atomiser 7. The air flowing from the atomizer orifice G flows past exit orifice of a suction tube 6A whose other end is positioned in the salt solution 7A present in the atomiser 7. Tie air flowing past the eiid of the tube 6A sucks the solution and atomizers it forming an aerosol. Thereafter the aerosol is passed through a spherical vessel 8 wherein the largest drops are retained and thereafter through a splash sphere 9 to a nozzle 10. A flexible hose 11 connects the spherical vessel 8 to the splash sphere 9 so that the nozzle 10 can be moved in a zig-zag manner across a substrate 12 of the luminescent screen to be produced. Tulle substrate 12 is heated by a hot plate 13. EXAffPLE I A solution was made of yttrium acetyl acetonate in ethylene glycol monoethyl ether (Cellosolve) containing 24.99 mg Y per ml. Terbium nitrate was added to the solution in such a quantity that the solution contained 0.45 mg Tb per ml of Cellosolve. This solution was atomized by Ineans of air (flow rate 10 1/mien) in an arrangement as shown in Figure 1. The air was moistened in the wash bottle 5 ith Cellosolve. The diameter of the atomiser orifice 6 was 1 mm and that of the exit orifice of the suction tube 6A was 0.5 mm. Approximately 20 ml/hour of solution 7A was consumed. The aerosol thus obtained was stable, and when passing through the supply tube 11 to the nozzle 10, substantially no change in drop size distribution occurred. A polished and carefully cleaned quartz glass plate having a diameter of approximately 25 nuri vas used as the substrate 12 for the luminescent screen. This plate was heated toa temperature of 520 C and was sprayed for approxi;nately 2 hours, so that an approximately 1.0/um thick luminescent layer was formed which had the composition Y Tb 0 . Thereafter the screen was heated for ¸ hour in air to 1000 C to improve the crystal structure and the luminescent properties of the layer. The thin luminescent layer appeared to consist of a coherend agglomerate of fine-crystalline rods having their longitudinal axes oriented perpendicula to the substrate 12 and which rods were firmly bonded thereto. On excitation, for example by electrons, the screen had a green luminescence. The luminescence layer of the screen thus produced was coated with an aluminium film, approximately 0.075/um thick. Thereafter the screen was pladed in a deinountable cathode-ray tube. The screen was excited in this tube by a defocussed electron beam diameter of the target spot approximately 4 mm) at a screen voltage of 10 kV. Table 1 shows the measured radiant intensities I (inuW/sr) for different values of the current strength i (in /uA) of the electron beam. The second column of Table 1 states the associated screen load P (in W/cmê). It appeared that, as the result of the proper heat discharge, the screen can be operated with high loads ( > 5 W/cmê) without becoming defective. It also appears that substantially no saturation of the luminescent material occurred at such high loads. TABLE I EMI8.1 <tb> i( A) <SEP> P(W/cmê)I( W/sr) <SEP> <tb> <SEP> 10 <SEP> 0.8 <SEP> 30 <tb> <SEP> 20 <SEP> 1.6 <SEP> 57 <tb> <SEP> 40 <SEP> 3.2 <SEP> 116 <tb> <SEP> 80 <SEP> 6.4 <SEP> 212 <tb> EX IPLE II The method described in Example I was repeated except for the fact that final heating of the screen for ¸ hour in air was performed at 1150 C. EXExIPLE III A luminescent screen was produced in a manner similar to that described in Example I, the luminescent layer of which was a red-luminescing, Eu-activated oxide having a composition defined by the formula Y1 gEuo 103. A Cellosolve solution, containing 22.49 mg Y and 2.01 mg Eu per ml was the starting material. Final heating of the screen in air was performed at 11500C. EX rPLE IV Starting from a Cello solve solution containing 22.99 mg Y and 0.48 mg Tm per ml, a luminescent screen was produced in a manner similar to that described in Example I, the luminescent layer of which was a blue luminescing, thulium-activated oxide having a composition defined by the formula Y198Trn002O3. Final heating as performed in air at a temperatureof 11500C. The luminescent screens produced in accordance with the Examples II, III and IV wereexcited in a demountable cathode-ray tube (screen voltage 10 kV, current strength 10 A), target spot diameter 4 mm). Table 2 shows the results of measurements of the colour point (co-ordinates x and v) and the radiant intensity I (in W/sr) of the radiation emitted by these In addition, Table 2 states the values, to be derived frumthese measurements, for the efficiency/(in %') of the conversion of electrical energy into radiant energy. It appears that the values of do not deviate to a great extent from the values obtainable with powder screens. TABLE II EMI9.1 <tb> Example <SEP> x <SEP> y <SEP> I( W/sr) <SEP> <SEP> t <SEP> <tb> <SEP> II <SEP> 0.340 <SEP> 0.607 <SEP> 60 <SEP> 1.0 <tb> III <SEP> 0.670 <SEP> 0.397 <SEP> 300 <SEP> 5 <tb> <SEP> IV <SEP> 0.147 <SEP> 0.035 <SEP> 19#2 <SEP> <SEP> 0.3 <tb> EXAMPLE V An aqueous solution of yttrium nitrate and europium nitrate, containing 22.7 mg Y and 2.04 mg Eu per ml of water, was atomised in an ultrasonic atomiser by means of a 2 NHz transducer using 10 1/min. of air as a carrier gas resulting stable aerosol was sprayed onto a substrate which was at a temperature of 400 C. Approximately 20 ml/hour of the solution was consumed. The screen obtained after approximately 1.5 hour was then subjected to a temperature treatment in air at 11000C, Tlie luminescent screen contained a fine-crystalline red luminescing layer having a composition defined by the formula Y gEuo 03 and was approximately 1 /um thick. Figure 2 is a schematic and partly perspective view of a cross-section through a luminescent screen according to the invention provided with a luminescent layer comprising three luminescent materials, and with which it is possible to display colour pictures. The screen consists of a quartz glass substrate 21 provided with three superimposed luminescent sub-layers 22, 23 and '4 each produced by a method according to the invention, each approximately 3/um thick. The layer 22 consists of blue-luminescing Tm-activate Y2O3, the layer 23 of green-luminescing Tb-activated Y 203 and the layer 24 of red-luminescing Eu-activate Y203. The staircase pattern. shown in Figure 2 (stepwidth approximately 10 1um) can be obtained by means of known etching techniques. To this end a photoresist layer is applied on the three superimposed sub-layers 22, 23 and 24, the photoresist thereafter being exposed through a suitable mask. After developing the photoresist, the first step is formed by means of retching. To obtain the second step, the above defined procedure is repeated. An electron beam impinging on the luminescent layer has a depth of penetration of approximately 2 /um so that when scanning the luminescent screen, the blue-, green- and red-luminescing materials are excited alternately. Figure 3 is a schematic and perspective view of a cathode-ray tube according to the invention. Tle tube consists of a cylindrical aluminium oxide envelope 31 closed at one end by a base plate 32. The base plate 32 is provided with contact lead-throughs 33 for supplying current to an electron gun (not shown in the drawing) located within the tube in the region of the base plate 32. The other end of the envelope 31 is closed b a luminescent screen 34 consisting of a quartz glass plate, the inside main surface of which plate bears a luniinescent layer of Eu-activated Y903 produced by a method according to the invention. The luminescent layer is coated with an aluminium film (not shown). The luminescent screen 34 is connected to the envelope 31 by means of a thermo-compression bond.
1. A method of producing a luminescent screen comprising a substrate bearing a luminescent layer, the method comprising the steps of heating the substrate to an elevated temperature and contacting the substrate at said elevated temperature with a solution of compounds which are converted at said elevated temperature into a luminescent material, characterized in that the substrate is sprayed with a stable aerosol containing the solution as a disperse phase. 2. A method as claimed in Claim 1, characterized in that the average drop size of the aerosol is between 0.1 and 10 /um, preferably between 0.5 and 5 /um. 3. A method as claimed in Claim 1 or Claim 2, characterized in that a luminescent layer of oxidic rare earth phosphors is produced starting from an aerosol of solutions of nitrates, chlorides, acetyl acetonates, alcoholates and/or phenolates of the component elements in a polar organic solvent or in water. 4. A method as claimed in any of Claims 1, 2 or 3, characterized in that the substrate is kept at a temperature of 300-700 OC during spraying. 5. A method as claimed in in any of Claims 1, 2, 3 or 4, characterized in that a substrate of quartz, quartz glass or aluminium oxide is used. G. A method as claimed in any preceding Claim, characterized in that the luminescent screen obtained is subjected to a heat treatment at 900-1500 C. 7. A luminescent screen produced by a method as claimed in any of Claims 1 to 6, characterized in that the luminescent layer consists of adjacent, fine-grained crystalline rods which are tightly bonded to the substrate and are oriented substantially perpendicularly to the substrate. 8. A cathode-ray tube suitable for screen loads exceeding 5 W/cmê and including a luminescent screen as claimed in Claim 7.
N.V. PHILIPS' GLOEILAMPENFABRIEKEN
POPMA, THEO JOHAN AUGUST; VAN TOL, MAURITS WILLEM
EP-0003176-B1
3,176
EP
B1
EN
19,811,028
1,979
20,100,220
new
B65B51
null
B29C65, B65B51
B29C 65/22+F4B, B65B 51/14D, B29C 65/18+F4B, B29C 65/00G20B2B, B29C 65/00M6G8, B29C 65/74E3
A MACHINE FOR PACKAGING ITEMS INTO PLASTICS BAGS, AND A SEALING DEVICE FOR USE THEREWITH
A machine for packaging items into plastic bags, and a sealing device for use therewith, said sealing device having heat sealing means and a separate cutting wire. Plastics bags can be provided with a wide and hence strong seal using the heat sealing means while the material is neatly trimmed between the edges of the seal using the wire. The wire need not be heated. The wire may be mounted on a first jaw (13) while the heat sealing means is mounted on a second jaw (12).
A machine for nackaginF items into plastics bags, and a sealing device for use therewith The invention relates to a machine for packaging items into plastics bags and to a device for sealing the bags after they have been packed. The sealing device not only heat seals the bag but also cuts through the bag between the edges of the seal to trim off waste at the mouth ofthe bag and leave a neat, sealed mouth. Known heat sealers of this type employ a heated knife or wire which cuts through the plastics material and welds the plastics material together simultaneously. An example is described in United States Patent Specification o.3653377- Tfte known sealers have the disadvantage that they only provide a narrow seal, which is therefore often weak. The invention as claimed is intended to make it possible to for: a seal which can be as wiae as desired, while still retaining the good cutting piopcrties of a wire. According to the invention separate heat sealing means are used in addition to the cutting wire. The separate heat sealing means can be made substantially wider than the wire. Another disadvantage of knOhm devices such as that of U.S. Patent lio.3653177 is that there is considerable oxidation of the plastics material bringing about considerable odour and smoke which is unpleasant and dangerous for the operator and causes air pollution. This disadvantage is reduced by a preferred feature of the invention in which the sealing device comprises a pair of jaws between which the plastics material can be gripped. The jaws effectively smother the area of plastics material being heated, ubstantially reducing oxidation. The use of a pair of jaws also conveniently means that the heating means can be arranged on one jaw and the cutting wire on the other jaw. It is not essential for the cutting wire to be heated. Tnu heating means may comprise an electrical heating element and to increase output of a maching using the sealing device, control means may be provided arranged alternately to supply a pulse of electricity to the element, furthered by a blast of air to cool the element. To faciltate this the element may be mounted on a support (e.g. a hollow.jaw) which has passages therethrough, through which the cooling air is directed. The invention includes a machine for packaging items into plastics bags, the machine being fitted with a sealing device according to the invention. One way of carrying out the invention is described in deatil below with reference to drawings which illustrate only one specific embodiment, in which: Figure 1 is a perspective view of a plastics bag handling machine fitted with a sealing device according to the invention; Figure 2 is a front view of a first jaw of the sealing device; Figure 3 is a transverse cross-section through the jaw 5;!0Wz in inure 2; Figure 4 is a front view of a second jaw of the sealing device; and Figure 5 is a transverse cross-section through the jaw shorn in Figure 4. ne machine shown in Figure 1 has an upper support surface 10 which is inclined at an angle to the horizontal. At the upper end of the support surface there is fitted an ebocirent of sealing device according to the invention, indicated generally by the reference numeral 11. The sealing device has a fixed lower jaw 12 and a movable upper jaw 13. The jaw 13 is fixed between a pair of arms 14 which are pivotable about pivot points 15 to sove the Uaw 13 towards and away from the jaw 12. A plastics bag (not shown) can be filled with any desired contents and can then be positioned on the suport surface 10 with the mouth of the bag projecting over the top of the lower jaw 12. The bar is prevented from slipping downwardly off the support surface 10 by a set of fingers 17, the position of which is adjustable to suit. different sizes of bag. Rollers 16 are provided on the surface 10. linen a machine cycle is initiated, the upper jaw 13 roves downwardly to trap the mouth of the bag against the lower jaw 12. A transverse seal is formed across the mouth of the bag and simultaneously a split is formed extending parallel with the seal and lying within the edges of the seal. This split cuts off the waste skirt at the mouth of the bag n leaves a neat finish. The jaw 13 then rises again, the scrap material is bloom out of a waste c.zute 18 into a collecting container (not shown) at one side of the machine by a jet of air, the fingers 17 then retract, and the bag slides off the machine on the rollers 16 either to be received by an operator or by a receptacle or conveyor belt (not shown). The upper part of the machine is covered by a perspex guard 9. The details of the machine other than the sealing device do not for. part of this invention and will not t:erefore be described in detail. Turning now to the sealing device, the lower jaw 12 is shown in more detail in Figures 2 and 3. As best shown in Figure 3, the lower jaw comprises a channel member 19 of aluminium, a Z cross-section aluminium strip 20 being fastened into the channel to define a chamber 21 and a narrower charnel 22. On the outer face of the roof of the chamber 21 there is a strip of protective material 23 which comprises a woven glass fibre material coated with TEFLON. On top of this strip 23 there is a flat metal band of Nichrome Alloy 24, 5/16 wide, which forms an electrical heating element. The entire upper surface and sides of the gaw 12 are covered by a layer of TEFLON coated glass fibre fabric 25. A locking bar KO, the upper surface. of which is coated with the sam.e material, is secured in the bottom of the channel 22 by screwed (not shown). The lower edges of the fabric 25 are joined together by a portion of adhesive tape which covers the lower face of the jaw 12 and overlaps the free edges of the fabric 25. Passing through the fabric 25 and one flange of the rerjer 19 is a series of air holes 28, which communicate with the chamber 21. As shown in Figure 2, there are a plurality of these air holes spaced apart along.the length of the jaw. Furthermore there are three saced apart holes 29 etening through the adhesive tape 27 and the base of the channel member 19, part of these holes also communicating with the chamber 21. As shown in Figure 2, the rear flange of the channel member 19 is cut away at its ends as shown at 30, to enable the jaw to fit on to the machine, and the front flange and base of the chennel member 19 are completely cut away at the enas of the jaw, so that insulating blocks 31 can be screwed to the rear flange. ch end 32 of the heating element 24 e tends down a sloping portion of the front flange of the channel member 19 and into one of the insulating blocks 31, here the end of the element is electrically connected to a terminal 33 projecting downwardly from the associated insulating block 31. The lower jaw can be connected to the machine by pluSinL the terminals 33 into sockets on the machine and electrical current cbn then be supplied to the element 24 to heat the element. h source of compressed air is also connected to he apertures 29 so that the compressed air can be blown into the charter 21, exhausting through the apertures 28. Turning now to Figures 4 and 5, the upper jaw 13 corprises an elonLate aluminium plate 34 which extends between the aries 14. Secured to the lower face of the plate 34 is a metal channel member 38 having a dovetail crosssection. h resilient pad 39 of silicone rubber is slidably rounted in this channel and the lower face of the pad 39 has a layer 40 of 3LON cotd glass fibre fabric secured thereto. Between the arms 14 there is stretched a cutting wire 41. As shown in Figure 4, one end of the wire passes through one of the arms 14 an is wound around a locking screw 42. The other end of thc ire passes through a hole in the other arm 14 and is connected to a rod 43. On the outer end of the rod 43 there is threaded a compression spring 45. The outer end of the rod 43 carries a screw-thread. A first nut 47 is screwed on te the rod to corpress the spring 45 an hence put the wire 41 under tension. A sec?nd locknut 48 is then tightened up against the first nut 47. The upper jaw is provided with a finger guard for safety purposes. This guard is not part of the invention and will not therefore be described in detail. When the sealing device is in use, two layers of plastics material at the routh of a bag are firmly clamped between the heating element 24 and the silicone rubber cushion 39, the wire 41 being crushed against the plastics material. A pulse of electrrncity is supplied to the heating element by the -achne which causes the heating element to heat up very rapidly and melt the two layers of plastics material over a strip-like area which has a width substantially equal to the width of the heating element 24. The crushing action of the jaws causes the wire 41 to be forced through the softened plastics material, splitting type softened area. k blest of compressed air is then fed into the caber 21, the pulse of electricity having ceased. The heating element cools rapidly an as the layers of plastics material also cool, they form a seal, although the scrap skirt at the mouth of the bag has been severed from the remainder of the bag by the wire 41 passing through the softened material. The jaws then open, the scrap is blown as, and the bag slides out of the machine, so that the machine is ready for another cycle. The sealing device shown in the Figures enab:s the formation of a seal which is significantly wider, and hence stronger, than the type of seal which can be formed by a conventional heated wire sealing device. The wire 41, which splits the sealed area to provide a neat finish, need not be heated. Since the resilient pad 39 effectively so the area of plastics material which is being heated, preventing air from reaching the plastics material, there is substantially no oxidisation of the plastics steril and this in turn means that there is substantially no smoke or odour. Since both jaws are readily removable from the machine, replacement or repair of the jaws is greatly facilitated. The invention is not restricted to the details of the foregoing embodiment. The existence of the channel 22 means that the jaw 12 could be used with a hot wire cutting device to provide an even wider seal, if the jaw 12 is utilised with a jaw which has a smothering pad similar to pad 39, and a heated wire offset from this pad, the smothering pad can co-operate with the heating element 24 to provide a wide seal, while the wire passes into the channel 22 to perform a trmming operation. If desired, were the provision of the channel 22 is not re^uiled on the lower jaw, the Jaw ray have a body comprising a hollow aluminium tube of simile confiuration, for example of square or rectangular cross-section. The interior of the tube, or of the Jaw shown in Figures 2 and , may be ivide into separate compartments spaced apart along the length of the Jaw, e-sch compartment having at least one air inlet aperture 23 and exhaust aperture 2. It is preferred that ecch coitrent has a sinFle inlet aperture 29 communicating with a central portion of the compartment and at least two exhaust apertures, communicating with one enc portion of the covlpartmjent. We have discovered that the invention is particularly effective for sealing polypropylene or P.V.C. if the wire 41 is mounted on the lower jaw. The wire may be stretched over the upper surface of the jaw between the contacts 33, so that an electric current passes through the wire so that the wire is heated slightly as well as the element 24. The wire may be coated or uncoated. A sealing device seording to the invention has other uses. It may be used to free a sealed bag from a stack of continuous plastics ruaterial being used to for: the bags. it can also be used for any other application where it is desired to seal and cut plastics material.
C2aims: 1. A sealing device for use with a machine for packaging items into plastics bags, the dealing device being of the Ind which not only heat seals the bag but also cuts through the bag between the Cages of the seal to trim off waste at the mouth of the bag using a cutting wire, characterised in that there are heat sealing means (24) separate from the cutting wire (41). 2. A sealing device as claimed in claim 1, in which the sealing device comprises a pair of jaws (1?, 13) between which the layers of plastics material can be gripped. 3. A sealing device as claimed in claim 2, in which a first one of the jaws (12) carries the heating means (24) and the second jaw (13) carries the cutting wire (41). 4. A sealing device as claimed in claim 3, in which the second jaw (13) has a support surface (3Q) @hich, wrien the two jaws are clasped together, co-Qtera-es with a support surface (24) of the first jaw to crush the cutting wire and the melted plastics material together. 5. A sealing device as claimed in claim 4, in ich the support surface (39) of the second jaw comprises a resilient pad. 6. A sealing device as claimed in claim 5, in which the resilient pad comprises silicone rubber. 7. A sealing device as claimed in claim 5 or claim 6, in which the surface of the pad is coated with a protective surface (40) to reduce the likelihood of the melted nlastics sticing to the support surface of the second Jaw (13). 8. A sea ] ing device as claimed in any one of claims 4 to 7, in which the support surface of the first jaw comprises an electrical heating element (24). 9. A sealing device as claimed in Claim 8, in which the electricel hating element is coated with a protective surface (R') to reduce the likelihood of the pelted plastics sticking to the support surface of the first jaw. 10. k sealing device as claimed in any one of the preceding claims, in which the cutting wire is coated with a protective surface to reduce the likelihood of the felted plastics sticking to the cutting wire. 11. ealinr device as claimed in claims 7, 9 or 10, in which the or each protective coating comprise a polytetrafluoroethylene coating. 12. li sealing device as cried in claim 11, in which the polytetrafluoroethylene coating is on a support of glass fibre. 13. A sealing device as claimed in any one of the preceding claims, including control means arranged alternately to supply a pulse of electricity to heat the heating element, followed by a blast of air to cool the heating elerreflt. 14. A sealing device as claimed in Claim 13, in which the heating element is mounted on a support which has passages 28, 29) therethrough, through which the cooling air is directed. 15. A machine for packaging items into plastics bags, fitted with a sealing device as claimed in any one of the preceding claims.
RYBURN MACHINERY (RIPPONDEN) LIMITED
OLDHAM, RONALD
EP-0003185-B1
3,185
EP
B1
EN
19,820,203
1,979
20,100,220
new
F03D1
F03G7
F03G6, F24J2, F03D9, F03D1
F03D 1/04, F03D 9/00E, F03G 6/04B, R05B250:5012, F24J 2/50, F24J 2/04
HARNESSING NATURAL ENERGY
Harnessing natural energy by covering an earth's formation such as a canyon (10) with a canopy (21), thus forming a prevailing wind funnelling duct (20) which converges from a lower opening (22) to a higher, smaller opening feeding the resulting airstream to an electrical power generating station (70) having wind turbine driven generators (77). The canopy has transparent, heat insulating panels (28) to provide and contain solar heating of channeled air to create or enhance the wind funnelling effect.
HARNESSING NATURAL ENERGY The invention relates generally to harnessing natural energy in the form of wind and/or solar radiation to generate or augment natural wind. Such energy may then be used to generate electricity or some other useful form of power. Prior systems for generating electricity have included the use of fuels, nuclear energy, windmills and the like. Prior systems, powered by fuel produce ecologically harmful wastes, and are economically inefficient. Prior wind powered systems are inadequate for large scale energy production. Prior uses of solar energy have included heating and electricity production utilizing photo-electric cells. To my knowledge, no way has hitherto been proposed for utilizing wind or the sun's radiation energy combined with wind on a large scale to generate power. This then, is the object of the invention as claimed, and the aim is met by apparatus used in combination with a formation of the earth's surface defining a channel comprising a canopy extending over said formation so that a longitudinally elongated duct is formed for channeling airflow from a relatively large opening at a lower portion of the formation to a relatively smaller opening at an upper portion of the formation. The effect of the canopy is to cause the natural airflow to accelerate, converting some of its internal energy into velocity and otherwise confining the airflow and concentrating it in a single, defined opening where it is readily harnessed and its energy extracted in the form of useful power, for example, using fewer and smaller turbines than would otherwise be required to obtain the same power output from natural wind forces alone. Preferably, the canopy is substantially transparent to solar radiation passage through the canopy for impinging on, and heating, the formation's walls, thereby to impart heat to the air proximate the walls and located within said duct, the heated air, being of lesser density, being thereby caused to flow generally toward said upper opening and colder, more dense air entering the duct at the lower opening, said heated air being channeled by said duct in its flow to the smaller opening where it is emitted, said cooler air entering the duct at the lower opening then being heated by the formation's walls, to flow upward to the smaller opening, generating a continuous flow within said duct. The arrangement of the canopy may be such that the canopy is at least partially supported by the enclosed, heated air. Since the apparatus of the invention is not intended to utilize consumable fuels, it is highly inexpensive in daily operation. Also, polluting byproducts are eliminated. Use of the invention allows a reduction in the number of fuel- consuming power production plants required in a given area as peak wind and solar inputs tend to coincide with peak periods of peak power consumption. Some ways of carrying out the invention are described in detail below with reference to drawings which illustrate specific embodiments. In the drawings: Fig. 1 is a perspective view of one apparatus in accordance with the invention, Fig. 2 is a top plan view of a portion of the apparatus of Fig. 1, Fig. 3 is a vertical section across the apparatus of Fig. 1, Fig. 4 is an enlarged top plan view of part of the Fig. 1 apparatus, Fig. 5 is an enlarged section on lines 5-5 of Fig. 4, Fig. 6 is an enlarged vertical section taken on lines 6-6 of Fig. 4; and Fig. 6a shows a modification, similar to Fig. 6, Fig. 7 is an elevation taken in section, lengthwise in Fig. 1, Fig. 8 is another view like Fig. 7, Fig. 9 is an enlarged side elevation, partly in section, through part of Fig. 1, Fig. 10 is a top plan view of the part of the apparatus shown in Fig. 9, and Fig. 11 is a view like Fig. 6, showing a modification. Fig. 1 shows a canopy 21 which extends transversely and lengthwise over a substantial portion of a canyon 10 to form, in combination with the canyon, a longitudinally elongated duct 20 having a relatively large entrance opening 22 at a lower portion 12 of the canyon and a relatively smaller exit opening 23 at an upper portion 13 of the canyon. Instead of a canyon, any suitable natural formation of the earth's surface or a man-made depression or channel cut in the earth's surface, may be used. In this embodiment, the canopy 21 has a generally trapezoidal shape, with the first 24 and second 25 opposite edges of the canopy, corresponding to the non-parallel converging sides of the trapezoid, being each elongated and adapted to conform to the topography of the opposite side walls 11 of the canyon 10. Such opposite edges may advantageously form substantially air tight seals 30 at the canyon walls. Fig. 5 shows a typical attachment means 31 in cross-section. It comprises a generally tubular chamber 32 connected with the edge of the canopy 21, with interior partitioning walls forming a series of spaced chambers 34 for containing water, sand, concrete or other pourable material. A trough 35 is formed in the canyon wall 11 corresponding to and adapted to receive the tubular chamber 32, such that a flexible, mouldable, load retentive, and substantially air tight seal 30 is formed between the typically water filled tubular chamber 32 and the trough 35. Heated air is retained within and channeled by the duct 20 thus formed. Tubes 30 may consist of rubber, plastics, or other natural or synthetic materials which will substantially retain the filling material selected. Edge 26 of the canopy 21, corresponding to the longer of the two parallel edges of a trapezoid, extends between the described first 24 and second 25 edges of the canopy. Edge 26, in combination with the canyon 10, forms the larger, lower entrance opening 22 of the duct as shown in Fig. 1. The fourth edge 27 of the canopy 21 corresponding to the shorter of the two parallel edges of a trapezoid extends between the first and second edges 24 and 25, and in combination with the canyon 10, forms the smaller, upper exit opening 23 of the duct 20 and serves to channel the flow of heated air 50 generated in the duct 20 into the power generating means 70 in Fig. 1. The canopy 21 itself is preferably formed of substantially transparent material to pass solar radiation, and may be constructed of modular sheets or panels 28. The latter may be interconnected by attachment means 29 to facilitate repair or replacement of damaged portions of the canopy. The panels 28 may each be formed of two like sheets of plastics sheet material spaced apart as shown in Fig. 6 to provide dead air space 61 insulating the duct 20 from the surrounding air of the environment 15. A typical sheet form material consists of that sold under the Trade Mark TEDLAR , or other sheet plastics or glass fibre reinforced plastics such as the materials sold under the Trade Marks KALWALL and SUN-LITE . Other materials of like nature (lightweight, flexible) could be used, as for example a thin metal foil, although the latter might be environmentally unacceptable. Fig. 6a is like Fig. 6 but shows replaceable panels 28a removably assembled, as shown, by clips 62a. Referring to Fig. 8, the prevailing wind 52 is channelled from the lower entrance opening 22 and accelerated by the convergence of the duct 20 into power generating means 70 located proximate to the upper end of the duct 23 at or near the head of the canyon 10. Said acceleration tends to convert some of the internal energy of the air into increased velocity, as well as reducing the cross-sectional area of the power generating means 70 for a given power output, thereby allowing the use of fewer and smaller turbines 71 in the generating process. Referring to Fig. 7, the canopy 21 passes solar radiation 40 into the canyon and substantially reflects (at 42) and retains within the duct and canyon 20 radiation reflected at 41 by the canyon walls and bottom. The radiation heated canyon walls impart heat to the surrounding air within the duct 20 to generate the airflow or convection at 51 in Fig. 8. Typically, the heated, less dense air 50 rises from the canyon walls 11 generally upwardly toward the smaller exit opening 23 of the duct 20, and is replaced by the colder, more dense air 52 entering the duct 20 at the lower entrance opening 22. The duct 20 serves to channel the heated air 50 into the power generating means 70 located proximate the upper end of the duct 23, at or near the head of the canyon 14. Similarly, as explained above, wind action alone may provide the airflow necessary for power generation, or solar heating effects may combine with the natural wind to enhance airflow up the canyon. Several means are provided which either independently, or together, retain the canopy in a suspended condition with respect to the canyon 10. These include the use' of lightweight plastics material for the canopy such that the low density enclosed air 50 will suspend the canopy, similar to a hot air balloon. The previously described water filled tube portion 32 and trough 35 edge attachment means to Fig.5 also serve to anchor and retain the canopy 21 and integral cables 90 in a stretched and thereby suspended condition. Pylon and cable structure may be provided, with rocker pylons 60 at the lower opening 22, and longitudinal cables 60a running lengthwise of the canyon, as shown in Fig. 1, to retain the canopy proximate the opening in a suspended condition. The pocket at cell 61 between sheets of panel material can be filled with lighter than air gas, i.e. Helium, or pressurized with air, to stiffen the cells and thereby provide additional structural support for the canopy. Finally, additional inflatable tubular portions 62 can be provided proximate Junctions 29, and inflated, to provide structural support for the canopy. As shown in Fig. 6, cleaning means 79 may be provided to wash down and maintain the canopy in a substantially transparent condition. Such means typically incorporate hoses 80 extending over the canopy to spray water at 81 over the exposed surface, similar to a garden soaker hose. Hoses 80 run longitudinally of the canyon, while cells 61 extend laterally. As shown in Figs. 1 and 7 to 10, power generating means 70 may be provided to be driven by the force of the air flow 50 generated and channelled by the duct 20. Typically, multiple air turbines 71 are coupled at 85 with electrical generators 72 to generate electricity in response to the flow of heated air 50 therethrough. In order for the air turbines to provide optimum power generation, certain included features are described as follows: First, additional means 73 to channel the heated airflow 50 from the smaller, upper opening 23 of the duct 20 to each of the air turbines 71, as described, may include shutterlike structure 74. The latter controls airflow 50 into and between multiple air turbines 71 such that each turbine that is on line at a given time, in proportion to the total airflow through the duct, receives airflow sufficient to maintain its optimum power production and efficiency speed. A set of variable inlet guide vanes 75 are the major means of governing turbine speed. The vanes are varied from closed, which cuts off all airflow through the turbine, to part open, which tends to deflect the air against the turbine blades, to maximize momentum transfer to full open, which allows maximum airflow through the turbine, to a slight reverse position which tends to brake the turbine somewhat to prevent overspeed conditions. Second, involutes or scrolls 75a are provided at each air turbine 71 to pre-rotate the air to ensure maximum transfer of momentums from the airstream to the turbines. The scrolls rotate the air in the same direction as turbine rotation. In operation, air from the scroll inlet is turned by the scroll toward the turbine to rotate same. An extractor section is located beyond or above the turbine. A secondary turbine 77 may be located atop the powerhouse, and resembles the extractor-ventilator turbines often seen atop buildings. It enables the recovery of energy both from the primary airstream and during these conditions, such as strong non-prevailing or nocturnal winds, when the primary system may not be operating at its rated output. As importantly, it also serves to break up and begin diffusing the strong vertical airflow from the primary turbine. In addition, surface winds may cause the secondary turbine to rotate and function like the extractor it resembles, thereby reducing the pressure above the primary turbine and increasing primary airflow and efficiency. The secondary turbine may drive a second generator, or it may be geared to the primary generator through an appropriate system of differentials and one-way clutches, as at 95. The rotation of the main turbine final stage, or secondary turbine, must be opposite that of the primary turbine in order to maximize momentum transfer from the airstream to the secondary turbine. In this design the directions of rotation of the secondary turbines are alternated, so the vortices exiting station will tend to combine destructively rather than combining into a single large vortex which might be undesirable. In addition, consideration is given to assuring that any net imbalance of vortices will be in a clockwise, or anti-cyclonic direction to minimize the risk that a vortex from the station could grow into a tornado-like phenomenon. Fig 11 is a section through an auxiliary support system of cables 90 for transparent plastics canopy panels 91. The cables extend transversely across the canyon, and are anchored to the canyon walls. The canopy panels 91 have end portions 91a wrapped about the cables, and held together by extended plastics retainers 92 which are C-shaped in cross-section, as shown. This construction allows replacement of a panel at any location in the canopy, without interrupting the operation of the power plant. The solar covering should be anti-reflective of incoming energy; that is, it permits most of the energy to pass through rather than reflecting a portion back towards the sky. Also, an ideal covering does not permit energy to pass back out from the collector to the sky. Fortunately, the earth radiates energy of a much longer wavelength than the sun, the difference being due to the temperature of the radiating body, so it is possible to make a cover or a coating for a cover which allows solar radiation to pass through it, but block re-radiation by the earth. This is the so-called Greenhouse Effect . Further, a solar cover should not be susceptible to misting since this could cut transmission significantly, as it does on eyeglasses when one comes from the cold into a warm moist area, or as it does on the bathroom mirror during a good hot shower. Misting is easily controlled with a coating sold under the Trade Mark SUN CLEAR by Solar Sunstill Inc., Setauket, New York, United States of America. Also, PVF film sold under the Trade Mark TEDLAR by DuPont of the United States of America, is inherently free of misting. Other available materials are fibreglass reinforced plastics sheet sold by the Kalwall Corporation of Manchester, New Hampshire, United States of America, under the Trade Mark SUN-LITE .
Claims: 1. Apparatus when used in combination with a formation of the earthts surface defining a channel comprising a canopy (21) extending over said formation (10) to form a longitudinally elongated duct (20) for channeling airflow from a relatively larger opening (22) at a lower portion of the formation to a relatively smaller opening (23) at an upper portion of the formation. 2. Apparatus as claimed in claim 1 wherein said canopy is substantially transparent to solar radiation passage through the canopy for impinging on and heating the formation's walls, thereby to impart heat to the air proximate the walls (11) and located within said duct, the heated air, being of lesser density, being thereby caused to flow generally toward said upper opening (23) and colder, more dense air entering the duct at the lower opening (22), said heated air being channeled by said duct in its flow to the smaller opening where it is emitted, said cooler air entering the duct at the lower opening then being heated by the formation's walls, to flow upward to the smaller opening, generating a continuous flow within said duct. 3. Apparatus as claimed in claim 2 wherein said canopy includes structure (28) which thermally insulates and isolates heated air within said duct from surrounding air. 4. Apparatus as claimed in claim 2 or 3 wherein the canopy includes multiple panels (28) comprised of substantially transparent sheets of material. 5. Apparatus as claimed in claim 4 wherein at least one of said panels includes two sheets of plastics material forming insulating space (61) therebetween. 6. Apparatus as claimed in any one of claims 2 to 5 wherein said canopy includes a layer of material that allows solar radiation to pass therethrough, into the formation, and that reflects and retains within the formation radiation emitted and reflected by the walls thereof. 7. Apparatus as claimed in any preceding claim wherein said canopy is substantially trapezoidal in shape, defining four edges, wherein the first and second opposite edges (24, 25) substantially corresponding to the non-parallel converging sides of a trapezoid, are each sufficiently elongated and adapted to conform to the topography of, and are attached to, the respective side walls (11) of the formation and form a substantially air tight seal (30) between the edge of the canopy and the respective formation walls, defining said duct, the third canopy edge (26) extends between said first and secondcanoW edges, corresponding to the longer of the two substantially parallel edges of the trapezoid and, in combination with the earth formation, forms the larger, lower opening of the duct, and the fourth canopy edge (27) extends between said first and second canopy edges, corresponding to the shorter of the two substantially parallel edges of the trapezoid, and in combination with the earth formation, forms the smaller, upper opening of the duct. 8. Apparatus as claimed in claim 7 wherein said first and second edges of the canopy include structure (31) sufficient to form said substantially air tight seals between the canopy edges and the respective walls of the formation. 9. Apparatus as claimed in claim 8 wherein said structure includes at least one tubular portion (32), at said edge of the canopy, at least partially formed of sheet material, and forming a chamber (34) to interiorly contain flowable material. 10. Apparatus as claimed in claim 7, 8 or 9 wherein said third edge (26) of the canopy is substantially concave toward the duct. II. Apparatus as claimed in any one of claims 2 to 6 or any one of claims 7 to 10 when claim 7 is directly or indirectly dependent upon claim 2 wherein the canopy includes multiple inflatable substantially tubular portions (28a) serving at least partially to stiffen and retain said canopy in a suspended condition with respect to said formation. 12. Apparatus as claimed in any one of claims 2 to 6 or any one of claims 7 to 11 when claim 7 is directly or indirectly dependent upon claim 2 including at least one pylon structure (60) serving to at least partially retain said canopy in a suspended condition with respect to said formation, the pylon including a rocker, and cables (60a) connected to the pylons. 13. Apparatus as claimed in any one of claims 2 to 6 or any one of claims 7 to 12 when claim 7 is directly or indirectly dependent upon claim 2 including cleaning means (79) to wash down the upper surface of the canopy. 14. Apparatus as claimed in claim 13 wherein said cleaning means includes at least one hose extending partially over said canopy to distribute water over portions of the surface of said canopy to facilitate maintaining the transparency thereof. 15. Apparatus comprising a canopy (21) extending over a formation of the earth's surface and defining therewith a duct capable of channeling an air flow from a relatively larger opening at a lower portion of the formation to a relatively smaller opening (23) at an upper portion of the formation, the canopy being substantially transparent to solar radiation passage through the canopy for impinging on and heating the formation's walls, thereby to impart heat to the air proximate the walls (11) and located within said duct, the heated air, being of lesser density, being thereby caused to flow generally toward said upper opening (23) and colder, more dense air entering the duct at the lower opening (22), said heated air being channeled by said duct in its flow to the smaller opening where it is emitted, said cooler air entering the duct at the lower opening then being heated by the formation's walls, to flow upward to the smaller opening, generating a continuous flow within said duct, and said canopy is at least partially supported by the enclosed, heated air. 16. Apparatus comprising a canopy (21) extending over a formation of the earth's surface and defining therewith a duct capable of channeling an air flow from a relatively larger opening at a lower portion of the formation to a relatively smaller opening (23) at an upper portion of the formation, the canopy being substantially transparent to solar radiation passage through the canopy for impinging on and heating the formation's walls, thereby to impart heat to the air proximate the walls (11) and located within said duct, the heated air, being of lesser density, being thereby caused to flow generally toward said upper opening (23) and colder, more dense air entering the duct at the lower opening (22), said heated air being channeled by said duct in its flow to the smaller opening where it is emitted, said cooler air entering the duct at the lower opening then being heated by the formation's walls, to flow upward to the smaller opening, generating a continuous flow within said duct, and power generating means (70) arranged to be driven by the force of the air flow that is channeled by the duct. 17. Apparatus as claimed in claim 16 wherein said power generating means is located to receive the heated airflow emitted from said smaller, upper opening of the duct and to generate power in response thereto. 18. Apparatus as claimed in claim 16 or 17 wherein said power generating means includes an electrical generator. 19. Apparatus as claimed in claim 18 wherein said power generating means includes at least one air turbine and electrical generator combination, and said heated airflow within said duct is channeled by said duct generally toward the smaller, upper opening and thep is further channeled into said air turbine wherein energy associated with the heated air is imparted to multiple turbine rotor blades causing rotor rotation which in turn causes rotation of the armature of said generator, thus generating electricity. 20. Apparatus as claimed in claim 19 including additional means including shutter structure (74) located to facilitate said further channeling of the heated air from the smaller, upper opening of the canopy into said air turbine. 21. Apparatus as claimed in claim 20 wherein said additional means includes scrolls (75a) to control and pre-rotate said flow of heated air into and between multiple air turbines defined by the first named means. 22. Apparatus as claimed in claim 21 wherein said air turbines include variable stators and heated air channeled into each turbine has a controlled angle of incidence and a controlled flow serving to facilitate said transference of energy from the heated air to the turbine rotor. 23. Apparatus as claimed in claim 19, 20, 21 or 22 including secondary turbine means located to control the flow of the heated air after it has passed through said air turbine to facilitate exhaust of said air into the environment, said secondary turbine means also extracting energy from the flow for power recovery.
SNOOK, STEPHEN ROBERT
SNOOK, STEPHEN ROBERT
EP-0003186-B1
3,186
EP
B1
EN
19,820,623
1,979
20,100,220
new
D04H1
A61L15, A47K10
D04H1
D04H 1/64A
MOIST PACKAGED TOWELETTE AND METHOD OF MAKING SAME
A moist packaged towelette comprises a sheet of nonwoven fabric provided with a binder comprising polyvinyl alcohol in contact with an aqueous solution in a container. The aqueous solution contains a sufficient concentration of a compound which prevents the polyvinyl alcohol dissolving in the aqueous solution but which, when dissolved in excess water, allows the polyvinyl alcohol to dissolve in the excess water thereby reducing the structural integrity of the towelette. Suitable compounds include boric acid and sodium sulphate. The binder may consist of pure polyvinyl alcohol or a mixture of polyvinyl alcohol and polyvinyl acetate. A mixture of polyvinyl alcohol, vinyl acetate-ethylene copolymers and, if desired, polyvinyl acetate, can also be used as a binder.
This invention relates to a moist packaged towelette and to a method of making the same. Moist packaged towelettes are generally made by coating a sheet of nonwoven fabric, usually absorbent paper, with a binder and storing the coated fabric in contact with an aqueous solution in a container. The aqueous solution typically contains alcohol and, for example, a perfume or deodorant. The binder increases the structural integrity of the nonwoven fabric and prevents it disintegrating in the aqueous solution. (For the avoidance of doubt the term nonwoven fabric as used herein includes fabrics comprising carded or randomly orientated or cross-laid fibres. The fibres may comprise, for example, natural or regenerated cellulose, other synthetic or proteinaceous fibres of biodegrade materials, or mixtures of these). Various binders have been proposed but all which are known to us have the disadvantage that the coated fabric maintains a high structural integrity even after prolonged exposure to water. This can result in blocked drains. One known binder for nonwoven fabrics which are not intended to be exposed to moisture is polyvinyl alcohol. Whilst nonwoven fabrics provided with this binder have excellent structural integrity in the dry they disintegrate rapidly when immersed in water. We have discovered that a nonwoven fabric provided with a binder comprising polyvinyl alcohol will retain a high structural integrity in contact with an aqueous solution provided that the aqueous solution contains a sufficient concentration of a compound to prevent the polyvinyl alcohol dissolving in the aqueous solution. When the solution is diluted the polyvinyl alcohol dissolves thereby weakening the structural integrity of the towelette. Accordingly, the present invention provides a moist packaged towelette comprising a sheet of nonwoven fabric provided with a binder and maintained in contact with an aqueous solution in a container characterized in that said binder is polyvinyl alcohol and said aqueous solution contains a compound which is present in said solution at a sufficient concentration to prevent said polyvinyl alcohol dissolving in said aqueous solution but which, when diluted in excess water, permits said polyvinyl alcohol to dissolve in said excess water thereby reducing the structural integrity of said towelette. Compounds which will prevent polyvinyl alcohol dissolving in aqueous solutions are well known and examples are listed in Polyvinyl Alcohol , 1973; Finch C.A., John Wiley & BR< Sons Ltd., Table 2.3 at page 40. Substantially all of these compounds (which comprise boric acid and water soluble salts) will, when dissolved in excess water, permit the polyvinyl alcohol to dissolve thereby reducing the structural integrity of the nonwoven fabric. It is, of course, a simple procedure to check if a particular compound is suitable. Of the available compounds boric acid is presently preferred and preferably comprises at least 1% (by weight) of the aqueous solution with 3% to 5% (by weight) being preferred and 4% to 5% (by weight) being more preferred. One of the problems associated with using a water soluble salt as the compound is that the required concentration in the aqueous solution is so high that, in many cases, the salt crystalizes on the skin when the towelette is used. We strongly recommend that the salts which are used should be those which need be present to no more than 40% (by weight) of the aqueous solution and, more preferably, to no more than 20% (by weight) of the aqueous solution. If a salt is to be used then we recommend sodium sulphate at a concentration of between 3% and 20% (by weight) of the aqueous solution and more preferably between 7% and 20% (by weight) of the aqueous solution. Polyvinyl alcohol is generally produced by the hydrol ysis of polyvinyl acetate. Pure polyvinyl alcohol (i.e. 100% hydrolysed polyvinyl acetate) is relatively insoluble in water at room temperature when compared with 80% to 99% hydrolysed polyvinyl acetate. Accordingly, the binder preferably comprises a mixture of polyvinyl alcohol and polyvinyl acetate. If desired the polyvinyl alcohol may comprise as little as 1% (by weight) of such a mixture although it preferably comprises between 80% and 95% thereof. Mixtures (emulsions) comprising vinyl acetate-ethylene copolymers and polyvinyl alcohol may also be used as a binder. In such a case the polyvinyl alcohol preferably comprises from 1% to 10% (by weight) of the binder and probably acts as a protective colloid. If desired the binder may also contain polyvinyl acetate and preferably between 5 and 25% (by weight) thereof. One particularly preferred range of binders comprises (by weight) 1 to 108 of 80 - 90% hydrolysed polyvinyl acetate and the balance vinyl acetate-ethylene copolymers. Preferably the vinyl acetate-ethylene copolymers contain (by weight) not more than 45% vinyl acetate and not more than 60% ethylene. In all the above cases the weight of the binder is pref erably between 5% and 50% of the weight of the untreated nonwoven fabric. The present invention also provides a method for making a moist packaged towelette which method comprises the step of wetting a sheet of nonwoven fabric provided with a binder by bringing said sheet into contact with an aqueous solution characterized in that said binder comprises polyvinyl alcohol and said aqueous solution contains a sufficient concentration of a compound which prevents the polyvinyl alcohol dissolving in the aqueous solution but which, when dissolved in excess water, allows the polyvinyl alcohol to dissolve in the water thereby reducing the structural integrity of the towelette. The present invention also provides a method for making a moist packaged towelette which method comprises taking a sheet of nonwoven fabric which has been provided with a binder and packaging said sheet of treated material in contact with an aqueous solution in a container characterized in that said binder comprises polyvinyl alcohol and said aqueous solution contains a sufficient concentration of a compound which prevents the binder from dissolving in the aqueous solution but which, when dissolved in excess water, allows the binder to dissolve in the water thereby reducing the structural integrity of the towelette. Preferably said compound is boric acid and advantageously said aqueous solution comprises at least 1% (by weight) of said compound with 3% to 58 (by weight) being preferred and 4% to 5% (by weight) being more preferred. The container should preferably be impermeable to all the components of the aqueous solution. However, for economic reasons a container need only be sufficiently impermeable to the components of the aqueous solution for a limited period of time, for example, the anticipated time delay between manufacture and use. The container itself may be in the form of a sachet for accommodating a single towelette or a bag or box for accomodating a plurality of towelettes. In the latter cases the bags or boxes are preferably resealable ,tQ minimise evaporation of the aqueous solutions. The binder may conveniently be applied to the nonwoven fabric by making an aqueous solution (or emulsion) of the binder and applying it to the fabric by, for example, a roller or a spray gun. Alternatively, the nonwoven fabric may simply be dipped in the aqueous solution (or emulsion). Once treated the nonwoven fabric is preferably dried, and is then cut and, if desired, folded. The nonwoven fabric may then either be wetted by the aqueous solution and inserted in a container or inserted in a container and wetted. It should be understood that it is not essential to dry the nonwoven fabric after the application of the binder although drying is preferred for ease of handling. For a better understanding of the invention reference will now be made to the following non-limiting examples. EXAMPLE 1 A sheet of 24 pound (25 x 38 inch - 500 ream) (10.9 Kg - 27.7 96.5 cm) high ground wood, unsized paper was immersed in water for two minutes. The wet sheet was found to have a tensile strength of approximately 0.59 pounds (0.27 Kg). EXAMPLE 2 A sheet of the same paper used in Example 1 was impregnated with a solution of VINOL (Trade Mark) 205 polyvinyl alcohol (PVOH) to the extent of 4 pounds (1.80 Kg) dry add-on and dried in a 12000 forced air oven. After imm ersion in water for two minutes the wet sheet was found to have a tensile strength of 0.59 pounds (0.27 Kg), i.e. approximately equal to the wet sheet in Example 1. (VINOL 205 is 87% to 89% hydrolysed polyvinyl acetate of low vis cosity (4-6 cps) marketed by Applicants). EXAMPLE 3 Two sheets of paper were prepared and dried as in Example 2. However, instead of immersion in water both sheets were immersed in an aqueous solution containing 5% (by weight) boric acid at room temperature. After immersion for two minutes one wet sheet was tested and found to have a tensile strength of 1.6 pounds (0.73 Kg), i.e. nearly 3 times the tensile strength in Example 1 and 2. The other wet sheet was then immersed in a large quantity of water for a further two min utes and when tested was found to have a wet tensile strength of less than 0.8 pounds (0.365 Kg). EXAMPLE 4 A sheet of paper was prepared and dried as in Example 2. The sheet was then immersed in an aqueous solution containing 5% (by weight) boric acid at room temperature for 1 year. On removal from the solution there was no detectable reduction in tensile strength as measured by finger pull. EXAMPLE 5 In order to determine the probable shelf life of the packaged towelette films of 15 ml. (0.038 cm) wet thickness were separately cast from VINOL 205 and VINOL 540 PVOH and dried at room temperature. Strips of the films of 1 x 6 inches (2.54 x 15.24 cm) were then immersed in an aqueous solution containing 5% (by weight) boric acid at various temperatures. The probable shelf life of the packaged towelette at various temperatures is indicated in Table 1. TABLE 1 80 g 130 g 160 (26.7 C) (54.4 C) (71.1 C) VINOL 205 300 days 30 days 16 hours VINOL 540 300 days 30 days 3 days In contrast all the films dissolved within 5 minutes when immersed in ordinary water. (VINOL 540 is 87% to 89% hydrolysed polyvinyl acetate of high viscosity (40 - 50 cps) marketed by Applicants). 80% hydrolysed PVOH is commonly known to have reverse solubility, i.e. is insoluble in water above 200C but is soluble at room temperature. For this reason towelettes should advantageously be coated with this material for use in high temperature atmospheres. EXAMPLE 6 A high groundwood stock paper substrate (24 pound/3300 ft.2 = 10.9 Kg/307 sq. meters) was treated with a 15% aqueous solution of VINOL 205 PVOH applied with a No. 10 Mayer rod separately to each side of the paper and dried at 250 0F ( 120 0C) for 30 seconds. The coated first side was dried before applying the coating to the other side. The dried paper was then immersed for two minutes in a 5% boric acid solution and-its wet tensile strength determined by Instron (C) andcompound with that of the base stock (A) and the coated sheet without boric acid (B). The results are reported in Table 2 below. The resolubility was demonstrated by further immersion of the boric acid treated sheet in plain water for two minutes (D). TABLE 2 Instron Wet Strength (pounds/kgs) A. Base stock after immers- 0.55/0.25 ion in water (untreated) B. Treated with PVOH and 0.59/0.27 then immersed in water C. Treated with PVOH, then immersed in aqueous boric 1.73/0.79 acid (5% molten) D. Reimmersion in excess water 0.70/0.32 after C. EXAMPLE 7 Further studies were carried out to determine the effect of boric acid concentration on the wet tensile strength of PVOH in pregnated papers. These studies were made on paper sheets of a 42 pound/3300 sq. ft. stock (19 kg/307 sq. meters) each respectively immersed in boric acid solution of successively increasing concentrations. It was found that the wet tensile strength increased almost linearly with concentration from 0.72 pounds (¯ .33 kg) at zero boric acid to 1.41 pounds 0.64 kg) at 5% boric acid. EXAMPLE 8 Papers treated with other grades of polyvinyl alcohol were tested to determine the effect of boric acid in inhibiting disintegration. These included commercial grades identified as: % Hydrolysis Viscosity (cps) VINOL 540 87-90 40-50 VINOL 605 80 4.4-5.2 VINOL 650 80 40-60 VINOL 107 98-98.8 5-7 Each of these VINOL compositions were applied to a 24 lb./3300 ft.2 (10.9 Kg/307 sq. meters) base stock and dried at 2500F (1200C) for 30-90 seconds, as required. The amount of PVOH add-on varied due to viscosity differences so that the measured wet tensile values are not directly relatable between the grades. All of these PVOH treated sheets exhibited wet tensile improvement with 5% boric acid immersion versus water immersion and all showed resolubility in plain water after short immersion in boric acid solution, as shown in Table 3. TABLE 3 Wet Strength (lbs) Boric Acid Boric then % Add on Water Acid Water VINOL 205 17 0.60 1.73 0.72 VINOL 540 31 0.90 > 2-0 1.72 VINOL 605 11 0.64 1.56 0.68 VINOL 650 27 0.80 > 2.0 0.78 VINOL 107 -- 1.27 > 2.0 1.40 EXAMPLE 9 The water soluble salts listed in Table 4 below are believed to be suitable substitutes in place of boric acid, (which is also listed for comparison) at concentrations of up to 20% (by weight) in the articles of this invention. Table 4 shows the minimum concentration causing precipitation of the compound dissolved in a 5% solution of polyvinyl alcohol (98-99% hydrolysed, degree of polymerization 1700-1800). TABLE 4* Minimum concentration for salting out Compound (9/1) (NS4)2SO4 66 Na2SO4 50 X2SO4 61 FeSO4 105 MgSO4 60 '2(SO4)3 57 KA1(SO4)2 58 Potassium citrate 38 H3BO3 16.5 *Data on the soluble salts of Table 4 were taken from Finch, C.A., POLYVINYL ALCOHOL, 1973; John Wiley & Sons, Ltd., Table 2.3 at page 40. EXAMPLE 10 Cast films of VINOL 205 PVOH (1 x 6 = 2.5 x 15.24 cm) were separately tested to determine solubility respectively in boric acid solutions and in sodium sulphate solutions at different concentrations. The results are reported in Table 5. TABLE 5 Solute Film g/100 cc water Description Sodium Sulphate 5 Soluble; 30 seconds 10 Slimy 15 s Slimy 20 Insoluble; transparent film 30 Insoluble; transparent film Boric Acid 1 Soluble; 2 minutes 3 Stringy 5 Insoluble; turned white opaque in 2 minutes From the foregoing tests it appears that while the soluble salts listed in Table 4 above, such as sodium sulphate, can be employed to retard solubilization of polyvinyl alcohol films, greater concentrations i.e. about 7% to about 20%, are required than when using boric acid. As projected from the data set forth in Tables 4 and 5, potassium citrate appears to be even more efficient than sodium sulphate. The specific behaviour of boric acid in retaining solubilization of PVOH film is not attributable to the pH of the boric acid solution. Whereas a VINOL 205 film was insoluble in 5% boric acid solution, such film was readily dissolved respectively, in 5% aqueous solution of citric and phosphoric acid and a 0.7% solution of fumaric acid. EXAMPLE 11 A 60% vinyl acetate-40% ethylene copoly mer emulsion containing 4% PVOH (75% VINOL 205 and 25% VINOL 523) (by weight) of the copoly mer, and containing a total of 52% solids was cast to form a film of 15 mil wet thickness and air dried. While the film retained its defin ition when immersed in water, it exhibited practically no wet tensile strength as evid enced by the fact that it could not suspend its own weight. When immersed in a 5% boric acid solution, the film exhibited surprisingly good wet ten sile strength and was highly elastic. However, this film removed from the boric acid solution was redispersed in plain water in less than two minutes. The treated film in contact with boric acid solution retained wet tensile strength for more than 30 days at 1300F (54.4 C). At 1600F (71.1 C) the film retained wet tensile strength for 3 days indicating excellent film stability and shelf life at the elevated temperature that may be experienced under storage conditions. EXAMPLE 12 The same emulsion as employed in Example 11 was diluted and applied to a paper substrate. The emulsion was diluted with water to a 25% total solids content and applied to both sides of a 42 pound/3300 square foot (19 Kg/307 mg/square meters) paper substrate, and the treated paper dried at l200C in a forced air oven. The pick-up was 3.5 pounds (1.59 Kg) dry emulsion. A sample of the dried emulsion treated paper, as determined by conventional Instron test, showed a wet tensile strength after immersion in water, of 1.08 pounds (0.49 Kg) as compound to the untreated stock which showed a wet tensile of 0.72 pounds (0.33 Kg). A duplicate sample of the dried emulsion treated paper immersed in 5% boric acid solution for 2 minutes when tested by Instron exhibited a tensile of 1.41 pounds (0.64 Kg). When reimmersed in plain water for 2 minutes, the paper returned to about its initial wet strength, 1.09 pounds (0.49 Kg). Another duplicate sample of the dried emulsion treated paper was immersed in 5% boric acid solution for 30 minutes maintained about the same tensile strength as that previously shown for the boric acid treatment while the water value on reimmersion decreased to 0.91 pounds (0.41 Kg). It should be noted that the paper in the foregoing example had a relatively low dried emulsion add-on. At higher add-on levels or lower basis weight substrate greater relative increase in tensile strength may be realized. EXAMPLE 13 While in Example 10 and 11 boric acid is employed as the agent for increasing the wet strength of the nonwoven fiber sheet during storage and use, certain soluble salts known to react with polyvinyl alcohol to effect-precipitation or gelling thereof, may be employed. These are less preferred than boric acid, however, since larger concentrations of these are required for the desired purpose. Examples of such salts are set out in Table 4 hereinbefore. EXAMPLE 14 Cast films of the same emulsion as employed in Example 11 (1 x 6 = 2.5 x 15.24 cm) were separately tested to determine solubility respectively in boric acid solutions and in sodium sulphate solutions at different concentrations. The results are reported in Table 2. TABLE 2 Solute Film g/1OO cc water description Sodium sulphate o Weak film 5 Some film strength develop ment 20 Stronger film Boric acid 0 Weak film 1 Some film strength develop ment 3 Stronger film 5 Optimum film strength From the foregoing results, it appears that while the soluble salts, such as sodium sulphate, can be employed to retard solubilization of polyvinyl acetate films, somewhat greater concentrations, i.e. about 3% to about 20%, are required than when using boric acid.
CLAIMS 1. A moist packaged towelette comprising a sheet of nonwoven fabric provided with a binder and maintained in contact with an aqueous solution in a container characterized in that said binder is polyvinyl alcohol and said aqueous solution contains a compound which is present in said solution at a sufficient concentration to prevent said polyvinyl alcohol dissolving in said aqueous solution but which, when diluted in excess water, permits said polyvinyl alcohol to dissolve in said excess water thereby reducing the structural integrity of said towelette. 2. A moist packaged towelette according to Claim 1, characterized in that said compound is boric acid. 3. A moist packaged towelette according to Claim 2, characterized in that said boric acid comprises at least 1% (by weight) of said aqueous solution. 4. A moist packaged towelette according to Claim 3, characterized in that said boric acid comprises 3% to 4% (by weight) of said aqueous solution. 5. A moist packaged towelette according to Claim 4, characterized in that said boric acid solution comprises 4% to 5% (by weight) of said aqueous solution. 6. A moist packaged towelette according to any preceding Claim, characterized in that said compound comprises a water soluble salt and said aqueous solution contains from 3% to 20% (by weight) of said salt. 7. A moist packaged towelette according to Claim 6, characterized in that said salt is sodium sulphate. 8. A moist packaged towelette according to any preceding Claim, characterized in that said binder comprises polyvinyl acetate. 9. A moist packaged towelette according to Claim 8, characterized in that said binder comprises between 80% and 99% (by weight) polyvinyl alcohol. 10. A moist packaged towelette according to Claim 8, characterized in that said binder comprises vinyl acetate-ethylene copolymer. 11. A moist packaged towelette according to Claim 10, characterized in that said vinyl - acetate-ethylene copolymers comprises from 10% to 40% (by weight) vinyl acetate. 12. A moist packaged towelette according to Claim 10 or 11 when appended to Claim 8, characterized in that said binder comprises from 1% to 10% (by weight) polyvinyl alcohol. 13. A method for making a moist packaged towelette which method comprises the step of wetting a sheet of nonwoven fabric provided with a binder by bringing said sheet into contact with an aqueous solution characterized in that said binder comprises polyvinyl alcohol and said aqueous solution contains a sufficient concentration of a compound which prevents the polyvinyl alcohol dissolving in the aqueous solution but which, when dissolved in excess water, allows the polyvinyl alcohol to dissolve in the water thereby reducing the structural integrity of the towelette. 14. A method for making a moist packaged towelette which method comprises taking a sheet of nonwoven fabric which has been provided with a binder, and packaging said sheets of treated material in contact with an aqueous solution in a container characterized in that said binder comprises polyvinyl alcohol and said aqueous solution contains a sufficient concentration of a compound which prevents the binder from dissolving in the aqueous solution but which, when dissolved in excess water, allows the binder to dissolve in the water thereby reducing the structural integrity of the towelette. 15. A method according to Claim 13 or 14, characterized in that said compound is boric acid.
AIR PRODUCTS AND CHEMICALS, INC.
DANIELS, WILEY EDGAR; DAVIDOWICH, GEORGE; MILLER, GERALD DONALD
EP-0003191-B1
3,191
EP
B1
FR
19,810,729
1,979
20,100,220
new
G02B5
B29D11, G02B1
G02B5, B05D1, B29D11, G02C7, G02B1
G02B 5/23, G02B 1/04, G02B 1/12, B29D 11/00
METHOD OF INTEGRATING A PHOTOCHROMIC SUBSTANCE INTO A TRANSPARENT SUBSTRATE,ESPECIALLY OPHTALMIC LENS, FROM ORGANIC MATERIAL
1. Process for integrating a photochromic substance into a transparent-based substrate, in particular an ophthalmic lens, of organic material, of the kind in which contact is ensured between such a substrate (10) and a photochromic material (12) formed at least in part of the photochromic substance to be employed, and applying heat to the said material (12), characterized in that is is performed by thermal transfer, i.e., at a temperature sufficient to ensure at least partial sublimation of the photochromic substance.
Procédé pour l'intégration d'une substance photochromique a un substrat de base translucide en matière organique et substrat de base transparert en particulier, lentille ophtalmique, ainsi traité La présente invention concerne d'une manière générale les produits ou articles photochromiques, c'est-à-dire les produits ou articles comportant une substance photochromique propre à changer de coloration ou d'opacité, de manière réversible, lorsqu'elle est exposée à un rayonnement déterminé, et vise plus particulièrement, mais non exclusivement, le cas où il s'agit de lentilles ophtalmiques en matière organique, et notamment celle vendue sous la désignation commerciale CR 39 lies lentilles ophtalmiques photochromiques commercialisées à ce jour, pour la constitution de lunettes de soleil, sont généralement en verre minéral, et la substance photochromique qu'elles comportent est également de nature minérale. Il s'agit le plus souvent d'halogénure d'argent. Des essais ont été faits pour l'utilisation d'une telle substance photochromique pour des lentilles en matière organique : il y a, en pratique, incompatibilité entre les matières en cause, et, au sein d'une matière organique, lthalo- génure d'argent ne réagit plus de manière convenable au rayonnement extérieur. S'agissant du CR 39 , cette incompatibilité est due à la nature du catalyseur nécessaire à la polymérisation du monomère de base : le seul catalyseur actuellement utilisé avec satisfaction pour cette polymérisation est le percarbonate d'isopropyle, et celui-ci, par oxydation, détruit les propriétés photochromiques de l'halogénure d'argent. Pour pallier cette difficulté, il a été tenté d'enrober les particules d'halogénure d'argent d'un revêtement protec teur inorganinue, en silice par exemple, imperméable aux produits organiques ; il s'agit lâ d'une solution coûteuse, qui manque, en outre, d'efficacité. Il a alors été tenté, pour de telles lentilles ophtalmi- ques en matière organique, de substituer à l'halogénure d'argent une substance phtochromique de nature organique. Diverses propositions ont été faites dans ce sens, suivant lesquelles une telle substance est dispersée en masse au sein de la matière organique constitutive des lentilles concernées. Aucune n'a à ce jour donné réellement satisfaction. L ne des raIsons peut en être trouvée comme précédemment dans l'incompatibilité des substances photochromiques proposées avec les catalyseurs de polymérisation utilisés, et dans les difficultés pratiques de mise en oeuvre des procédés, notamment d'enrobage, envisagés pour surmonter cette diffi culté. D'autres propositions ont consisté à regrouper la substance photochromique au sein d'une couche particulière intermédiaire entre deux couches externes en matière organique; la mise en oeuvre en est malaisée. D'autres propositions,enfin, ont consisté à traiter des lentilles finies, et donc après polymérisation de leur matière organique constitutive, ce qui évite le contact entre la substance photochromique mise en oeuvre et le catalyseur ayant assuré cette polymérisation. Suivant une première de ces dernières propositions la substance photochromique est déposée en film sur les lentilles ophtalmiques à traiter ; un tel film est inévitablement exposé aux cors, aux rayures et à l'abrasion, au préjudice de sa continuité, et donc de l'homogénéité du photochromisme qu'il doit assurer. Suivant une deuxième des propositions en question, les lentilles ophtali:iiques à traiter sont immergées dans une so- lution concentrée de la substance photochromique proposée dans du solvant, en pratique du toluène, portée à ébullition, en pratique 70 C ; cette substance photochromique peut être par exemple un spiropyranne, tel que proposé dans le brevet français déposé le 29 Novembre 1973 sous le No 73 43536 et publié sous le to 2 2,1 666 ou un métal dithizonate, tel que proposé dans le brevet français déposé le 29 Juin 1973 sous le No 73 24497 et publié sous le No 2 236 479. Mais pour arriver à une imprégnation suffisante des lentilles ophtalmiques traitées, l'immersion de celles-ci doit être prolongée, pendant au moins 24 heures, et,compte tenu de l'ébullition de la solution mise en oeuvre, des dispositions particulières do vent être prises pour un récupération satisfaisante des vapeurs de solvant, ce qui rend malaisée la mise en oeuvre pratique d'ur. tel procédé par immersion. En outre, les résultats qu'il permet d'obtenir sont en pratique souvent décevants. Par ailleurs, les substances photochromiques de nature organique connues actuellement sont sujettes au vieillissement : au bout d'un temps relativement court, inférieur en tout cas à la durée de vie considérée comme normale pour des lunettes de soleil, elles deviennent inertes et ne réagissent plus au rayonnement extérieur. S'agissant d'une substance dispersée au sein des lentilles ophtalmiques concernées, un tel vieillissement conduit inévitablement à la mise au rebut définitive de celles-ci. S'agissant d'une substance déposée en film sur de telles lentilles ophtalmiques, on pourrait évidemment songer à régénérer un tel film après vieillissement, mais en pratique, pour les raisons exposées ci-dessus, une telle régénération, avec les procédés de mise en oeuvre connus à ce jour, s' avère trop malaisée et coûteuse pour en valoir la peine, ce qui conduit également à la mise au rebut définitive desdites lentilles. La présente invention a d'une manière générale pour objet un procédé propre a l'intégration aisée d'une substance photochromique à un quelconque substrat de base en matière organique, et par exemple à une lentille ophtalmique en matière organique, notamment OR 39 , la mise en oeuvre de ce procédé étant suffisamment facile pour qu'on puisse envisager dans le cas de substances photochromiques sujettes au vieillissement, une recharge rapide et bon marché, à la demande d'un tel substrat, et en particulier d'une telle lentille ophtalmique, en une telle substance photochromique ; elle a encore pour objets les substrats de base transparents, et en particulier les lentilles ophtalmiques, en matière organique, notamment ??CR 39 , traités en application de ce procédé. Elle est fondée sur l'observation d'ailleurs inattendue, que les substances photochromiques de nature organique, ou au moins certaines d'entre eller,sont avantageusemerlt susceptibles de se prêter aisément à une mise en oeuvre par transfert thermique, par exemple d'un support auxiliaire temporaire à un support définitif, selon un processus connu lui-même, leur tension de vapeur étant suffisamment élevée pour satisfaire à un tel processus, et leur compatibilité avec le matériau du support définitif concerné, en l'espace de la matière organique, étant suffisante pour qu'elles puissent être absorbées sous forme de vapeur dans ce matériau, et donc, après retour à l'état solide, demeurées ancrées dans ce dernier ; 1'aspect inattendu de cette observation réside en ce qu'il devait normalement être pensé que l'application à des substances photochromiques de la chaleur nécessaire à un tel transfert thermique était de nature à perturber, voire même à détruire, leurs caractéristiques photochromiques. Il n'en est en fait rien, au moins dans les conditions pratiques de mise en oeuvre de l'invention, suivant lesquelles l'application de chaleur aux produits traités est relativement brève. S'agissant de l'intégration d'une substance photochromique G une lentille ophtalmique en matière organique, le procédé selon l'invention est donc caractérisé en ce qu'il consiste à opérer par transfert thermique sur un produit fini, c'est-à-dire à assurer un contact entre une telle lentille et un matériau formé au moins pour partie d'une telle substance, et à appliquer de la chaleur à ce matériau. Un tel procédé peut aisément être mis en oeuvre, sans matériel trop complexe et/ou coûteux, par n importe quel praticien, et ne nécessite qu'une intervention de durée réduite, de l'ordre de la minute par exemple. Une lentille ophtalmique photochromique suivant l'in vention peut donc aisément, et au moindre prix, être rechargée à la demande, après vieillissement de la substance photochromique qu' elle comporte, dans le cas bien entendu où cette substance est effectivement sujette à vieillissement. En outre, bien que celle-ci soit pour l'essentiel rassemblée au voisinage de la surface d'une telle lentille, et il 5?agit la d'une caractéristique complémentaire de l'invention, elle demeure ancrée dans la masse même de cette lentille, à la différence d'un quelconque film extérieur, et bénéficie donc pour sa protection à l'égard des chocs, des rayures, et de l'abrasion, des caractéristiques mécaniques propres à la matière organique constitutive de cette lentille. Comme dans le cas d'une imprégnation par immersion, le procédé de transfert thermique suivant l'invention intéresse avantageusement un produit fini, ctest-à-dire déjà polymérisé, ce qui évite toute réaction entre la substance photochromique mise en oeuvre, et le catalyseur de polymérisation, celui-ci n'étant plus actif après la polymérisation qu'il a assurée. Nais, outre que le processus chimique de diffusion en phase gazeuse auquel il répond est différent, sa facilité et sa rapidité de mise en oeuvre ainsi que sa réelle efficacité, permettent d'en envisager une application effective aux produits concernés. Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple, en référence aux dessins schématiques annexés sur lesquels la figure 1 est une vue en perspective d'une lentille ophtalmique, qui est en matière organique, et qui est photochromique suivant l'invention la figure 2 est, à échelle supérieure, une vue partielle en coupe de cette lentille, suivant la ligne II-II de la figure I; la figure 3 est une vue en coupe illustrant une mise en oeuvre possible d'un procédé propre à l'intégration sui v & t l'invention d'une substance photochromique à une lentille ophtalmique en matière organique. Ces figures illustrent l'application de l'invention aux lentilles ophtalmiques. la figure 1 on reconnaît, sous la référence générale 10, une telle lentille ophtalmiqie. Par lentille ophtalmique on entend, ici, le palet à contour circulaire fourni au praticien pour montage sur une quelconque monture de lunettes, après détourage approprié à effectuer par ce praticien. Il s'agit en l'espèce d'une lentille ophtalmique en matière organique, et par exemple d'une lentille ophtalmique en poly méthylène glycol di-allyle di-carbonate] usuellement vendu sous la désignation commerciale CR 39 ; il pourrait aussi bien s'agir d'une lentille ophtalmique en polycarbonate ou en polyméthacrylate de méthyle, ou encore en polyuréthanne transparent. li invention a pour objet de permettre l'intégration d' une substance photochromique au substrat de base translucide en matière organite que constitue une telle lentille. Elle propose a cet effet d'opérer par transfert thermique, c'est-â-dire de mettre en contact un matériau photochromique formé au moins pour partie d'une telle substance avec une telle lentille, et à appliquer conjointement de la chaleur au matériau. Il faut bien entendu que la substance choisie soit compatible avec les matières organiques. Il faut en outre qu'elle présente une tension de vapeur propre à en permettre la mise en oeuvre par transfert thermique. Celles notamment des substances photochromiques qui appartiennent au groupe des spiropyrannes répondent de manière satisfaisante à cette double exigence. Ainsi qu'on le sait il s'agit de substances répondant à la formule générale suivante EMI7.1 dans laquelle les symboles indiqués ont la signification suivante A = C, S, C portant deux radicaux alkyles de substitu tion B = S, N substitué par un radical alkyle, hydroxyalkyle, alkoxyalkyle R1 = H, radical alkyle, radical aromatique, alkoxy, halogène, nitrile, phénoxy S = radical aromatique ayant un ou plusieurs substituant R2 R2 = halogène, nitro, alkoxy Q = système cyclique aromatique ou un hétérocycle pou vant porter des substituants R3 alkyles, halogènes. D'autres substances photochromiques donnant également satisfaction appartiennent au groupe des métaux dithizonates. Ainsi qu'on le sait, il s'agit de complexes internes donnés entre différents métaux et la dithizone, laquelle répond à la formule générale suivante EMI7.2 En pratique, la mise en oeuvre de ces substances se fait de préférence sous forme liquide ou piteuse. On procède donc d'une manière générale à une dispersion de la substance photochromique retenue dans un solvant approprié, et, éventuellement, à l'addition au mélange obtenu d' un liant jouant le rôle d'épaississant et permettant d'obtenir la viscosité recherchée. S'agissant par exemple d'une mise en oeuvre sous forme liquide, un tel liant peut être de la nitrocellulose s'agissant, en variante, d'une mise en oeuvre sous forme pâteuse, ce liant peut par exemple être du collodion ou de la nitrocellulose plastifiée. Dans l'un et l'autre cas, notamment lorsque la substance rhotochromique retenue est un spiropyranne, le solvant peut être un acétate d'amyle, un acétate de butyle, un mélange de ces deux solvants, ou encore un solvant aromatique. L'application à la lentille 10 du matériau photochrominue ainsi obtenue peut, si désiré, se faire directement, par exemple au pinceau. Cependant, de préférence, cette application se fait à 1' aide d'un support temporaire auxiliaire sur lequel ce materna photochromique est initialement rapporté. Un tel procédé est par exemple illustré par la figure 3, sur laquelle on reconnaît en 10 la lentille à traiter. Pour support temporaire auxiliaire on peut par exemple choisir une feuille de papier kraft Il, ou une feuille de pa pier filtre. Une telle feuille est globalement revêtue d'une enduction 12 de matériau photochromique, tel que défini ci-dessus, puis, séchée, par évaporation du ou des solvants que comporte initialement ce matériau. Outre que ce solvant permet une dispersion plus facile de la substance photochromique mise en oeuvre pour la constitution du matériau photochromique recherché il permet, par son évaporation, un séchage plus rapide de la feuille Il sur laquelle ce matériau est rapporté. Que ce matériau photochromique soit directement appliqué à la lentille 10 ou qu'il soit rapporté sur une feuille Il elle-même ensuite appliquée à une telle lentille 10, le procédé suivant l'invention implique également une application de chaleur à ce matériau lors de son contact avec cette lentille. Dans l'exemple de mise en oeuvre illustré par la figure 3, cette application de chaleur se fait à l'aide d'un outil chauffant en forme 13, ayant globalement la configuration de la lentille à traiter 10, pour application à celle-ci, suivant la flèche F de la figure 3, de la feuille 11 porteuse de l'enduction de matériau photochromique 12. L'application de l'outil 13 est maintenue pendant un temps réduit, de l'ordre par exemple 45 secondes, et se fait sous une pression juste suffisante pour que le contact recherché entre le matériau photochromique 12 et la lentille 10 se fasse dans de bonnes conditions. La température de l'outil 13 est choisie de manière à ce que la température de la feuille de support temporaire auxiliaire Il demeure limitée, et par exemple comprise entre 1800 et 220 C. Si désiré, avant mise en contact de la lentille 10 avec l'enduction 12 de matériau photochromique, cette lentille 10 peut être prechauffée à une température inférieure à celle du transfert thermique à obtenir ultérieurement, de l'ordre par exemple de 1000C. Mais cette lentille peut également demeurer à la température ambiante jusqu'à son traitement. De même, si désiré, il est possible, pour éviter tout contact entre l'outil chauffant 13 et la feuille de support temporaire auxiliaire 11, d'interposer entre cet outil et cette feuille une couche de même nature que celle de cette dernière (non représenté). Quoi qu'il en soit, lors de l'application de chaleur au matériau photochromique 12 par l'outil chauffant 20, une partie au moins de la substance photochromique formant ce matériau est l'objet d'une sublimation, et, cette sublimation étant effectuée au contact de la lentille à traiter 10, une partie au moins de la vapeur formée est absorbée par la matière organique constitutive de cette lentille. Après l'intégration ainsi assurée à celle-ci d'une telle substance photochromique, la lentille 10 traitée est lavée à l'aide de tout solvant propre à permettre une élimination du surplus de substance photochromique qui ne s'est pas sublimé et éventuellement du liant initialement associé à celleci. La partie de la substance photochromique qui, après sublimation, a migré dans la matière organique constitutive de la lentille 10 et y a été absorbée, forme dès lors, dans la masse même de cette lentille, à la surface de celleci, au voisinage de laquelle elle se trouve rassemblée, tel qu'ilustré par la figure 2, une zone 15, qui forme une partie intégrante de cette lentille, puisque provenant d'une mi gration dans celle-ci d'une substance extérieure, et qui présente les caractéristiques photochromiques recherchées, dues à cette substance. Pour une meilleure illustration de l'invention, on en donnera ci-après des exemples pratiques de mélanges photochromiques susceptibles d'être mis en oeuvre suivant l'invention et de donner satisfaction, avec leurs conditions d'application. En outre, pour chaque mélange, un contrôle optique est fait comme suit On soumet la lentille concernée à un rayonnement ultraviolet pendant une minute, ce rayonnement étant fourni par une lampe à vapeur de mercure de 400 watts qui reproduit le spectre solaire grâce à un filtre interférentiel, et on mesure la densité optique de cette lentille avant irradiation (Do) puis après irradiation (D). La différence # D = D-Do caractérise l'efficacité du mélange photochromique correspondant. NELME 1 Composition Substance photochromique dithizonate de triméthoxy2, 4, 6 phényl mercure 2 % Solvant alcool éthylique 59 % acétate d'éthyle 19% Epaississant nitrocellulose plastifiée au phtalate de dibutyle 20 Conditions d'application - On imprègne un papier filtre avec ce mélange et on le sèche jusqu'à dessication complète - Le papier est ensuite placé sur la lentille à traiter et chauffé à 2100 par l'intermédiaire d'une plaque métallique' formant outil chauffant en forme, pendant 45 secondes - Après transfert, la lentille est lavée È l'acétone. Résultats D0= 0,1146 D = 0,2628 #D = 0,1482 MELANGE 2 Composition Identique à celle du mélange 1 avec comme substance photochromique du dithizonate de trifluorométhyl 2 phényl mercure. Conditions d'application Comme pour le mélange 1 Résultats Do = 0,0836 D = 0,1864 # D = 0,1028 MELANGE 3 Composition Identique à celle du mélange 1 mais avec du dithizonate de cyclohexyl mercure pour substance photochromique Conditions d'application Comme pour le mélange 1 Résultats Do = 0,1379 D = 0,2328 AD = 0,0949 MELElGE 4 Composition Identique à celle du mélange 1 mais avec du dithizonate de phényl mercure pour substance photochromique. Conditions d'application Comme pour le mélange 1 Résultats D0 = 0,1403 D = 0,2219 #D = 0,0816 MELANGE 5 Composition Substance photochromique [triméthyl 1,3,3-indolino]2-spiro 2' nitro 6' méthoxy 8' benzopyranne 1% Solvant et épaississant benzène 10% vernis glycérophtalique 89 % Conditions d'application Comme pour le mélange n Résultats Do = 0,1278 D = 0,4330 #D = 0,3052 MELANGE 6 Composition Substance photochromique Ediméthyl 3,3, isopropyl 1 indolino]2 spiro 2' nitro 6 méthoxy 8' benzopyranne 1 % Solvant et épaississant benzène 10 % vernis glycérophtalique 89 % Conditions d'application Comme pour le mélange 1 Résultats Do = 0,9545 D = 0,2104 #D = 0,156 NELANGE 7 Composition Substance photochromique : : [diméthyl 3,3, isopropyl 1 indolino]2 spiro 2' nitro 6 méthyl thioisopropyl 8' benzopyranne 1 % Solvant et épaississant benzène 10% vernis glycérophtalique 89 Ó Conditions d'application Comme pour le mélange 1 Résultats Do = 0,0696 D = 0,1349 AD = 0,0753 MELANGE 8 Composition Substance photochromique [méthyl 3 benzothiazolej2 spiro 2' nitro 6' méthoxy 8' benzopyranne 5 % benzène 95 % Conditions d'application On enduit la lentille avec le mélange et on laisse le solvant s'évaporer. On applique à la surface de la lentille à traiter une feuille d'aluminium qui sert d'intermédiaire entre elle et une plaque chauffante. On chauffe à environ 2100C pendant 30 s. Résultats Do = 0,0362 D = 0,0835 tD = 0,0473 MELANGE 9 Composition : Substance photochromique [méthyl 3 benzothiazoleJ2 spiro 2' propoxy 3' nitro 6' méthoxy 8' benzopyranne 5% Solvant : benzène 95% Conditions d'application Comme Dour le mélange 8 Résultats Do = 0,0362 D = 0,0706 AD = 0,0464 MELANGE 10 Composition : Substance photochromique : [méthyl 3 benzoxazole 1,3]2 spiro 2' phénoxy 3' nitro 6' méthoxy 8' benzopyranne 5% Solvant benzène 95% Conditions d'application On imprime un papier filtre avec le mélange. Le papier seché est ensuite mis en contact avec la lentille à traiter et l'on chauffe pendant 45 s. à 200 C. Résultats Do = 0,0605 D = 0,1238 AD = 0,0633 MELANGE 11 Composition Substance photochromique [triméthyl 3,4,4, oxazole72 spiro 2' propoxy 3' nitro 5' méthoxy 8' benzopyranne 5 % Solvant : benzène 95% Conditions d'application Comme pour le rélange 10 Résultats Do = 0,0530 D = 0,0942 tD = 0,0412 MELANGE 12 Composition : Substance photochromique : : [hexaméthyl 3,4,5,5,6,6-oxazine 1,3]-2-spiro 2' méthyl 3'nitro 6' méthoxy 8' benzopyranne 5 % Solvant benzène 95 Conditions d'application Comme pour 'e mélange 10 Résultats D0 = 0,0540 D = 0,0757 #D = 0,0217 Bien entendu, la prsete invention ne se limita pas à ceux de ces modes de mise en oeuvre qui ont été décrits cidessus mais englobe toute variante d'exécution ; en particu- lier, il est possible d'effectuer sous vide le transfert ther- nique, ce qui permet d'abaisser la température nécessaire à un tel transfert. En outre, et ainsi qu'on l'aura compris, la profondeur de pénétration de la substance photochromique dans La lentille ophtalmique concernée est indifférente ; ce qui dompte c'est la densité globale de cette substance dans ure telle lentille, prise transversalement, c'est-à-dire globalement parallèlement a l'axe optique de celle-ci.
REVENDICATIONS 1. Procédé pour l'intégration d'une substance photo- chromique à un substrat de base transparent, en particulier lentille ophtalmique, en matière organique, caractérisé en ce outil consiste à opérer par transfert thermique, c'est dire à assurer un contact entre un tel substrat(10) et un matériau photochromique (12) forme au moins pour partie d'une telle substance, et a appliquer de la chaleur audit matériau (12). 2. Procédé suivant la revendication 1, caractérisé en ce de, pour son application au substrat (10) à traiter, le matériau photochromique (12) est porté par un support temporaire (11), en feuille, tel que papier filtre ou papier kraft par exemple. 3. Procédé suivant l'une quelconque des revendications 1, 2, caractérisé en ce que l'application de la chaleur se fait à l'aide d'un outil chauffant (13) en forme, ayant glo balement la configuration du substrat (10) à traiter. 4. Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce que, avant contact avec le matériau photochromique (12), le substrat (10) à traiter est préchauffé à une température inférieure à la température de transfert. 5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on prend comme substance photochromique un spiropyranne. 6. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on prend comme substance photochromique un métal dithizonate. 7. Procédé suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que, après transfert thermique, le substrat (103 traité est lavé à l'aide d'un solvant. 8. Substrat translucide en matière organique, en particulier lentille ophtalmique, rendu photochromique en application d'un procédé conforme à l'une quelconque des revendications 1 à 7. 9. Substrat translucide en matière organiste, suivant la revendication 8 et comportant donc dans sa masse une substance photochromique, caractérisé en ce que celle-ci est rassemblée au voisinage de sa surface.
ESSILOR INTERNATIONAL CIE GENERALE D'OPTIQUE
LE NAOUR-SENE, LYLIANE
EP-0003195-B1
3,195
EP
B1
FR
19,820,630
1,979
20,100,220
new
F16B7
B60R9
B60R9
B60R 9/12
Device for fixing a long article on a rod, particularly on a rod of a luggage carrier for vehicles
1. Member for securing an elongate object (18) on to a bar (14), in particular a bar of roof-rack of a vehicle, perpendicularly to the bar, which is of an elastomer material and comprises a part in the form of a bifurcated member intended to receive the object and a part enabling it to be secured on the bar by gripping action, characterized in this that the member has in its de-mounted condition the form of a block of which each of the end portions is in the form of a bifurcated member (2a-2b) and of which the central part is adapted to be bent about the bar (14), constitutes the securing part on this bar, by partial surrounding of the said bar, and in this that the securing means (15, 16, 17) disposed with respect to the bar (14) on the same side as the object (18), connects the said end portions, which acts on the one hand to hold the central part in a bent condition and on the other hand to secure the member on to the bar (14).
lent tour la fixation d'un objet long sur une galerie de véhicule La présente invention concerne un élément pour la fixation d'un objet long sur une barre, notamment sur une galerie de toit, qui comporte une partie souple permettant sa fixation sur 12 barre par serrage. Pour fixer des objets allongés, par exemple des skis, sur le pavillon d'un véhicule automobile, on utilise des éléments intermédiaires qui se montent soit directement sur les gouttières latérales du pavillon, soit sur des barres transversales déjà fixées sur la pavillon pour le transport des bagages, ces barres pouvant être indépendantes ou faire partie d'une galerie de toit. tes éléments intermzdiaires destinés à. être montés sur des barres transversales déjà en place sur le pavillon comportent en général une partie tubulaire dont la section correspond à celle de la barre. On doit, par suite, prévoir des éle-n.#ents intermédiaires particuliers pour chaque section de barre. On connais déjà un élément pour la fixation d'un objet long sur une barre, notamment sur une galerie de toit, qui comporte une partie souple permettant sa fixation sur la barre par serrage (demande de brevet allemand publiée 2 040 962). Mais, si une certaine tolérance dans les dimensions transversales de la barre est Stpossible, cette tolérance est relativement faible et l'élément ne peut être monté sur une barre de section notablement différente de celle de la barre pour laquelle il a été prévu. ta présente invention a pour but de remédier à cette difficulté et de réaliser un élément qui puisse être utilisé sur toutes les barres habituellement e.mnloyen quelle que soit leur section. L'élément selon l'invention est caractérisé en ce que ltélémentse présente à l'état non monté sous la forme de bloc com.prenant i chacune de ses extrérnités une partie de maintien de l'objet et dans sa portion centrale une partie souple propre à être cambrée au moins cartiellement autour de la barre de façon que ces parties de maintien fassent saillie = rs le haut par rapport à cette barre, et en ce cuti comporte des moyens pour fixer l'u- ne à l'autre les portions d'extrémité de l'élément cambré, ce qui a pour effet d'une part de maintenir la partie souple de l'é- lément à 1 Xétat c2.mBré et d'autre part de fixer cet élément sur la barre. L'élément de fixation selon l'invention n'acquiers sa configuration géométrique opérationnelle qu'au moment de la pose et ne conserve cette configuration que grâce à sa fixation sur la barre. Quelle que soit la section de la barre, les parties de maintien de ltélém.ent font saillie sur le haut par rapport à cette barre et permettent la fixation de l'objet. Un même type d'élément peut donc être monté sur des barres de section différente. Dans un mode de réalisation avantageux de l'invention, l'élément de maintien est constitué par un bloc en matière souple dont chacune des extrémités est en forme de fourchette. Le région médiane du bloc comporte de préférence un évidement s'étendant sur toute la largeur de ce bloc; cet évidement facilite le cambrage de ltélément sur la barre tout en permettant aux extrémités en forme de fourchette d'avoir une épaisseur suffisante pour être relativement rigides. Les portions d'extrémité de l'élément peuvent être munies de trous qui viennent en regard les uns des autres quand l'élément est cambré et permettent le passage d'organes d'assemblage constituant les moyens de fixation des portions d'extrémité de l'élément cambré. On a décrit ci-après, à titre d'exemple non lir#t#tif, un mode de réalisation de l'élément de fixation selon l'invention, avec référence aux dessins annexés dans lesquels La Figure I est une vue en plan de l'élément non monté, La Figure 2 en est une coupe transversale suivant Il-Il de la Figure 1, Les Figures 3 à 5 montrent la mise en place de l'élément sur une barre de support de bagages, La Figure 6 montre un organe d'assemblage, ta Figure 7 montre en perspective l'éîérnent de fixation monté sur une barre de support de bagages, Le Figure 8 montre en plan un objet fixé à l'aide d'éléments selon l'invention, ta Figure 9 montre en plan un sandow de fixation, La Figure 10 est une vue en perspective d'un élément de fixation monté sur une barre et assurant la fixation d'un objet. Tel qu'il est représenté au dessin, l'élément de fixation se présente, quand il n'est pas posé, sous la forme d'un bloc 1, en matière souple, par exemple en caoutchouc, dont chacune des extrémité longitudinales est en forme de fourchette et comprend deux becs 2a et 2b convergeant vers l'extérieur et délimitant une chancrure 3. Chacun de ces becs est évidé extérieurement, de manière à ne laisser subsister qu'une nervure dorsale médiane 4,et sa paroi intérieure est agencée pour être anti-dérapante, en étant, par exemple, munie de striures 5. La région médiane du bloc 1 comporte un évidement 6 s'étendant sur toute la largeur du bloc et sa face extérieure opposée à l'évidement est munie de striures transversales 7, sur une longueur sensiblement égale à celle de l'évidement. Entre cette région médiane et l'une des extrémités en forme de fourchette, le bloc 1 comporte, sur sa face munie de l'évide- ment 6, une cavité 8, dont le fond est renforcé par une plaque métallique 9 et est traversé de deux trous 10. De l'autre côté de sa partie médiane, le bloc 1 ne comporte pas de cavité; il est simplement muni d'une plaque de renforcement métallique 11 et est percé de deux trous 12 symétriques des trous lo par rapport au plan médian transversal du bloc. Enfin, chacune des nervures 4 est percëe d'un orifice 13, à sa base. Pour mettre en place l'élément sous une barre 14 qui peut être, par exemple, l'une des barres transversales d'une galerie de toit ou une barre support de bagages, on le dispose sous cette barre perpendiculairement à elle, de façon que sa région médiane striée 7 se trouve au.contact de la barre (Figure 3). Puis on replie le bloc 1 autour de cette barre de façon que ses extrémités en forme de fourchette soient pratiquement verticales et parallèles l'une à l'autre (Figure 4); cette opération est facilitée par la présence de l'évidement 6. Les trous 10 et 12 se trouvant alignes, on reLie l'une à l'autre les deux portions d'extrémité du bloc 1 à l'aide d'organes d'as- semblage introduites dans ces trous. Dans l'exemple de réalisation représenté au dessin, chacun des organes d'assemblage est constitué par une douille taraudée 15 munie d'une tête cylindrique 15a et dans laquelle peut être vissée une tige filetée 16 solidaire d'un moyen de préhension 17, réalisé par exemple sous la forme d'un papillon. On enfile la douille 15 dans un trou lo, puis dans le trou 12 qui lui fait face de manière que sa tête 15 a vienne se loger dans la cavité 8, en appui sur la plaque 9. Puis on visse la tige 16 dans la douille jusqu'à ce que le papillon 17 se trouve en butée contre la plaque 11. (Figure 5). La réaction élastique du bloc 1 joue le rôle de frein d'écrou et empêche un dévissage intempestif du papillon 17. Dans la pratique, on monte deux éléments la et lb sur deux barres parallèles 14a et l.b, comme on le voit à lc Fiacre 8. Les quatre fourchettes des deux éléments sont parallèles entre elles. Il ne reste plus qu'à disposer dans les fourchettes l'objet 18 à transporter, par exemple une paire de skis, et à fixer cet objet au éléments la et lb par des liens souples et/ou élastiques 19 enangés à travers les orifices 13. On peut, Åa cet effet, utiliser des sandows tels que celui représenté à la Figure 9. Ce sandow est formé par une boucle en caoutchouc 20 dont les deux brins sont fixés à une même tête 21 munie d'un crochet 22 et qui est recouverte sur presque toute sa longueur, à l'état non tendu, par une gaine 23 en matière plastique. On introduit ce sandow7 dans un troul3 et on forme une boucle en faisant passer le crochet 22 entre les deux brins du sandow. Puis on engage le crochet 22 dans un autre trou 13 en faisant passer le sandow au-dessus de l'ob- jet 18, soit conformément à une disposition diagonale, soit suivant une disposition parallèle (Figure 8 - exemples gauche et droit). On voit de la description qui précède qu'un même élément 1 peut être monté sur des barres 14 de section variable. tuais si un élément est destiné à être utilisé avec une barre de section donnée, il y a avantage à ce vue la douille 15 ait une longueur telle que le papillon 17 ne se trouve au contact de l'extrémité de cette douille qu'à partir du moment où les deux extrémités de l'élément sont parallèles; la mise en place de l'élément en est facilitée. Il va de soi que la présente invention ne doit pas être considérée comme limitée au mode de réalisation décrit et représenté, mais en couvre, au contraire, toutes les variantes.
Revendications de brevet 1. Elément pour la fixation d'un objet long sur une barre, notamment sur une galerie de toit, qui comporte une partie souple, f permettant sa fixation sur la barre par serrage, caractérisé en ce que l'élément se présente à l'état non monté sous la forme d'un bloc 1 comprenant à chacune de ses extrémités une partie de maintien de l'objet et dans sa position centrale une partie souple propre à être cambrée au moins partiellement autour de la barre de façon que ces parties de maintien fassent saillie vers le haut par rapport à cette barre, et en ce qu il comporte des moyens 15-16-17 pour fixer l'une a l'autre les portions d'extrémité de l'élément cambré, ce qui a pour effet d'une part de maintenir la partie souple de l'élé- ment à l'état cambré, et d'autre part de fixer cet élément sur la barre. 2. Elément selon la revendication 1, caractérisé en ce que l'e-- f lément de maintien est constitué par un bloc en matière souple dont chacune des extrémités est en forme de fourchette 2a-2b. 3. Elément selon la revendication 2, caractérisé en ce que les becs 2a-2b de la fourchette convergent vers l'extérieur. 4. Elément selon la revendication 2 ou 3, caractérisé en ce que chacun des becs 2a-2b est évidé extérieurement de manière à ne f laisser subsister qu'une nervure dorsale médiane 4. 5. Elément selon la revendication 4, caractérisé en ce que la nervure 4 est munie d'un trou ou orifice 13 pour le passage ou l'accrochage d'un lien de maintien de l'objet sur le bloc. 6. Elément selon l'une quelconque des revendications 2 d S, carac térisé en ce que la paroi intérieure de chacun des becs est anti dérapante. par¯exemp7e en étant munie de striures 5. 7. Elément selon l'une quelconque des revendications 2 a- 5, ca- ractérisé en ce que la région médiane du bloc comporte un évidement 6 s'étendant sur toute la largeur de ce bloc. 2. élément selon la revendication 7, caractérisé en ce que la face extérieure du bloc opposée à I 'évidement est munie de stri- ri- ures transversales 7, de préférence sur une longueur sensiblement égale à celle de l'évidement. 9. Elément selon l'une des revendications précédentes, caractérisé en ce que ses portions d'extrémité sont munies de trous lo- 12 qui viennent en regard les uns des autres quand l'élément est cambré et permettent le passage d'organes d'assemblage l5-la, constituant les moyens de fixation des portions d'extrémité de l'élément cambré. 10. Elément selon la revendication 9, caractérisé en ce que chaque organe d'assemblage est constitué par une douille taraudée 15 dans laquelle peut être vissée une tige filetée la solidaire d'un organe de préhension 17. 11. Elément selon l'une des revendications 2 à 9, et la revendication 10, caractérisé en ce que la douille taraudée 15 est munie d'une tête élargie 15a et en ce que l'une des portions d'e.X- trématé du bloc comporte une cavité 8 pour le logement de cette tête.
AUTOMOBILES PEUGEOT; SOCIETE ANONYME AUTOMOBILES CITROEN
OGER, LOUIS GABRIEL JOSEPH
EP-0003201-B1
3,201
EP
B1
FR
19,820,519
1,979
20,100,220
new
B65D6
B60T11
F15B1, B60T11, B60T17
B60T 11/26, B60T 17/22D
RESERVOIR FOR FLUID
1. Reservoir for fluid with two compartments, notably for hydraulic fluid supply of double master cylinder, comprised of two complementary shells (12, 14) superposed and assembled by sticking, heat-welding and other similar processes, an intermediate partition (16) solid with said shells and extending transversely with respect to the longitudinal axis of the reservoir driving the interior thereof into two compartments (18, 20) each provided with an outlet port (23, 24), at least one of said compartments being also provided with a filling orifices (26) and both compartments being in mutual communication through a transfer duct (22) which projects into each of them and extends in parallel relationship with the surface of the fluid contained in the reservoir and substantially at the height of the maximum level of this surface, the transfer duct itself being comprised of two superposed complementary profiled portions, namely a bottom protion (30) in the general shape of a gutter carried by the bottom shell (14) of the reservoir and a top portion solid with the top shell of the reservoir (12), said portions of the transfer duct defining together a closed outline, characterized in that the bottom portion of the duct is comprised of a component separate from the bottom shell and lies on the bottom of a notch of matching shape provided in the intermediate partition of the reservoir, with provision of a tightness device therebetween, the junction plane of the two portions of the duct coinciding with that of the two shells of the reservoir, in order to permit the assembly of the whole by a single operation.
RESERVOIR A LIQUIDE La présente invention a pour objet un réservoir à liquide à deux compartiments, notamment pour l'alimentation en fluide hydraulique de maîtres-cylindres doubles, ce réservoir étant plus précisément composé de deux parties complémentaires superposées et assemblées par collage, thermosoudage ou tout autre procédé analogue, une cloison médiane solidaire desdites parties et orientée transverscle- ment par rapport à l'axe longitudinal du réservoir partageant l'intérieur de celui-ci en deux compartiments pourvus chacun d'un orifice de sortie, l'un au moins de ces com.r- timents possédant en outre un orifice de remplissage, et les deux compartiments communiquant entre eux par l'intermédiaire d'un canal de transfert qui pénètre dans chacun d'eux et qui court parallèlement au pl.an du niveau de liquide contenu dans le réservoir et sensiblement à hauteur de la valeur maximale de ce niveau. le canal de transfert précité permet au fluide hydraulique de passer de l'un des compartiments du réservoir dans l'autre lorsque lton procède à son remplissage en fluide hydraulique. I1 doit être toutefois conçu de telle manière qu'une quantité suffisante de fluide soit retenue dans chacun desdits compartiments, lesquels sont respectivement reliés aux chambres du slaltre-cylindre double, lorsque le véhicule subit es accélérations ou décélérations élevées, ou encore lorsqu'il stationne sur un terrain en forte perte. Un tel réservoir est notammant décrit par le brevet britannique No. i 316 937, lequel prévoit la mise en place r 'tine t laque déflectrice courant Parallèlement au niveau du liquide et délimitant avec le couvercle du réservoir un passage de section réduite entre les deux compartiments. Le brevet des U.S.A. No. 3 147 596 décrit de son côté, dans le cas d'un réservoir faisant corps avec le maître-cylindre, la mise en place d'un canal de transfert de section circulaire à travers la cloison médiane, ce canal pénétrant dans chacun des deux compartiments du réservoir sensiblement jusqu'en son milieu. Ces réalisations cornues de l'état de la technique présentent toutes l'inconvénient de nécessiter, pour la. misse en place du canal de transfert et pour sa fixation, une ou plusieurs opérations supplémentaires qui ne peuvent qu'influencer défavorablement le ceût de fabrication du réservoir. La présente invention se donne pour but de remédier à cet inconvénient, ceci en concevant le canal de transfert de façon telle que sa mise en place s'effectue aisément et que son immobilisation ne nécessite aucune opération supplémentaire de fabrication. Ce but est atteint, conformément à l'invention, et dans le cas d'un réservoir à liquide du genre défini ci-dessus, grâce au fait que le canal de transfert se compose lui-même de deux portions profilées complémentaires superposées, à savoir une portion inférieure en forme générale de gouttière portée par la partie inférieure du réservoir et une portion supérieure solidaire de la partie supérieure du réservoir, lesdites portions définissant ensemble un profil fermé, et quele plan de j-onction des portions constitutives du canal coïncide au moins approximativement avec celui des parties constitutives du réservoir de manière à permettre l'assemblage du tout au moyen d'une seule et même opération. Selon une autre caractéristique de l'invention, le canal de transfert court le long d'une au moins des parois latérales du réservoir et sa portion supérieure est constituée par la propre paroi latérale de la partie supérieure du réservoir, par la zone marginale de son dessus qui y est adjacente, et par une nervure verticale formée d'une seule pièce avec ladite partie et courant parallèlement à ladite paroi latérale. Selon une autre caractéristique encore de l'invention, la portion inférieure du canal est constituée par un profilé en forme générale de U, dont les ailes orientées verticalement vers le haut sont alignées respectivement avec ladite paroi latérale et avec ladite nervure de la partie supérieure du réservoir. Selon une autre caractéristique encore de l'invention, ledit profilé constitue un. élément distinct de la partie inférieure du réservoir, et il repose sur le fonG d'échancrures de forme correspondante pratiquées dans la cloison médiane du réservoir ainsi que dans des éléments de cloison transversaux formés d'une seule pièce avec la partie inférieure du réservoir ainsi que dat s des éléments de cloison transversaux formés d'une seule pièce avec la partie inférieure du réservoir et jouant ainsi le rôle de consoles. Il suffit dès lors, au moment de l'assemblage du réservoir, de mettre en place le profilé dans les échancrures prévues à cet effet, et de procéder à l'opération d'assemblage proprement dit (par exemple, par thermosoudage au moyen d'un miroir chauffant), tout comme cela serait le cas en l'absence d'un tel canal de transfert ; du fait que le plan de jonction des portions constitutives du canal coïncide avec celui des parties constitutives du réservoir, une seule et même opération suffit pour assem- bler l'un et l'autre. les caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'une forme préférentielle de réalisation, dornée à simple titre d'exemple illustratif, et avec référence aux dessins ci-annexés, en lesquels - la figure 1 représente en élévation latérale un réservoir à liquide selon l'invention, des crevés ménagés à travers la paroi latérale laissant apercevoir certains details de la structure intérieure - la figure 2 est une vue en plan de dessus du réservoir de la figure 1 - la figure 3 est une vue éclatée et partiellement en coupe prise de l'avant du réservoir et montrant ses deux parties constitutives avant mise en place du canal de transfert et assemblage - la figure 4 est une vue en coupe transversale du réservoir une fois assemblé, cette coupe étant prise selon la ligne.IV-IV de la figure 2 ; - la figure 5 est une vue en plan de dessus du canal de transfert ; et - la figtire Q montre en vue perspective et à échelle.agrandie un détail de réalisation de ce canal de transfert, cette vue étant prise selon; la ligne de coupe VI-VI de la figure 5. le réservoir à liquide représenté sur les des- sins est de forme générale triangulaire et se compose de deux parties complémentaires superposées 12 et 14. Ces deux parties du réservoir sont réalisées l'une comme l'autre en. une matière thermoplastique de composition appropriée, et elles comportent chacune, au niveau du plan de jonction X-X, un rebord périphérique en forme de bride 13 ou 15. C'est par.une opération de thermosoudage effectuée au ni. veau du plan X-X entre les rebords 13 et-15 que s'effectue l'assemblage des deux parties constitutives du réservoir. Cette opération peut, par exemple, être exécutée selon la méthode dite du miroir chauffant. On remarquera, à l'examen de la figure 1 des dessins, que le plan de jonction X-X occupe une position oblique par rapport au fond du réservoir ; cette particularité tient au fait que ce réservoir est destiné à être monté sur un maître-cylindre luimême fixé selon une position oblique, en sorte qu'en posi tlon d'utilisation réelle le plan de jonction X-X sera orienté horizontalement, et donc parallèlement au niveau du liquide contenu dans le réservoir. Une cloison transversale 16. dont le tracé si nueux apparaît clairement sur la figure 2, partage l'inté- rieur du réservoir 10 en deux comparti@ents 18 et 20 de capacité sensiblement comparable. Cette cloison médiane 16 est elle aussi formée de deux éléments le cloison superposés solidaires respectivement de la part@@ supérieure 12 et de la partie inférieure 14 du réservoir ; ; comme @e mon- trent les détails rendus apparents par les cre és de na figure 1, le plan de jonction de ces éléments su@@posé@ de la cloison médiane 16 se confond avec celui des constitutives du réservoir, en sorte que la solidarl@@@i@ de ces éléments de cloison s'effectue en même temps et grâce à la même opération de thermosoudage que celle des deux parties constitutives du réservoir. Au terme de ceste opération, la cloison médiane 16 sépare de façon étanche les deux compartiments 18 et 20 l';n de l'autre, ces compartiments ne pouvant plus dès lors communiquer l'un avec l'autre que par l'intermédiaire du canal de transfert 22 ci-après décrit. Une autre cloison 17, de tracé sensiclement semi-circulaire, et raccordée à l'arrière du réservoir par des éléments de tracé rectiligne, délimite à l'in- trieur du compartiment 20 un puits servant au guidage du flotteur d'un dispositif électrique de mesure de niveau 19, d'un type en lui-même connu. Cette cloison 17 est réalisée selon le même principe que la cloison médiane 16, au moyen de deux éléments superposés solidaires des deux parties constitutives du réservoir, ces éléments étant à leur tour solidarisés entre eux lors de l'opération d'assemblage. Un autre dispositif électrique de mesure de niveau 21 peut titre pareille-ent prévu dans l'autre compartiment 18 du réservoir. Deux orifices de sortie 23 et 24 ménagés au fond de la partie inférieure 14 du réservoir permettent aux co- partiments 18 et 20 de communiquer respectivement arec les deux chambres de pression d'un maître-cylindre double sur lequel est monte ce réservoir. Une ouverture de remplissage 25 est d'autre part ménagée dans la partie supérieure 12 du réservoir, cette ouverture qui débouche uniquement dans le compartiment 20 servant au remplissage du réservoir en fluide hydraulique. Lorsque ce dernier est versé à travers l'ouverture de rnplissage 26, il emplit en premier lieu le compartiment/jusqu'au moment où son niveau atteint celui du canal de transfert 22, instant à partir duquel le trop-plein du compartiment 20 s'écoule vers le compartiment 18 qui s'emplit à son tour. L'opération de remplissage est terminée lorsque le niveau du liquide dans les deux compartiments est juste affleurant au fond du canal de transfert 22, ou légèrement au-dessus de celui-ci. le canal de transfert 22 pénètre assez profondément dans chacun des deux compartiments 18 et 20 pour assurer que, en cas de pivotement du réservoir autour d'un axe transversal à l'axe longitudinal du véhicule, par exemple lorsque celui ci stationne sur un terrain en forte pente, ou encore en cas de forte accélération ou décélération du véhicvle, seule une fraction du liquide contenu dans l'un des compartiments 18 ou 20 passe dans l'autre, en sorte qu'il reste toujours dans chacun de ces compartiments un volume de fluide suffisant pour garantir un fonctionnement sur des freins. Conformément à la présente invention, le canal de transfert 22 se compose lui-même de deux portions profilées complémentaires et superposées. Ainsi qu 'il appa ratt aux figures 3 et 4 des dessins, la portion supérieure du canal de transfert est délimitée par la propre paroi latérale 12a de la partie supérieure 12 du réservoir, par la zone marginale 12b du dessus de cette partie du réservoir qui est adjacente à la paroi latérale 12a, et par une nervure verticale 28 formée d'une seule pièce avec ladite partie du réservoir et courant parallèlement à ladite paroi latérale ; cette portion supérieure du canal de transfert se trouve ainsi faire partie intégrante de la partie supé- rieure 12 du réservoir. La portion inférieure 30 du canal de transfert est elle-même conformée à la manière d'une gouttière, et elle est coilstitude par un profilé entre générale deU qui est porté par la partie inférieure 14 du réservoir. Coiimie le montre plus particulièrement la coupe transversale de la figure 4, les ailes de ce profilé 30 sont orientées verticalement vers le haut et elles sont alignées respectivement avec la paroi latérale 12a de la partie supérieure 12 du réservoir (à cet effet, le rebord 13 de la partie supérieure du réservoir est prévu un peu plus large en cet emplacement que le rebord 15 de sa partie inférieure), et avec la nervure 28 précltée. On voit ainsi que les deux portions constitutives du canal de transfert définissent ensem.Ulc un profil fermé, et que le plan de jonction de ces portions constitutives du canal de transfert coïncide avec celui des parties constitutives du réservoir, ce qui permet, ici encore, de les solidariser l'une avec l'autre en même temps que les deux parties du réservoir et au moyen de la même opération d'assemblage, par exemple par thermosoudage. Ainsi constitué, le canal de transfert 22 court le long d'une des parois latérales du réservoir et parallèlement au niveau du liquide qui y est contenu, le fond de ce canal de transfert se situant de préférence légèrement en dessous de la cote maximale de ce niveau. le profilé 30 se présente sous la forme d'une pièce indépendante et rapportée, qui est représentée en vue de dessus a la figure 5 des dessins. Sa longueur est choisie de façon telle que le canal de transfert pénètre largement à l'intérieur des deux compartiments 18 et 20 du réservoir, pour les raisons qui ont déjà été évoquées plus haut. Pour assurer un positionnement correct du profilé 30 le long de la paroi latérale du réservoir, il parait indiqué de former, d'une seulepièce avec la partie inférieure 14 du réservoir, des éléments de cloison transver- saux et verticaux 32 qul jouent en quelque sorte le rôle de consoles ; des échancrures rectangulaires de forme correspondante au périmètre extérieur du profilé 30 sont alors ménagées dans ces éléments de cloison 32 ainsi que acons la cloison médiane 16 du réservoir (voir en particulier figure 3 des dessins). Ces diverses échancrures sont alignées les unes avec les autres et assurent par ailleurs, au moment de l'assemb7age du réservoir, une application uniforme des ailes du profilé 30 contre la paroi latérale 1 2a et contre la nervure 28 sur toute la longueur du cardai de transfei' . Il est d'autre part indiqué, pour assurer un positionnement correct du profilé 30 dans le sens de sa longueur, de le munir d'au moins une paire de brides transversales et parallèles 30a destinées à encadrer et à pincer la cloison médiane 16 du réservoir, par exemple, ou encore un ou plusieurs des éléments de cloison trans- versaux 32. Dans le cas où ce profilé 30 est lui-même réalisé en une matière thermo-plastique, comme le sont les deux parties constitutives du réservoir, il est facile de former ces brides 30a d'une seule pièce avec lui. Comme le montre la figure 6 des dessins, ces brides peuvent porter sur leurs faces en regard des nervures 30b en saillie, par exemple de section triangulaire, lesquelles forment joint d'étanchéité avec la cloison médiane ou avec l'élément de. cloison transversal sur lequel elles prennent appui cet artifice peut contribuer à parfaire l'étanchéité entre les deux compartiments du réservoir au niveau du fond de l'échancrure ménagée dans la cloison médiane 16 pour recevoir le profilé 30. La succession des opérations d'assemblage du réservoir se déduit aisément de la description qui précède la partie inférieure 14 du réservoir étant posée à plat, on met tout d'abord en place le profilé 30 en l'encastrant dans us échancrures prévues à cet effet au sommet de la cloison médiane 16 ainsi que des éléments de cloison transversaux 32, et en prenant soin d'engager les deux brides 30a de part et d'autre de la cloison médiane 16. le profilé 30 étant mis en place, la partie supérieure 12 du réservoir est approchée de la partie inférieure 14 munie de ce profilé 30, et toutes deux sont appliquées de part et d'suture d'une plaque chauffante si l'on recourt à la méthode du miroir chauffant pour réaliser l'assemblage du réservoir. lorsque la température de ramollissement de la matière thermo--plastique constitutive de ces diverses parties est atteinte, la plaque chauffante est rapidement retirée et les deux parties 12 et 14 sont appliquées sous une légère pression l'une contre l'autre afin de les solidariser par thermo-soudage. Du fait que les divers plans de jonction définis ci-dessus sont tous confondus, cette opération permet de solidariser à la fois entre clles les deux parties constitutives du réservoir, les portions inférieure et supérieure de la cloison médiane 16 at de la cloison 17, et enfin les deux portions constitut ves du canal de transfert 22. Ce dernier se trouve ainsi réalisé sans autre opération de fabrication supplémentaire que la mise en place du profilé 30 dans les échancrures prévues à cet effet dans la partie inférieure 14 du réservoir. Il va naturellement de soi que la portée de l'invention n'est pas limitée à la forme de réalisation cidessus décrite, laquelle a été choisie à simple titre d'exemple illustratif, mais qu'elle s'étend au contraire à toutes variantes faciles à concevoir, notamment par substitution de moyens équivalents.
REVENDICATIONS 1. Réservoir à liquide à deux compart.ments, notamment pour l'alimentation en fluide hydraulique de maetres- cylindres doubles, composé de deux parties complémentaires superposées et assemblées par collage, thermosoudage ou tout autre procédé analogue, une cloison médiane solidaire desdites parties et orientée transversalement par rapport à l'axe longitudinal du réservoir partageant l'intérieur de celui-ci en aew, compartiments pourvus chacun d'un orifice de sortie, l'un au moins de ces compartiments possédant en outre un orifice de remplissage, et les deux comme partiments communiquant entre eux par l'intermédiaire d'un canal de transfert qui pénètre dans chacun d'eux et qui court parallèlerent au plan du niveau de liquide contenu dans le réservoir et sensiblement à hauteur de la valeur maximale de ce niveau. caractérisé par le fait que le canal de transfert(2)se compose lui-même de deux portions profilées complémentaires superposées, à savoir une por- tion inférieure (30 )en forme générale de gouttière porte par la partie inférieure (14) du réservoir et une portion supérieure solidaire de la partie supérieure (1 2 )du réservoir, lesdites portions définissant ensemble un profil fermé, et que le plan de jonction des portions constitutives du canal coïncide au moins approximativement avec celui des parties constitutives du réservoir de moulière à permettre l'assemblage du tout au moyen d'une seule et même opération. 2. Réservoir selon la revendication 1, caractérisé par le fait que le canal de transfert court le long d'une au moins des parois latérales du réservoir et que sa portion supérieure est constituée par la propre paroi latérale(12a)de la partie supérieure du réservoir, par la zone marginale de son dessus (12b) qui y est adjacente, et par une nervure verticale (28) formée d'une seule pièce avec ladite partie et courant parallèlement à ladite paroi latérale. 3. Réservoir selon la revendication 2, caractérisé par le fait que la portion inférieure du canal est constituée par un profilé(30)en forme générale de U dont les ailes orientées verticalement vers le haut sont alignées respectivement avec ladite paroi latérale et avec ladite nervure de la partie supérieure du réservoir. 4. Réservoir selon la revendication 3, caractérisé par le fait que ledit profilé (30) constitue un élément distinct de la partie inférieure du réservoir et repose sur le fond d'-éc;!ancrures de forme correspondante pratiquées dans la cloison médiane (16)du réservoir, ainsi que dans des éléments de cloison Aransversaux(32)formés d'une pièce avec la partie inférieure du réservoir et jouant le rôle de consoles. 5. Réservoir selon la revendication 4, caractérisé par le fait que le profilé (30) constituant la portion inférieure du canal est twni d'au moins une paire de brides transversales et parallè1es(3Ca)destinées à encadrer et a pincer la cloison médiane(16)du réservoir et/ou un ou plusieurs des éléments de cloison transversaux(32)afin d'immo- biliser longitudinalement ledit profilé au cours des opérations d'assemblage du réservoir. 6. Réservoir selon la revendication 5, caractérise par le fait que les brides dudit profilé portent sur leurs faces en regard des nervures (30b )en saillie formant joint d'étanchéité avec la cloison médiane ou l'élément de cloison transversal sur lequel elles prennent appui.
SOCIETE ANONYME D.B.A.
COME, PHILIPPE
EP-0003202-B1
3,202
EP
B1
FR
19,811,028
1,979
20,100,220
new
F16L41
F15D1
F15D1
F15D 1/14
SYSTEM FOR TRANSFORMING A TWO-PHASE PRIMARY FLOW INTO SEVERAL SECONDARY FLOWS
1. An apparatus for converting a primary flow of a two-phase fluid into a plurality of secondary flows of two-phase fluid, comprising a tubular body (1), a plurality of radial partitioning walls (3a, 3b, 3c ...) disposed in the tubular body (1) which they divide into as many compartments (10a, 10b, 10c ...) which are separate from each other and whose sections perpendicular to the axis of the tubular body (1) are in the shape of an annular section, said compartments (10a, 10b, 10c ...) opening at the ends of the tubular body (1), and a plurality of outlet conduits (4a, 4b, 4c ...) which are disposed at the same side of one of the ends of the tubular body (1), each of said conduits (4a, 4b, 4c ...) communicating exclusively with one of the compartments (10a, 10b, 10c ...), characterized in that it comprises in combination a hub means (2) which is placed coaxially in the tubular body (1) with which it defines an annular space open at its two ends, said hub means comprising blades (3a, 3b, 3c ...) forming said radial partitioning walls, and flow stabilising means (22) for ensuring rotational symmetry in the distribution of the phases about the axis of the hub means (2) before distribution of the fluid among said outlet conduits (4a, 4b, 4c ...).
DISPOSITIF FOUR TRANSFORMER UN EOULEMENT PRIMAIRE DIPHASIO.UE EN PLUSIEURS ECOULE,,ENTS DIFHASI.QUES SECONDAIRES La présente invention cancerne un dispositif pour transforner un écoulement primaire diphasique, par exemple composé de liquide sature et de gaz libre non dissous dans ce liquide, en plusieurs écoulements secondaires semblables à ltécoulement primaire, dans lequel le rapport du volume de gaz à celui du liquide composant ces écoulements secondaires est de préférence sensiblement égal à celui de I'écou]e- ment primaire. Dans certains domaines techniques, tels que, en particulier mais non exclusivement, le domaine pétrolier, on est conduit à traiter des écoulements diphasiques, par exemple des écoulements composés du mélange d'au moins un liquide sature avec au moins un gaz libre qui, dans les conditions thermodynamiques considérées, ntest pas dissous dans le liquide. Les traitements de ces écoulements diphasiques (en vue par exemple de créer une augmentation de leur pression, la séparation de la phase gazeuse et de la phase liquide, etc...) se font à l'aide d'appareillages qui, généraiement, ont des performances optimales lorsqu'ils traitent des écoulements diphasiques ayant des caractéristiques cor respondant à celles prévues lors de la fabrication de ces apparEil- lages. Parfois, notamment lorsque le débit du fluide à traiter est important, on peut avoir besoin de répartir l1 écoulement primaire en plusieurs écoulements secondaires qui, pour les raisons indiquées plus haut, doivent avoir des caractéristiques, telles que teneur en gaz libre, pression, etc... ,qui sont constantes dans le temps. De préférence, ces caractéristiques doivent etre sensiblement identiques à celles de 'écoulement primaire. L'objet de l'invention est de proposer un dispositif permettant d'Åat- teindre le but indiqué- ci-dessus. L'invention pourra etre bien comprise et tous ses avantages apparaî- tront à ia lecture-de la'description suivante d'un mode particulier de réalisàtion delinvention,illu5tréepar les figures annexées parmi lesquelles - la figure 1 représente schématiquement un-dispositif selon l'invention, vu en coupe axiale, - la figure 2 est la vue de gauche de la figure 1, - la figure 3 est la vue de droite de la figure 1, - les figures 4, 5 et 6 sont des coupes respectivement selon les les lignes IV, V et VI de la figure 1, qui montrent l'évolution de la forme de la section d'un conduit 4c, - la figure 7 est une vue développée montrant un profil possible des pales 3a, 3b... - la figure 8 représente un second profil possible des pales 3a, 3b... - la figure 9 est une vue développée du dispositif selon l'inven- tion, - la figure 10 montre un mode préféré de réalisation de l'inven tion, - la figure 11 illustre en coupe l'organe stabilisateur, et - la figure 12 est une variante de réalisation de la figure 11. Un mode de réalisation du dispositif selon l'invention est schématiquement représenté en coupe sur la figure 1. Ce dispositif comporte essentiellement un corps tubulaire 1, un moyeu 2, des pales 3a, 3b, 3c ... et un ensemble de canalisations de sortie 4a, 4b, c 4c Une des extrémités du corps 1 constitue l'entrée 5 de l'écoulement primaire d'un fluide diphasique à fractionner en plusieurs écoulements secondaires. A cette extrémité, le corps 1 est pourvu de moyens de raccordement, tels qu'une bride de fixation 6 permettant, à de vis ou boulons schématisés en 7 la fixation étanche du dispositif dans le prolongement d'une conduite 8, dessinée en trait interrompu, dans laquelle l'écoulement primaire de fluide diphasique s'effectue suivant le sens indiqué par les flèches F. Le moyeu 2, dont le diamètre extérieur est inférieur au diamètre de alésage du corps 1 est maintenu coaxialement à l'intérieur de cet alésage avec lequel il délimite un espace annulaire. Lorsque cela s'avère nécessaire, le moyeu 2 est, du caté de l'entrée 5, prolongé par une pièce profilée 9 permettant de réduire au minimum les perturbations de l'écoulement du fluide diphasique primaire, lors de son entrée dans le dispositif. Dans le cas représenté, l'alésage du corps 1 et la surface extérieure du moyeu 2 sont cylindriques et délimitent un espace annulaire dont la section droite est constante, mais on ne sortirait pas du cadre de l'invention si l'une et/ou l'autre de ces surfaces était conique et si, en conséquence, la section droite de espace annulaire variait. Des pales, telles que 3a, 3b, 3c et 3à qui sont toutes visibles sur la figure 2 (qui est une vue de gauche de la figure 1), divisent l'es- pace annulaire compris entre le moyeu 2 et I'alésage du corps 1 en compartiments 10a, 10b, 10c, 10d, sensiblement étanches les uns par rapport aux autres et débouchant aux extrémités du corps Ces pales, qui peuvent Étre planes et disposées radialement dans l'es- pace annulaire délimité par le corps 1 et le moyeu 2, ou qui peuvent être préformées comme il sera indiqué ultérieurement, sont fixées par tout moyen appropriés tel que soudure, etc..., soit sur le moyeu 2, soit sur le corps 1, soit encore sur les deux à la fois. Eventuel lement, elles peuvent assurer le maintien en position du moyeu 2 à l'intérieur du corps'1. Le nombre n de pales peut varier en fonction des nécessités. Quatre ont été représentées, à titre d'exemple, sur les figures, mais de façon générale, ce nombre dépend du nombre d'écoulements secondaires que l'on désire obtenir. L'extrémité du corps 1 opposée à l'entrée 5 (figure 1) est obturée par un couvercle 11 fixé sur le corps 1 par exemple par des vis ou des boulons 12 coopérant avec une bride de fixation 13 du corps 1. Ce couvercle peut également assurer le maintien en position du moyeu 2, par exemple, au moyen d'une vis de fixation schématisée en 19. Le couvercle 11 est pourvu d'orifices 14a, 14b, 14c ...en nombre égal au nombre de pales et il est positionné de telle sorte que chaque orifice communique exclusivement avec l'un des compartiments délimité par deux pales consécutives. De préférence, chacun de ces orifices a la forme d'un secteur annulaire de même section que le compartiment avec lequel il communique, cette section étant mesurée selon un plan perpendicu laire à l'axe longitudinal du corps 1. Chaque orifice 14a, 14b... du couvercle 11 communique exclusivement avec un conduit tel que 4a, 4b, 4c... fixé sur le couvercle 11. En s'éloignant du couvercle 11, chacun de ces conduits a une section dont la valeur de la surface reste de préférence constante mais dont la forme se modifie, comme le montrent les figures 4, 5, 6 qui sont des coupes selon les lignes IV, V et VI de la figure 1. Ces conduits, tous visibles sur la figure 3, qui est une vue de droite de la figure 1, peuvent être raccordés à des canalisations telles que 15, 16, 17... représentées en traits interrompus P' que le dispositif selon I1 invention alimente en fluide diphasique. Le fonctionnement du dispositif est simple. En pénétrant dans l'espace annulaire délimité entre le moyeu 2 et le corps 1, l'écoulement primaire de fluide diphasique est divisé en autant d'écoulements diphasiques secondaires qu'il y a de compartiments îOa, 10b, 10c ... et chacun de ces écoulements secondaires est dirigé vers l'une des canalisations d'utilisation 15, 16, 17... par l'un des conduits correspondants 4a, 4b, 4c Lorsque l'écoulement primaire à l'entrée 5 du dispositif a une vitesse axiale très grande par rapport à la vitesse de rotation, ou lorsque la vitesse de rotation est sensiblement nulle, les pales 3a, 3b, 3c ... seront avantageusement des pales planes placées radialement et profilées pour ne pas perturber l'écoulement, comme le montre 1o figure 7 qui est une vue développée du moyeu 2 portant les pales. Lorsque la vitesse V de l'écoulement du fluide diphasique à l'entrée du dispositif a une composante axiale V et une composante rotation x nelle Q (vitesse de giration mesurée en radian/seconde), le profil de chaque pale pourra ou non être gauchi pour que, en tout point du bord d'attaque, l'angle a d'inclinaison de la pale (fig. 8) satis fasse à la relation tg Q = VQ R , R étant la distance du point consi Vx deré à l'axe du dispositif. Eventuellement, comme le montre la figure 9, les pales pourront avoir un profil dont le rayon de courbure décroît de l'entrée vers la sortie. Les canalisations 4a, 4b, 4c et 4d pourront être préformées pour que leurs axes au niveau du couvercle 11 soient sensiblement parallèles à l'angle que forment les pales avec lXaxe du dispositif. Le-mode de réalisation du dispositif selon l'invention illustré par les figures 1 à9 permet de transformer un écoulement primaire diphasique en plusieurs écoulements secondaires qui auront une teneur en gaz libre Feu différente de celle de l'écoulement primaire, lorsque la distribution des phases a une symétrie de révolution autour de l'axe de l'écoulement primaire à l'entrée du corps 1. Dans tous les autres' cas, les teneurs en gaz libre des écoulements becondaires seront différentes. Pour éviter cet inconvénient, il est préférable d'utiliser un ensemble de stabilisation de la distribution des phases de l'écoulement primaire qui, sur la figure 10, est indiqué par la référence 20. Cet ensemble comporte essentiellement une tubulure d'admission 21, un élément stabilisateur 22 et éventuellement un organe 23 adapté à augmenter la pression du fluide diphasique avant son introduction dans le corps 1. Dans l'exemple représenté, la tubulure d'admission 21 est une tubulure coudée selon un rayon de courbure de grande dimension, afin de ne pas introduire. de perte de charge importante dans l'écoulement primaire. L'organe stabilsateur 22 peut être de tout type connu et a pour but de maintenir sensiblement constante la teneur en gaz libre dans l'écoulement primaire, ou au moins d'empêcher que cette teneur ne subisse des variations rapides. A titre d'exemple, cet organe stabilisateur pourra être du type pompe hélico-axiale, telle que l'organe de pompage pour fluide diphasique décrit dans la demande de brevet français Na 2 333 139. Brièvement, et comme on peut le voir sur la figure 11, cet organe stabilisateur comporte une pluralité de moyeux 24 solidaires en rotation d'un arbre 28 entraîné par un moteur 32 (figure 10) dont la vitesse de rotation est de préférence ajustable de façon continue. Chacun des moyeux 24 porte des pales 25 dont le rayon de courbure ainsi que l'angle formé par l'axe de rotation et la tangente eu profil de chaque pale decroissent dans le sens d'écoulement du fluide diphasique. Entre les différents étages sont intercalés des redresseurs comportant des pales 26 solidaires du carter 33 du stabilisateur 22 et qui sont également solidaires d'un moyeu 27 de forme tubulaire. L'arbre 25 traverse tous les moyeux 27 dont certains au moins constituent également des paliers de roulement de l'arbre 28 avec, si nécessaire, interposition de rou- lements à billes (non représentés sur les dessins). Entre l'organe stabilisateur 22 et l'entrée du dispositif est interposé un organe de pompage 23 dont le but est d'augmenter la pression du fluide diphasique après stabilisation, pour compenser les pertes de charge. Cet organe de pompage comporte un moyeu 29 qui porte des pales 30 dont le profil, adapté à augmenter la pression du fluide diphasique, est du type de celui décrit dans la demande de brevet français citée plus haut. Ce moyeu 29 est entraîné en rotation par un arbre moteur qui dans le cas illustré par la figure 11 est l'arbre 28 mais peut également être un arbre différent 31 entraîné par un second moteur non représenté, pouvant avoir une vitesse variable. Pendant le fonctionnement, la vitesse de rotation du ou des arbres moteurs est ajustée pour obtenir les meilleurs résultats, en fonction des conditions d'écoulement du fluide diphasique. Des modifications pourront être apportées sans pour autant sortir du cadre de la presente invention. Par exemple, la répartition des pales 3a, 3b, 3c ... sur le moyeu 2 pourra être faite en fonction du débit relatif de chaque écoulement secondaire par rapport.à l'écoulement primaire. Ainsi, ces pales peuvent titre régulièrement réparties lorsque les écoulements secondaires ont meme débit, mais l'écartement angulaire entre deux pales consécutives peut entre augmenté pour obtenir un débit plus important de ltécculement secondaire qu'elles délimitent, ou diminué dans le cas contraire.
REVENDICATIONS 1. - Dispositif pour transformer un écoulement primaire de fluide diphasique en plusieurs écoulements secondaires de fluide diphasique, caractérisé en ce qutil comporte un carter tubulaire, un moyeu placé coaxialement à l'intérieur de ce carter avec lequel il définit un espace annulaire ouvert à ses deux extrémités, une plu alité de pales réparties dans l'espace annulaire qu'elles divisent en autant de compartiments distincts les uns des autres dont les sections perpendiculaires à I'ae du carter ont une forme de secteur annulaire, ces espaces débouchant aux extrémités du carter, et une pluralité de conduits placés diun même côté de l'une des extrémités du carter, chacun de ces conduits communiquant exclusivement avec l'un des compartiments. 2. - Dispositif selon la revendication 1, caractérisé en ce que lesdits conduits sont solidaires d'un couvercle s'adaptant à ltextrémité du carter, la communication entre les compartiments et les conduits étant assurée par des orifices pratiqués dans le couvercle. 3. - Dispositif selon la revendication 2, caractérisé en ce que la section droite d'un conduit au niveau du couvercle est sensiblement identique à la section droite du compartiment avec lequel il communique. 4. - Dispositif selon la revendication 3, caractérisé en ce que la section du conduit est modifiée jusqu'à devenir circulaire lorsqu'on s'éloigne du couvercle. 5. - Dispositif selon la revendication 1, caractérisé en ce que lesdites pales sont régulièrement réparties dans espace annulaire. 6. - Dispositif selon la revendication 1, caractérisé en ce que les pales sont planes et disposées radialement dans espace annulaire. 7. - Dispositif selon la revendication 1, caractérisé en ce que les pales ont un profil dont le rayon de courbure diminue dans le sens de I'écoulement du fluide diphasique à l'intérieur du carter. 8. - Dispositif selon la revendication 7, caractérisé en ce que la tangente au profil d'une pale fait avec l'axe du carter un angle qui diminue dans le sens d'écoulement du fluide diphasique. 9. - Dispositif selon une des revendications précédentes, caractérisé en ce qu'il comporte des moyens stabilisateurs adaptés à empêcher les variations de la teneur en gaz libre de llécoulement primaire, ces moyen.sétant;fixés.au carter du coté opposé aux conduits. 10. - Dispositif selon la revendication 9, caractérisé en ce qui comporte un organe adapté à élever notablement la pression du fluide diphasique de l'écoulement primaire, cet organe étant interposé entre les moyens stabilisateurs et le carter. 11. - Dispositif selon la revendication 9, caractérisé en ce que les moyens stabilisateurs sont du type pompe pour fluide diphasique. 12. - Dispositif selon la revendication 10, caractérisé en ce que l'organe élevant la pression est une pompe hélico-axiale pour fluide diphasique.
INSTITUT FRANCAIS DU PETROLE
ARNAUDEAU, MARCEL
EP-0003203-B1
3,203
EP
B1
FR
19,820,714
1,979
20,100,220
new
H04B7
H04B17, H04B7
H04B17
H04B 17/00
METHOD AND ARRANGEMENT FOR MEASURING DISTORTIONS CAUSED BY THE TRANSMISSION MEDIUM IN WIDEBAND DIGITAL RADIO LINKS
1. A method for measuring the distortions imposed by the propagation medium to signals transmitted in a determined frequency band, by a digital microwave link, characterized in that it comprises the steps of measuring the average power respectively received in a plurality of elementary frequency bands distributed within said transmission band and belonging to said band, and subtracting the measured values from the theoretical powers pertaining to the respective elementary bands.
¯:rocédé et dispositif pour mesurer les distorsions dues au eu de propagation dans les faisceaux hertziens numériques . grande capacité. Ia présente invention concerne un procédé pour mesurer l'af aiblissement sélectif exercé par le milieu de propagation sur in faisceau hertzien numérique, ainsi qu'un dispositif pour la ase en oeuvre de ce procédé de mesure. Les évanouissements qui apparaissent dans le milieu de propagation dtun faisceau hertzien se traduisent è la réception par une réduction du niveau du champ reçu. Dans le cas d'un faisceau hertzien numérique à grande capacité, la bande de fréquence transmise est très large, et la profondeur d'évanouissement varie en fonction de la fréquence à l'intérieur de la bande transmise. Ceci entrée des distorsions d'amplitude et de phase qui interrompent la liaison bien que le niveau du champ reçu puisse 8trie globalement suffisant. L'invention vise donc un procédé pour mesurer les distorsions lues au milieu de propagation de manière à fournir les informations nécessaires à une correction appropriée. L'invention a pour objet un procédé pour mesurer l'influence du milieu de propagation sur des signaux transmis, dans une bande ie fréquence déterminée, par un faisceau hertzien numérique, aractérisé par le fait qu'on mesure la puissance moyenne respectivement reçue dans une pluralité de bandes de fréquence élémentaires réparties à l'intérieur de ladite bande de transmission et on soustrait les valeurs mesurées des puissances théoriques relatives aux bandes élémentaires respectives. l'invention utilise le fait que le signal numérique brassé (scramblé) qui module la porteuse hyperfréquence est aléatoire ou semi-aléatoire, ce qui donne statistiquement un spectre, par exemple de type sin x/z, et que les variations du milieu de propagation sont relativement lentes. Dans ces conditions, on pourra déterminer les puissances moyennes reçues dans les bandes élémentaires sur une durée à la fois très grande par rapport à l'intervalle de temps d'un élément du signal numérique, et faible par rapport à la vitesse des variations du milieu. Comme on connntt par ailleurs le spectre de la porteuse modulée par le signal numérique en propagation normale (sans évanouissement), il est facile de déduire par soustraction la caractéristique affaiblissement/fréquence. La connaissance de cette caractéristique peut ensuite servir de base à une correction qui compense les distorsions dues au milieu. l'invention sera bien comprise à la lecture de la description suivante, faite en se référant au dessin annexé, sur lequel La figure 1 illustre sous la forme de courbes le procédé de mesure selon l'invention, et La figure 2 représente sous forme de schéma par blocs une partie d'une station de réception hertzienne équipée d'un dispositiS de mesure selon l'invention. On va tout d'abord décrire le principe du procédé de mesure selon l'invention en se référant à la figure 1, où la fréquence (en MEM) est portée en abscisse et la densité spectrale (en dB) est portée en ordonnée. Dans une liaison hertzienne numérique, le signal numérique qui module la porteuse hyperfréquence est brassé (scramblé) et est par conséquent aléatoire ou semi-aléatoire. Il en résulte que le spectre de la porteuse modulée est normalement du type sin x/x. La courbe A représente un tel spectre de fréquence. Dans le cas d'une transmission à un débit de 140 Mbits/s, on aura par exemple un spectre centré sur 140 EEz (fréquence intermédiaire de la station de réception) et une bande passante de 50 :Ez pour une modulation à huit états de phase. Pour déterminer les distorsions dues aux phénomènes d'évanouis- sement, on découpe la bande passante en bandes élémentaires, par exemple en 40 bandes de 1,25 MHz chacune, et on mesure la puissance reçue dans chacune des bandes élémentaires. La durée totale de la mesure doit titre définie en fonction de la rapidité d'évaluation des phénomènes d'évanouissement. On estime en général que la vitesse maximale d'évolution est de 100 dB/s, ou 1 d3/10 ms. On peut alors choisir une durée totale de mesure de l'ordre de quelques millisecondes, par exemple de 5 msO Dans le cas où l'on effectue le découpage de la bande passante en 40 bandes élémentaires, cela donne à peu près 0,1 ms par mesure individuelle. Avec un débit de 140 Mbits/s, cette durée de 0,1 ms représente 14 000 bits. Compte tenu du brassage du signal numérique transmis, ce nombre est suffisant pour que la mesure de la puissance reçue dans une bande individuelle ait une bonne pre- cision. On obtient ainsi 40 valeurs de mesure qu'on a réunies par la courbe B de la figure lo Sur cette figure 1, l'aire de la zone hachurée représente la puissance reçue dans la bande élémen- taire correspondante. Si ensuite on soustrait ces valeurs de mesure des valeurs théoriques correspondantes, telles qu'elles peuvent titre définies à partir de la courbe A, on obtient 40 valeurs à partir desquelles on peut déduire les caractéristiques d'une courbe C représentant, en quelque sorte, la courbe de transfert instantanée du milieu de propagation, si l'on considère celui-ci comme un quadriptle. Ces caractéristiques sont ensuite utilisées pour commander un dispositif de correction de telle manière que sa courbe de transfert soit constamment duale de la courbe C. On se réfère maintenant à la figure 2 qui représente une partie d'une station de réception hertzienne équipée d'un dispositif de mesure fonctionnant suivant le procédé décrit plus haut. La figure 2 ne montre que les parties hyperfréquence et fréquence intermédiaire (F.I.) de la station de réception. Cette station comprend, de façon classique, une antenne 1, un filtre passe-bande de réception 2, un mélangeur 3 auquel est relié un oscillateur local 4, un préamplificateur 5 et un amplificateur F.I. 6 à contrtle automatique de gain. le dispositif de mesure selon l'invention, désigné dans son ensemble par la référence 10, est monté à la sortie de l'amplificateur 6. Il comprend à son entrée un filtre il à large bande centré sur la fréquence intermédiaire, soit 140 MHz dans l'esem- ple décrit. le signal filtré est appliqué à un analyseur de spectre comprenant les éléments 12 à 19 qu'on va décrire plus en dé tail ci-après. le signal filtré est appliqué à une entrée du mélangeur 12 dont l'autre entrée reçoit d'un synthétiseur de fréquences 13 un signal de fréquence déterminée. le synthétiseur est commandé par un séquenceur de balayage 14 de manière à fournir successivement des fréquences séparées par un pas de 1,25 BE sur une plage de 50 MHz. le signal issu du mélangeur 12, dont la fréquence est égale à la différencie des fréquences entrantes, est appliqué à un filtre passe-bande 15 ayant une largeur de bande de 1,25 MEs, et on obtient ainsi le découpage en bandes élémentaires décrit ci-dessus. On peut utiliser par exemple un filtre 15 centré sur 70 MHZ, auquel cas le synthétiseur délivrera des fréquences s'étageant de 185 à 235 MHz. le signal filtré, après amplification dans un amplificateur approprié 16, est appliqué à un détecteur de niveau 17, dont la sortie est reliée à un intégrateur 18 qui effectue l'intégration sur la durée de mesure prévue, 0,1 ms dans 1' exemple décrit. L'intégrateur 18 fournit ainsi un signal représentatif de la puissance moyenne sur une bande élémentaire donnée, lequel signal, après passage dans un amplificateur logarithmique 19, est appliqué à l'une des entrées d'un amplificateur différentiel 20. l'autre entrée de l'amplificateur différentiel 20 est reliée, par l'intermédiaire d'un convertisseur numérique-analogique 21, à une mémoire 22 dans laquelle sont inscrites les puissances théoriques, telles au'on peut les déduire de la courbe A de la figure 1, pour les différentes bandes élémentaires. il faut noter à ce sujet que le spectre représenté par la courbe A n'est pas strictement en sin x/x, car il faut prendre en compte les corrections apportées par les différents filtres (filtre 2, filtre 11). La mémoire 22 délivre successivement les puissances relatives aux différentes bandes élémentaires également sous la conmande du séquenceur 14, de manière que la valeur théorique et la valeur mesurée appliquées à l'amplificateur 20 concernent bien la m8me bande élémentaire. Pinalement, la tension délivrée par l'amplificateur 20 représente l'afQaiblissement dA au milieu de propagation sur une bande élémentaire donnée. l'amplificateur 20 fournit ainsi au total 40 valeurs de mesure. D'autre part, le séquenceur 14 fournit sous forme codée les fréquences auxquelles sont relatives ces valeurs de mesure, ce qui permet de calculer les caractéristiques de la courbe a de la figure 1. Ces informations sont avantageusement fournies à un dispositif de correction (non représenté) monté par exemple à la sortie de l'amplificateur F.I. 6 et conçu pour compenser les distorsions dues au milieu de propagation.
Revendications de brevet 1. Procédé pour mesurer les distorsions imposées par le milieu de propagation à des signaux transmis, dans une bande de fréquence déterminée, par un faisceau hertzien numérique, caractérisé par le fait qu'on mesure la puissance moyenne respectivement reçue dans une pluralité de bandes de fréquence élémentaires réparties à l'intérieur de ladite bande de transmission et on soustrait les valeurs mesurées des puissances théoriques relatives aux bandes élémentaires respectives. 2. Dispositif pour mesurer les distorsions imposées par le milieu de propagation à des signaux transmis dans une bande de fréquence déterminée par un faisceau hertzien numérique et reçus par une station de réception hertzienne, caractérisé par le fait qu'il comprend un analyseur de spectre (12-193 relié à la sortie de l'amplificateur à fréquence intermédiaire (6) de la station de réception, un séquenceur de balayage (14) commandant ledit analyseur de manière que l'analyseur délivre successivement la puissance moyenne du signal reçu dans différentes bandes de fréquence élémentaires réparties à l'intérieur de la bande de transmission, une mémoire (22) dans laquelle sont enregistrées les puissances théoriques relatives aux différentes bandes élémentaires, ladite mémoire étant également commandée par le séquenceur (14), et un amplificateur différentiel (20) dont les entrées sont reliées à la sortie de l'analyseur de spectre (12-19) et à la mémoire (22).
SOCIETE ANONYME DE TELECOMMUNICATIONS
FRANCOIS, RENE; François, René
EP-0004844-B1
4,844
EP
B1
EN
19,831,130
1,979
20,100,220
new
B29C1
B29F1
B29C45, B29C33, B29C41, B29B13, A61C13, B22C9, B22C23
B29C 33/38M2, L29C33:52, L29C539:00, K61C13:16, B22C 9/04, B22C 9/04A, B22C 23/00, L29C535:08, B29C 45/37
APPARATUS FOR MANUFACTURING PLASTIC PRODUCTS
A method for manufacturing a plastic product comprising the steps of placing a wax model in a flask, pouring plaster into the flask, heating the flask to melt the wax model, flowing out the melted wax, injecting plastic material and taking out a plastic product when the plastic material has become solid. This method is particularly advantageous in manufacturing an industrial proto-type model, artificial teeth, and the like which have to be made precisely and economically. An apparatus for carrying out the method is also disclosed.
METHOD AND APPARATUS FOR MANUFACTURING PLASTIC PRODUCTS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method and apparatus for manufacturing a plastic product, such as industrial prototype models and false teeth. 2. Prior Art In general, a plastic product to be prepared individually such as an industrial proto-type model and a piece of artificial teeth has been manufactured by means of a metal molding. More specifically upper and lower moldings conforming to the shape of the product to be manufactured have to be prepared.. These moldings are pressed together to yield a desired hsape to the plastic material injected therebetween. However, these tnoldings are limited in terms of their expensiveness, impreciseness, or difficulty of modification. For example, metal-moldings are known to be very expensive; and both of them are not easy to modify the shape once they are shaped. Therefore, simple and precise substitute for such prior art molding has been wanted for a long time. SUMMARY OF THE INVENTION Accordingly, it is the primary object of this invention to provide a method for manufacturing plastic product economically and precisely. It is another object of this invention to provide a method for manufacturing a plastic product by using a wax model which allows any modification on the shape very easily. It is still another object of this invention to provide an apparatus which is specifically designed to be used in the method of this invention. It is still another object of this.invention to provide an apparatus having a temperature controlling equipment which substantially saves the time to be involved in.the manufacturing process. -- - - The method and apparatus of this invention may be used for a variety of purposes including industrial proto-type models, artificial teeth, table wares, trays and the like. In keeping with the principles of this invention, the objects are accomplished by a unique process comprising the step of placing a model made of wax in a flask, pouring plaster into the flask, heating the model after the plaster having coagulated until the model is melted, removing the melted wax out of the flask, injecting plastic material into the .space formed by the removal of the melted wax, cooling off the plastic material until it becomes solid. BRIEF DESCRIPTION OF THE DRAWINGS FIGURE 1 shows a persepctive view of a plastic product to be manufactured by this invention; FIGURE 2 shows a perspective view of a flask of an embodiment of the apparatus of this invention; FIGURE 3 shows a cross-section view of a lower portion. of the flask of the embodiment with a wax model mounted therein FIGURE 4 through 7 show a vertical cross-sectional view of the apparatus for the illustration of the process of this invention; FIGURE 8 shows a plan view of a lower portion of a flask with a wax model mounted therein of a second embodiment o this invention; FIGURE 9 shows a perspective view of the apparatus put all together of the second embodiment; and FIGURE 10 shows an exploded view of the apparatus of the second embodiment. DETAILED DESCRIPTION OF THE INVENTION First, referring to Figures 1 though 3, which show. the basic structure of an apparatus of an embodiment of this invention, a wax model 1 having an identical size and shape to a plastic product a to be manufactured and a flask 2 comprising upper and lower portions 2a and 2b are prepared. The flask 2 may be disassembled into top and bottom lids 11 and side frames 12. These parts are to be fastened together into an integral unit by means of fasteners8, typically, bolts 13 and nuts 14. Plastic injection ports 4 are formed in the side frames 12, thereby allowing melted wax to flow out through the ports 4. There is no restriction upon the number of ports 4 formed. However, in cases where there are two or more ports 4, all ports 4 except the-one used for injection of the plastic have to-be tightly sealed by means of plugs I S during injection of the plastic. Openings 9 for in-jecting plaster are formed in the top of the upper flask portion 2a. Plugs 16 are removably installed in these openings 9. The wax model 1 is fixed in place on the inside bottom- surface of the lowpr flask portion 2b.. Plastic injection gates 5 are formed-with wax extending from the wax model 1 to the plastic injection ports 4. A cooling pipe 6 is accommodated inside the lower flask portion 2b so that both ends of said pipe 6 connect with openings 7 provided in the side of the flask 2. The upper flask portion 2a is set on top of the lower flask portion 2b, and the two portions 2a and 2b are fastened together by means of fasteners 8 as shown in Figure 2. The wax model 1 is to be fixed in place by having its lower end embedded in superhard plaster bed 3 disposed on the inside bottom surface of the lower portion .2b (see Figure 4). The wax model 1 can also be made of a -mixture of wax and soft plastic. The flask 2 is formed by setting the upper portion 2a on top of the lower portion 2b and fastening the two portions together by means of fasteners 8 as shown in Figure 2 in such a manner that the flask 2 is pressure resistant. Now specifically referring to Figure 3 showing the wax model 1 mounted in the lower portion falsk 2b, plastic injection gates 5 are formed with wax,- said gates 5 extending from the wax model 1 to plastic injection ports 4 provided in the side frames 12 of the flask 2. A cooling pipe 6, both ends of which are open to the air through apertures 7 at the upper edge of the frame 12 of the lower portion flask 2b, is equipped inside the flask 2 (also- see Figure 4). The cooling pipe 6 is so made as to be pressure and heat resistant. - It is of course possible to have two or more cooling pipes in the flask 2. Now referring to Figures 4- through 7, which are for the illustration of the method of this invention, the steps used in the method are visually shown. First, the wax model 1 is placed in the flask 2 and the flask 2 is fastened tightly as mentioned above. Plaster is poured into the flask 2 through openings 9 to fill up inside of the flask 2 whereby the wax model 1, cooling pipe 6 and gates 5 are enclosed in the plaster 10 as shown in Figure 5. When the plaster 10 has hardened,-the flask 2 is heated so that the wax inside thereof is melted. This stage is shown in Figure 6. Then the melted wax is allowed to flow out through the ports 4 and is washed out of the flask 2 with hot water. The flask 2 may be heated by circulating hot water or steam thru the cooling pipe 6. The flask is then cooled by circulating cold water through the cooling pipe 6. Referring to Figure 7, one of the two plastic injection ports is tightly sealed and the flask 2 is turned on its side such that the open port 4 is at the top. Then softened plastic material such as acrylic resin, polycarbonate, polyamid resin, styrene resin, polycerethane resin and polyacetol resin is injected through such open port 4 with an injector. In this step, it is advisable to apply some plastic releasing agent into the flask before the softened plastic material is injected -thereby expediting the process of taking out.the plastic product 1 out of the plaster 10. When the plastic material has become solid to form the plastic product a, the flask 2 is disassembled and the product 1 is obtained by removing the plaster 10. Such product is to be polished by a known method.. referring to Figures 8 through 10,-showing a second embodiment of this invention, a full-denture is to be manufactured according to the concept of this invention. A wax model 21 of a full denture is mounted in a lower flask 22 comprising a bottom plate 22a and a lower collar 22b. The wax model 21 is provided with an injection gate 26 extending therefrom to an injection port 24 and a discharging gate 27 extending therefrom to a discharging port 25 as shown in Figure 8; both gates 26 and 27 are made of wax. Further, an upper flask 23 comprising an upper collar 23b and a top plate 23a are put into place such that the upper and lower flask form a complete flask, which is tightly fastened together by means of fasteners 28 as shown in Figures 9 and 10. Such flask is preferably designed 2 to have a pressure resistance of 1000 - 1500 kg/cm . The upper and lower collars 23b and 22b are provided with indents therein so that an injection port 24 and a discharging port 27 in the opposite side. At the discharging port 27, there is equipped a seal 31 which is to hold plastic material to be in jected into the flask. The seal 31 is preferably provided with an a escape 32, whereby any remaining air in the flask can be re moved therethrough. When the flask is fastened together, plaster is poured into the flask through openings 29. The openings 29 are there rafter sealed with a stopper 30. The plaster may be poured to fill up the flask by using a vacuum sucking method or a vibration.method or any ordinary manner. The plaster thus poured into the flask is left for hardening. After the plaster has become solid, the flask is heated until the wax model 21 is melted. The melted wax is removed through the discharging gate 27 by pouring hot water into the injection gate 26. The, a plastic releasing agent is injected into the injection port 24 to fully cover the inside surface of the plaster so-that a plastic product to be manu factured-in the plaster molding may be taken out easily. Before injecting plastic material, the flask is turned over its side such that the injection port 24 is positioned at the top and the discharging port 25 with the seal 31 at the bottom. Then, softened plastic material is injected into the flask. The plastic material is preferably injected at a speed about 0.01 - 10/sec., under inside pressure of 30 - 1200 keg/ 2', with holding pressure of 0.05 - 60/sec. Further, the size of the injection gate 26 is preferably 0.5. - 20 0 mm and the size of the air escape is 0.1 - 5 mm. When the plastic material has become solid, a plastic product is ready to be taken out of the plaster.
1. A method for manufacturing aplastic product comrpising the steps of: (a) preparing a model made of a material selected from the group consisting of wax, soft plastic and the combinatic thereof, said model having a shape identical to thàt of the product, (b) placing the model in a flask, (c) pouring plaster into the flask such that the model is totally embedded in the plaster, (d) heating the flask after the plaster has hardened until the model is- melted and causing the melted model to flow out of the flask, (e) injecting plastic material into the space previously occupied by the model, and (f) taking out a plastic product from the plaster after the plastic material has become solid. 2. A method for manufacturing a plastic product according to Claim 1, further comprising between the steps of (d) and (e), the step of cooling the flask. 3. A method for manufacturing a plastic product according to Claim 1, further comprising, between the steps of (d) and (e), the step of applying a plastic releasing agent inter the flask 4. A method for manufacturing a plastic product according to Claim 1, wherein the step (d) of causing the melte model to flow out of the flask is carried out by flushing hot water into the flask. 5. An apparatus for manufacturing a plastic product comprising a flask, wherein: said flask has an upper portion and a lower portion separable from each other, said upper and lower portions are provided with at least one opening for injecting.plastic material, said upper portion is provided with at least one opening for pouring plaster, and said upper and lower portions are equipped with means for tightly fastening said portions together. 6. An apparatus for manufacturing a plastic material according to Claim 4, wherein: said upper and lower portions are further divided into a plate and a collar respectively such that said plates constitute a top and bottom cover and said collars constitute a side frame. 7. An apparatus for manufacturing a plastic product according to Claim 4, wherein: said flask is provided with a pipe for circulating temperature controlling substance.
KOGURE, YAMATO
KOGURE, YAMATO
EP-0004859-B1
4,859
EP
B1
DE
19,810,812
1,979
20,100,220
new
C08J3
C08K3, C08L77, C09D5, C09D3
C08G69, C09D5, C08J3, C08K3, C09D177
C08J 3/12+L77/00, C08G 69/46, C09D 177/00, C08K 3/36+L77/00
PROCESS FOR PRODUCING TRANSPARENT COATING POWDERS FROM COPOLYAMIDES AND THEIR USE FOR THE COATING OF METALLIC OBJECTS
Improved process for preparing transparent coating powders from copolyamides ground into powder at a low temperature. These copolyamides contain at least 30% by weight of lauric lactam, as well as at least 10% by weight of aliphatic dicarboxylic acid groups containing from 4 to 12 carbon atoms and equivalent remains of aliphatic diamines with lateral chains or cyclic diamines containing from 4 to 12 carbon atoms; these copolyamides are obtained by hydrolytic lactamic polymerization. With a simplified method transparent powders are obtained which are particularly appropriate for coating metal pieces with a transparent coat: for this purpose, from 0.01 to less than 0.15% by weight of silicic acid in the form of powder, is added to the copolyamides before or after the grinding; this pulverulent silicic acid is obtained by grinding and should have a surface of 380 +/- 30 m<s2>s/gr (measured according to the BET method), and the primary particles should have an average diameter of 7 nm; the silicic acid is obtained by precipitation, having already a surface of 190 +/- 20 m<s2>s/gr and the average size of the primary particles being 18 nm. After grinding, the powder is dimensioned to the desired size of particles.
Verfahren zur Herstellung von transparenten Beschichtungspulvern aus Copolyamiden Die Erfindung betrifft ein Verfahren zur Herstellung von transparenten Beschichtungspulvern aus bei tiefen Temperaturen zu Pulvern gemahlenen Copolyamiden, die mindestens 30 Gewichtsprozent Laurinlactam sowie mindestens 10 Gewichtsprozent Reste von aliphatischen Dicarbonsäuren mit 4 bis 12 Kohlenstoffatomen und äquivalente Reste von verzweigten aliphatischen oder cyclischen Diaminen mit 4 bis 12 Kohlenstoffatomen enthalten, und die durch hydrolytische Lactampolymerisation erhalten worden sind. Die Herstellung von Polyamidpulvern ist grundsätzlich bekannt. Sie werden erhalten durch Fällen des Polyamidsaus Lösungen oder Mahlen des Polyamidgranulats, vorzugsweise bei tiefen Temperaturen unter einer Inertgasatmosphäre. Es ist auch bekannt, die Beschichtungspulver in verschiedener Weise zu variieren. Jedoch hat es sich herausgestellt, dass es notwendig ist, die Herstellung der Polyamidpulver und deren Korngrösse auf die Art der Verwendung abzustimmen. Aus der DE-OS 26 31 231 ist ein verbessertes Verfahren zur Herstellung von Beschichtungspulvern aus Copolyamiden bekannt, die mindestens 30 Gewichtsprozent Laurinlactam enthalten. Diese Beschichtungspulver werden erhalten, indem man die Copolyamide vor dem Kaltmahlen einer molekülorientierenden Behandlung unterwirft und nach dem Mahlen auf eine bestimmte Korngrössenverteilung sichtet. Diese Pulver sind insbesondere geeignet zum Beschichten von Glasflaschen. Dieses Verfahren ist insoweit noch nicht vollbefriedigend, weil die molekülorientierende Vorbehandlung langwierig und aufwendig ist. Aufgabe der Erfindung ist es daher, ein verbessertes Verfahren zur Herstellung von Beschichtungspulvern zur Verfügung zu stellen, die sich problemlos auftragen lassen und zu glatten Überzügen führen, die eine ausreichende Beständigkeit gegenüber heissen alkalischen Reinigungsmitteln aufweisen, die sich jedoch einfacher herstellen lassen. Die Lösung dieser Aufgabe gelingt dadurch, dass man in den Copolyamiden vor oder nach dem Mahlen in Mengen von 0,1 bis kleiner als 0,15 Gewichtsprozent, bezogen auf die Copolyamide, pulverförmige Kieselsäure verteilt, wobei bei einer durch Mahlen erhaltenen Kieselsäure deren Oberfläche, gemessen nach 2 der BET-Methode, 380 + 30 m /g und die mittlere Grösse der Primärteilchen 7 nm, bei einer durch Fällen erhaltenen Kieselsäure die Oberfläche entsprechend 190 + 2 20 m /g und die mittlere Grösse der Primärtelichen 18 nm beträgt, und das gemahlene Pulver auf die gewünschte Korngrössenverteilung einstellt, Derart ausgewählte Beschichtungspulver lassen sich wesentlich einfacher herstellen. Sie können einwandfrei versprüht werden und ergeben fehlerfreie glatte Schichten, deren Transparenz und Haftfähigkeit auch nach wiederholter Einwirkung von heissen alkalischen Reinigungsmitteln noch gut ist. Geeignete Copolyamide sind solche, die mindestens 30 Gewichtsprozent Laurinlactam enthalten. Vorteilhaft liegt der Anteil an Laurinlactam zwischen 30 und 80, vorzugsweise zwischen 35 und 60 Gewichtsprozent. Neben Laurinlactam enthalten die Copolyamide einen oder mehrere Reste von M-Aminosäuren mit 4 bis 11 Kohlenstoffatomen, wie Caprolactam, Capryllactam, Aminoundecansäure und/oder Reste von aliphatischen Dicarbonsäuren mit 4 bis 12 Kohlenstoffatomen, wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäure und äquivalente Reste von aliphatischen oder cyclischen Diaminen mit 4 bis 12 Kohlenstoffatomen und mindestens 10 Gewichtsprozent Reste von aliphatischen Dicarbonsäuren mit 4 bis 12 Kohlenstoffatomen, wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäure und von verzweigten aliphatischen oder cyclischen Diaminen mit 4 bis 12 Kohlenstoffatomen, wie Trimethylhexamethylendiamin, Isophorondiamin. Vorteilhaft beträgt der Anteil der zuletzt genannten, verzweigte Diamine enthaltenden Komponente 10 bis 40 Gewichtsprozent, vorzugsweise 10 bis 25 Gewichtsprozent. Insbesondere werden als Copolyamide mindestens Terpolyamide eingesetzt. Beispielsweise seien genannt Copolyamide aus: 30 bis 80 Gewichtsprozent Laurinlactam, 10 bis 40 Gewichtsprozent Trimethylhexamethylendiamin und/oder Isophorondiamin und die äquivalente Menge an aliphatischen offenkettigen Dicarbon säuren mit 4 bis 12 Kohlenstoffatomen und 10 bis 40 Gewichtsprozent an Resten von ;-Aminosäuren mit 4 bis 11 Kohlenstoffatomen und/oder unverzweig ten aliphatischen Diaminen mit 4 bis 12 Kohlen stoffatomen und äquivalenten Mengen an alipha tischen offenkettigen Dicarbonsäuren mit 4 bis 12 Kohlenstoffatomen. Besonders geeignet sind solche Copolyamide, in welchen die beiden Diamine Trimethylhexamethylendiamin und Isophorondiamin in etwa äquimolaren Mengen enthalten sind. Beispielsweise seien besonders genannt: Copolyamid aus 58,8 Gewichtsprozent Laurinlactam, 16,9 Gewichtsprozent Caprolactam, 12,1 Gewichtsprozent Adipinsäure, 6,3 Gewichtsprozent Isophorondiamin und 5,9 Gewichtsprozent Trimethylhexamethylendiamin, Copolyamid aus 57,6 Gewichtsprozent Laurinlactam, 10 Gewichtsprozent Caprolactam, 16,1 Gewichtsprozent Adipinsäure, 8,4 Gewichtsprozent Isophorondiamin und 7,9 Gewichtsprozent Trimethylhexamethylendiamin, Copolyamid aus 53,4 Gewichtsprozent Laurinlactam, 8 Gewichtsprozent Caprolac tam, 10 Gewichtsprozent Isophorondiamin, 9,5 Gewichtsprozent Trimethylhexamethylendiamin, 19,1 Gewichtspro zent Adipinsäure. Die Herstellung der Copolyamide erfolgt durch die bekannte hydrolytische Polykondensation bei Temperaturen zwischen 250 und 300 OC und gegebenenfalls in Gegenwart der bekannten kettenregelnden Substanzen, wie Adipinsäure und Phosphorsäure. Die Werte für n2rel liegen üblicherweise zwischen 1,45 und 1,65 (gemessen in m-Kresol bei einer Konzentration von 0,5 g/700 ml bei 25 0c). Für das Herstellen der Pulver ist ausschliesslich das sogenannte Kaltmahlverfahren geeignet. Die Granulate werden hierbei unter einer Inertgasatmosphäre, vorzugs- weise nach Vorkühlung in flüssigem Stickstoff, gemahlen, so dass das gemahlene Pulver mit einer Temperatur zwischen -50 und 0 C, vorzugsweise zwischen -40 und -20 C, die Mühle verlasst. Je nach Ver rbeitungsmethode werden die Pulver auf eine bestimmte Korngrössenverteilung gebracht; das geschieht üblicherweise durch Sieben oder Sichten, wobei die geeigneten Fraktionen erhalten werden. Bei einer Verarbeitung nach dem elektrostatischen Verfahren oder elektrostatischen Wirbelsinterverfahren müssen 100 bis > 50 % des Pulvers einen Kornanteil zwischen 30 und 100 um besitzen und 0 bis < 50 ffi einen Kornanteil unter 30um. Der Feinanteil soll demnach maximal C50 % betragen, vorzugsweise 20 bis 40 %. Gröbere Anteile (grösser als 100,um) dürfen nicht vorhanden sein. Bei Polyamidpulvern, die nach dem Wirbelsinterverfahren verarbeitet werden, ist dagegen eine Korngrössenverteilung zwischen 30 und 300, vorzugsweise zwischen 60 und 250vum einzustellen. Die pulverförmigen Kieselsäuren können vor dem Mahlen den Granulaten zugemischt werden. Dies kann durch Mischen oder Auftrommeln geschehen. Es ist aber auch möglich, sie erst den gemahlenen Pulvern zuzumischen. Die pulverförmigen Kieselsäuren erfordern eine Auswahl nach Art und Menge. Die zugesetzte Menge muss, bezogen auf die Copolyamide, kleiner als 0,15 Gewichtsprozent betragen. Die optimale Menge beträgt 0,02 bis 0,1, bevorzugt 0,03 bis 0,08 Gewichtsprozent. Ausserdem ist die Oberfläche und die mittlere Grösse der Primärteilchen der eingesetzten Kieselsäurepulver kritisch hinsichtlich der Herstellungsmethode der Kieselsäurepulver. Gefällte Kieselsäurepulver sollen eine Oberfläche von 190 + 20 m2/g besitzen, bestimmt nach der BET-Methode (Brinauer, Emmet und Teller J. Anm. Chem. Loc. 60, 309 (1938)). Die mittlere Grösse der Primärteilchen soll 18 nm betragen (Endter, Gebauter; Optik 13, 97-101 (1956)). Bei gemahlenen Kieselsäurepulvern liegen die entspre 2 chenden Werte bei 380 + 30 m /g und 7 nm. Bevorzugt werden die gefällten Kieselsäurepulver eingesetzt. Es ist zwar bekannt, dass erst durch Zusatz vorn +0,2 Gewichtsprozent Kieselsäurepulver die Wirbelbarkeit von Thermoplastpulvern und deren Fliessfahigkeit zu verbessern. Die mit solchen Pulvern erhaltenen Überzüge haben jedoch ein unruhiges und narbiges Aussehen. Nur durch die Auswahl nach Art und Menge der eingesetzten Kieselsäurepulver, als auch durch Auswahl der Copolyamide, gelingt es, sowohl einwandfreie Überzüge als auch gutes Wirbeln und Fliessen der Pulver zu erreichen. Die nach der Erfindung erhaltenen Beschichtungspulver ergeben einwandfreie,-harte, transparente ueberzüge, die insbesondere zum Beschichten von metallischen Formkörpern eingesetzt werden, z.B. Beschlägen, wie Tür- oder Fenstergriffe, oder beschrifteten Formkörpern, wie Türschilder, insbesondere aus Aluminium und Messing. Diese Teile werden damit gegen oxidative Angriffe bzw. Anlaufen geschützt. Die Beschichtungsmittel haben gegen über den bisher üblichen Lacken den besonderen Vorzug, dass nicht mit Lösungsmitteln gearbeitet werden muss und der Überzug wesentlich haltbarer ist gegen Abreiben als z.B. durch Lackieren erhaltene dünne überzüge. Die aufgebrachten Überzüge haben im allgemeinen eine Dicke von 80 bis 500, insbesondere von 80 bis 400,um. Die Erfindung ist nachstehend anhand von Ausführungsbeispielen näher erläutert. Die #rel Lösungsviskositäten wurden bei 25 C in m-Kresol bei einer Konzentration von 0,5 g/100 ml gemessen. Beispiel 1 Ein Copolyamid, das aus 58,8 Gewichtsprozent Laurinlactam, 16,9 Gewichtsprozent Caprolactam, 12,1 Gewichtsprozent Adipinsäure? 5,9 Gewichtsprozent Trimethylhexamethylendiamin, 6,3 Gewichtsprozent Isophorondiamin und in Gegenwart von 0,05 Gewichtsprozent Phosphorsäure durch hydrolytische Polymerisation hergestellt worden ist, und mit einem von 1s5 (gemessen in Obiger Lösung Methakresol bei 25 OC), wird mit Kühlung durch flüssigen Stickstoff (-190 OC) vorgekühlt und bei -35 OC (Temperatur des Mahlguts) gemahlen. Das Grobpulver > 250/um wird abgesiebt. In dieses Pulver wird in einem Schnellmischer 0,05 Gewichtsprozent einer gemahlenen Kieselsäure mit einer Oberfläche von 300 # mê/g eingemischt. Das Pulver wirbelt und fliesst gut, zeigt bei der Wirbelsinterbeschichtung glatte Oberflächen mit ausgezeichneter Transparenz. Die Beschichtung besitzt eine gute Beständigkeit beim Heisswassertest. Beispiel 2 Es wird wie in Beispiel 1 gearbeitet, nur dass anstelle der gemahlenen 0,1 Gewichtsprozent einer gefällten 2 Kieselsäure mit 190 m /g zugemischt werden. Es wird ein Pulver mit den gleich guten Fliess- und Beschichtungseigenschaften wie in Beispiel 1 erhalten. Beispiel 3 Es wird wie in Beispiel 1 gearbeitet, nur dass 0,05 Gewichtsprozent einer gefällten Kieselsäure mit 190 mê/g Oberfläche zugemischt werden. Auch hier wird ein Pulver mit guter Wirbelbarkeit erhalten, das Beschichtungen mit sehr guter Transparenz, guter Heisswasserbeständig keit und noch glatteren Oberflächen als in den Beispielen 1 und 2 ergibt. Vergleichsbeispiel 1 Ein wie in Beispiel 1 hergestelltes Copolyamid aus 60 Gewichtsprozent Laurinlactam, 25 Gewichtsprozent Caprolactam und 15 Gewichtsprozent Adipinsäure-Hexamethylendiaminsalz mit einem oel von 1,5 wird, wie in Beispiel 1 beschrieben, in ein Pulver umgewandelt. In dieses Pulver werden im Schnellmischer 0,2 Gewichtsprozent einer gemahlenen Kieselsäure mit einer Oberfläche von 200 + 25 m2/g eingemischt. Das Pulver zeigt ein gutes Wirbelverhalten, die Beschichtungen haben jedoch unruhige Oberflächen bei nicht ausreichender Transparenz, Die Beständigkeit gegenüber heissem Wasser ist befriedigend. Vergleichsbeispiel 2 Ein in gleicher Weise hergestelltes Copolyamid aus 36 Gewichtsprozent Laurinlactam, 32 Gewichtsprozent Caprolactam und 32 Gewichtsprozent Adipinsäure-Hexamethylen diaminsalz mit einem % el von 1,6 wird, wie in Beispiel 1 beschrieben, in ein Pulver umgewandelt. In dieses Pulver werden im Schnellmischer 0,2 % einer gemahlenen Kieselsäure mit einer Oberfläche von 200 # 25 mê/g eingemischt, Das Pulver zeigt ein gutes Wirbelverhalten, die Beschichtungen haben eine gute Transparenz, bei allerdings nicht befriedigender Oberfläche und unge nügender Heisswasserbeständigkeit. Vergleichsbeispiel 3 In ein wie in Beispiel 1 beschrieben hergestelltes Copolyamidpulver werden in einem Schnellmischer 0,2 Gewichtsprozent einer gefällten Kieselsäure mit einer Oberfläche von 200 + 25 m2/g eingemischt. Das Pulver wirbelt gut und gibt beim Wirbelsinterauftrag Beschichtungen mit sehr guter Transparenz, guter Heisswasserbeständigkeit, aber nicht befriedigender Oberflächen- qualität. Vergleichsbeispiel 4 In ein wie in Beispiel 1 beschrieben hergestelltes Copolyamidpulver werden in einem Schnellmischer 0,05 Gewichtsprozent einer gefällten Kieselsäure mit einer Oberfläche von 200 # 25 mê/g eingemischt. Das Pulver wirbelt schlecht und gibt beim Wirbelsinterauftrag Beschichtungen mit schlechten Oberflächen, aber sehr guter Transparenz und guter Heisswasserbeständigkeit. Die Ergebnisse der Beispiele und Vergleichsbeispiele sind in der nachfolgenden Tabelle 1 zusammengefasst. EMI9.1 Tabelle 1 EMI10.1 Copolyamid <SEP> Kieselsäure <SEP> Pulver <SEP> Beschichtung <tb> <SEP> gefällt <SEP> gemahlen <SEP> Ober- <SEP> Menge- <SEP> Wirbeln/ <SEP> Ober- <SEP> Trans- <SEP> Beständigkeit <tb> <SEP> fläche <SEP> Gew.-% <SEP> Fliessen <SEP> fläche <SEP> parenz <SEP> gegen <SEP> heisses <tb> <SEP> mê/g <SEP> Wasser <tb> Beispiel <SEP> 1 <SEP> x <SEP> 300 <SEP> # <SEP> 30 <SEP> 0,05 <SEP> + <SEP> + <SEP> ++ <SEP> + <tb> Beispiel <SEP> 2 <SEP> x <SEP> 190 <SEP> 0,1 <SEP> + <SEP> + <SEP> ++ <SEP> + <tb> Beispiel <SEP> 3 <SEP> x <SEP> 190 <SEP> 0,05 <SEP> + <SEP> ++ <SEP> ++ <SEP> + <tb> Vergleichsbeispiel <SEP> 1 <SEP> x <SEP> 200 <SEP> # <SEP> 25 <SEP> 0,2 <SEP> + <SEP> - <SEP> - <SEP> 0 <tb> Vergleichsbeispiel <SEP> 2 <SEP> x <SEP> 200 <SEP> # <SEP> 25 <SEP> 0,2 <SEP> + <SEP> - <SEP> + <SEP> Vergleichsbeispiel <SEP> 3 <SEP> x <SEP> 200 <SEP> # <SEP> 25 <SEP> 0,2 <SEP> + <SEP> - <SEP> ++ <SEP> + <tb> Vergleichsbeispiel <SEP> 4 <SEP> x <SEP> 200 <SEP> # <SEP> 25 <SEP> 0,05 <SEP> - <SEP> - <SEP> ++ <SEP> + <tb> Bewertung: ++ sehr gut + gut o befriedigend - nicht befriedigend
Patentansprüche: 1. Verfahren zur Herstellung von transparenten Beschich tungspulvern aus bei tiefen Temperaturen zu Pulvern gemahlenen Copolyamiden, die mindestens 30 Gewichts prozent Laurinlactam sowie mindestens 10 Gewichts prozent Reste von aliphatischen Dicarbonsäuren mit 4 bis 12 Kohlenstoffatomen und äquivalente Reste von verzweigten aliphatischen oder cyclischen Diaminen mit 4 bis 12 Kohlenstoffatomen enthalten, und die durch hydrolytische Lactampolymerisation erhalten worden sind, dadurch gekennzeichnet, dass man in den Copolyamiden vor oder nach dem Mahlen in Mengen von 0,01 bis kleiner als 0,15 Gewichts prozent, bezogen auf die Copolyamide, pulverförmige ; ;Kieselsäure verteilt, wobei bei einer durch Mahlen erhaltenen Kieselsäure deren Oberfläche, gemessen 2 nach der BET-Methode, 380 1 30 m /g und die mittlere Grösse der Primärteilchen 7 nm, bei einer durch Fällen erhaltenen Kieselsäure die Oberfläche entsprechend 190 + 20 2/g und die mittlere Grösse der Primärteil chen 18 nm beträgt, und das gemahlene Pulver auf die gewünschte Korngrössenverteilung einstellt. 2. Verwendung der Beschichtungspulver nach Anspruch 1 zum Beschichten von metallischen Formkörpern. EMI11.1
CHEMISCHE WERKE HULS AG
FELDMANN, RAINER, DR.; MULLER, KARL-ADOLF, DR.; Müller, Karl-Adolf, Dr.
EP-0004867-B1
4,867
EP
B1
DE
19,820,203
1,979
20,100,220
new
H04M1
null
H04M1
H04M 1/53
CIRCUIT ARRANGEMENT FOR SUBSCRIBER SETS IN PRIVATE BRANCH EXCHANGES WITH TONE PUSHBUTTON DIALLING
1. A circuit arrangement for subscriber telephone instruments in Private Automatic Branch Exchanges with tone-frequency dialling, the instruments, besides the equipment needed for push-button-dialling (keyboard, tone-frequency sender, switch over facilities) consist of a key operated pulse-sender for generating d.c.-pulse series of different lengths, comprising that the dialling keys (WT) controlling a tone frequency-sender are used for transmitting special signals by switching over the influence of the key-board from the tone frequency sender (TWS) to the pulse sender (IS) caused by a tone frequency signal (ringing-tone, busy tone) arriving via the subscriber line.
Schaltungsanordnung für DeilnehmeraDparate in Fern sprechnebenstellenanlagen mit tonfrequenter Tastwahl Die Erfindung betrifft eine Schaltungsanordnung für Teilnehmerapparate in Fernsprechnebenstellenanlagen mit tonfrequenter Tastwahl der Nebenstellenteilnehmer, wobei die Teilnehmerapparate neben den für die tonfrequente Tastwahl notwendigen Einrichtungen (Tastatur, Tonfrequenzsender, Umschalteeinrichtungen) noch einen die Aussendung von unterschiedlichen Gleichstromimpulsfolgen ermöglichenden tastengesteuerten Impulssender enthalten. In Fernsprechnebenstellenanlagen ist es üblich, von einem Teilnehmerapparat aus, neben den für den Aufbau einer Verbindung notwendigen Wählsignalen auch Steuersignale für Sonderfunktionen abzugeben. Ein in der Nebenstellentechnik wesentliches Merkmal ist die sog. Rückfrage, zu deren Steuerung ein Sonderkennzeichen benötigt wird. Dieses Sonderkennzeichen wird im allgemeinen durch eine von der Wahlinformation abweichende Massnahme verwirklicht, indem z.B. bei Anlagen mit Impulswahlverfahren mit einer besonderen Taste die Bnschlussleitung geerdet wird. Diese Schaltmassnahme kann jedoch bei ungünstigen Erd-Bedingungen besonders an entfernt liegenden Stellen zu Funktionsunsicherheiten führen, und es entsteht eine Unsymmetrie der Leitung. Deshalb wird bei Anlagern, die mit Mehrfrequenz-2ast- wahl arbeiten, die Erdtastenfunktion weitgehend vermieden und durch die sog. Flash-Taste ersetzt. Hier wird also auch wieder eine von diesem Mehrfrequenz Wahlverfahren abweichende Massnahme, nämlich eine definierte Unterbrechung des Schleifenstroms als Sonderkennzeichen benutzt Schaltungsanordnungen zur Erzeugung einer einzigen von einem manuellen Tastendruck bewirkten, aber von seiner Dauer unabhängigen Schleifenstromunterbrechung (Flash-Taste) sind veröffentlicht in den DE-OS 22 18 410, 23 19 72 und 24 32 454. Diese Flashtaste einfacher Art ist jedoch nur in der Lage, ein einziges Sonderkennzeichen zu erzeugen. In manchen Fällen ist es jedoch wünschenswert, bei der Rückfrage in Nebenstellenanlagen verschiedene Variationen in einfacher Weise zu steuern. So gibt es beim Einleiten der Rückfrage die Möglichkeit, die ursprüngliche Verbindung (zum Amtsteilnehmer) sprechwegemässig nicht abzutrennen, sondern beizubehalten, so dass ein Dreiergespräch entsteht, das auch als offene Rückfrage bezeichnet wird. Beim Beenden eines normalen (nicht offenen) Rückfrage gesprächs kann der Wunsch bestehen, dass die Rückffrage- verbindung bestehen bleibt, damit der rückfragende Teilnehmer erneut mit dem in Rückfrage angerufenen Teil- nehmer in Verbindung treten kann, wenn er zwischenzeitlich mit dem ersten Gesprächspartner verbunden war. Dieser unter dem Begriff Makeln bekannte Vorgang kann beliebig oft wiederholt werden. Um solche Merkmale von Teilnehmerapparat aus steuern zu können, müssen voneinander unterscheidbare Sonderkennzeichen abgegeben werden. Diese Zeichen könnten z.B. auch darin bestehen, dass die eine vorhandene Sondertaste (Flashtaste) mehrmals betätigt wird. Es ist jedoch für einen Teilnehmer schwierig, die Anzahl der Tastendrücke und die dazwischenliegenden Pausen zur richtigen Zeit so vorzunehmen, dass die gewünschte Funktion eintritt. Es ist ausserdem bekannt, tastengesteuerte Impulssender in Fernsprechapparate einzubauen, die bei Tastendruck eine der Taste zugeordnete Impulsfolge als Wahl- information aussenden. Eine solche Schaltungsanordnung ist dargestellt und beschriehen in einem Aufsatz mit dem Titel Ein relaisfreies Tastwahltelefon , der erschienen ist in der elektronik industrie 1974 (Heft 4, Seiten 80 bis 82). Hierbei wird mit einem hochintegrierten Schaltkreis die mit Tasten vom Teilnehmer eingegebene Wahlinformation in Gleichstromimpulsserien umgesetzt, so dass solche Apparate mit Tastwahl an mit Impulszahl arbeitende Vermittlungseinrichtungen angeschlossen werden können. Weiterhin ist es bekannt, von einem Teilnehmerapparat aus, der tastengesteuert Impulse aussenden kann, zusätzlich auch Zeichen auszusenden für eine nach vollzogenem Verb indungsaufb au vorzunehmende Datenübertragung. Eine solche Anordnung ist beschrieben in der DE-AS 21 55 894. Hierbei wird jedoch der Verbindungsaufbau mit aus Impuls serien bestehender Wahlin orma- tion vollzogen und anschliessend auf Zeichengabe manuell umgeschaltet. Da die Abgabe einer einzelnen Schleifenstromunterbrechung für die Steuerung mehrerer Sondermerkmale nicht ausreicht, das mehrmalige Betätigen einer Taste aber von der Bedienung her zu schwierig ist, besteht die Aufgabe der Erfindung darin, unter Ausnutzung von für besondere Anwendungsfälle bekannten Massnahmen, eine Schaltungsanordnung vorzustellen, die dem Teil- nehmer das Einleiten von besonderen Funktionen erleichtert, indem er nur eine für den Jeweiligen Spezialfall vorgesehene Taste zu betätigen hat. Ausgehend davon, dass ein Teilnehmerapparat neben dem für die Abgabe von tonfrequenten Wahlinformationen vorhandenen Einrichtungen noch einen tastengesteuerten Impulssender enthält, wird die Aufgabe dadurch gelöst, dass bei einer einmaligen Betätigung einer von mehren im Teilnehmerapparat befindlichen zusätzlichen Sondertasten der davon aktivierte Impulssender eines von mehreren möglichen, nicht zur eigentlichen Teil- nehmerwahl gehörenden Sonderkennzeichen bildet und dieses in Form einer dem jeweiligen Sonderkenazei- chen zugeordneten Impulsfolge aussendet, und dass solche Sonderkennzeichen in bekannter Weise von einer zentralen Abtasteinrichtung empfangen und ausgewertet werden. Der mit der Erfindung erreichte Vorteil besteht darin, dass der Teilnehmer für die Steuerung eines Merkmals nur die dafür vorgehene spezielle Taste einmalig zu betätigen hat. Dabei kann durch Beschriftung der Taste der Teilnehmer auf die Funktion hingeweisen werden, wodurch die Bedienung des Fernsprechapparates wesentlich erleichtert wird. Die als Impulsfolgen abgegebenen Sonderkennzeichen können leicht von einer zentralen Abtasteinrichtung durch abzählen ausgewertet werden, und die Vermittlungsanlage ist dann in der Lage, die erforderlichen Schaltmassnahmen durchzuführen. Da die vom Impulsgeber automatisch erzeugten Impulse zeitlich unabhängig sind vom Verhalten des Teilnehmers, lassen sich an zentraler Stelle die Bewertungsschaltmittel auf feste Werte einstellen. Eine weiterer Vorteil besteht darin, dass z.B. beim Beenden einer Rückfrage oder beim Makeln kein Zeichenempfänger angeschaltet werden muss, wie es erforderlich wäre, wenn die Funktionstasten der Wähltastatur und die damit gesendeten Tonfrequenzen für diese Sonderfunktionen ausgenutzt würden. Eine WeiterbiEdung der Erfindung besteht darin, dass die Funktionen der Zähltasten nutzbar ist, so dass die äussere Gestalt des Apparates (ohne Sondertasten)unverändert bleiben kann, obwohl der Teilnehmeranschluss dann bis zu 10 Sonderfunktionen zur Verfügung hat. Auch dann ist Jeweils nur eine Taste zu drücken, weil nach der automatischen Umschaltung jede Wähltaste eine spezifische Bedeutung hat. Da während eines Gespräches keine zum Aufbau einer Verbindung dienenden Wahlinformationen benötigt werden, kann die Wähltastatur automatisch umgeschaltet werden auf den für Sonderkennzeichen vorgesehenen Impulsgeber. Dies geschieht erfindungsgemäss bei abgehenden Gesprächen durch die Auswertung der nach Wahlende anfallenden Hörtöne. Hierbei muss Jedoch beachtet werden, dass im Zuge eines Verbindungsaufbaues auftretende erneute Wähltöne nicht erfasst werden. Dies kann z.B. dadurch erreicht werden, dass der Hörtonempfänger erst nach einigen Tastenbetätigungen oder nach einer vorgegebenen Zeit angeschaltet wird. Bei ankommenden Gesprächen kann die Umschaltung der Tastatur durch ein vom Anruf organ abgeleitetes Signal bewirkt werden. Bei Sonderkennzeichen, die eine nachfolgende Wahl erfordern (Einleiten der Rückfrage), wird die Rückschaltung der Tastatur auf den Tonfrequenzsender automatisch nach Beendigung des Sonderkennzeichens vorgenommen. Selbstverständlich ist es auch möglich, eine Umschaltung der Tastatur mit einer einzigen Sondertaste manuell vorzunehmen, jedoch wird die Bedienungsweise des Fernsprechapparates dadurch etwas schwieriger. Ausserdem gibt es in Fernsprechnebenstellenanlagen Merkmale, die für besondere Teilnehmeranschlüsse verfügbar sind und den Bedienungskomfort erheblich erweitern und verbessern, indem diese bei aufgelegtem Handapparat aktivierbar sind. Es handelt sich beispielsweise darum, mit einem Tastendruck eine Verbindung herstellen zu können, ohne dass der Teilnehmer den Hörer abnehmen muss, um auf die Antwort zu warten. Diese bekannten Merkmale sind so ausgeführt, dass ein Rückruf erfolgt, wenn die angesteuerte Stelle sich meldet. Bei Teilnehmeranschlüssen mit Nummerschalter-Impulswahl wird dafür die am Nebenstellenapparat übliche Erdtaste benutzt, wobei die Schaltungsanordnung innerhalb des Apparates in besonderer Weise ausgeführt sein muss. Es ist mit dieser Taste aber nur eine Verbindung, beispielsweise zur Abfragestelle möglich. Sollen mehrere direkte Verbindungen auch zu anderen Teilnehmern aufgebaut werden können, so sind weitere Tasten erforderlich und es sind im allgemeinen auch zusätzliche Verbindungsadern zum Teilnehmerapparat nötig. Gemass besonderen Weiterbildungen der Erfindung wird eine einfache Aktivierung von Merkmalen bei aufgelegtem Handapparat ermöglicht, wenn die in den Patentan sprüchen 5 bis 8 angegebenen Anordnungen angewendet werden. Einige Ausführungsbeispiele der Erfindung werden anhand von Zeichnungen nachstehend erläutert. Es zeigt: Fig.1 die Anordnung von Impulssender IS und Tastwahlsender TWS mit getrennten Steuer tasten ST für IS und WT für TWS Fig.2 die Anordnung zur Umschaltung vom Tast- wahlsender auf den Impulssender mit einer Sondertaste ST Fig.3 die Anordnung zur automatischen Umschal tung zwischen TWS und IS Fig.4 die Anordnung für die Impulsgabe bei aufgelegtem Randapparat In der Fig.1 ist ein Kontakt GU1 dargestellt, der in bekannter Weise beim Abheben des Hörers betätigt wird und einen von der Leitung a über die Sprechkreisanord- nung SXA zur Leitung b verlaufenden Stromkreis schliesst. Die Aussendung der Wahlinformation geschieht durch das Betätigen der Zähltasten WT1...WTn über den Tastwahl- sender TWS, der die entsprechend den CCITU-Normen Co- dierten Tonfrequenzen aussendet. Für die Abgabe von Sonderkennzeichen steht ausserdem ein Impuls sender IS zur Verfügung, der beim Betätigen einer der Sondertasten einen oder mehrere Impulse seriell abgibt und damit zum Zwecke der Schleifenstromunterbrechung den Transistor TJ steuert. Ausser den in Fig.1 dargestellten und bereits beschriebenen Teilen sind in der Fig.2 Schaltmittel dargestellt die eine Umschaltung von Tastwahlsender TWS auf den Impuls sender IS bewirken, wenn die einzeln angeordnete Sondertaste betätigt wird. Es wird dabei das Umschalte Blip-Blop FF1 gekippt, das somit den TWS sperrt und den IS freigibt. Die bistabile Kippstufe FF1 wird über das Gatter OG1 zurückgestellt, wenn ein eine nachfolgende Wahlhandlung verlangendes Sonderkennzeichen vollständig ausgesendet wurde. Zu diesem Zweck dient die Leitung WR. Ausserdem erfolgt eine Rückstellung über den Kontakt GU2, wenn am Teilnehmerapparat der Hörer aufgelegt wird. Mit dieser Anordnung ist es möglich, die Wähltasten zur Abgabe von Sonderkennzeichen zu nutzen, indem eine manuelle Umschaltung vorgenommen wird durch Betätigen der Taste ST. Wie eine automatisch arbeitende Umschaltung funktionieren kann,.ist in Fig.3 dargestellt. Hierbei sind folgende zusätzliche Schaltmittel zu den Fig.2 dargestellten Anordnungen erforderlich. Für die Ausnutzung des Anrufkriteriums zur Umschaltung auf den Impulssender ist ein Opto-Koppler vorgesehen, der über das Gatter OG2 das Umschalte-Flip-Flop FF1 einstellt. Damit ist nach Entgegennahme des Anrufes eine Funktion der Wähltasten auf den Impuls sender gegeben, so dass die Einleitung einer Rückfrage bei entsprechenden Verbindungsarten direkt möglich ist. Sollte wegen eines nicht beantworteten Anrufes das FF1 sich in der Arbeitslage befinden, wenn wegen eines abgehend zu führenden Gesprächs der Hörer abgenommmen wird, so kann die erforderliche Ruhestellung von FF1 durch den Kontakt GU2 bewirkt werden, wenn der Hörer vorübergehend aufgelegt wird. Eine Rückschaltung auf den Tastwahlsender ist auch durch ein Zeitglied denkbar, das in Tätigkeit tritt, wenn ein Anruf nicht beantwortet wird. Es ist denkbar, eine zusätzliche Anzeigevorrichtung anzuordnen, die anspricht, wenn die Tastatur auf den Impulssender geschaltet ist. Um die automatische Umschaltung auch bei abgehend geführten Gesprächen zu ermöglichen, ist ein Hörtonempfänger HTE vorgesehen, der über die Gatter UG und OG2 das die Umschaltung bewirkende Flip-Flop FF1 stellt. Damit die Umschaltung nicht aufgrund eines empfangenen Wähltones vonstatten geht, wird das Gatter UG erst freigegeben, wenn eine weitere Kippstufe FF2 gekippt ist. Die Einschaltung von BB2 geschieht in Abhängigkeit von der Wähltastatur über ein Verzögerungsglied VZ, das bei jeder Aussendung eines Wählzeichens zurückgesetzt wird und nach Ablauf seiner Verzögerungszeit das FF2 setzt. Wird nun vom Hörtonempfänger ein Frei-oder Besetztton empfangen, dann erfolgt über UG und OG2 das Einschalten von BB1. Da die Wahl beendet ist, kann nun eine Betätigung der Tastatur den Impuls sender zur Abgabe von Sonderkennzeichen steuern. Diese Sonderkennzeichen können die Einleitung einer Rückfrage oder auch einer Auf schal- tung bewirken, Je nach dem, welche Taste betätigt wurde. In Fig.4 ist die Schaltungsanordnung für die Aktivierung von Merkmalen bei aufgelegtem Handapparat dargestellt. Wenn diese Anordnung auch für den Betrieb mit aufgelegtem Handapparat benutzt werden soll, sind die Sondertasten so an den Impulssender angeschlossen, dass jeweils eine geradzahlige Anzahl von Impulsen abgegeben wird, wenn die Sondertaste bei abgenommenem Handapparat betätigt wird. Wird aber eine der Sondertasten bei aufgelegtem Handapparat betätigt, so wird zunächst durch ein vom Impulssender abgegebenes Sig nal SA das Gatter G erfüllt, dessen anderer Eingang an die Ruheseite des Kontaktes GU1 geschaltet ist. Uber den Eingang S wird die bistabile Kippstufe FF3 in die Arbeitslage gestellt, so dass das Schaltmittel TS vom Ausgang Q Steuerstrom erhält. Dadurch wird ein Strom kreis so geschlossen wie dnch Betätigen des Kontaktes beim Abnehmen des Hörers. Damit nun dieser Stromkreis beim Aussenden des ersten Impulses nicht sofort wieder unterbrochen wird, legt die bistabile Kippstufe über den Ausgang Q ein Signal an den Impulssender, wodurch eine Verzögerung der Impulsaussendung bewirkt wird. Diese Verzögerung ist so bemessen, dass die in der Nebenstellenanlage zur Auswertung der Schleifenzustandsänderungen erforderliche Zeit überschritten wird. Nach Ablauf der Verzögerungszeit beginnt die Aussendung der durch das Betätigen der Sondertaste vorgegebenen Impulsfolge. Mit dem Beginn des letzten Impulses wird ein zusätzliches Signal R vom Impulssender abgegeben, womit die bistabile Kippstufe wieder in ihre Ruhelage zurückgestellt wird. Dem Schaltmittel TS wird dadurch der Steuerstrom entzogen, so dass der Stromkreis wieder dauernd geöffnet wird. Dadurch wird mit dieser Anordnung erreicht, dass beispielsweise durch das Betätigen der Sondertaste ST1, die das Senden von zwei Impulsen bewirkt, nur ein Impuls erkannt wird, weil der letzte Impuls durch das dauernde Öffnen des Schleifenstromkreises nicht mehr erkannt werden kann. Die in der Nebenstellenanlage angeordnete Erkennungsschaltmittel müssen ohnehin den zeitlishen Unter- schied zwischen einer kurzzeitigen Änderung (Impuls) und einer langandauerden änderung des Schleifenzustandes einer Teilnehmeranschlussleitung unterscheiaen können. Es sind also für die Verwirklichung dieser Merkmale keine besonderen Aufwendungen erforderlich. Ledig- lich an zentraler Stelle ist eine wenig aufwendige Logik vorzusehen für die Zuordnung und Aktivierung der Merkmale entsprechend der Anzahl der empfangenen Impulse.
Schaltungsanordnung für Teilnehmerapparate in Fern sprechnebenstellena-aaen mit tonfrequenter Taste wahl Patentansprüche: 1. Schaltungsanordnung für Teilnehmerapparate in Fernsprechnebenstellenalagen mit tonfre quenter Tastwahl der Nebenstellenteilnehmer, wobei die Teilnehmerapparate neben den für die tonfrequente Tastwahl notwendigen Einrichtungen (Tastatur Ton- frequenzsender, Umschalteeinrichtungen) noch ei nen die Aussendung von unterschiedlichen Gleich stromimpulsen ermöglichenden tastengesteuerten Impuls sender enthalten, dadurch gekennzeichnet, dass bei einer einmaligen Betätigung einer von meh reren im Teilnehmerapparat befindlichen zusätz lichen Sondertasten (ST) der davon aktivierte Im pulssender (IS) eines von mehreren möglichen, nicht zur eigentlichen Teilnehmerwahl gehörenden Sonderkennzeichen bildet und dieses in Form einer dem jeweiligen Sonaerkennzeichen zugeordneten Impulsfolge aussendet, und dass solche Sonderkenn zeichen in bekannter Weise von einer zentralen Abtasteinrichtung empfangen und ausgewertet wer den. 2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass als Sondertasten Zähltasten (WT) für die Ab gabe von Sonderkennzeichen benutzt werden, indem durch ein über die Anschlussleitung einlauf endes tonfrequentes Signal (Freiton, Besetztton) die Wirkungsweise der Wähltastatur vom Tonfrequenz sender (EMS) auf den Impulssender (IS) umgeschaltet wird. 3. Schaltungsanordnung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die Umschaltung der Wähltastatur auf den Im pulssender von einem Anrufsignal bewirkt wird. 4. Schaltungsanordnung nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, dass die Zurückschaltung der Wähltastatur auf den Eonfrequenzsender nach beendeter Aussendung eines Sonderkennzeichens erfolgt, wenn aufgrund dieses Sonderkennzeichens eine nachfolgende Teilnehmer anwahl erwartet wird. 5. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass mit Hilfe eines zur Abgabe von aus jeweils ge radzahligen Gleichstromimpulsfolgen bestehenden Sonderkennzeichen vorgesehenen Impulssenders beim Betätigen einer den Impulssender steuernden Taste bei aufgelegtem Handapparat an der Teilnehmerstelle zunächst ein das Fliessen eines Schleifenstromes von ausreichender Stärke und Dauer ermöglichender Strom kreis geschlossen wird, bevor das Aussenden der Im pulsfolge in Form von Schleifenstromunterbrechungen beginnt, dass nach aussenden des letzten Impulses die Schleife nicht wieder geschlossen wird, und so mit ein Impuls weniger entsteht, als mit Betäti gen der gleichen Taste bei abgenommenem Handapparat ausgesendet würde, und dass eine diese Impulse em pfangende Einrichtung aus einer ungeradzahligen Anzahl von Impulsen ein bei aufgelegtem Hand apparat zu verwirklichendes Merkmal erkennt. 6. Schaltungsanordnung nach Anspruch 5, dadurch gekennzeichnet, dass eine bistabile Kippstufe (FF3) vorgesehen ist, die beim Betätigen einer Sondertaste anspricht, wenn der Handapparat aufgelegt ist, und ein Schaltmittel (TS) steuert, das die Schliessung eines Schleifen stromkreises unabhängig von dem vom Handapparat betätigbaren Kontakt bewirkt. 7. Schaltungsanordnung nach den Ansprüchen 5 und 6, dadurch gekennzeichneit-, dass die bistabile Kippstufe eine Verzögerung des Aussendens von Impulsfolgen und damit eine ge nügend lange Dauer des vor der Impuls sendung erfol genden Schleifenschlusses bewirkt. 8. Schaltungsanordnung nach den Ansprüchen 5 und 6, dadurch gekennzeichnet, dass die bistabile Kippstufe mit der Aussendung des letzten Impulses zurückgestellt wird, und dass damit der durch das Schaltmittel (TS) geschlossene Strom kreis wieder dauernd geöffnet wird.
TELEFONBAU UND NORMALZEIT GMBH
GLEMSER, JURGEN; MERSMANN, FRIEDHELM, ING.GRAD.; SCHNABEL, HORST, DIPL.-ING.; Glemser, Jürgen
EP-0004869-B1
4,869
EP
B1
DE
19,820,728
1,979
20,100,220
new
C08G63
C08G63
C08G63
C08G 63/54
PROCESS FOR THE MANUFACTURE OF THIXOTROPIC UNSATURATED POLYESTER RESIN SOLUTIONS
1. Process for the manufacture of thixotropic solutions of unsaturated polyester resins in copolymerizable monomers characterized in that a thixotropic agent which is resistant to elevated temperatures is dispersed in one or several of the starting materials which are used for preparing the polyester resin and which are liquid or liquified by melting and in that the paste obtained is used in corresponding amounts together with the other starting materials in carrying out the esterification reaction forming the unsaturated polyester resin.
Verfahren zur Herstellung thixotroper ungesättigter Polyesterharzlösungen Bei der Herstellung von Werkstücken aus verstärkten ungesättigten Polyesterharzen ist es in vielen Fällen erwünscht oder notwendig, dass die eingesetzten Harzlösungen in ihrem Fliessverhalten einen mehr oder weniger starken thixotropen Charakter zeigen. Dadurch wird erreicht , dass die an senkrechten oder geneigten Flächen aufgebrachten Schichten--nicht--Åabrinnen. Dies gilt insbesondere für Laminierharze und Feinschichtharze (letztere auch als Gelcoat- bzw. Topcoatharze bezeichnet), welche in Schichtstärken zwischen 300 und 600 jini aufgebracht werden. Weiters werden thixotrope Harze eingesetzt, wenn bestimmte Farbeffekte erzielt werden sollen, wie dies z. B. bei der Knopferzeugung o. ä. der Fall ist. Die Thixotropierung ungesättigter Polyesterharzlösungen erfolgt durch organische Verbindungen bzw. durch anorganische Füllstoffe, wie hochdisperse Kieselsäuren und ähnliche mineralische Stoffe. Die genannten Zusatzstoffe werden mit Hilfe von hochtourigen Mischern, Walzen, Knetern o. ä. in der Lösung des Polyesterharzes in copolymerisierbaren Monomeren dispergiert, wobei bei Laminierharzen 0,5 - 1,5 Gew.-%, bei Feinschichtharzen 2 - 3 Gew.-% eingesetzt werden. Die bisher praktizierten Verfahren, wie sie z. B. in dem Standardwerk von Peter H. SELDEN, Glasfaserverstärkte Kunststoffe , Springer Verlag Berlin 1967, beschrie- ben werden, weisen jedoch eine Reihe von Nachteilen auf, welche insbesondere bei der Herstellung grosser Mengen thi-xotroper Polyesterharzlösungen sowohl wirtschaftliche als auch technische Folgen haben: Styrol oder ähnlicS Monomere,in denen diese Polyester tiarze- geöst eind,---ee-igen aufgrund ihres weitgehend apolaren Charkters ein schlechtes Dispergiervermögen für die Thixotropiesittel. Dadurch ist es für die Erzielung des entsprechenden Effektes nötig, Geräte einzusetzen, welche eine grosse Dispergierleistung aufweisen, oder grössere Thixotropiemittelmengen anzuwenden. Zum anderen müssen bei der bisher üblichen Methode der Einarbeitung der Thixotropienattel in die Polyesterharzlösung grosse Harzmengen manipuliert werden, was sowohl aus wirtschaftlichen, als auch,wegen der verdunstenden Monomeren, aus arbeitshygienischen Gründen nachteilig ist und ebenfalls aufwendige Einrichtungen nötig macht. Ein weiterer Nachteil der üblichen Verfahren liegt in der Wärmebelastung, welcher das Polyesterharz beim Einarbeiten des Thixotropiennittelsausgesetzt wird. Dadurch wird bekanntermassen die Lagerstabilität dieser Harzlösung wesentlich beeinträchtigt. Aufgabe der vorliegenden Erfindung ist die Vermeidung dieser angegebenen Nachteile und damit die Herstellung auch grosser Mengen thixotroper Lösungen ungesättigter Polyesterharze, wie sie für die Herstellung von Laminaten und Feinschichten allgemein eingesetzt werden. Einsatzgebiete für die Feinschichtharze sind z. B. der Bootsbau, die Herstellung von Fassadenplatten, Innenbeschichtungen von Behältern und der Anlagenbau, insbesondere dort, wo chemische Beständigkeiten gefordert werden. Diese Aufgabe wurde dadurch gelöst, dass man das Thixotropiemittel bereits während der Herstellung des Polyesterharzes einarbeitet, und zwar durch Einsatz einer konzentrierten Paste des Thixotropiemittels in einem oder mehreren der verwendeten flüssigen oder leicht schmelzbaren Rohstoffe, welche bei der Harzherstellung zum Einsatz kommen. Insbesondere kommen für diesen Zweck die verschiedenen Glykole aufgrund ihrer Polarität und gün steigen Dispergiereigenschaften in Betracht. Das vorliegende erfindungsgemässe Verfahren zur Herstellung von thixotropierten Lösungen ungesättigter Polyesterharze in copolymerisierbaren Monomeren ist dadurch gekennzeichnet, dass man ein temperaturbeständiges Thixo tropierittel in einem oder mehreren der flüssigen oder durch Schmelzen verflüssigten Rohstoffen, welche bei der Herstellung des Polyesterharzes eingesetzt werden, dispergiert und diese Paste in entsprechenden Anteilen zusammen mit den anderen Rohstoffen bei der Veresterungsreaktion des ungesättigten Polyesterharzes einsetzt. Es ist klar, dass das erfindungsgemässe Verfahren nur beim Einsatz von Thixotropiermitteln, welche auch bei Temperaturen von 150 - 2500C chemisch nicht verändert werden, verwendbar ist. Diese Eigenschaft wird von den meist eingesetzten anorganischen Thixotropiannitteln erfüllt. Auch organische Substanzen vertragen diese Temperaturen in vielen Fällen ohne weiteres, wenn sie, wie dies bei der Harzherstellung erfolgt, in einer Schmelze und/oder Lösung vorliegen. Vorzugsweise werden anorganische Thixotropiennittel ein gesetzt-, wie pyrogene oder gefällte synthetische kolloidale Kieselsäuren, Bentonite, bestimmte Kaolintypen, modifizierte Asbest- oder Smektittypen u. v. a. Ungesättigte Polyesterharze werden im allgemeinen durch¯ Polyveresterung von Polycarbonsäuren oder Polycarbon- säureanhydriden mit Polyolen, im allgemeinen Glykolen, hergestellt, wobei gegebenenfalls auch monofunktionelle Säuren oder Alkohole mitverwendet werden. Einer der Bestandteile des Polyesters ist äthylenisch ungesättigt, im allgemeinen die Polycarbonsäure. Typische ungesättigte Polyesterharze werden hergestellt aus Dicarbonsäuren, wie Phthalsäure, Phthalsäureanhydrid, Adipinsäure, Bernsteinsäure, Tetrahydrophthalsäure oder -anhydrid, Tetrabromphthalsäure oder -anhydrid, Maleinsäure oder -anhydrid, oder Fumarsäure. Beispiele für typische Glykole sind Äthylenglykol, Propylenglykol, Butylenglykol, Neopentylglykol, Diäthylenglykol, Dipropylenglykol, Poly äthylenglykol und Polypropylenglykol oder Diol-diäther von Diphenolen, z. B. des Bisphenol A. Gelegentlich werden zur Herstellung des Polyesters auch dreiwertige oder noch höherwertige Polyole verwendet, wie Trimethylol äthan, Trimethylolpropan oder Pentaerythrit. Im allgemeinen wird ein geringer stöchiometrischer Glykolüberschuss bei der Herstellung des ungesättigten Polyesters angewendet. Die Veresterung erfolgt im Azeotropverfahren oder dem SchmeXRondensationsverfahren. Nach Fertigstellung wird das Harz meist durch Zufliessenlassen der Harzschmelze zum inhibitorhältigen copolymerisierbaren Monomeren zugegeben, wobei auf die Einhaltung einer maximalen Temperatur sorgfältig geachtet werden muss. Als Dispergiermedium für das erfindungsgemässe Verfahren können alle flüssigen Rohstoffe, wie sie bei der Poly esterherstellung zum Einsatz kommen,verwendet werden. Ausserdem können mit geringem technischen Aufwand auch die festen Rohstoffe, deren Schmelzpunkt nicht zu hoch liegt, zur Herstellung der ThixotropienmStelpaste herangezogen werden. Aus diesen Rohstoffen, vorteilhafterweise den flüssigen oder leicht schmelzbaren Glykolen, wird eine Thixotropienettelpaste hergestellt, welche 3 bis 30 Gew.-% des Thixotropiemittels enthält. Diese Paste wird dem Reaktionsansatz in dem Masse zugegeben, wie es dem angestrebten Gehalt an Thixotropiermittel im Endprodukt entspricht. Die Herstellung des Polyesterharzes erft > lgt -dann in Gegenwart des Thixotropiermittels in der üblichen Weise. Überraschenderweise entstehen bei dieser Verfahrensweise an den Reaktorwänden keine Ablagerungen, sodass auch die Reinigung des Reaktors bzw. des Lösungsbehälters keine Schwierigkeiten bereitet. Ebenso tritt auch keine Verfärbung des Produktes ein. Dagegen ergeben sich durch das erfindungsgemässe Verfahren wirtschaftliche und technische Vorteile, von denen einige auch für den Fachmann nicht zu erwarten waren. Infolge des polaren Dispergiermediums erfolgt die Dispergierung des Thixotropiermittels sehr leicht, wodurch der Einsatz von weniger aufwendigen Geräten, z. B. auch von schnellaufenden Propellerrührwerken möglich ist. Da die Menge, welche für das erfindungsgemässe Verfahren im Dispergiergerät verarbeitet werden muss, wesentlich kleiner ist als bei der bisher angewandten Methode, sind wesentlich kürzere Belegzeiten für die Geräte erforderlich. Die Menge der zu verarbeitenden Masse liegt in fast allen Fellen unter 10 % der Menge, welche nach dem üblichen Verfahren durchgesetzt werden muss. Die Dispergierung erfolgt in Abwesenheit der toxischen und relativ flüchtigen Monomeren, wodurch aufwendige Schutzvorrichtungen eingespart werden können. Ebenso ist die eventuell auftretende Wärme beim Dispergiervorgang ohne Einfluss auf das Endprodukt. Die Pasten können selbstverständlich auch längere¯%eit und mit weniger Rücksicht auf die Umgebungstemperatur gelagert werden, als dies bei einer Paste auf Basis einer Polyesterharzlösung im Monomeren möglich wäre. Überraschenderweise wird als zusätzlicher Effekt, vor allem beim Einsatz von hochdisperser Kieselsäure, eine Verkürzung der Reaktionszeit bis zu 50 % erreicht, was wiederum zu einer besseren Ausnützung der Reaktorkapazität führt. Im Fertigprodukt ist durch den besseren und gleichmäRi- geren Aufschluss des Thixotropiermitbels im polaren Dispergiermedium eine wesentliche Erhöhung der Gleichmässigkeit der Thixotropieistärke zu beobachten. Durch die grosse Dispersität kann auch in vielen Fällen die Menge des Thixotropienattels zur Erzielung eines bestimmten Effektes verrringert werden, was wiederum eine Verbesserung der chemischen Widerstandsfähigkeit und Witterungsbeständigkeit der Werkstücke ergibt. Auch dieser Effekt war für den Fachmann nicht vorhersehbar, da eher angenommen werden musste, dass durch das bei der Veresterung entstehende Reaktionswasser bei der ausgeprägten Fähigkeit des Wassers zur H-Brückenbildung Störungen im Thixo tropierverhalten auftreten könnten. Da überdies die fertige Polyesterharzlösung keiner zusätzlichen thermischen Belastung ausgesetzt ist, erhöht sich auch die Lagerstabilität der Endprodukte. Da z. B. Glykolpasten bei gleichem Thixotropiemittelan- teil wesentlich niedrigviskoser sind als entsprechende Pasten auf Basis von Polyesterharzlösungenskönnen die beim erfindungsgemässen Verfahren verwendeten Pasten wesentlich konzentrierter angesetzt werden. Andererseits ist die Einstellung einer gleichbleibenden Pastenviskosität wesentlich einfacher, was bei Dispergiermaschinen mit Zwangsdurchlauf (Kolloidmühlen, Ultraturrax, Ultraschalldispergatoren etc.) Umrüstzeiten einspart. Beim Einsatz von festen Polyesterrohstoffen zur Dispergierung des Thixotropiermittels wird in Schmelze gearbeitet. Die Lagerung der Thixotropierungspaste erfolgt dann vorteilhafterweise in gebrochenem Zustand, wodurch die Beschickung des Reaktors vereinfacht wird. Die folgenden Beispiele dienen zur näheren Erläuterung der Erfindung. Herstellung der Thixotropierungspasten Paste A In 220 g Polypropylenglykol werden mit Hilfe eines Zahn scheibenrührwerkes (Dissolver) 55 g einer hochdispersen synthetischen Kieselsäure mit einer spezifischen Ober 2 fläche nach BET von 380 +- 30 m /g, einer mittleren Grösse der Primärteilchen von 7 Millimikron und einem SiO2 Gehalt von 99,8 % dispergiert. Paste B Eine Propylenglykolpaste mit der Zusammensetzung der Paste A wird in einem üblichen schnellaufenden Propellerrührwerk hergestellt (Drehzahl 2000 - 2500 U/min). Paste C 164 g Neopentylglykol werden bei ca. 120 C geschmolzen und in einem Zahnscheibenrührwerck mit 36 g eines Thixo- tropienattels auf Basis eines autgeschlossenen Chrysotil Asbests mit einer spezifischen Oberfläche nach BET von 2 ca. 50 m /g und den Hauptbestandteilen SiO2 (44 %) und MgO (38 %) dispergiert. Der Thixotropiermittelanteil in der Paste beträgt 18 %. In gleicher Weise kann auch z. B. TCD-Alkohol D (bei mind. 50 - 600C) oder der Propylenglykoldiäther des Bisphenol A (bei mind. 70 - 90 C) eingesetzt werden. (TCD-Alkohol D = Tricyclodecandiol) Beispiel 1: a) Thlioropi-erung gemäss Stand der Technik (Laminierharz typ) 143 g Propylenglykol (1,88 Mol) werden mit 118,5 g Phthalsäureanhydrid (0,8 Mol) und 98 g hIaleinsäurean- hydrid (1 Mol)in üblicher Weise im Azeotropverfahren bis zu einer Säurezahl von 40 - 45 mg KOH/g verestert. Das Harz wird mit Styrol bis zu einem Festkörpergehalt von 60 % verdünnt und mit 85 ppm Hydrochinon stabili siert. Anschliessend wird in der Harzlösung 1 Gew.-% der in PasteA verwendeten hochdispersen Kieselsäure mittels eines Zahnscheibenrührwerkes dispergiert. Erfindungsgemässes Verfahren b) Thixotropierung mit Paste A Analog 1 a) wird ein ungesättigtes Polyesterharz her gestellt , wobei anstelle des dort angegebenen Propy lenglykols eine Mischung von 27,5 g Paste A (0,29 Mol Propylenglykol) und 121 g Propylenglykol (1,59 Mol) eingesetzt wird. c) Thixotropierung mit Paste B Es w-ird wie im Punkt 1 b) verfahren, doch anstelle der Paste A die gleiche Menge Paste B eingesetzt. Die Kennwerte der verschiedenen Versuche sind in Tabelle 1 zusammengefasst. Beispiel 2: a) Thixotropierung gemäss Stand der Technik (Feinschichtharztyp) 135,4 g Neopentylglykol (1,3 Mol) werden mit 99,7 g Isophthalsäure (0,6 Mol) und 58,8 g Maleinsäuréanhy- drid--(Oj6-Mol) in der üblichen Weise im Azeotropver fahren bis zu einer Säurezahl von 15 - 20 mg KOE/g verestert. Das Harz wird mit Styrol bis zu einem Festkörpergehalt von 60 % verdünnt und mit 500 ppm Hydrochinon inhibiert. Die Harzlösung wird in einem Dissolver mit 3 Gew.-70 (bezogen auf die Harzlösung) des in der Paste C verwendeten Thixotropitmittels verarbeitet. b) Thixotropierung nach dem erfindungsgemässen Verfahren 62 g Paste C (0,5 Mol Neopentylglykol), 83,4 g Neo pentylglykol, 99,7 g Isophthalsäure (0,6 Mol) und 58,8 g Maleinsäureanhydrid werden gemäss 2 a) ver estert, in Styrol gelöst und inhibiert. Die Thixotropiemitt elmenge beträgt 2,6 Gew.-70,bezogen auf Harzlösung. Die Kennwerte sind in der Tabelle 1 zusammengefasst. Tabelle l EMI10.1 <tb> ei- <SEP> Reaktor- <SEP> Visko- <SEP> Thix.- <SEP> J <SEP> Lager- <SEP> ' <SEP> Sedimen-4 <tb> spiel <SEP> belegzeit <SEP> sität/ <SEP> Index <SEP> bestän- <SEP> tat <SEP> ion <tb> <SEP> Stunden <SEP> sec <SEP> I <SEP> digkeit <SEP> 1 <SEP> 5000 <SEP> z <SEP> Zen <tb> <SEP> Tage/ <SEP> trifuge <tb> <SEP> 70 C <SEP> (5000 <SEP> U/ <tb> <SEP> min <tb> <SEP> 30 <SEP> min. <tb> 1 <SEP> a <SEP> 15 <SEP> 125 <SEP> a <SEP> 1,16 <SEP> 5 <SEP> 25Tge. <SEP> SED <tb> <SEP> SED <tb> 1 <SEP> b <SEP> 9,5 <SEP> 128 <SEP> 1a) <SEP> 1,17 <SEP> 11 <SEP> 4OTge. <SEP> i.O <tb> 1.0. <tb> 1c <SEP> 10 <SEP> 124 <SEP> ) <SEP> 1,16 <SEP> 10,5 <SEP> 35Tge. <SEP> 1.0. <tb> <SEP> i.O. <tb> 2 <SEP> a <SEP> 28 <SEP> 40 <SEP> lb) <SEP> 1,25 <SEP> 6 <SEP> -- <SEP> - <tb> 2b <SEP> 22 <SEP> 41 <SEP> lb) <SEP> 1,25 <SEP> 10 <SEP> -- <SEP> - la) Die Viskosität wird nach gutem Durchrühren der Probe der nicht weiter verdünnten Harzlösung mit dem DIN Becher (DIN 53 211, Düse 4 mm, 200C) gemessen. lb) Die Viskosität wird nach Verdünnen (100 g Harz + 30 g Styrol) nach gutem Durchrühren mit einem DIN Becher (Düsendurchmesser 6 mm) bei 200C gemessen. Die gemäss la) und Ib) gefundenen Werte sind Relativ werte. 2) Der Thixotropieindex ist der Quotient aus den schein baren Viskositäten vor bzw. nach der Zerstörung der Thixotropie (gemessen mit BROOKFIELD-X7iskosimeter RVT bei 20 C). 3) Endpunkt der Prüfung ist die Gelierung der Probe. 4) Bei Sedimentation (SED) wird eine deutlich sichtbare Zone eines überstehenden klaren Harzes beobachtet.
Patentansprüche 1. Verfahren.zur Herstellung thixotroper Lösungen unge sättigter Polyesterharze in copolymerisierbaren Mono meren, dadurch gekennzeichnet, dass man ein tempera turbeständiges Thixotropiermittel in einem oder mehreren der flüssigen oder durch Schmelzen verflüssigten Roh stoffe , welche bei der Herstellung des Polyester harzes eingesetzt werden, dispergiert und diese Paste in entsprechenden Anteilen zusammen mit den anderen Rohstoffen bei der Veresterungsreaktion des ungesät tigten Polyesterharzes einsetzt. 2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Thixotropiennittel einsetzt, welche bei Tem peraturen bis max. 150 - 2500C chemisch nicht verän dert werden. 3. Verfahren gemäss den Ansprüchen 1 und 2, dadurch ge kennzeichnet, dass man zur Dispergierung die für die Herstellung des Polyesterharzes vorgesehenen Glykole anteilsweise oder zur Gänze heranzieht. -4. Verfahren gemäss den Ansprüchen 1 bis 3, dadurch ge kennzeichnet, dass man Pasten einsetzt, welche 3 bis 30 Gew.-% Thixotropierittel und 70 bis 97 Gew.-% des zur Dispergierung herangezogenen Rohstoffes enthalten. 5. Verfahren gemäss den Ansprüchen 1 bis 4, dadurch ge kennzeichnet, dass man als Thixotropiemittel anorga nische Substanzen, insbesondere hochdisperse Kiesel säure, einsetzt. 6. Verfahren gemäss den Ansprüchen 1 bis 5, dadurch ge kennzeichnet, dass man fliessfähige Pasten des Thixo tropieniiittels als Polyesterrohstoff einsetzt.
VIANOVA KUNSTHARZ AKTIENGESELLSCHAFT
GROBBAUER, PETER; NOWAK, PETER, DIPL.-ING. DR.
EP-0004873-B1
4,873
EP
B1
DE
19,821,229
1,979
20,100,220
new
H01H71
null
H01H33, H01H3, H01H71, H01H9
H01H 71/50
FRICTIONALLY OPERATIVE LATCH STRUCTURE WITH TWO RELATIVELY MOVABLE PARTS
1. An arrangement comprising two components (25, 31) which can be moved relative to one another under friction, wherein the co-operating surfaces of one component (25) consist of a thermosetting synthetic resin, whilst those of the other component (31) consist of a thermoplastic synthetic resin, characterized by its use as a latching arrangement in a construction which is such that one component serves as a component (25) which is to be supported and which is subject to the influence of an energy storing device (41), and the other component is designed as a rotatably mounted detent lever (31), the thermoplastic synthetic resin being allotted to that region (47) of the component (25) to be supported, which co-operates with the detent lever (31), whilst the thermosetting synthetic resin is allotted to that region (48) of the detent lever (31) which co-operates with the component (25) which is to be supported, and which is arranged concentrically with respect to the bearing axis (49) of the detent lever (31) with an edge (50).
Verklinkungsanordnung mit einem drehbaren Klinkenhebel Die Erfindung befasst sich mit einer Verklinkungsanordnung mit einem unter der Wirkung eines Kraftspeichers stehenden, bewegbar angeordneten Teil und einem mit diesem zusammenwirkenden, drehbar gelagerten Klinkenhebel. Verklinkungsanordnungen dieser Art sind in der mechani- schen und in der elektromechanischen Technik sehr verbreitet. Sie dienen dazu, einen Kraftspeicher in Abhängigkeit von Einflussgrössen, wie Weg, Temperatur, elektrischer Strom oder Spannung, gesteuert freizugeben. Ein Beispiel hierfür sind Verklinkungsanordnungen in elektrischen Leistungsschaltern, deren Schaltstücke beim Erreichen eines bestimmten, über sie fliessenden Stromes getrennt werden sollen. Ein weiteres Beispiel sind als Zubehörteile in solche Leistungsschalter einsetzbare Hilfsauslöser, bei denen die Auslösegrösse selbst nicht zur Entklinkung des Leistungsschalters ausreicht und daher ein Kraftspeicher benötigt wird. Bei diesen Anordnungen kommt es darauf an, dass die Auslösekraft Uber eine Vielzahl von Auslösevorgängen mit möglichst geringer Toleranz aufrechterhalten wird. Diese Forderung besteht beispielsweise bei den erwähnten Leistungsschaltern, die über eine Reihe von Jahren ohne Wartung an ihrem Einsatzort verbleiben und dennoch im Fall einer Störung rasch und präzise ansprechen müssen. Bekannte Verklinkungsanordnungen, wie sie bei Unterspan nungsauslösern für Niederspannungs-Leistungsschalter in den Firmen-Druckschriften General Electric GET-2779 D, Seite 8 und Ottermill MBR 1001/73 beschrieben sind, bestehen aus Netallteilen. Die Form der Teile erfordert dabei im allgemeinen eine Herstellung mit mehreren Bear beitungsoorgängen, z. B. Schneiden, Biegen, Lochen, Schleifen, Polieren und anschliessendes Galvanisieren. Um den Aufwand für die verschiedenen Bearbeitungsgänge zu senken, könnte man an sich daran denken, die zusammenwirkenden Teile der Verklinkungsanordnung im Press- oder Spritzverfahren aus Kunststoffen herzustellen. Bei der Prufur,g von Verklinkungsanordnungen, die aus solchen Teilen bestehen, stellt man jedoch eine unbefriedigende Konstanz der Auslösekräfte fest. Der Erfindung liegt die Aufgabe zugrunde, eine Verklinkungsanordnung zu schaffen, die unter Verwendung von Kunststoffteilen mit gleichbleibender Auslösekraft sowie reibungs- und verschleissarm arbeitet. Diese Aufgabe wird gemäss der Erfindung dadurch gelöst, dass wenigstens der mit dem Klinkenhebel zusammenwirkende Bereich des bewegbaren Teiles aus einem thermoplastischen Kunststoff und der mit dem bewegbaren Teil zusam menwirkende Bereich des Klinkenhebels aus einem duroplastischen Kunststoff besteht und konzentrisch zu der Lagerachse des Klinkenhebels angeordnet ist. Versuche und praktische Erprobungen haben gezeigt, dass bei dieser Paarung von Werkstoffen in der angegebenen Anordnung auch zahlreiche Auslösevorgänge die Eigenschaften der Anordnung nicht abträglich verändern. Der Grund hierfür ist darin zu sehen, dass der duroplastische Kunststoff im Verhältnis zu dem thermoplastischen Kunststoff unter dem Einfluss des Kraftspeichers in sehr viel geringerem Mass verformt wird. Demgegenüber neigen thermoplastische Kunststoffe zu einem Fliessen unter Druck und daher zur Anpassung an ein härteres Gegenstück. Hierbei ist nun wesentlich, dass sich der drehbar gelagerte Klinkenhebel mit seiner Stützfläche gewissermassen in dem bewegbar angeordneten Teil, welches unter der Wirkung des Kraftspeichers steht, abbildet und sich beide Teile daher aufeinander einstellen. Je nach der Belastung der Verklinkungsanordnung durch den Kraftspeicher und den gegebenen Eigenschaften der Kunststoffe wird sich die Stützfläche des Klinkenhebels in dem bewegbar angeordneten Teil unterschiedlich tief abbilden. Dieser Vorgang findet beim Zusammenbau der Verklinkungsanordnung einmalig statt, so dass die Verklinkungsanordnung anschlie ssend gleichbleibende Eigenschaften besitzt. Die Erfindung wird im folgenden anhand des in den Figuren dargestellten Ausführungsbeispieles näher erläutert. Die Fig. 1 und 2 zeigen einen Unterspannungsauslöser mit Kraftspeicher für einen Niederspannungs-Leistungs- schalter in zwei senkrecht zueinander stehenden Ansichten. In den Fig. 3, 4 und 5 ist ein Klinkenhebel in zwei Ansichten und einem Schnitt dargestellt. Die Fig. 6, 7 und 8 zeigen ein mit dem Klinkenhebel zusammenwirkendes, bewegbar angeordnetes Teil in zwei Ansichten und einem Schnitt. Der in der Fig. 1 gezeigte Unterspannungsauslöser 1 weist einen aus einem Kunststoff hergestellten Träger 2 für alle noch zu beschreibenden bewegbaren oder sonstigen aktiven Teile auf. Der Träger 2 besitzt in der Seitenansicht etwa die Form eines rechtwinkligen Dreiecks mit von der einen Dreieckseite etwa senkrecht abstehenden Fortsätzen 8 und 9, die zur Halterung des Unter spannungsauslösers 1 in dem Gehäuse eines Leistungsschalters dienen. An der weiteren Dreieckseite 3 des Trägers 2 ist zwischen Rippen 4 und 5 ein Elektromagnet 6 befestigt, der ein Joch 7 und einen Tauchanker 10 mit einer Rückstellfeder 11 und einem Führungsstift 12 besitzt. Eine Öffnung 13 des Trägers 2 dient zur Aufnahme eines Befestigungselementes für den Elektromagneten 6. Der Elektromagnet 6 ist mittels Anschlussleitungen 14 mit einer zu überwachenden Spannungsquelle verbindbar. Die Verbindungsstellen der#Spulendrähte des Elektromagneten 6 und der Anschlussleitungen 14 sind an gegen überliegenden Seitenflächen 15 und 16 des Trägers 2 nahe der Dreieckseite 19 angeordnet. Wie die Fig. 1 zeigt, befindet sich an der Seitenfläche 16 des Trägers 2 eine Lötöse 17. Eine für eine weitere Lötöse bestimmte C fnung 18 ist an der gegenüberliegenden Seitenfläche 15 des Trägers 2 in der Fig. 6 erkennbar. An den Träger 2 ist ein Schutzschild 20 angeformt, der den Führung stift 12 des Tauchankers 10 vor Staub, Fremdkörpern oder ähnlichen Einflüssen schützt, die in Richtung des Pfeiles 21 (Fig. 1) auftreten können. An der dritten Dreieckseite 22, von der auch die Fortsätze 8 und 9 ausgehen, ist der Träger 2 im Bereich beider Ecken zur Bildung von Lagerstellen gegabelt ausgeführt. Dabei dienen mit fluchtenden Bohrungen versehene Gabelarme 23 und 24 zur gemeinsamen Lagerung eines abgewinkelten Hebels 25 und eines Rückstellhebels 26 auf einem Lagerstift 27, während Gabelarme 28 und 30 zur Lagerung eines Klinkenhebels 31 auf einem Lagerstift 32 dienen und zur-Aufnahme dieses Lagerstiftes gleichfalls mit fluchtenden Bohrungen versehen sind. Der Klinkenhebel 31 besteht aus einem doruplastischen Kunststoff, z. B. einem Formpressstoff auf der Basis eines Polyesterharzes. Der abgewinkelte Hebel 25 besteht dagegen aus einem thermoplastischen Kunststoff. Der eine mit Lageröffnungen 33 und 34 versehene Schenkel 35 des abgewinkelten Hebels weist Seitenwände 36 und 37 sowie eine fensterartige Öffnung 38 auf, in welcher der Rückstellhebel 26 bewegbar ist. Die Seitenwand 36 besitzt innen ein Widerlager 40 für einen Schenkel einer Biegefeder 41 (Fig. 7) und aussen konzentrisch zu der Lageröffnung 34 einen zylindrischen Ansatz 42 als Auflage von Windungen einer weiteren Biegefeder 43, die zur Kopplung des Klinkenhebels 31 mit dem Tauchanker 10 des Elektromagneten 6 dient. Das Widerlager 40 wirkt als Arbeitsfläche zur Einleitung der Rückstellkraft in den abgewinkelten Hebel 25, wie noch erläutert wird. Der andere Schenkel 44 des abgewinkelten Hebels 25 verläuft etwa in der Verlängerung der Seitenwand 37 des Schenkels 35 und steht zu diesem unter einem Winkel von etwa 600. An seinem vorderen Ende ist der Schenkel 44 derart abgekröpft, dass er mit einer Arbeitsfläche 45 mit einer Endfläche 46 des Tauchankers 10 in Berührung treten kann. Etwa dort, wo der Schenkel 35 des abgewinkelten Hebels 25 in den anderen Schenkel 44 übergeht, befindet sich eine Verklinkungsfläche 47, die mit dem Klinkenhebel 31 zusammenwirkt. Dieser besitzt einen konzentrisch zu seiner Lagerachse 49 angeordneten zylindrischen Teil 48 mit einer Kante 50. Ferner besitzt der Klinkenhebel 31 einen Nocken 51 als Widerlager eines Schenkels 52 der Biegefeder 43, die mit mehreren Win dungen den zylindrischen Ansatz 42 des abgewinkelten Hebels 25 umgibt und die sich mit einem weiteren Schenkel 53 an dem Träger 2 abstützt. Die Biegefeder 43 sorgt für eine ständige Anlage und damit eine Kopplung des Klinkenhebels 31 mit seiner Arbeitsfläche 54 an der Endfläche 46 des Tauchankers 10. Die Biegefeder 41 besitzt zwei Abschnitte 55 und 56 mit gegenlaufig gewickelten Windungen. Diese Abschnitte sind durchgehend gewickelt und durch einen Federarm 57 ver bunde, Ferner besitzen die Abschnitte 55 und 56 Endschenkel 60 und 61. Der Abschnitt 55 wirkt als Federkraftspeicher, während der Abschnitt 56 die bei der Rückstellung wirksame Ubertragungsfeder bildet. Im montierten Zustand, wie ihn insbesondere die Fig. 2 zeigt, liegt die Biegefeder 41 mit dem Federarm 57 an dem Rückstellhebel 26 an, während sich der eine Endschenkel 60 an dem Träger 2 und der andere Endschenkel 61 an dem Widerlager 40 des abgewinkelten Hebels 25 abstützt. Durch den unterschiedlichen Wickelsinn der Abschnitte 55 und 56 und die verschiedene Anzahl der ##2efl#rjndungen wird erreicht, dass einerseits eine Vor Erannkraft auf den abgewinkelten Hebel 25 in Richtung eines Anschlages 62 des Fortsatz es 9 des Trägers 2 und andererseits der Rückstellhebel 26 gegenüber dem abZe- winkelten Hebel 25 vorgespannt wird, an dem der Rückstellhebel 26 mit einer Anschlagfläche 63 anliegt. Die Federkräfte sind so bemessen, dass beim Einwirken einer Rückstellkraft auf eine Arbeitsfläche 64 des Rückstellhebels 26 solange keine Relativbewegung zwischen dem Rückstellhebel 26 und dem abgewinkelten Hebel 25 auftritt, bis dieser mit seiner Arbeitsfläche 45 den Tauchanker 10 entgegen dessen Rückstellfeder 11 in seine durch einen Anschlag begrenzte Endstellung zurückge stellt hat. Während dieser Bewegung wirkt das Widerlager 40 des abgewinkelten Hebels 25 als Arbeitsfläche der durch die Biegefeder 41 übertragenen Rückstellkraft. Führt das auf die Arbeitsfläche 64 einwirkende Teil des Leistungsschalters noch eine weitere Bewegung aus, so wird der Rückstellhebel 26 mit seiner Anschlagfläche 63 von dem abgewinkelten Hebel 25 abgehoben und bewegt sich unabhängig von diesem weiter um die gemeinsame Lagerung. In den Fig. 1 und 2 ist der Unterspannungsauslöser 1 in seinem verklinkten Betriebszustand dargestellt, in dem der Elektromagnet 6 erregt und der Tauchanker 10 angezogen ist. Der abgewinkelte Hebel 25 stützt sich dabei mit seiner Verklinkungsfläche 47 an dem zylindrischen Teil 48 des Klinkenhebels 31 ab. Dabei steht der abgewinkelte Hebel 25 unter der Wirkung des durch den Abschnitt 55 der Biegefeder 41 gebildeten Federkraftspeichers. Verringert sich nun die an dem Elektromagne- ten 6 anliegende zu überwachende Spannung auf ein bestimmtes vorgegebenes Nass, so überwindet die Rückstellfeder 11 des Tauchankers 10 die auf den Klinkenhebel 31 durch die Biegefeder 43 ausgeübte Rückstellkraft, bis der Klinkenhebel 31 so weit gedreht ist, dass die Ver klinkungsfläche 47 des abgewinkelten Hebels 25 von dem zylindrischen Teil 48 des Klinkenhebels 31 abgleitet. Der abgewinkelte Hebel 25 wird dadurch schlagartig freigegeben und in Fig. 1 entgegen dem Uhrzeigersinn ce- schwenkt. Der Anschlag 62 des Fortsatzes 9 des Trägers 2 begrenzt diese Schwenkbewegung nach der Auslösung. Von einer Arbeitsfläche 65 des Schenkels 44 des abgewinkelten Hebels 25 kann dabei ein Auslöseglied eines Leistungsschalters betätigt werden. Wie ohne weiteres erkennbar ist, lässt sich die Erfindung auch mit veränderten Proportionen und abgewandel ten Formen der Teile verwin'#lichen. Insbesondere unterliegt die Bemessung der Längen der Schenkel des abgewinkelten Hebels und der von aen Schenkeln eingeschlossenen Winkel sowie die Stärke der Federn und Gestalt des Trägers der Anpassung an den Leistungsschalter, der mit einem Unterspannungsauslöser ausgerüstet werden soll. Dabei kann auch eine andere als die beschriebene Drei ecksform des Trägers zweckmässig sein. Ferner können anstelle des Tauchankermagneten beliebige andere Bauformen zur Elektromagneten benutzt werden, sofern sie für Unterspannungsauslöser geeignet sind. Im übrigen sind die gleichen guten Eigenschaften im Zusammenwirken des ab gewinkelten Hebels 25 und des Rlinkenhebels 31 erreichbar, wenn nur die unmittelbar zusammenwirkenden Bereiche, d. h. die Verklinkungsfläche 47 und die zylindrische Stützfläche 48, aus den angegebenen Werkstoffen hergestellt werden. Dies kann z. B. durch Einsetzen von entsprechenden Teilen in die aus anderem Werkstoff beste hemden Hebelkörper geschehen. 1 Aspruch 8 Figuren
Patentanspruch Verklinkungsanordnung mit einem unter der Wirkung eines Kraftspeichers stehenden, bewegbar angeordneten Teil und einem mit diesem zusammenwirkenden, drehbar gelagerten Klinkenhebel, d a d u r c h g e k e n n z e i c hn e t , dass wenigstens der mit dem Klinkenhebel (31) zusammenwirkende Bereich (47) des bewegbaren Teiles (25) aus einem thermoplastischen Kunststoff und der mit dem bewegbaren Teil zusammenwirkende Bereich (48) des Klinkenhebels (31) aus einem duroplastischen Kunststoff besteht und konzentrisch zu der Lagerachse (49) des Klinkenhebels (31) angeordnet ist.
SIEMENS AKTIENGESELLSCHAFT
TROEBEL, WERNER
EP-0004875-B1
4,875
EP
B1
DE
19,810,513
1,979
20,100,220
new
A47B9
null
A47B9
A47B 9/00
HEIGHT ADJUSTING DEVICE FOR A PIECE OF FURNITURE, IN PARTICULAR A TABLE
1. Raising and lowering device for a piece of furniture, in particular a table, with a spindle drive (15) which acts on a part (11) of the piece of furniture, which part is raisably and lowerably guided relative to a stationary part (12, 13), in which case the raisable and lowerable part (11) is guided in a parallel guideway means (17, 21; 18, 22) by means of spaced apart vertical racks (36) through pinions (35) secured on a common, stationarily mounted shaft (16), characterised in that the spindle drive (15) has a push rod (28) which via a resilient thrust ram (27) acts from below directly on to the raisable and lowerable part (11) of the piece of furniture (10), that is without coupling with the parallel guideway means (17, 21; 18, 22).
Hebe- und Senkvorrichtung für ein Nöbelstück, insbesondere einen Tisch Die Erfindung betrifft eine Hebe- und Senkvorrichtung für ein Möbelstück, insbesondere einen Tisch, mit einem auf einen relativ zu einem feststehenden Teil heb- und senkbar geführten Teil des Möbelstücks einwirkenden Antrieb. Hebe- und Senkvorrichtungen dieser Art ermöglichen eine Einstellung von Möbelstücken in unterschiedliche Höhen, Dies ist von besonderer Bedeutung bei Arbeitstischen, deren Höhe der Sitzhöhe bzw. Körpergrösse einer arbeitenden Person anzupassen ist. Es sind hierzu Hebe- und Senkvorrichtungen bekannt, die nach verschiedenen möglichen Prinzipien arbeiten, jedoch den Nachteil haben, dass sie zur verkantungsfreien Führung des heb- und senkbaren Teils des Möbelstücks an dem feststehenden Teil kompliziert und damit kostspielig aufgebaut sein müssen. So ist es beispielsweise bekannt, die vier Beine eines Tisches teleskopartig auszuführen und diese Teleskopvorrichtungen über einen gemeinsamen, auf Zugelemente, beispielsweise Drahtseile, gleichzeitig einwirkenden Kurbeltrieb zu betätigen. Andererseits ist es bekannt, Hebel- und Gelenkvorrichtungen vorzusehen, die direkt auf den heb- und senkbaren Teil einwirken. Solche Vor richtungen müssen aber entweder an möglichst weit beabstandeten Stellen symmetrisch auf den heb- und senkbaren Teil einwirken oder es müssen besondere aufwendige Führungen für den heb- und senkbaren Teil vorgesehen sein, um während der Hebe- und Senkbewegung eine Verkantung der zueinander bewegten Teile zu vermeiden. Auch derartige Hebel- und Gelenkvorrichtungen sind relativ kompliziert aufgebaut und verursachen insbesondere bei Anordnung an zueinander beabstandeten Stellen einen hohen Aufwand. Es ist Aufgabe der Erfindung, eine Hebe- und Senkvorrichtung anzugeben, die möglichst bequem und ohne hohen Kraftaufwand zu bedienen ist, eine sehr feine Höheneinstellung ermöglicht und dabei eine glatte und möglichst geräuschlose Arbeitsweise gewährleistet. Eine Vorrichtung eingangs genannter Art ist zur Lösung dieser Aufgabe erfindungsgemäss derart ausgebildet, dass als Antrieb ein auf den heb- und senkbaren Teil direkt punktförmig einwirkender Spindeltrieb vorgesehen ist und dass der heb- und senkbare Teil mittels zueinander beabstandeter vertikaler. Zahnstangen an auf einer gemeinsamen, ortsfest gelagerten Welle befestigten Ritzeln geführt ist. Diese Vorrichtung ist ausserordentlich einfach aufgebaut und lässt sich, wie noch gezeigt wird, so konstruieren, dass sie auch nachträglich an Möbelstücken angebracht werden kann. Dadurch, dass einerseits ein direkt auf den hebund senkbaren Teil einwirkender Spindeltrieb und andererseits eine Führung des heb- und senkbaren Teils an dem feststehenden Teil vorgesehen ist, die über die ortsfest gelagerte Welle eine kraftschlüssige Verbindung der Zahnstangen miteinander gewährleistet, sind Verkantungen bei der Hebe- und Senkbewegung ausgeschlossen. Der Spindel trieb gewährleistet dabei eine sehr feine Arbeitsweise, und zu seiner Betätigung ist ein nur geringer Kraftaufwand erforderlich, so dass beispielsweise hierzu ein vergleichsweise kleiner Elektromotor verwendet werden kann. Die Vorrichtung kann vorteilhaft derart weiter ausgebildet sein, dass ein Führungsrahmen vorgesehen ist, der Je- weils eine Zahnstange enthaltende Teleskopvorrichtungen aufweist, deren ortsfeste Teleskopteile durch eine horizontale und parallel zur Welle angeordnete Querschiene verbunden sind. Durch diese Ausbildung ergibt sich eine sehr starre Führungskonstruktion, die als eine Einheit nachträglich an einem Möbelstück, beispielsweise an der Unterseite eines Tisches, angebracht werden kann. Die beiden Teleskopvorrichtungen können dabei Tischbeine bilden oder auch an Seitenflächen bzw. Tischbeinen angebracht sein. Die Querschiene erhöht dabei die Stabilität des Möbelstücks wesentlich, so dass auch dadurch die verkantungsfreie Führung des heb- und senkbaren Teils verbessert wird. Der Spindeltrieb kann bei der zuletzt beschriebenen Weiterbildung in einfacher Weise an der Querschiene befestigt sein, so dass er in die Hebe- und Senkeinheit einbezogen ist. Ein Ausführungsbeispiel einer Vorrichtung nach der Erfindung wird im folgenden anhand der Figuren beschrieben. Es zeigen Fig. 1 die Vorderansicht eines Arbeitstisches mit einer gegenüber einem feststehenden Teil heb- und senkbaren Tischplatte, Fig. 2 eine Schnittansicht der Hebe- und Senk vorrichtung des in Fig. 1 gezeigten Arbeits tisches gemäss der dort angedeuteten Blichrich richtung II und Fig. 3 eine vergrössert dargestellte Einzel heit der Fuhrungsvorrichtung. In Fig. 1 ist ein Arbeitstisch 10, beispielsweise ein Labortisch oder ein sonstiger Gerätetisch, in einer Vorderansicht dargestellt, der im wesentlichen eine hebund senkbare Tischplatte 11 sowie feststehende Seitenteile 12 und 13 umfasst, die beispielsweise durch eine vertikale Rückplatte 14 miteinander starr verbunden sind. Der Arbeitstisch 10 enthält unterhalb der Tischplatte 11 eine Hebe- und Senkvorrichtung, die einen Spindeltrieb 15, eine ortsfest gelagerte Welle 16 und zwei mit dieser Welle 16 kraftschlüssig gekoppelte Teleskopvorrichtungen 17 und 18 umfasst. Die Teleskopvorrichtungen 17 und 18 sind mit den Seitenteilen 12 und 13 verbunden bzw. auf unteren, an den Seitenteilen 12 und 13 montierten Querträgern 19 und 20 befestigt. Die beweglichen Elemente 21 und 22 der Teleskopvorrichtungen 17 und 18 sind an der Unterseite der Tischplatte 11 befestigt, so dass sie die Tischplatte 11 bei ihrer Hebe- und Senkbewegung in den feststehenden Teilen der Teleskopvorrichtungen 17 und 18 führen. Während dieser Bewegung wird eine Verkantung der beweglichen Elemente 21 und 22 in den Teleskopvorrichtungen 17 und 18 dadurch vermieden, dass die beweglichen Elemente 21 und 22 mit nicht dargestellten Zahnstangen versehen sind, die an jeweils einem Ritzel geführt sind, welches auf der Welle 16 befestigt ist. Auf diese Weise ergibt sich eine kraftschlüssige Kopplung der beiden beweglichen Elemente 21 und 22, die jeweils übereinstimmende Bewegungslängen wahrend der Teleskopbewegung gewährleistet und dadurch eine Verkantung unmöglich macht. Der Antrieb 15 umfasst einen hinsichtlich seiner Drehrichtung umsteuerbaren Elektromotor 25, der eine senkrecht angeordnete Drehspindel betätigt. Diese ist in einer im Antrieb 15 vorgesehenenHülse26 geführt und bewirkt durch ihre Drehbewegung, dass ein Druckstempel 27 an einer Schub stange 28 mehr oder weniger weit aus dem Antrieb 15 heraus- bzw. in ihn hineinbewegt wird. Der Druckstempel 27 kann beispielsweise aus Gummi oder einem elastischen Kunststoff bestehen und wirkt von unten her auf die Tischplatte 11 ein, so dass er sie anhebt bzw. beim Einschieben in den Antrieb 15 ihr Absenken infolge ihres Eigengewichts bewirkt. Der Antrieb 15 ist an einer Querschiene 30 montiert, die die beiden Teleskopvorrichtungen 17 und 18 starr miteinander verbindet. Somit bilden der Antrieb, di e die Teleskopvorrichtungen 17 und 18 und die Querschiene 30 eine Einheit, die an dem Tisch 10 in sehr einfacher Weise von unten her montiert werden kann. Hierzu sind die Teleskopvorrichtungen 17 und 18 lediglich mit den Seitenteilen 12 und 13 des Arbeitstisches 10 zu verbinden, und die beweglichen Elemente 21 und 22 müssen an der Tischplatte 11 befestigt werden. Hierzu genügen vergleichsweise schwache Befestigungselemente, denn über die beweglichen Elemente 21 und 22 erfolgt keine KraftUber- tragung, sondern sie dienen lediglich der verkantungsfreien Führung mittels der über die Welle 16 verwirklichten kraftschlüssigen Kopplung. Die Antriebskraft für die Hebebewegung wird einzig und allein über den Druckstempel 27 auf die Tischplatte 11 übertragen. In Fig. 1 ist ferner ein Anschlusskabel 40 mit einem Anschlussstecker 41 für die Stromversorgung des Elektromotors 25 dargestellt. Ausserdem ist ein Betätigungsschalter 42 zu erkennen, der über ein Verbindungskabel 43 mit dem Elektromotor 25 verbunden ist und mit zwei verschiedenen Schaltstellungen eine drehrichtungsabhängige Betätigung des Elektromotors 25 ermöglicht. Fig. 2 zeigt eine Schnittdarstellung der Hebe- und Senkvorrichtung gemäss der in Fig. 1 angedeuteten Blichrichtung II. Der Arbeitstisch 10 ist für eine oberste Stellung der Tischplatte 11 dargestellt, die unterste Grenzstellung ist strichpunktiert angedeutet. Die Ansicht des Seitenteils 13 zeigt die daran befestigte Teleskopvorrichtung 17 sowie die Befestigung des Antriebs 15 mittels zweier Hateleelemente 31 und 32, die beispielsweise verlängerte Laschen eines Montageträgers 33 sein können. Die Lasche 31 umgibt die Querschiene 30, die ein U-Profil aufweist und die Welle 16 umgibt. Es ist ferner zu erkennen, dass die Teleskopvorrichtung 17 an einem unteren Querträger 19 mit dem Seitenteil 13 des Arbeitstisches 10 verbunden ist. Der Betätigungsschalter 42 für den Elektromotor 25 des Spindeltriebs 15 ist an der einer arbeitenden Person zugewandten Unterseite der Tischplatte 11 nahe der Vorderkante angeordnet und als Wippschalter ausgebildet. Er erT möglicht eine bequeme Ein- und Ausschaltung des Spindeltriebs 15 in der einen oder anderen möglichen Drehrichtung und damit eine sehr genaue Anpassung der Höhe der Tischplatte 11 an die jeweiligen Erfordernisse. Wie aus Fig. 1 in Verbindung mit Fig. 2 hervorgeht, können die Teleskopvorrichtungen 17 und 18 in Form ineinander geführter Vierkantrohre ausgebildet sein. Dies bringt eine weitere Verbesserung der verkantungsfreien Führung der Tischplatte 11 an den feststehenden Seitenteilen 12 und 13 des Tisches 10. Fig. 3 zeigt gemäss der entsprechend bezeichneten strichpunktierten Linie in Fig. 1 eine Einzelheit der Hebe- und Senkvorrichtung zur besseren Darstellung der Führung der bereits genannten Zahnstangen an jeweils einem Ritzel, das auf der Welle 16 befestigt ist. Der entsprechende, in Fig. 3 gezeigte Teil der Hebe- und Senkvorrichtung ist teilweise gebrochen dargestellt, so dass die Kopplung eines auf der Welle 16 angeordneten Ritzels 35 mit einer Zahnstange 36 zu erkennen ist, die mit dem beweglichen Element 21 der Teleskop rrichtung 17 fest verbunden ist. Es handelt sich hierbei um ; - am Seitenteil 13 des Ar beitstisches 10 vorgesehene Anordnung. Diese ist in Fig. 3 durch die strichpunktierte Linie G umgeben. Fig. 1 zeigt, dass eine gleichartige Einheit G auch an dem Seitenteil 12 des Arbeitstisches 10 vorgesehen ist. Das Ritzel 35 ist mit der Welle 16 fest verbunden. Diese ist in einem Lager 37 angeordnet, das in Fig. 3 als einfache Hülse dargestellt ist und mit der Querschiene 30 fest verbunden ist. Das bewegliche Element 21 ist in der Teleskopvorrichtung 17 in vertikaler Richtung verschiebbar geführt und auf seiner der Welle 16 zugewandten Seite mit einem in Fig. 3 nicht dargestellten Schlitz versehen, der die Bewegung relativ zur Welle 16 ermöglicht. Dadurch, dass auf der anderen Seite des Arbeitstisches, d.h. an dem Seitenteil 12, eine Anordnung G vorgesehen ist, die analog der in Fig. 3 gezeigten Anordnung aus Ritzel 35 und Zahnstange 36 ausgebildet ist, sind die beiden mit den beweglichen Elementen 21 und 22 der Teleskopvorrichtungen 17 und 18 fest verbundenen Zahnstangen über die Welle 16 kraftschlüssig miteinander verbunden, so dass exakt übereinstimmende Hebe- und Senkbewegungen der beweglichen Elemente 21 und 22 gewährleistet sind, wenn der Druckstempel 27 über die Schubstange 28 auf die Tischplatte 11 einwirkt bzw. von ihrer Unterseite entfernt wird. Es ergibt sich somit eine völlig störungsfreie, geräuscharme und überaus genaue Arbeitsweise der Hebe- und Senkvorrichtung, die darüber hinaus noch ausserordentlich einfach aufgebaut ist. Es sind keine besonderen Erfordernisse hinsichtlich eines genauen Einbaus zu berücksichtigen, und der Ort, an dem der Druckstempel 27 auf die Tischplatte 11 einwirkt, ist völlig unkritisch. Insbesondere ist es möglich, den Druckstempel 27 nicht in der Mitte, sondern auf der einen Seite des Möbelstücks anzuordnen, so dass beispielsweise bei einem Tisch die Beinfreiheit unterhalb der Tischplatte nicht gestört wird. Die Hebe- und Senkvorrichtung nach der Erfindung ermöglicht also trotz asymmetrischer Krafteinwirkung eine störungsfreie Führung des relativ zum feststehenden Teil bewegten Teils. Eine Vorrichtung nach der Erfindung kann überall dort eingesetzt werden, wo es auf-möglichst genaue und fein fühlige Arbeitsweise ankommt. Beispielsweise ist auch die Verwendung bei höhenverstellbaren Stühlen denkbar. Ausserdem kann die Vorrichtung nicht nur bei Möbelstücken im engeren Sinne, sondern auch bei allen anderen Einrichtungs- oder Arbeitsgerätschaften eingesetzt werden, bei denen eine relativ häufige Höhenänderung zu verwirklichen ist.
Patentansprüche: 1. Hebe- und Senkvorrichtung für ein Möbelstück, insbe sondere einen Tisch, mit einem auf einen relativ zu einem feststehenden Teil heb- und senkbar geführten Teil des Möbelstücks einwirkenden Antrieb, dadurch gekennzeichnet, dass als Antrieb ein auf den heb- und senkbaren Teil (11) direkt punktförmig einwirkender Spindeltrieb (15) vorgesehen ist und dass der heb- und senkbare Teil (11) mittels zueinan der beabstandeter vertikaler Zahnstangen (36) an auf einer gemeinsamen, ortsfest gelagerten Welle (16) be festigten Ritzeln (35) geführt ist. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Führungsrahmen (17, 18, 30) vorgesehen ist, der jeweils eine-Zahnstange (36) enthaltende Teleskop vorrichtungen (17, 18, 21, 22) aufweist, deren orts feste Teleskopteile (17, 18) durch eine horizontal und parallel zur Welle (16) angeordnete Querschiene (30) verbunden sind. 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Spindeltrieb (15) an der Querschiene (30) be festigt ist. 4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Spindeltrieb (15) einen umsteuerbaren Elektro motor (25) als Antriebsvorrichtung aufweist. 5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Querschiene (30) U-Profil aufweist und die Welle (16) umgibt. 6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Spindeltrieb (75) eine vertikal nach oben ra gende Schubstange (28) aufweist, die über einen ela stischen Druckstempel (27) auf den heb- und senkbaren Teil (11) des Möbelstücks (10) einwirkt. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Druckstempel (27) auf die Unterseite einer relativ zu feststehenden Seitenteilen (12, 13) heb und senkbaren Tischplatte (11) eines Arbeitstisches (10) einwirkt. 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die feststehenden Teile (17, 18) der Teleskopvor- richtungen (17, 18, 21, 22) an den Seitenteilen (12, 13) des Arbeitstisches (10) montiert sind. 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Spindeltrieb (15) nahe einem Seitenteil (13) unterhalb der Tischplatte (11) des Arbeitstisches (10) montiert ist.
NIXDORF COMPUTER AKTIENGESELLSCHAFT
DOINGHAUS, HERMANN, ING.; PALAND, ROLF; SCHMEYKAL, RUDOLF, ING.; Döinghaus, Hermann, Ing.
EP-0004877-B1
4,877
EP
B1
EN
19,820,512
1,979
20,100,220
new
C08G79
null
C01B21
C01B 21/098B, C01B 21/098
A PROCESS FOR THERMALLY POLYMERIZING CYCLIC PHOSPHAZENES
Thermal polymerization of (NPCI₂)3,4 is improved by conducting the polymerization in the presence of Ziegler type catalysts, namely compounds of the transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or W, with or without the presence of compounds of B or Al as cocatalysts.
CATALYSIS OF PHOSPHAZENE CYCLICS TO POLYMER, USING ZIEGLER TYPE CATALYSTS BACKGROUND OF THE INVENTION This invention relates to improvements in the conversion of low molecular weight cyclopolydichlorophosphazenes to higher molecular weight linear polydichlorophosphazenes. More particularly, it relates to the use of suitable catalysts in order to improve the above polymerization by increasing the rate of polymerization, while decreasing or entirely eliminating the formation of gel and by permitting better control of the molecular weight and other physical properties of the polymer produced. Thermal polymerization of (NPC12)n where n is a small integer such as 3 or 4 are described in Allcock et al, United States Patent 3,370,020 issued February 20, 1968 and in Rose, United States Patent 3,515,688 issued June 2, 1970 and elsewhere in the literature. In scaling-up such methods of thermal polymerization from laboratory size glass apparatus to pilot plant and semi-works installations, the polymerization vessels have been fabricated from stainless steels because of the relatively high temperatures utilized in the polymerization. An undesired consequence of the use of stainless steel equipment has been the contamination of the polymerization mixture with small amounts of metals such as chromium, nickel and iron which have significant but unpredictable effects on the manner in which the polymerization proceeds. These and other-objects of the invention will be pointed out or will be apparent from the description which follows. It has been found that the desired polymerization of cyclic dichlorophosphazenes to linear polydichlorophosphazenes can be effected at lower temperatures and at a more rapid rate by the use-of Ziegler type compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or W as catalysts. It has also been found that the catalyzed polymerizations in glass or in stainless steel vessels proceed without the formation of gel, and that the molecular weight of the product can be controlled conveniently by varying the concentration of catalyst. It has further been found that some control over the molecular weight distribution of the resulting polymer can be achieved by incremental addition of the catalyst and/or of the cyclic oligomers to the polymerization apparatus. Ziegler type catalysts suitable for the present invention are generally produced by preparing suitable compounds of one or more transition elements of Groups IV, V or VI, particularly metal halides, metal hydrides or metal alkyls of the transition element. It appears that transition elements which form compounds with incomplete d-shells and are in the lower valence states can associate metal alkyls to form complexes with highly polarized bonds. Particularly preferred catalysts for the present invention are compounds of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W wherein at least some of the metal is present in a valence state of 3 or below, or is associated with a sufficient amount of a reducing agent, capable of lowering the valence of such metal to the lower valence state. Metals, metal hydrides, metal alkyls or aryls and Grignard reagents are examples of the reducing agents which may be present to lower the valence of the transition metal in the compound which is to act as a catalyst. The transition metal compounds which serve as catalysts or from which the catalyst is prepared may be inorganic compounds such as a halide, oxyhalide, or other complex halide, or oxide or may be organic compounds such as an alcoholate, acetate, phenol ate, or the like. The following compounds are illustrative of preferred Ziegler type catalysts which may be used in the practice of the present invention. Metal halogen compounds of metals of Groups IVB, VB, and VIB of the Periodic Table represented by the formula M'Y'c in which c is the valence of the metal M; and Y is anionic, e.g. a halogen such as chlorine. Particularly preferred metals are titanium, zirconium, vanadium and chromium. TiC13, TiC14, ZrC14, VCl5 and CrCl3 are such compounds. Combinations of such compounds with organometallic compounds of aluminum or boron represented by the formula RaMXb in which M is either Al or B having a valence of a+b; X is anionic, e.g. a halogen such as chlorine and R is a hydrocarbon selected from the group consisting of alkyl, aryl, cycloalkyl, alkaryl and arylalkyl. The invention will be more fully understood from the Examples which follow and which are intended to illustrate and not to limit the invention. Twenty (20) grams of cyclic trimer (NPCl2)3 and the indicated additive were charged into small, clean, dry, glass tubes in a dry box. The tubes were then evacuated to a vacuum of 0.1 mm Hg or less and sealed while connected to the vacuum line. The sealed tubes and their contents were placed in a forced air oven maintained at the desired temperature and polymerized for the times shown in Table I. The polymerizates are then removed from the glass tubes and unreacted trimer was removed by sublimation. Unsublimed material is the polymer which can then be dissolved in benzene or toluene and reacted with alkoxides as described in United States Patents 3,370,020 or 3,515,688 noted above. A control without the additive was also run at the same time. Tables I and II illustrate the results obtained with different starting materials. TABLE I Time Percent Additive Amount Hrs. Temperature Polymer IA None None 24 2500C 46 1B TiC14 .04 ml 22.5 2500C 90 (Neat) 2A None None 32.6 250 C 21.9 2B ZrC14 .29 g 8.75 2280C 82 TABLE II g Catalyst/ Polymerization Conver Catalyst g Trimer TOC Hrs. sion DSV 1. ZrC14 0.0033 270 4 89 0.31 2. ZrC14 0.0033 250 8 90 0.33 3. ZrCl4 0.033 250 4 95 0.25 4. ZrCl4 + BCl3 0.0067+0.005 200 10 90 0.16 As indicated in Table II above, catalysts may comprise the compounds of metals of Groups IVB, VB, and VIB of the Periodic Table or combinations of such catalysts with cocatalysts such as compounds of'B or Al. This is further shown in the following table. The triethyl aluminum was used as 20% solution in toluene, and the vanadium acetylacetonate as a 0.1 molar solution. TABLE III Polymerization Catalyst Amount Catalyst/20g Trimer T C Hrs %Conversion DSV 1. None - 220 30.0 9.2 2.46 2. TiCl3 0.1g 220 12.0 28.9 0.74 5 3. TiCl3+EtAl 0.1g+3 drops 20% soln* 220 12.0 50.0 0.23 4. Ti(OBu)4+Et3Al 3 drops + 6 drops 20% soln* 220 12.0 30.7 0.52 5. CrO2Cl2+Et3Al 3 drops + 12 drops 20% soln* 220 19.5 49.7 0.58 6. Vacac**+Et3Al 4 drops 0.1 M soln. + 4 drops 220 21.0 71.0 0.31 20% soln* 10 7. CrO2Cl2+Et3Al 0.08Mm + 0,013mM** 170 90.0 26.2 N.D.*** *Et3Al in toluene **acac = acetylacetonate ***mM = Millimoles ****Not Determined The product can be recovered in any of several ways. A preferred method is to permit the reactor to cool sufficiently whereupon the polydichiorophosphazene can be dissolved in a solvent or solvent mixture and the product can be flushed out of the reactor. Although the invention has been described with specific reference to dichlorophosphazenes it is also applicable to the polymerization of dibromophosphazene and difluorophosphazene oligomers. Having now described preferred embodiments of the invention, it is not intended that it be limited except as may be required by the appended claims.
CLAIMS: 1. In a process for thermally polymerizing cyclic phosphazenes represented by the general formula (NPHal2)n in which Hal is a halogen selected from the group consisting of C1, F and Br and n is a small integer between 3 and 7 comprising heating said cyclic phosphazenes to a temperature in the range between 150 and 3000C for a time sufficient to produce a linear polydichalophosphazehe wherein the degree of polymerization is between 20 and 50,000, the improvement which comprises conducting said heating to thermally polymerize said cyclic phosphazene in the present of a catalytically effective amount of a Ziegler type catalyst, said catalyst comprising a compound of a transition metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W. 2. The process of Claim 1 wherein Hal is C1 and n is 3,4 or mixtures of 3 and 4. 3. The process of Claim 1 wherein the catalyst includes a cocatalyst which is a compound of Al or B. 4. The process of Claim 1 in which the amount of catalyst present is between about 0.1 millimoles and 20.0 millimoles/mole of cyclic phosphazene. 5. The process of Claim 1 in which the catalyst is a metal halogen compound. 6. The process of Claim 1 in which the catalyst is a Ti compound. 7. The process of Claim 1 in which the catalyst is TiC13 or TiC14. 8. The process of Claim 1 in which the catalyst is ZrCl4. 9. The process of Claim 1 in which a cocatalyst is present in addition to the catalyst and the cocatalyst is an organometallic compound RaAlXb, in which R is an organic radical such as alkyl, aryl, cycloalkyl, arylalkyl or alkylary and a and-b are small integers totalling the valence of Al and X is anionic. 10. The process of Claim 1 in which the catalyst further contains an aluminum alkyl compound.
THE FIRESTONE TIRE & RUBBER COMPANY
FIELDHOUSE, JOHN WILLIAM; KANG, JUNG WONG; SNYDER, DENNIS LAVERNE
EP-0004880-B1
4,880
EP
B1
EN
19,830,706
1,979
20,100,220
new
C25B11
null
C25B11
C25B 11/04D4B
ELECTRODES FOR ELECTROLYTIC PROCESSES, ESPECIALLY PERCHLORATE PRODUCTION
An electrode especially for the production of chlorates and perchlorates comprising an electrically-conductive corosion-resistant substrate having an electrocatalytic coating which is preferably a mixture of 40 to 85 parts by weight of platinum, 0 to 20 parts by weight of palladium and 15 to 40 parts by weight (as tin metal) of tin dioxide.
ELECTRODES FOR ELECTROLTTIC PROCESSES, ESPECIALLY PERCHLORATE PRODUCTION. TECHNICAL FIELD The invention relates to electrodes for use in electr6lytic processes, of the type comprising an electrically-conductive and corrosion-resistant substrate having an electrocatalytically-active surface coating, and to electrolytic processes using such electr.odes, especially (but not exclusively) as anodes for the production of chlorates, perchlorates and other persalts and percompounds including organic peroxyacids. B CKGROUND ART For tile production of perchlorate, various anode materials have been used commercially, including smooth massive platinum, platinized titanium or tantalum (despite a tendency to produce excess oxygen) and lead dioxide coated on titanium or graphite, although these lead dioxide anodes have a high overvoltage and wear rapidly. Some proposals have already been made to confine platinun; group metals and tin dioxide in electrode coating materials. For example, U.S. Patent Specification 3,701,724 mentioned an anode for chlorine production having a coating consisting essentially of a minor amount of a platinum group metal and/or platinum group metal oxides with a major amount of Sn02, Sb205, Sb203 or Ge02 and mixtures thereof. However, the claims Ge0 2 and examples of this patent are directed solely to such coatings containing platinum group metal oxides and there is no enabling disclosure of a coating containing a platinum group metal. Also, U.S. Patent Specification 3,882,002 proposed an anode for chlorine production having a valve metal substrate coated with an intermediate layer of tin dioxide which was covered with an outer layer of a platinum group metal or oxide thereof. Neither of these proposals was directed to improving electrolytic performance in the production of percompounds. DISCLOSURE OF INVENTION An object of the invention therefore is to provide an improved electrode suitable for use as an anode for the production of perchlorates and other persalts, but which may also be used in other applications, such as chlorate production. According to a main aspect of the in,vention, an electrode comprises an electrically-conductive corrosion-resistant substrate having an electrocatalytic coating and is characterized in that the coating contains a mixture of at least one platinum group metal and tin dioxide dispersed in one another throughout the coating in the ratio of 8.5:1 to 3:2 by weight of the platinum group metals to the tin (as metal) of the tin dioxide. The platinum group-metal/tin dioxide coating may also contain a stabilizer/binder, for example a compound such as titanium dioxide, zirconium dioxide or silicon dioxide. Additionally, the coating may include a filler, e.g. particles or fibres of an inert material, such as silica or alumina, particles of titanium, or zirconium silicate. Furthermore, the coating may also contain, e.g. as a dopant the tin dioxide in a quantity up to about 30% by weight (as metal) of. the tin dioxide, of at least one additional metal or oxide of zinc, cadmium, arsenic, antimony, bismuth, selenium and tellurium. Such stabilizers or binders, fillers and dopants generally do not account for more than 70% of the total weight of the coating, usually far less. In the case of antimony trioxide or bismuth trioxide as dopant, the preferred amount corresponds to a ratio expressed as parts by weight of Sb/Bi:Sn (as metal) of at most about 1:4 to about 1:10 or even as low as 1:100. The platinum group metals are ruthenium, rhodium, palladium, osmium, iridium and platinum. Platinum is the preferred platinum group meta in the coating, when- a single metal is present, especially in anodes for perchlorate production. However, it is understood that alloys such as platinum-iridium and platinum-rhodium, also are useful for other applications. An alloy of platinum-palladium containing up to 20% palladium by weight of the alloy has given very satisfactory results for perchlorate production. Also, in some instances, it may be advantageous to alloy the platinum group metal(s) with one or more non-platinum group metals, for example a'alloy or an intermetallic compound with one of the valve metals titanium, zirconium, hafnium, vanadium, niobium and tantalum, or with another transition metal, for example a metal such as tungsten, manganese or cobalt. The substrate may consist of any of the aforementioned valve metals or alloys thereof, porous sintered titanium being preferred. However, other electricallyconductive and corrosion-resistant substrates may be used, such. as expanded graphite. The platinum group metal(s) and tin dioxide with possible additional dopants, such as antimony trioxide or bismuth trioxide, may be co-deposited chemically from solutions of appropriate salts which are pain Led, sup and otherwise- applied on the substrate and then subjected to heat treatment, this process being repeated until a sufficiently thick layer has been built up. Alternatively, thin layers of different components (e.g. alternate platinum or Pt/Pd alloy layers and layers of pure or doped tin dioxide) can be built up in such a way that the components are effectively mixed and dispersed in one another throughout the coating, possibly with diffusion between the layers, in contrast to the known prior art coatings such as that of U. S. Patent Specification 3,882,002, in which the tin dioxide was applied as a separate intermediate layer covered by a platinum group metal. Using this procedure of applying alternate layers, it is possible to deposit thin layers of platinum galvanically, which is advantageous, because gal vanically-deposited platinum has a lower oxygen evolution potential than chemi-deposited platinum. The platinum-group metal or alloy/tin dioxide layer may be applied directly to the substrate, or to an intermediate layer, e.g. of co-deposited tin and antimony oxides or tin and bismuth oxides, or to intermediate layers consisting of one or more platinum group metals or their oxides, mixtures or mixed crystals of platinum group metals and valve metal oxides, intermetallics of platinum group metals and non-platinum group metals, and so forth. In a preferred embodiment, the coating comprises 40 to 85 parts by weight of platinum, 0 to 20 parts by weight of palladium and 15 to 40 parts by weight (as Sn metal) of tin dioxide on a titanium, tantalum or titaniumvtantalum alloy substrate. This embodiment of an electrode of the invention, when used as anode for perchlorate or persulphate production, has been found to have selective properties favouring the persalt production while hindering oxygen evolution. The platinum metal acts as a catalyst for persalt production. The tin dioxide acts as an oxygen evolution inhibitor by blocking peroxide decomposition, which can be regarded as the intermediate step of the unwanted oxygen evolution reaction. Finall, the palladium acts as a diluent for the relatively more expensive platinum, without adversely affecting the oxygen imlibition effect of the tin dioxide. Another aspect of the 'invention is a process for the production of chlorates, perchlorates and other percompounds, e.g. persulphates, which is characterised by using as anode an electrode according to the invention, as defined above, BRIEF DESCRIPTION OF DRAWINGS In the accompanying drawings: F-ig. 1 shows a graph of the faraday efficiency of oxygen evolution as ordinate plotted against the tin content of the electrode coating as abscissa, the electrode being that described below in detail in Example I; Fig. 2 shows a graph of the faraday efficiency of oxygen evolution as ordinate plotted against the palladium content of the electrode coating as abscissa, She electrode being that described below in detail in Example II. BEST MODES FOR CARRYING OUT THE INVENTION The following Examples are given to illustrate the invention EXAMPLE I Titanium coupons measuring 10 x 10 x 1 mm were sandblasted and etched in 20% hydrochloric acid and were thoroughly washed in water. The coupons were then coated with an aqueous solution of chlorides of platinum and tin in different weight ratios dried at 950 to 1000C and then heated at 4500e for 15 minutes in an oven with forced air ventilation. The procedure was. repeated five times and the coupons were given a final heat treatment at 450 C for 60 minutes. The coatings-so produced contained SnO2 and platinum metal dispersed in one another. The coated coupons were tested as anodes for the production of sodium perchlorate by the electrolysis of a solution consisting of 100g/l Nay103, 400g/l Nay104 and 5g/l Na2Cr04 at 30 0C using a stainless steel 2 cathode and a current density of 2KA/m . Sodium chlorate was supplied and sodium perchlorate removed to maintain the concentrations in the electrolyte at a steady state. The faraday efficiency of the oxygen evolution reaction (fizz the unwanted side reaction in perchlorate production) was measured as a function of the percentage by weight of tin (as metal) in the mixed Pt-SnO2 coating. The results obtained are shown in Fig. 1, from which it can be seen that there is an optimum oxygen-inhibition effect for a tin content in the range of about 25%-35% of the total weight of tin and platinum metals, and a very appreciable inhibition of oxygen evolution for a tin content in the larger range from about 15% to about 40%. EXAMPLE II Titanium coupons were coated as in Example I, but using various coating solutions containing platinum, palladium and tin chlorides, to produce mixed Pt-Pd-Sn02 coatings having compositions as follows: EMI7.1 <tb> <SEP> Coating <SEP> Composition <tb> | <SEP> (% <SEP> weight <SEP> of <SEP> metal) <tb> <SEP> Pt <SEP> Pd <SEP> SnO2 <SEP> <tb> <SEP> 70 <SEP> 1 <SEP> 0 <SEP> 30 <tb> 65 <SEP> 5 <SEP> 30 <tb> <SEP> 60 <SEP> 10 <SEP> 30 <tb> <SEP> 55 <SEP> 15 <SEP> 30 <tb> <SEP> 50 <SEP> 20 <SEP> 1 <SEP> 30 <tb> <SEP> 45 <SEP> 25 <SEP> 30 <tb> These coupons were tested as anodes for perchlorate production under the same conditions as used in Example I. The faraday efficiency of the unwanted oxygen evolution reaction was measured as a function of the palladium metal content, and the results are shown in Fig. 2. This graph shows that, for a palladium content up to 208} the faraday efficiency remained low, i.e. the palladium did not adversely affect the performance of the coating to inhibit oxygen evolution. However, above the critical Pd content of 20%, the faraday efficiency abruptly increased, the stability of the coating was lowered and some electrochemical corrosion took place. The coatings of Examples I and II were tested at different current densities, and it was found that the oxygen evolution faraday efficiency decreased with increasing current density up to about 2 KA/mê, then 2 remained stable above 2 RA/in
CLAIMS: 1. An electrode for use in electrolytic processes, comprising an electrically-conductive corrosion-resistant substrate having an electrocatalytic coating, characterized in that the coating contains a mixture of at least one platinum group metal and tin dioxide dispersed in one another throughout the coating in the ratio of from 8.5:1 to 3:2 by weight of the platinum group metal(s) to the tin of the tin dioxide. 2. The electrode of claim 1, characterized in that the platinum group metal is platinum. 3. The electrode of claim 1, characterised in that the coating comprises 40 to 85 parts by weight of platinum, 0 to 20 parts by weight of palladium and 15 to 40 parts by weight of tin. 4. The electrode of claim 1, 2 or 3, characterized in that the coating also contains at least one additional metal or oxide of zinc, cadmium, arsenic, antimony, bismuth, selenium and tellerium in a quantity up to 30% by weight of the tin. 5. The electrode of claim 4, caracterized in tilat the coating contains one or more oxides of antimony and/or bismuth in an amount of at most 1 part by weight of Sb/Bi to 4 parts by weight of Sn. 6. A process for the production of chlorates, perchlorates and other percompounds by electrolysis, characterized by using as anode an electrode as claimed in any preceding claim.
DIAMOND SHAMROCK TECHNOLOGIES S.A.
BIANCHI, GUISSEPPE; DE NORA, VITTORIO; NIDOLA, ANTONIO; SPAZIANTE, PLACIDO MARIA
EP-0004882-B1
4,882
EP
B1
DE
19,810,211
1,979
20,100,220
new
C04B19
null
C04B28
C04B 28/26
PROCESS FOR PREPARING FIRE-PROTECTION OBJECTS BASED ON ALKALI SILICATES
1. A process for the continuous production of fire protection mouldings based on alkali metal silicates having a water content of from 20 to 40% by weight by gelling and solidifying a mixture containing water, alkali metal silicate and optionally reinforcing water, alkali metal silicate and optionally reinforcing materials, on a running endless carrier belt, characterized in that solid alkali metal silicate powder and a liquid alkali metal silicate solution or suspension are separately applied to the belt and the solids become uniformly distributed in the liquid on the belt, the resulting mixture undergoing gelation.
Verfahren zur Herstellung von Brandschutzmaterial auf Basis von Alkalisilikaten Die Erfindung betrifft ein kontinuierliches Verfahren zur Herstellung von Brandschutzmaterial durch getrennte Zugabe von festem Alkalisilikatpulver und einer flüssigen Alkalisilikat-Lösung bzw. -Suspension auf ein Trägerband, und anschliessendem verfestigen der Mischung mit definiertem Wassergehalt. Brands chutzmaterialien aus wasserhaltigen Alkalisilikaten sind seit langem bekannt und werden bereits vielfältig für den vorbeugenden Brandschutz eingesetzt. Sie bewirken bei höheren Temperaturen, wie sie z.B. im Brandfall auftreten, durch Schaumbildung, Volumenvergrösserung und Ausbildung eines Schäumdrucks eine hervorragende Isolierung gegen Feuer, und führen eine Abdichtung von Fugen und Spalten in Baukörpern herbei. In den DE-AS 11 69 832 und 14 71 005 ist die Herstellung solcher Materialien durch vergiessen von flüssigen Alkalisilikaten mit eingebetteten Fasern oder Geweben beschrieben. Bei diesen Verfahren muss eine aufwendige Trocknung des Materials durchgeführt werden, die auch bei dünneren Formteilen, z.B. 2 mm dicken Platten oder Streifen, selbst bei Einsatz leistungsfähiger Trokkenapparaten einige Stunden aauern. in der 3X-AS 11 76 546 ist ein Verfahren zur Herstellung von wasser- und faserhaltigen Formkörpern aus Alkalisilikaten beschrieben, das auch kontinuierlich aurchgeführt werden kann. Hier geht man von einer wässrigen Suspension von Alkalisilkatpartikeln in einer Alkalisilikat-Lösung aus, in die auf einem Trgermaterial Verstärkungsfasern eingebettet werden. Damit die Suspension noch genügend fliessfähig ist, muss sie mehr als 40 Gew. Wasser enthal ten. Würde man eine solche Mischung gelieren, ohne dabei Wasser zu entfernen, so würde die entstandene Branaschutzplatte eine für die praktische Anwendung nicht ausreichende Festigkeit aufweisen. Aus diesem Grund werden also auch hier erhebliche Mengen Wasser durch Trocknen entfernt (Beispiel 8 der DE-AS 11 76 546). er Erfindung lag die Aufgabe zugrunde, ein rasch und kontinuierlich durchführbares und wenig Energie kostendes Verfahren zur Herstellung von Brandschutzmaterial mit genügend hoher Festigkeit zu entwickeln. Es wurde gefunaen, dass Brandschutzmaterial besonders günstig hergestellt werden kann, wenn man auf einem endlosen Trägerband festes Alkalisilikatpulver und flÜssige Alkalisilikat-Lösung oder -Suspension getrennt voneinander aufgibt, wobei die Mischung geliert und sich zu einem Formteil verfestigt. Die aufwendige Trocknung entfällt dabei völlig, während die Vorteile der Verwendung einer flüssigen Phase zur Formgebung und zum sicheren Einbetten von Verstärkungsmaterialien erhalten bleiben. Der bei Verwendung von Alkalisilikaten notwendige Wasserentzug wird bei dem erfindungsgemässen Verfahren vor die Formgebung der Erzeugnisse verlegt. Technologisch ausgereifte Verfahren, wie z.B. Sprüh- oder Walzentrocknung', führen energiesparend zu preiswerten Angeboten von entwässerten Alkalisilikatpulvern. Das erfindungsgemässe Verfahren erlaubt auf eine einfache Weise, Brandschutzmaterialien auch mit grossen Dicken, z.B. bis zu 10 cm, herzustellen, die für das Zuschäumen von Fugen, Spalten und Öffnungen grösserer Breite nötig sind. Die bisher angewendeten Verfahren erlaubten nur die wirtschaftliche Herstellung von Wandstärken oder Plattendicken von maximal etwa 3 mm, da das Wasser nur sehr langsam aus der ausgegossenen Flüssigkeit diffundiert. Die erfindungsgemäss hergestellten Teile besitzen auch bei grösserer Wanddicke nach Beendigung der Formgebung den erwünschten Endwassergehalt. Eventuelle Feuchtigkeitsunterschiede im fertigen Teil werden von selbst ausgeglichen. Gegebenenfalls können besonders dicke Teile durch mehrfaches, schichtweise aufeinanderfolgendes Aufbringen von Flüssigkeit und Alkalisilikatpulver hergestellt werden. Das erfindungsgemässe Verfahren ermöglicht durch die kontinuierliche Arbeitsweise eine besonders wirtschaftliche Fertigung von Platten- oder Streifenmaterial. Die beschriebenen Verfahrensschritte sind bei Verwendung eines endlosen, umlaufenden Trägerbandes mit bekannten, handelsüblichen Maschinen und Geräten durchführbar. Das Fertigprodukt verlässt die Anlagen, ohne dass manuelle Eingriffe erforderlich sind. Als Flüssigkeit kann eine Alkalisilikat-Lösung oder eine Alkalisilikat-Suspension eingesetzt werden. Die Alkalisilikat-Lösung soll dabei vorzugsweise einen Wassergehalt von 50 bis 90, insbesondere von 50 bis 75 Ges. haben. Grundsätzlich sind auch Lösungen mit höherem Wassergehalt verwendbar, im Extremfall auch Wasser selbst; nur verlängert sich dann das Verfahren stark, da die Benetzung L J 'des Pulvers schwierig wird. Die Alkalisilikat-Suspenion ist eine mischung aus Wasser oder Alkalisilikat-Lösung mit pulverförmigem, festem Alkalisilikat. Sie weist einen Wassergehalt von 40 bis 60, vorzugsweise von 45 bis 55 Gew. auf. Eine Mischung von Alkalisilikat-Lösung mit Alkalisilikat-Pulver hat sich dabei als besonders vorteilhaft erwiesen, weil sich hier durch die Vorwegnahme eines Teils der Benetzung das Pulver mit der Flüssigkeit besser benetzt. Dies kann durch Rühren oder Quirlen während der Herstellung der Suspension noch beschleunigt und intensiviert werden. Die Flüssigkeit kann gegebenenfalls mit üblichen Zusatzmitteln, wie netzmittel, Farb- oder Füllstoffen usw. gemischt werden. Die Menge des zuzugebenden festen Alkalisilikatpulvers richtet sich nach der gewünschten Endfeuchte des herzustellenden Materials. Diese soll 20 bis 40 Ges. , vorzugsweise 25 bis 35 Gew.%, betragen. Sie richtet sich weiter nach der Zeit, die bis zur völligen Benetzung al'er pulverförmigen Teilchen bzw. bis zum völligen Aufsaugen der Flüssigkeit benötigt wird, sowie nach dem Wassergehalt der eingesetzten Alkalisilikate. Das feste Alkalisilikatpulver weist vorzugsweise mittlere Wassergehalte zwischen 0 und 30, vorzugsweise zwischen 5 und 20 uew. auf. Das Mengenverhältnis der wasserfreien Silikate in den beiden zusammenzugebenden Komponenten soll vorzugsweise zwischen 1 : 10 und 10 : 1 liegen. Die eingesetzten Alkalisilikate sind vorzugsweise Silikate des Natriums, des Kaliums oder des Lithiums mit einem Molverhältnis Me20 : SiO2 von 1 : 1 bis 1 : 6, vorzugsweise von 1 : 2,5 bis 1 : 4. Zu jedem Zeitpunkt im Verlauf des Verfahrens können Verstärkungsmaterialien zugegeben werden in Form von mineralischen, metallischen oder textilen Fasern, Geweben oder Gittern in Mengen von 0,5 bis 25 Ges.%, vorzugsweise von 2 bis 15 Ges.%, bezogen auf das Brandschutzmaterial. Der Auftrag der flüssigen Phase erfolgt vorteilhaft über Giessmaschinen, Zuteilwalzen, gegebenenfalls mit Abstreifer, über mit Düsen ausgerüstete Vorratstrichter oder unter Anwendung von Drücken über Düsen, Brusen oder Sprühgeräte. Das Aufstreuen des Alkalisilikatpulvers erfolgt z.B. durch Walzenzuteilapparate, wobei die Menge durch Drehzahl der Walze, durch Schieber oder durch die Füllhöhe des Vorratstrichters leicht geregelt werden kann. Die Oberfläche der Walze kann glatt oder profiliert sein. Ein Kühlen oder Beheizen der Walzen ist je nach Feuchtigkeit oder sonstiger Eigenschaften des Alkalisilikatpulvers oder der Zuschlagstoffe angebracht. Grundsätzlich sind auch andere Pulverdosiervorrichtungen einsetzbar. Die Reihenfolge der Zugabe von Alkalisilikatpulver, Flüssigkeit und Verstärkungsmaterialien ist beliebig. Man kann z.B. erst Glasfasern auf das Band aufstreuen, dann die Flüssigkeit aufsprühen und zuletzt das Alkalisilikatpulver zusetzen, doch ist diese Reihenfolge auch uSkehr- bar. Man kann auch Alkalisilikatpulver und Glasfasern gemeinsam zugeben und dann mit der-Flüssigkeit tränken. Die Feststoffe verteilen sich auf dem Band gleichmässig in der Flüssigkeit, so dass eine einheitliche Mischung entsteht. Diese verfestigt sich durch Gelieren. Das Gelieren kann durch kurzzeitiges Beheizen, z.B. mittels Infrarotstrahler auf Temperaturen zwischen 40 und 950C oder durch-Einwirkung von Schwingungen, z.B. durch Rüttler oder Vibratoren, beschleunigt werden. Dies hat L . sich bei kontinuierlicher Herstellung in grösserem Mass- stab als besonders vorteilhaft erwiesen, da sich hierdurch ein Endlosband herstellen lässt, das ohne Nachbehandlung vom Trägerband abgezogen werden kann. Von besonderer Bedeutung ist, dass beim Gelieren der Mischung praktisch kein Wasserentzug erfolgt, auch dann nicht, wenn sie kurzzeitig beheizt wird. Es findet im wesentlichen eine Anpassung der Wassergehalte der Alkalisilikate von Pulver- und Flüssigkeitsphase statt, wodurch eine einheitliche feste Masse entsteht. Die Formung der Materialien durch Glätten, Kalibrieren, Fressen, Verdichten, Prägen oder Schneiden sowie ein eventuelles Aufbringen von Über zügen erfolgt mit bekannten Maschinen und Geräten. Diese Vorgänge lassen sich in die kontinuierlich laufende Herstellung einfügen. Überzüge aus Kunststoff oder Metall, vorzugsweise Lacke aur Basis von Polyvinylchlorid, Epoxidharzen oder Polyurethanen, sowie Aluminiumfolien, schützen die Formteile gegen mecnanische Beanspruchung und vor allem gegen Endringen von Kohlendioxid und Wasser, sowie gegen Wasserverlust durch Austrocknen. Die mit den bisher bekannten Brandschutzmaterialien erzielten Eigenschaften, wie leichte Formgebung, beson ders für flächige Formteile, gute Elastizität bei grosser Festigkeit, gute Bearbeitungseigenschaften, sowie leichtes Einarbeiten von faseroder gewebeartigen Verstärkungsmaterialien bei der Herstellung, werden bei Anwendung des erfindungsgemässen Verfahrens ebenso erreicht, wobei die nachteilige Trocknung der Formteile vermieden wird. Die brandschutztechnisch wichtigen Eigenschaften, wie Schäumen und Erzeugung eines erheblichen Schäumdruckes, die Isolationswirkung und Nichtbrennbarkeit des im Brandfall entstehenden Schaumes, sind besonders günstig. L 5ie in den Beispielen genannten Teile und Prozente beziehen sich auf das Gewicht. Beispiel 1 Auf ein mit einer Geschwindigkeit von 4 m/min laufendes, ebenes, endloses Gummiband werden 200 g/m2, auf 50 mm Länge geschnittene Glasfasern auf eine Breite von etwa 500 mm gleichmässig gestreut. Hierauf wird auf die gleiche Breite eine Suspension in einer enge von 1600 g/m2 aufgedüst. Die Suspension wurde hergestellt durch Verrühren von 100 Teilen Natriumsilikatlösung mit einem Feststoffgehalt von 35 % und 33 Teilen Natriumsilikatpulver mit einem Wassergehalt von 16 Gew.S. Die Korngrössenverteilung des Pulvers war etwa folgende: ) 100/um 15 % 63/um 25 < 631um 60 % Auf diesen Aufguss wird mit einer Walzenzuteilmaschine lQatriumsilikatpulver mit einem Wassergehalt von 16 ° in einer enge von 1230 g/m2 aufgestreut, so dass ein Endlosband von etwa 2 mm Stärke entsteht. Durch Infrarot-Strahler (Einwirkungsdauer etwa 2 Minuten) wird die Mischung auf 800C aufgewärmt, wobei sie geliert und sich verfestigt. Nach Durchlaufen einer Kühlstrecke wird die Masse auf etwa 400C abgekühlt, vom Gummiband entnommen und auf Format geschnitten. Die entstehenden Streifen von 500 mm Breite und beliebiger Länge weisen den gewünschten Wassergehalt von 34 S auf. Sie besitzen grosse Festigkeit bei genügender Elastizität L Biegsameit) und bilden bei Erhitzen auf 6000C einen sehr festen, dichten, feinkörnigen Schaum, der etwa die 10-fache Stärke des Ursprungs streifens besitzt. Die erzeugten Streifen sind nach Aufbringen einer Schutzschicht für die Verwendung als Brandschutzmaterial geeignet. Beispiel 2 Auf ein ebenes, endlos umlaufendes Band wird eine Textilglasmatte mit 250 g Glasfasern/m2 aufgelegt. Hierauf wird über einen Walzenzuteiler Natriums ilikatpulver in einer Menge von 2000 g/m2 gleichmässig gestreut. Das Pulver verteilt sich über die Dicke der Glasfasermatte so gleichmässig, dass die anschliessend aufgegebene Suspension mit einer Menge von 2250 g/mê die vorgelegten Materialien gut durchtränkt. Die Masse geliert und verfestigt sich dadurch zu einem etwa 3 mm dicken, endlosen Strang. Nach Schneiden zu Streifen oder Platten zeigt das Material bei W2rmeeinwirkung oberhalb 100 0C das erwünschte Aufschäumen. Das verwendete Natriumsilikatpulver hat einen Restwassergehalt von 9,0 Gew.% und einen Kornanteil von 60 % (0,2 mm, davon 25 Gew. 90,1 mm. Die Suspension mit einem Feststoffgehalt von 46,7 Gew.%, wurde aus 3 Gewichtsteilen Natriumsilikatlösung mit 35 Gew.% Feststoffgehalt und 1 Gewichtsteil Natriumsilikatpulver mit 82 Ges.% Feststoffgehalt hergestellt. Das fertige Material weist in der faserfreien Masse den gewünschten Restwassergehalt von etwa 33 Gew.% auf. 'Beispiel 3 ;ach dem gleichen Verfahren wie im Beispiel 2 wird auf das endlos umlaufende Band und die Textilglasmatte 1600 g/m2 des lXatriumsilikatpulvers gestreut. Darauf wird anstelle der Suspension eine 35 %-ige Alkalisilikatlösung in einer Menge von 1230 g/mê aufgegeben. Die Verteilung und Durchtränkung wird durch Rollen mit Riffelwalzen verstärkt. Es entsteht auch hierbei durch Gelieren und Verfestigen ein enaloses Band mit einer Stärke von etwa 2 mm. Bei genügender Festigkeit wird durch den erreichten Wassergehalt von 33 , bezogen auf die faserfreie Masse, eine hervorragend flexible Brandschutzplatte erhalten.
zatentansprUche 1. Kontinuierliches Verfahren zur Herstellung von Brandschutzmaterial auf Basis von Alkalisilikaten mit einem Wassergehalt zwischen 20 und 40 Gew. durch Gelieren und Verfestigen einer Mischung, die Wasser, Alkalisilikat und gegebenenfalls Verstärkungsmateria lien enthält, auf einem endlosen, laufenden Träger band, dadurch gekennzeichnet, dass festes Alkalisilikat pulver und eine flüssige Alkalisilikat-Lösung oder -Suspension getrennt voneinander auf das Band auf ge- geben werden, und die Feststoffe sich auf dem Band gleichmässig in der Flüssigkeit verteilen, wobei die entstandene Mischung geliert. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Alkalisilikate Silikate des Natriums, Kaliums oder Lithiums sind mit einem Molverhältnis Ne2O SiO2 von 1 : 1 bis 1 : 6. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Verstärkungsmaterialien mineralische, me tallische oder textile Fasern, Gewebe oder Gitter zugegeben werden, und dass deren Menge 0,5 bis 25 Ges.%, bezogen auf das Brandschutzmaterial, beträgt. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Formteile in einer Stärke von 0,5 bis 100 mm hergestellt werden, durch gegebenenfalls mehrfaches, schichtweise aufeinanderfolgendes, Aufbringen von Feststoffen und Flüssigkeiten auf das Band. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass festes Alkalisilikatpulver mit einem mittleren Wassergehalt zwischen 0 und 30, vorzugsweise zwischen 5 und 20 Gew.%, zusammengegeben wird mit einer flüssigen Alkalisilikat-Suspension mit einem Wasserge halt zwischen 40 und 60, vorzugsweise zwischen 45 und 55 Gew.p, wobei die Mengenverhältnisse so gewählt werden, dass sich die Anteile der trockenen Silikate in den beiden Komponenten wie 10 : 1 bis 1 : 10 verhalten.
BASF AKTIENGESELLSCHAFT
CAESAR, ARNDT CHRISTIAN; KOEGEL, WOLFRAM; ZUERN, LUDWIG, DR.
EP-0004883-B1
4,883
EP
B1
DE
19,810,916
1,979
20,100,220
new
B01J2
C01C1, C01D9
B01J2, C01B25, C01D3, C01B35, C01D7, C01D5, C01D9, C01C1, C01G45
C01B 35/12B2F, C01B 35/06D4, C01D 3/26, C01D 9/20, C01B 25/28, C01B 25/45B, C01D 7/42, C01B 25/30, C01D 5/00B, C01G 45/12, B01J 2/30, C01C 1/28
PROCESS FOR THE PREPARATION OF FREE-FLOWING INORGANIC AMMONIUM AND ALKALI SALTS
1. A process for preventing the caking of inorganic ammonium and/or alkali metal salts, particularly nitrites or nitrates, by working in salts of aromatic sulfo acids, characterized in that there are used as aromatic sulfo acids mixtures such as have been obtained in the reaction of 1 mole of naphthalene with 1 to 2.5 moles of styrene in the presence of catalytic amounts of sulfuric acid at temperatures of from 50 degrees to 120 degrees C and subsequent sulfonation and neutralization.
Verfahren zur Herstellung rieselfähiger, anorganischer Ammonium- und Alkalisalze Die Erfindung betrifft ein Verfahren zur Herstellung riesel fähigen, anorganischer Ammonium- oder Alkalisalze. Es ist bekannt, dass zahlreiche Stoffe, insbesondere auch hygroskopische Verbindungen und Salze wie anorganische Ammoniumsalze und Alkalisalze beim Transport und bei der Lagerung häufig physikalische Veränderungen erleiden (Ullmanns Enzyklopädie der technischen Chemie, 3. Auflage, Bd. 6, S. 171 und 172; Chemistry and Industry 1966, S. 844 bis 850). Sie erhärten, backen zusammen und verlieren ganz oder teilweise ihre lockere Konsistenz und somit ihre RieselfE- higkeit, sie agglomerieren, verklumpen beim Transport, backen. an Rohr- und Gef0sswEnden an bzw. zerfliessen. Ihr Gebrauchswert wird dadurch stark vermindert, sie lassen sich nicht mehr ohne Schwierigkeiten fördern, nicht mehr gleichmässig dosieren, verstopfen die Fördereinrichtungen, sind schwierig zu lagern, was zu Betriebsstörungen und Stoffverlusten führt, und liegen, z.B. als Dügemittel, nicht mehr in'streubarer Form vor. Der Verlust der Rieselfähigkeit hat verschiedene ursachen. Beispielsweise lassen Hygroskopizität der Salze, Temperaturwechsel und/oder Luftfeuchtigkeit durch wechselnde Absorption und Desorption von Wasser die einzelnen Körner verketten. Ungünstige Kristallform bzw. ein gewisser Gehalt an Lösungsmittel oder Wasser beglnstigen die Bildung von Adsorbaten (Xriechlauge) und somit das Zusammenbacken. Plastizität der Körner und der Staudruck, der beim Anhäufen grösserer Mengen von Salz auf die unteren Schichten der so gebildeten Stapel einwirkte lassen das Salz ebenfalls zusammenbacken. Je feiner verteilt das Salz ist, desto grösser sind die Gesamtoberflächen der Einzelteilchen, die Verbackungsgefahr und somit der Verlust anRieselfähigkeit. Bezüglich des Verhaltens hygrokopischer bzw. zur Verbackung neigender Stoffe und der die Rieselfähigkeit bestimmenden Faktoren wird auf Ullmanns Enzyklopädie der technischen Chemie, 3. Auflage, Bd. 1, S. 564 ff., und Houben-Weyl, Methoden der organischen Chemie, Bd. 1/2, 5. 9 ff., verwiesen. Entsprechende Salze werden häufig in Form von wässrigen Lösungen weiterverarbeitet. Schon aus wirtschaftlichen Gründen, z.B. Transportkosten, oder aus Gründen der späteren Verwendung, z.B. als Katalysator, streubares Düngrnit tel oder als Zusatz zu Futtermitteln, sind aber solche Stoffe in fester Form, insbesondere in Gestalt von Pulvern mittlerer oder hoher Feinverteilung von besonderem Vorteil. Zur Vermeidung der geschilderten Nachteile werden die leicht zusammenbackenden Stoffe mit einem geeigneten, nicht hygroskopischen Material, z.B. Kieselgur, Korhmehl, Quarzmehl, Quarzsand, gepudert. Um die Lagerbeständigkeit der zusammenbackenden Stoffe in befriedigender Weise zu verbessern, sind in der Regel grössere Mengen an Puderstoffen erforderlich. Diese grossen Mengen an Puderstoff verursachen neben einem nicht unerheblichen Arbeitsaufwand auch beträchtliche zusätzliche Kosten. Hinzu kommt, dass die grossen Pudermittelmengen nur schlecht auf den Oberflächen der Salze haften; dies führt insbesondere beim in- und Ausspeichern der Düngemittel zu erheblichen Staubbelästigungen sowie zur Entmischung von Salz und Puderstoff. Es sind daher auch schon organische Zusatzstoffe bekannt geworden, die die anorganischen Puder ersetzen sollen. Hiar- bei handelt es sich in der Regel um Stoffe, die wasserabstossend wirken oder um oberflächenaktive Substanzen. So hat man schon neben Paraffin, S-tearin, Naphthalin und dgl. wasserunlösliche Metallseifen, mehrwertige Alkohole, Glykol und Glycerin vorgeschlagen. Es ist auch schon bekannt, zum Verhindern des Zusammenbackens den Salzen geringe Mengen an Farbstoffen von sulfoniertem aromatischem Charakter zuzusetzen. Der Einsatz dieser'Verbindungen scheidet jedoch häufig insbesondere bei Ammoniumsalzen deshalb aus, da durch den Zusatz dieser Verbindungen das Salzkorn erweicht und damit bedingt seine Riesel- und Streufähigkeit beeinträchtigt wird. Bekannt ist auch (deutsche Patentanmeldung B 34 484), bei ammoniumnitrathaltigen Düngemitteln diesen geringen Mengen an Naphthalinsulfosäuren zuzusetzen, die eine oder mehrere Alkyl-, Aryl- oder Aralkylgruppen enthalten. Gemäss einem weiteren bekannten Vorschlag sollen anorganische Ammoniumoder Kaliumsalze dadurch rieselfähig bleiben, dass man Ihnen ein Gemisch von Halbestern der Schwefelsäure mit isomeren Nonanolen zusetzt (DE-PS 2 210 798). Viele der bekannten Antibackmittel bringen beim Einsatz der mit ihnen behandelten Produkte oft mehrere Nachteile mit sich, die deren Verwendung erschweren oder - Je nach vin- satzzweck - sogar unmöglich machen, z.B. 1. der oft unangenehme Geruch mancher Antibackmittel geht auch auf das behandelte anorganische Salz über und L wird bei dessen Verwendung als lästig empfunden. J '2. Die aus behandelten Salzen bereitete Lösung ist trüb, es scheiden sich - je nach pH und Salzkonzentration Antibackmittel aus der Lösung flockig oder als Schmie ren ab. Filter setzen sich zu, Ventile und Leitungen verstopfen, bei manchen Mitteln ist Schaumbildung festzustellen. 3. Aus behandelten Salzen bereitete Schmelzen werden schwarz, es zeigen sich Verkohlungserscheinungen. Zersetzungsprodukte von Antibackmittel scheiden sich ab. .tischungen von solchen Produkten mit Salz können zu Verpuffungen führen. Gelegentlich tritt ein Schäu men der Schmelze auf. All dies beeinträchtigt die Verwendbarkeit erheblich. Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein spezifisch auf das Verhindern des Zusammenbackens von Ammonium- und/ oder Alkalisalzen, insbesondere Nitraten und/oder Nitriten durch Einarbeiten von Salzen aromatischer Sulfosäuren abzielendes Verfahren bereitzustellen. Es wurde gefunden, dass diese Aufgabe dadurch gelöst werden kann, daR man als aromatische Sulfosäuren Gemische verwen det, wie sie bei der Umsetzung von 1 Mol Styrol mit 1 bis 2,5 Molen Naphthalin in Gegenwart katalytischer Mengen Schwefelsäure bei Temperaturen von 50 bis 120 C und anschliessender Sulfierung und Neutralisation erhalten worden sind. Die als Antibackmittel verwendeten Sulfonate liegen, Je nachdem ob man die Neutralisation mit Alkalilaugen, wie insbesondere Natron- oder Kalilauge oder mit Ammoniak durchgeführt hat, in Form von Alkali - und/oder Aminsalzen vor. Die Herstellung der Sulfonate erfolgt nach an sich bekanntem Verfahren, indem man Naphthalin und Styrol im Molverhältnis 1 : 1 - 2,5 in Gegenwart von katalytischen Mengen konzentrierter Schwerelsäure, z.B. 0 bis 15 Ge wichtsprozent bezogen auf das Reaktionsgemisch, bei Temperaturen von 50 bis 120 C einer Friedel-Krafts-Reaktion unterwirft, und das erhaltene Reaktionsgemisch mit Hilfe von bekannten Sulfonierungsmitteln, wie Oleum, Schwefeltrioxid, oder Chlorsulronsäure bei Temperaturen von 20 bis 150 0C sulfiert und anschliessend bei Temperaturen von 0 bis 100 C neutralisiert. Für die Sulfierung setzt man Je Mol Styrol/ Naphthalin etwa 0,3 bis 2,0 Mol Sulfonierungsmittel bezogen auf SO3 ein. Bei der Neutralisation erhält man eine wässerige Lösung bzw. Suspension das Sulfonates, die direkt für die Behandlung des Salzes eingesetzt werden kann. Bei der Umsetzung entsteht ein Salzgemisch von verschiedenen Sulfosäuren wechselnder Zusammensetzung, insbesondere Salze von verschiedenen Sulfosäuren des l-Phenyl-2-Naph thyl-Athans. In das Salz wird das neutralisierte Sulfonat eingearbeitet, in der Regel durch Imprägnation > z.B. durch Tränken oder Besprühen mit entsprechenden Lösungen oder Suspensionen. Zur Lösung bzw. Suspension des Alkyl-diarylsulfonats verwendet man inerte Lösungsmittel, zweckmEssig Wasser, gegebenenfalls kommen auch Alkanole wie Äthanol, Methanol, aromatische Kohlenwasserstoffe wie Toluol, Xylole, oder entsprechende Lösungsmittelgemische in Frage. Die Menge an Lösungs-(Suspensions)mittel beträgt im allgemeinen das 35- bis 100fache, vorzugsweise 20- bis 50fache der Gewichtsmenge an Sulfonat. Die Imprägnierung wird in der Regel bei einer Temperatur von 10 bis 1500 vorzugsweise 70 bis 1200C, durchgeführt. Nach der Imprägnierung wird das mit dem AntShackmittel beladene Salz getrocknet, z.B. im Trommeltrockner, Sprühtrock- ner, Stromtrockner oder Blitztrockner, im allgemeinen bei einer Temperatur von 50 bis 200 C, abhängig von dem gewünschten Feuchtigkeitsgehalt des Endstoffes. Gegebenenfalls kann das Salz dann noch in beliebiger- Weise zerkleinert werden, z.B. mittels Stiftmühlen oder Sichtern. t+Ian kann Trocknen und Vermahlen des Salzes auch in einer Operation, beispielsweise mit Hilfe eines Mahltrockners durchführen. Je nach Verwendungszweck können weitere Operationen, z.B. Vermischen mit anderen Stoffen, an die genannten Operationen angeschlossen oder mit Ihnen verbunden werden. Man kann das Verfahren und die Verarbeitungsoperatlonen diskontinuierlich oder kontinuierlich, drucklos oder unter Druck durchführen. Die nach dem Verfahren der Erfindung hergestellten rieselfähigen Salze liegen im allgemeinen in einer Partikelgrösse von 0,1 bis 3,5 mm Durchmesser vor. Ebenfalls können vorgenannte Lösungen oder Suspensionen des Antibackmittels in rationeller Weise schon den Kristallisa- tionslösungen der Salze bei beispielsweise 25 bis 1100 C -direkt zugesetzt werden. Das auskristallisierte Salz und aus der Mutterlauge durch Einengen anfallende Anteile werden filtriert, gegebenenfalls noch in vorgenannter Weise getrocknet und dann direkt auf seinen Verwendungszweck, z.. zum Kunstdüngergranulat, weiterverarbeitet. Diese Arbeitsweise ist ebenfalls vorteilhaft bei Salzen, die als Nebenprodukte anfallen oder weiterverarbeitet werden; bei der Caprolactamsynthese anfallendes Ammoniumsulfat, das noch entsprechende Verunreinigungen enthalten kann, wird zweckmässig ohne weitere Reinigung mit den Gemisch in vorgenannter Weise behandelt. Das Antibackmittel stört die Rristallisation nicht. Ebenfalls kann man auch das Antibackmittel durch Mischen dem heissen Salz bzw. dem feuchten oder getrockneten Salz zumischen. besonders selektiv und vorteilhaft sind die erfindungsge mässen Zusatzstoffe im Falle von Natriumnitrat, Natriumnitrit, Ammoniumnitrat, Ammoniumnitrit aber auch Ammoniursul- fat sowie Ammoniumchlorid, Kallumsulfat; den entsprechenden Mono-, Di- und Triphosphaten des Ammoniwns und/oder des Kaliums; Bisulfaten wie Kallumbisulfat, Carbonaten und Bicarbonaten wie Kaliumbicarbonat, Ammoniumcarbonat, Kaliumtetrafluoroborat, Ammoniumbromid, Kallumborat, Kaliumchlorat, Kaliumperchlorat, Kaliumfluorid, XaltumJodid, Kaliumpermanganat, Kaliumsulfit, Kaliumthiosulfat, Kalium- sulfid oder Gemisc-hen dieser Salze. Das Antibackmittel wird vorzugsweise in einer Menge von 0,0005 bis 0,2 Gewichtsprozent, bezogen auf das anorganische Salz eingesetzt. Die hygroskopischen Eigenschaften der Salze werden durch die genannten Operationen nicht wesentlich beeinflusst. Die nach dem Verfahren der Erfindung hergestellten rieseloähi- gen Salze können somit grössere .;assermengen, z.B. von 0,01 bis 3 Gewichtsprozent aufnehmen, ohne ihre Rieselfähigkeit einzubüssen. Sie verkleben, schmieren, verklumpen oder verbacken nicht, das aufgenommene Wasser tritt auch bei längerem Lagern oder bei VerEnderungen in der LuStSeuchtig- keit nicht aus. Dieses vorteilhafte Verhalten wird auch durch Zerkleinerungsoperationen nicht beeinflusst. Die nach dem Verfahren der Erfindung herstellbaren riesel fähigen, streubaren Salze können vorteilhaft gehandhabt, dosiert, gelagert und transportiert werden und sind für viele Gebiete, z.B. Trocknung, Katalyse, Zusatz zu Futter- mitteln geeignet. Sie können einen höheren Feinsalzanteil enthalten. Infolge der guten Netzfirkung des Antibacknit- tels werden die Salze bei ihrer späteren Auflösung auch schneller, vollständiger und gleichmässiger gelöst. L Die in den Beispielen angegebenen Teile bedeuten- Gewichts- teile, Prozentangaben Gewichtsprozente. Beispiel 1 In einem 1 1 Kolben mit Rührer, Thermometer und Rückflussküh- ler wird eine Schmelze (80 bis 850C) von 128 g (1 Mol) Naphthalin vorgelegt. Unter Rühren werden bei derselben Tempratur 10 g Schwefelsäure 100zig langsam zugesetzt. Zu diesem Reaktionsgemisch gibt man im Laufe von 120 Minuten unter Kühlen und starkem Rühren bei ca. 800C 156 g (1,5 Mol) Styrol und rührt bei dieser Temperatur ca. 10 Stunden nach. Zur Sulfierung dieses Reaktionsgemisches werden bei 70 bis 800C unter Rühren 250 g Oleum 24 ig (0,75 Mol) zugegeben und noch 2 Stunden nachgerührt. Die so dargestellte Sulfonsäure wird zur Neutralisation in eine Lösung von ca. 150 g Ätznatron in 750 g Wasser bei 40 bis 50 C unter Rühren gegeben. Man erhält eine braune Lösung mit einem trockengehalt von 38 bis 40 *t, 60 bis 52 % Wasser und 5 bis 8 % Na2S04. A) 1 000 Teile Natriumnitrat werden mit 2,5 Teilen einer 4obigen Lösung eines Gemisches der Natriumsalze von Sulfonsäuren von Benzylnaphthalin intensiv vermischt. Das so behandelte Produkt bleibt auch nach mehrwöchi gem Lagern locker und rieselfähig, wogegen ein nicht behandeltes Produkt während desselben Zeitraumes so verfestigt, dass es in einem Silo nur unter Zuhilfe- nahme von Spitzhacke oder Presslufthammer und anderer Zerkleinerungsmethoden wieder pulverförmige Beschaffen heit annimmt und sich nach einer gewissen Lagerdauer erneut verfestigt. ) 1 000 Teile Natriumnitrat wird mit 2 Teilen einer 30%igen Lösung, wie sie gemäss Beispiel 1 erhalten worden ist, intensiv vermischt, getrocknet und 5e- kühlt. Das so behandelte Produkt bleibt auch nach mehrwöchigem Lagern locker und verhärtet nicht. Obwohl dieses Produkt weniger Antibackmittel als Beispiel 1 A) auSweist, bleibt es nach vergleichbarer Zeit bei weitem besser rieselfähig als jenes. Dagegen ist nicht behandeltes Natriumnitrat (Beispiel 1) nach derselben Zeit so verhärtet, dass es nur durch Zerklopfen mit einem .Hammer und/oder durch Passieren eines Brechers in rieselfähige Form überführt werden kann, aber nach einiger Zeit erneut verhärtet. Beispiel 2 Ammoniumsulfat, welches mit 0,01 % einer Lösung gemäss Beispiel 1 (3,3 Teile einer 30%igen Lösung auf 10 000 Teile Salz) behandelt wurde, bleibt auch nach mehreren Wochen noch locker, während unbehandeltes Salz schon nach wenigen Tagen stark verhärtet. Beispiel 3 Natriumnitrit, welches in unbehandeltem Zustand in Säcken unter Druck gelagert, in kurzer Zeit so verhärtet, dass die Ware nur mit Hilfe von groBem mechanischem Aufwand (Zer kleinern in Brechern nach vorherigem Zerschlagen mit einem Vorschlaghammer zu Brocken) in Pulverform überführt werden kann, ist, nachdem es mit ca. 1 Teil (ber. 100%) pro 1 000 Teilen Salz eines gemäss Beispiel l hergestellten SulSonat- -Gemisches behandelt wurde, bei gleicher Lagerung wie be schieben, auch nach Wochen noch so locker, dass einfaches Bewegen des Sackes genügt, um den gesamten Inhalt wieder in einwandfrei rieselfähige Form zu überführen. J Beispiel 4 Messmethode für die Verbackungstendenz von Feinkristallisaten. Testsubstanzen 1. NaN02 unbehandelte Ware II. NaN02 mit 0,03 de des Na-Salzes des benzyl-naphtha linsulfosauren Natriums (Patentanmeldung B 34 484) III. NaNO2 mit 0,03 % (Sulfonatgemisch gemäss Beispiel 1) Testmethode 1. In luftdicht verschlossenen zylinderförmigen Behältern von 6 cm innerem Durchmesser werden jeweils 300 g NaN02 eingefüllt und von oben mit ca. 800 g belastet. Lagerzeit 25 Tage. Lagertemperatur 200 bis 25 0C. 2. Die nach 1. entstandenen PreElingeU werden jeweils auf ein 1 mm Maschendraht-Sieb (200 mm Durchmesser) gebracht und auf einer Labor-Siebmaschine gesiebt. Die hierbei auftretenden Abriebkräfte reichen aus, die zusammenhängenden Salzbrocken zu zerstören, so dass das ganze Salz durch das 1 mm Sieb hindurchfällt. Die gemessenen Zeiten sind folgende: 1. NaN02 unbehandelte Ware 10 Minuten II. NaNO2 1 Minute III. NaNO2 15 Sekunden 'Bemerkungen Die erhaltenen Messwerte sind Durchschnittswerte aus Je 3 Messungen. Hieraus ergibt sich die gute Rieselfähigkeit der erfindungsgemäss behandelten Salze (III), die nicht nur gegenüber unbehandelten Salzen (I), sondern. auch gegenüber einer Ware, die mit anderen Sulfonaten gemäss der deutschen Patentanmeldung B 34 484 behandelt worden sind (II), deutlich verbessert ist.
Patentanspruch Verfahren zum Verhindern des Zusammenbackens von anorganischen Ammonium- und/oder Alkalisalzen, insbesondere Nitriten oder Nitraten, durch Einarbeiten von Salzen aromatischer Sulfosäuren, dadurch gekennzeichnet, -dass man als aromatische Sulfosäuren Gemische verwendet, wie sie bei der Umsetzung von 1 Mol Styrol mit l bis 2,5 Molen Naphthalin in Gegenwart katalytischer Mengen Schwefelsäure bei Temperaturen von 50 bis 120 0C und anschliessender Sulfierung und Neutralisation erhalten worden sind.
BASF AKTIENGESELLSCHAFT
KIRNER, HELMUT, DR.; WIDDER, RUDI, DR.
EP-0004884-B1
4,884
EP
B1
DE
19,820,303
1,979
20,100,220
new
C08F14
C08F2
C08F14
C08F 14/06+2/16
PROCESS FOR THE POLYMERISATION OF VINYL CHLORIDE
1. A process for the emulsion, suspension or microsuspension polymerization of vinyl chloride or mixtures of vinyl chloride with up to 30% by weight, based on the monomer mixture, of other monomers which are copolymerizable with vinyl chloride, in one batch in the presence of (a) aqueous solutions of compounds of aminomonocarboxylic or aminopolycarboxylic acids and/or polyaminopolycarboxylic acids, (b) water-soluble or monomer-soluble free-radical-forming catalysts, and (c) dispersing agents, and in the presence or absence of further (d) polymerisation aids or (e) additives at temperatures of from 40 to 80 degrees C, the batch being optionally homogenized, before the polymerization is carried out, by the action of shearing forces, characterized in that compounds (a) are used in amounts of from 0.05 to 1.0% by weight, based on the monomer or monomer mixture, and that the pH of the aqueous solution is adjusted to 5 or < 5 prior to homogenization or polymerization, the addition of compounds (a) during the preparation of the batch being effected at least before the vinyl chloride or monomer mixture is added.
Verfahren zur Polymerisation von Vinylchlorid Die Erfindung betrifft ein Verfahren zur-Polymerisation von Vinylchlorid (VC) nach dem Emulsions-, Suspensions- bzw. Mikrosuspensionsverfahren, bei dem die Bildung von Wandbelägen im Polymerisationsreaktor weitestgehend verhindert wird. Bei der Emulsions- Suspensions- und Mikrosuspensionspolymerisation von Vinylchlorid und den damit copolymerisierbaren Monomeren bilden sich an den Wänden der Polymeri- sationsreaktoren Wandbeläge aus Xomo- oder Copolymerisaten des Vinylchlorids, welche den Wärmedurchgang erschweren. Ausserdem können losgelöste Anteile dieser Wandbeläge mit dem hergestellten Produkt aus dem Reaktionsgefäss ausgetragen werden und das Polymerisat verunreinigen. Es ist deshalb erforderlich, derartige Wandbeläge von Zeit zu Zeit aus dem Reaktionsgefäss zu entfernen bzw. nach vollendet er Polymerisation und vor erneuter Verwendung des Reaktors diesen innen zu reinigen. Dies lässt sich meist nur durch eine aufwendige Druckwass erwäsche der Wände des Reak -tors erreichen. Es sind daher schon verschiedentlich Vorschläge gemacht worden, durch Zusätze geeigneter Stoffe während der Poly 'merisation des Vinylchlorids die Bildung von Wandbelägen zur verhindern. So ist es beispielsweise aus der DE-OS 23 13 277 bekannt, die Polymerisation des Vinylchlorids unter Verwendung bestimmter Diacylperoxide und/oder Dialkylperoxnaicar- monate in Gegenwart von Wurster'schen Salzen in einem bestimmten pH-Bereich durchzuführen. Weitere Vorschläge fin- den sich in der DE-OS 23 57 867, in der DE-OS 22 63 181 sowie in. den DE-OS 25 18 814 und 25 18 260. Die Polymerisation von Vinylchlorid in Gegenwart bestimmter Farbstoffe, wie es beispielsweise in der DE-OS 20 44 295 beschrieben ist, bringt zwar eine Verminderung der Wandbelagsbildung, jedoch geht diese einher mit einer Verfärbung der Polymerisate, die in manchen Fällen unerwunscht sein wird. Ferner ist es aus den deutschen Patentanmeldungen P 26 34 784 und P 27 34 881 bekannt, die Polymerisation von Vinylchlorid in Gegenwart von Polymerverbindungen durchzuführen, die Phosphonsäuregruppen in der Seitenkette enthalten bzw. niedermolekulare, Phosphonsäuregruppen enthaltenge Verbindungen, als Wandbelagverhinderer zu verwenden. Es sind auch eine Reihe von Verfahren zur Herstellung von VC-Polymerisaten bekannt, bei denen bestimmte organische Komplexbildner vom Typ der Aminopolycarbonsäuren bzw. der Polyarninopolycarbonsäuren zur Anwendung gelangen. So ist z.B. in der DE-AS 21 25 586 ein Verfahren zur Herstellung von VC-Polymerisaten beschrieben, wobei in Gegenwart von organischen Komplexbildnern in Mengen von 1 bis 20 ppm, bezogen auf das zu polymerisierende Monomere, polymerisiert wird. Diese Komplexbildner oder deren Salze bewirken in dem genannten Mengenbereich eine Erniedrigung der Viskosität der aus den VC-Polymerisaten zubereiteten Plastisole. Ebenfalls für die Herstellung von für Plastisole geeignetem PVC ist die Verwendung von Aminopolycarbonsäuren (Nitrilotriessigsäure) und den Polyaminopolycarbonsäuren (Athylendiamintetraessigsäure) und deren Salzen oder alternativ von Zuckern, wie Rohr- oder Fruchtzucker oder Mannose sowie Glycerin, Glykosen etc. in der US-PS 3 179 646 be beschrieben. Durch Zugabe der vorstehend genannten Verbindungen lässt sich nach den Angaben in der zitierten PS bei Abwesenheit von üblichen Dispergierhilfsstoffen, wie Methylcellulose (vgl. Beispiel 11) ein Plastisol der gewünschten Korngrösse herstellen, das keine in Wasser lösliche Verunreinigungen mehr aufweist. In der DE-OS 17 95 046, die auf die Anmelderin der vorstehend zitierten US-PS zurückgeht, ist es beschrieben, während der Polymerisation von Vinylchlorid zur Verhinderung der Ansammlung von Polymerisat an den Reaktorwänden eine wäBrige Lösung von Alkali- und/oder Erdalkalisalzen von Aminopolycarbonsäuren- oder Polyaminopolycarbons äuren zu verwenden. Es wird in der zitierten DT-OS auf Seite 6, letzter Absatz und Seite 7, erster Absatz, ausgeführt, dass die Verwendung von Äthylendiamin-N,N'-tetraessigsäure unter den von der Anmelderin beschriebenen Versuchsbedingungen einen übermäXig starken Wandbelag.ergab. Aus der US-PS 3 125 557 schliesslich ist es bekannt, bei der Polymerisation von Vinylchlorid Aminopolyessigsäure oder deren Verbindungen in Mengen von 0,005 bis 300 ppm zu ver wenden, um die Farbe bzw. die Farbstabilität des Polymeri sats zu verbessern. Nach den in der zitierten DE-OS 17 95 o46 beschriebenen ne -gativen Resultaten bezüglich der Wandbelagsverhinderung von Äthylendiamintetraessigsäure war es nicht zu erwarten gewe sen, dass die Anwendung der Verbindungen von Aminomono- oder Polycarbonsäuren oder von Polyaminopolycarbonsäuren bzw. deren Gemische in wässriger Lösung bei einem pH-Wert von 5 oder unterhalb von 5 generell für alle bekannten Polymern- sationstechniken des Vinylchlorids (Emulsions-Suspensions Mikrosuspensions-Verfahren) zu einem Ergebnis in Bezug auf die Wandbelagsverhinderung führen würde, insbesondere wenn man berücksichtigt, dass aus den anderen bekannten Patentschriften, z.B. US-PS 3 125 557, lediglich Beispiele enthalten sind, bei denen die Salze der Komplexbildner in Mengen bis zu höchstens 200 ppm, bezogen auf das Monomere, zur Anwendung gelangen, oder, wie im Beispiel der US-PS 3 179 646 ausgeführt, das Mikrosuspensionsverfahren zur Herstellung von PVC in Abwesenheit von üblichen Dispergierhilfsmitteln, wie Methylcellulose erfolgen muss. Die Erfindung betrifft ein Verfahren zur Polymerisation von VC oder Mischungen von YC mit bis zu 30 Gew.%, bezogen auf die Monomerenmischung, an anderen, mit VC copolymerisierbaren Monomeren in einem Polymerisationsansatz in Gegenwart von a) wässrigen Lösungen von Verbindungen von Aminomono oder -polycarbonsäuren und/oder Polyaminopolycarbon- säuren, b) wasser- oder monomerlöslicher, in Radikale zerfallen der Katalysatoren, sowie c) Dispergierhilfsmitteln und gegebenenfalls in Gegenwart von weiteren d) Polynierisationshilfsstoffen oder e) Zusatzstoffen bei Temperaturen im Bereich von 40 bis 800C und wobei man den Polymerisationsansatz gegebenenfalls vor Durchfünrung der Polymerisation durch Einwirkung von Scherkräften homogenisiert, dadurch gekennzeichnet, dass man die Verbindungen a) in Mengen von 0,05 bis 1,0 Ges.%, bezogen auf das ono- mere oder das Monomerengemisch, anwendet und dass man in der wässrigen Lösung vor der Homogenisierung oder der Polymerisation einen pH-Wert von 5 oder < 5 einstellt, und wobei die Zugabe der Verbindungen a) bei der Zubereitung des Polymerisationsansatzes zumindest vor der Zugabe des VC oder des Monomerengemisches erfolgt. Im erfindungsgemässen Verfahren können Vinylchlorid allein oder Mischungen von Vinylchlorid mit anderen, mit Vinylchlorid copolymerisierbaren Monomeren, eingesetzt werden. Dabei können die Monomerenmischungen bis zu 30 Gew.%, vorzugsweise bis zu 15 Gew.%, bezogen auf die Monomerenmischung, der anderen Comonomeren enthalten. Beispiele für mit Vinylchlorid copolymerisierbare Monomere sind: Vinylidenchlorid, Vinylester, wie Vinylacetat oder-Vinylpropio nat, Vinyläther, Acrylester, Acrylnitril oder Olefine, wie Äthylen oder Propylen, ungesättigte Dicarbonsäuren, gegebenenfalls teilweise oder ganz verestert, wie Maleinsäure, Fumarsäure, Itaconsäure, Maleinsäuremonomethylester oder Maleinsäuredibutylester u. dgl. Der Polymerisationsansatz umfasst Wasser, sowie alle Zusatzstoffe, wie die erfindungsgemäss anzuwendenden Verbindungen von Aminomono- oder -polycarbonsäuren oder Polyaminopolycarbonsäuren, die Dispergierhilfsmittel > die Katalysatoren, sowie gegebenenfalls die weiteren Polymerisationshilfsstof- fe, wie Regler oder Kettenverzweiger oder die Zusatzstoffe, wie Gleitmittel, Stabilisatoren u.dgl., sowie die zu polymerisierenden Monomeren bzw. das Monomerengemisch. Die Zubereitung des Polymerisationsansatzes erfolgt dabei in der Regel in der Weise, dass zunächst das Wasser vorgegeben wird und durch Zugabe der Verbindungen a) ein pH-Wert von 5 oder kleiner als 5 eingestellt wird. Falls anstelle der freien Säuren Salze eingesetzt werden, muss durch Verwendung einer entsprechenden Menge von verdünnten Mineralsäuren, wie Salzsäure, Schwefelsäure, Phosphorsäure u.dgl. der pH entsprechend eingestellt werden. Danach erfolgt die Zugabe der Dispergierhilfsmittel, woran sich die Starterzugabe an- schliesst. Schliesslich wird das Monomere bzw. das Monomerengemisch zu den vorhandenen Ingredienzien zugegeben. Die Zugabe der weiteren Polymerisationshilfsstoffe d) bzw. der Zusatzsatzstoffe e) erfolgt, falls dies vorgesehen ist, vor der Zugabe des(r) Monomeren. Die freien (a) Aminomono- oder -polycarbonsäuren bzw. Polyaminopolycarbonsäuren bzw. deren Salze, die für das erfindungsgemässe Verfahren wesentlich sind, werden in Mengen von 0,05 bis 1,0 Gew.%, bezogen auf das Monomere bzw. auf das Monomerengemisch, angewendet. Insbesondere werden Mengen von 0,08 bis 0,5 p, und bevorzugt solcne von 0,1 bis b 0,3 angewendet. Die vorstehend genannten Bereiche gelten sowohl für die Aminomono- oder -polycarbonsäuren oder die Polyaminocarbonsäuren als auch für die Gemische aus beiden Verbindungsklassen. Als Katalysatoren (b) kommen je nach dem anzuwendenden Verfahren wasser- oder monomerlösliche, in Radikale zerfallende Katalysatoren in Betracht. Es können dabei die üblichen, monomerlöslichen Initiatoren, wie organische Peroxide, Per- ester, Peroxidicarbonate, in üblichen und bekannten Mengen alleine oder in i4ischungen von 2 oder mehr der vorstehend genannten Bestandteile verwendet werden. Die angewendeten Mengen liegen daher im Bereich von 0,005 bis 0,5 Gew.%, vorzugsweise werden Mengen von 0,01 bis 0,1 Gew.P, bezogen auf die zu polymerisierenden Monomeren oder das Monomerengemisch, angewendet. Als wasserlösliche Katalysatoren wer den beispielsweise die Persulfate, die Hydroperoxide und die Persäuren in bekannten Mengen, angewendet. Als Dispergierhilfsmittel (c) können die üblicherweise wasserlöslichen Dispergierhilfsmittel verwendet werden. Als wasserlösliche Dispergierhilfsmittel kommen die Alkylsulfonate, Alkylarylsulfonate, Alkylsulfate, Seifen oder Salze der Dialkylsulfobernsteinsäure in Mengen von 0,3 bis 3,0, bezogen auf das Monomere bzw. das Monomerengemisch in Betracht. Diese können dabei jeweils einzeln oder in Mischung von 2 oder mehreren eingesetzt werden. Ferner kommen je nach dem anzuwendenden Verfahren folgende Suspensionshilfsmittel bzw. Schutzkolloide in üblichen Mengen in Betracht: Polyvinylalkohol, teilweise verseiftes Polyvinylacetat, Celluloseäther, wie Methylcellulose, Hydroxyäthylcellulose, Hydroxypropylcellulose oder Hydroxypropylmethylcellulose, sowie die Carboxymethylcellulose, ferner Polyvinylpyrrolidon oder Gelatine. Diese Schutz' kolloide können einzeln oder im Gemisch verwendet werden. Sie lassen sich auch mit den vorstehend genannten Dispergierhilfsmitteln kombiniert anwenden. Als Polymerisationshilfsstoffe (d) kommen gegebenenfalls die üblichen Molekulargewichtsregler, wie aliphatische Aldehyde, Chlorkohlenwasserstoffe, z.B. Di- und Trichlor äthylen, Chloroform und die Mercaptane in üblichen Mengen in Frage. Als Zusatzstoffe (e) können gegebenenfalls die üblichen Gleitmittel und Stabilisatoren in üblichen Mengen angewendet werden. Die Polymerisation kann in einem Temperaturbereich von 40 bis 800C durchgeführt werden, insbesondere wird im Bereich zwischen 45 und 80 C polymerisiert. Je nach dem Verfahren (Emulsion, Suspension bzw. Mikrosuspension) und auch unter Berücksichtigung der verschiedenen Hilfsmittel (Molekul2r- gewichtsregler oder -Zusatzstoffe, Katalysator etc.) wird die Temperatur in dem vorstehend genannten Bereich oder sogar darüber bzw. etwas darunter nach den dem Fachmann bekannten Kriterien festgelegt bzw. ausgewählt, wobei auch die Anforderangen, die an das Produkt gestellt werden, mit berücksichtigt werden. Die Durchführung der Polymerisation nach vorheriger Homogenisierung des Polymerisationsansatzes (Mikrosuspensionsver- fahren) erfolgt nach dem in der DE-AS 10 50 062 oder dem in der DE-AS 21 25 586 beschriebenen Verfahren. Dabei wird zu nächst unter Anwendung von Scherkräften eine feinteilige Monomerenemulsion mit einer Tröpfchengrösse im Bereich von etwa 0,1 bis 2 /u hergestellt und anschliessend die eigentliche Polymerisation durchgeführt. Für die Abfuhr der Re,akw tionswärme bei der Mikrosuspensionspolymerisation können dabei selbstverständlich die vorgeschlagenen Lösungen für die Abfuhr der Reaktionswärme berücksichtigt werden (Siedekühlung, vgl. z.B. DE-AS 21 17 364 oder die Verwendung be stimmter Starterkombinationen von langsam und schnell zer fallenden Startern, vgl. DE-AS 21 39 680). Das Verhältnis von Monomermenge : Wasser in der Emulsion oder Suspension liegt üblicherweise im Bereich von 0,4 : 1 bis 2 : 1, vorzugsweise im Bereich von 0,6 : 1 bis 1,5 : t. Die vorstehend genannten Bereiche gelten auch für die Anwendung von Monomerenmischungen. Die Polymerisation kann sowohl in Stahlreaktoren ausgeführt, die mit V2A-Stahl bzw. V4A-Stählen ausgekleidet sind, als auch in emaillierten Reaktoren durchgeführt werden. bezüglich des anzuwendenden Druckes ist festzuhalten, dass sich dieser daraus ergibt, dass die Reaktion in der Regel in einem geschlossenen Gefäss durchgeführt wird. Der Gesamtdruck ergibt sich durch Addition der Partialdrucke des Wassers und der Monomeren sowie gegebenenfalls anwesender Inerter. In- der Regel wird das Verfahren daher bei Drucken von oberhalb 1 bar durchgeführt, wobei der Anfangsdruck in der Regel höher ist als der Enddruck, d.h. als der Druck, bei dem die Polymerisation schon zu einem Umsatz von bis zu 80 bzw. 90 erfolgt ist. Das erfindungsgemässe Verfahren kann sowohl kontinuierlich als auch diskontinuierlich durchgeführt werden, wobei jeweils die dem Fachmann bekannten Regeleinrichtungen für die Abfuhr der Reaktionswärme benutzt werden können. Wesentlich für die Wandbelagsverhinderung bei der Durchführung des erfindungsgemässen Verfahrens ist der Zusatz von Aminomono- oder -polycarbonsäuren oder Polyaminopolycar bonsäuren oder Mischungen dieser Verbindungsklassen. Diese Verbindungen sollten zumindest vor Zugabe des oder der Monomeren zu dem Polymerisationsansatz anwesend sein und auf den erforderlichen pH-Wert eingestellt werden. Wie bereits ausgeführt, ist es wesentlich, dass diese Verbindungen bei einem pH-Wert von 5 oder ( 5, insbesondere 4 4,0, angewendet werden. Der pH-Wert im Sinne der vorliegenden Erfindung wird jeweils bezogen auf die wässrige Phase. Als Aminomono- oder -polycarbonsäuren kommen die freien Säuren oder die Salze von Verbindungen der Struktur RnN(R'-COOH)3¯n in Betracht. n steht dabei für Zahlenwerte von 0, 1 oder 2. R kann sein: Hydroxyalkyl, z.B. HOC2H4-, Aminoalkyl, z.B. NH2-CH2 oder NH2C2H4. R' kann sein: Alkylen, z.B. Alkylenreste mit 1 bis 6 C-Atomen, die gegebenenfalls substituiert sein können. Bevorzugt wird Nitrilotriessigsäure (NTA) als Aminopolycarbonsäure verwendet. Falls die Salze angewendet werden, sind die der Alkalien, insbesondere des Na, und der Erdalkalien, insbesondere des Calciums, bevorzugt. Als Polyaminopolycarbonsäuren kommen die freien Säuren oder die Salze von Verbindungen der Struktur (HOOCR')n(Rn-1-N-(R)-N(R),¯1(R'COOH)Fn in Betracht, wobei n die Zahlenwerte 1 oder 2 annehmen kann und R, sowie R' die vorstehend genannte Bedeutung haben können. R kann bedeuten: Alkylen- oder mit OH- bzw. NH2-Gruppen substituierte Alkylengruppen mit z.B. 1 bis 6 C-Atomen, sowie Cycloalkylen, z.B. Cyclohexylen oder dessen höhere Homologe mit bis zu 8 C-Atomen, die ihrerseits wieder substituiert sein können. Insbesondere werden die Äthylendiamintetraessigsäure (ADTA) und die Dithylen-triamin-pentaessigsäure sowie die Cyclohexylen-(1,2)-dinitrilo-tetraeessigsäure aus dieser Gruppe angewendet. Falls die Salze angewendet werden, sind die der Alkalien, insbesondere des Na, und dir Erdalkalien, insbesondere des Calciums, bevorzugt. Ein Vorteil des erfindungsgemässen Verfahren ist, dass die Wandbelagsbildung weitestgehend vermieden wird. Es wird dadurch möglich, in einem bestimmten Polymerisationsansatz die Reaktion praktisch beliebig oft hintereinander in dem gleichen Reaktor durchzuführen, ohne dass dieser gereinigt werden muss. Die Beurteilung der Wandbelagsbildung in den nachfolgenden Beispielen und Vergleichsversuchen erfolgt nach dem fplgenden Prinzip: Der Wandbelag, der sich bei Verwendung des Tetranatriumsalzes der Äthylndiamintetraessigsäure (EDTA-Tetra-Na Salz, vgl. Versuch 7 in der Tabelle) gemäss der Lehre der DE-OS 17 95 046 ergab, wird mit der Zahl 100 bewertet. In den folgenden Beispielen, die das erfindungsgemässe Verfah 'ren näher erläutern, und in weiteren Vergleichsversuchen wurde stets auf diesen Wert 100 bezogen, d.g. niedrigere Zahlenwerte bedeuten geringeren Wandbelag. Es wurde stell vertreten das aiskontinuierliche Suspensionspolymerisationsverfahren gewählt, um die erfindungsgemässe Lehre zu verdeutlichen. Die in den Beispielen genannten Teile und Prozente beziehen sich, falls nichts anderes vermerkt ist, auf das Gewicht.. Beispiel 1 In einem Polymerisationsautoklaven mit einem Fassungsvermögen von 2 m3, der mit einer polierten Innenausstattung aus V2A-Stahl und einem Impeller-Rührer versehen ist, wurden 945 kg vollentsalztes Wasser eingefüllt; dazu wurden 1,1 kg, entsprechend 0,2 %, bezogen auf VC, Diäthylentriaminpentaessigsäure gegeben. Zu dieser Lösung, die einen pH-Wert von 2,4 aufwies, gibt man 389 g, entsprechend 0,075 °, bezogen-auf VC, eines teilverseiften Polyvinyl- adetats mit einem Verseifungsgrad von 75 Mol% und einer Viskosität der 4%igen wässrigen Lösung von 5 mPa.s (bei 200C), sowie 139, g einer Methylcellulose mit einem Neth- oxylgehalt von 28 % und einer Viskosität der eigen wässri- gen Lösung von 50 mPa.S (bei 200 c) entsprechend 0,025 Z, bezogen auf VC und 333 g t-Butylperneodecanoat. Der Autoklav wird verschlossen und durch Aufpressen von 10 bar Stickstoff auf seine Dichtheit überprüft. Nach dem Entspannen gibt man 555 kg Vinylchlorid in den Autoklaven und erwärmt auf 530c. Dabei stieg der Druck auf 9 bar an. Nach ca. 5 Stunden war der Druck von ursprünglich 9 bar um 2 bar unter den konstanten Höchstdruck gefallen; nach dieser Zeit wurde die Polymerisation durch Abkühlen abgebrochen und der Autoklav nach Entfernung des restlichen nichtumgesetzten Vinylchlorids entleert. Die Belagsbildung an den Xesselinnenflächen und an den EF-1 bauten des Kessels wurde nach folgenden Kriterien beurteilt. Der Belag wird nach Dicke und Entfernbarkeit mit den Noten 1 bis 10 beurteilt, wobei 1 keine Belagsbildung wiedergib-t und die Note 10 einen Belag üblicher Dicke darstellt, der mit einem PVC-Schaber nicht entfernbar ist. Die Dicken werden dabei mit folgenden Faktoren unterschiedlich gewichtet: Obere Reaktorwandhälfte = Faktor 4 Unter Reaktorwandhälfte = Faktor 3 Boden = Faktor 3 Die Summe dieser drei Wichtungen ergibt maximal die Zahl 10. Wird diese Zahl 10 mit den Faktoren 1 bis 10 entsprechend der Dicke und Entfernbarkeit des Belages multipliziert, so ergeben sich Punktzahlen son 10 bis 100, wobei als beste Punktzahl die Zahl 10 erreichbar ist. Im vorliegenden Beispiel ergab sich bei einmaliger Benutzung des Reaktors eine Beurteilung von 10 Punkten, d.h. es hatte sich kein Belag gebildet. Nach vier weiteren Versuchen, die unter denselben Bedingungen durchgeführt wurden, ergab sich für die Belagsbildung eine Bewertung von 21 Punkten. Beispiele 2 bis 6 In der vorstehend beschriebenen Versuchsapparatur und mit Ausnahme der nachfolgend beschriebenen Abänderungen wurde der in Beispiel 1 beschriebene Versuch wiederholt. Die gewählte Reaktionstemperatur, der pH-Wert des Polymerisationsansatzes vor Zugabe des Monomeren sowie die Menge und die Art des Zusatzes an Wandbelagverhinderer sind in der nachfolgenden Tabelle genannt. In der Tabelle sind auch die Werte fr Beispiel 1 mit aufgeführt. Für alle Versuche ist in der Tabelle die Bewertung des Wandbelages in Abhängig keit von der Zahl der Versuche (1 bzw. 5 Versuche) aufge- 7 führt. Ausserdem sind in der Tabelle die Ergebnisse von Vergleichsversuchen aufgenommen worden. Versuch 7 beschreibt den Stand der Technik, wie er sich aus der DE-OS 17 95 o46 ergibt. Versuch 9 repräsentiert den Stand der Technik gemäss US-PS 3 125 557, Beispiel 2, Teil B, jedoch mit der Besonderheit, dass der in der zitierten Anmeldung genannte Höchstbetrag-von 300 ppm an organischem Komplexbildner verwendet wurde. Versuch 9 schliesslich reprasentiert den Stand der Technik, wie er bei der Abfassung von Versuch 7 geschildert wurde. Versuch 10 wurde in Abwesenheit von Aminomono- bzw. -polycarbonsäuren bzw. Polyaminopolycarbonsäu ren durchgerührt. Der Vergleich der in der Tabelle dargestellten Ergebnisse zeigt, dass sowohl die Menge Cvgl. Versuch 8) als auch die Bedingung Einhaltung des pH-Wertes auf Werte von 5 oder < 5 gleichzeitig erfüllt sein müssen, wenn eine Effektivi tät der Zusätze bezüglich ihrer Wirkung als Wandbelagsverhinderer gegeben sein soll. Tabelle Versuch Art des Zusatzes Menge pH-Wert T C Wendbelag nach Versuchen Nr. 1 5 1 diäthylentriaminpentaessigsäure 0,20 2,4 53 10 21 2 EDTA 0,15 2,6 20 3 NTA 0,20 2,2 - 22 4 NTA 0,10 2,8 - 30 5 Cyclohexylen-(1,2) dinitrilotetraessigsäure 0,20 2,8 20 6 TriNa-Salz von 3 mit H2SO4 angesäuert 0,20 3,0 - 22 7 EDTA-TetraNa-Salz 0,20 10,8 100 8 Na2H2-EDTA 0,03 5,0 70 9 NTA-TriNa-Salz 0,20 10,6 90 10 - - 7,0 128 -
Patentanspruch Verfahren zur Polymerisation von Vinylchlorid oder Mischungen von Vinylchlorid mit bis zu 30 Gew.%, bezogen auf die Monomerenmischung an anderen, mit Vinylchlorid copolymerisierbaren Monomeren in einem Polymerisationsansatz in Gegenwart von a) wässrigen Lösungen von Verbindungen von Aminomono- oder -polycarbonsäuren und/oder Polyaminopolycarbonsäuren, b) wasser- oder monomerlöslichen, in Radikale zerfallen dem Katalysatoren, sowie c) Dispergierhilfsmitteln und gegebenenfalls in Gegenwart von weiteren d) Polymerisationshilfsstoffen oder zu - e) Zusatzstoffen bei Temperaturen im Bereich von 40 bis 800C und wobei man den Polymerisationsansatz gegebenenfalls vor Durchführung- der Polymerisation durch Einwirkung von Scherkräften homogenisiert, dadurch gekennzeichnet, dass man die Verbindungen a) in Mengen von 0,05 bis 1,0 Ges. , bezogen auf das Monomere oder das Monomerengemisch, anwendet und dass man in der wässrigen Lösung vor der Homogenisierung oder der Polymerisation einen pH-Wert von 5 oder < 5 einstellt, und wobei die Zugabe der Verbindungen a) bei der Zubereitung des Polymerisationsansatzes zumindest vor der Zugabe des Vinylchlorids oder des Monomerengemisches erfolgt.
BASF AKTIENGESELLSCHAFT
AHRENS, WILHELM, DR.
EP-0004885-B1
4,885
EP
B1
DE
19,820,407
1,979
20,100,220
new
C04B43
C08L57, C08L61
C08J9, C04B28, C04B26, E04B1, B32B5
C04B 28/02, C04B 26/12
THERMALLY INSULATING COATING COMPRISING FOAM PARTICLES, BINDERS AND ADDITIVES
1. A thermal insulating layer based on organic, closed-cell foam particles, a binder consisting of an aqueous copolymer dispersion and a further synthetic resin, and processing aids, characterised in that it is produced using a mixture of (a) an aqueous dispersion of a copolymer having a minimum film-forming temperature of not more than 10 degrees C, (b) urea/formaldehyde resin precondensates and/or melamine/formaldehyde resin precondensates, and (c) a curing agent for the precondensates (b) or cement as binder, as well as (d) a particulate, water-insoluble drying agent having a swelling action, and (e) a water-soluble thixotropic-making agent.
Wärmedmmschicht auf Basis von Schaumstoffteilchen, Bindemitteln und Verarbeitungshilfsstoffen Diese Erfindung betrifft WErmedEmmschichten auf Basis von Schaumstoffteilchen und organischen Bindemitteln, die maschinell oder von Hand hergestellt werden können und die insbesondere ftlr die WErmedEmmung von Bauwerken dienen. FUr die Wärmedämmung, beispielsweise von Bauwerken, werden in grossem Umfang Platten aus Schaumpolystyrol oder Platten aus Mineralfaservliesen eingesetzt. Das Aufbringen derarti- ger Wärmedämmlagen auf Aussenwände von Bauwerken ist jedoch sehr aufwendig. Ausserdem ist es erforderlich, die WErme- dämmlage nach aussen durch Aufbringen eines Putzes oder anderen Überdeckungen zu schützen und dies erfordert beispielsweise auf der vorgefertigten Schaumpolystyrolplotte das vorherige Aufbringen eines Trägerstoffes. Man hat daher schon versucht, bei der Wärmedämmung von Mauerwerken anstelle von Schaumpolystyrol-Platten Wärmedämmputze auf das Mauerwerk aufzubringen, bei denen Schaumstoffteilchen, insbesondere Perlen aus Schaumpolystyrol unter Verwendung von mineralischen-Bindemitteln, wie Zement, gebunden wurden. Dabei erhält man jedoch Wärmedämmlagen, deren Wärmeleitfähigkeit so gross ist, dass eine ausreichende Wärmedämmung erst durch Aufbringen von Schicht di cken möglich wäre, die grösser sind als die Dicke von Schaumpoly styrolplatten gleicher Wärmedämmung. Schliesslich ist es auch bekannt, dass man bei der Herstellung von Überzügen unter Verwendung von Polymerisatdispersionen als organische Bindemittel geschäumte Polymerisattejlchen, z.B. Polystyrolschaumstoffteilchen, mitverwenden kanne doch sind derartige bekannte Gemische für die Herstellung eines Vollwärmeschutzes auf Mauerwerk nicht geeignet, da sie nicht in einem Arbeitsgang in der erforderlichen Schichtdicke aufgebracht werden können. Bei der Herstellung derartiger UberzUge oder auch bei der Herstellung von Wärmedämnputzen mit mineralischen Bindemitteln werden in der Praxis Verarbeitungshilfsstoffe, beispielsweise Verdickungsmittel, wie Cellulosether und Polyvinylalkohole und Thixotropierungsmittel, ferner amorphe Kieselsäure, Blähsilikatpulver oder Aluminium- hydroxid sowie getrocknete Polymer-Dispersionspulver und/oder Pigmente nach Bedarf zugesetzt. Es wurde nun gefunden, dass Wärmedämmschicten auf Basis von organischen, geschlossenzelligen Schaumstoffteilchen, Bindemitteln und Verarbeitungshilfsstoffen besonders vorteilhafte Eigenschaften haben, wenn sie ein Gemisch aus (a) einer wässrigen Dispersion eines Copolymerisats einer minimalen Filmbildetemperatur von höchstens 10 C, (b) Vorkondensaten von Harnstoffformaldehydharzen und/oder Vorkondensaten von Melaminformaldehydharzen, (c) einem Härter für die Vorkondensate (b) oder Zement als Bindemittel sowie (d) feinteilige wasserunlösliche hydrophile Trocknungs mittel und (e) wasserlösliche Thixotropierungsmittel enthalten. Derartige Wärmedämmschichten, beispielsweise auf Mauerwerk, haben nach dem Trocknen einerseits eine ausreichende Festigkeit, um eine darUber angeordnete schwere Beschichtung, z.B. einen Putz, zu tragen und können andererseits in einer für den Vollwärmeschutz ausreichenden Dicke von meist 2 bis 8 cm in einem Arbeitsgang mit den für das Aufbringen Ublicher Aussenputze üblichen Apparaturen und/ oder Werkzeugen auf Mauerwerk aufgebracht werden. Die erfindungsgernässen Dämmschichten weisen nach dem Trocknen eine Wärmeleitfähigkeit nach DIN 52 611 und 52 612 auf, die praktisch derjenigen einer gleich dicken Platte aus Schaumpolystyrol entspricht. Sie trocknen verhältnismässig rasch durch, so dass ein entsprechender Aussenputz darauf im allgemeinen schon nach kurzer Zeit aufgebracht werden kann. Schliesslich können die neuen Wärmedämmschichten so hergestellt werden, dass sie alle Bewegungen des Untergrundes und einer gegebenenfalls darauf angeordneten Beschichtung elastisch in sich aufnehmen können. Zur Herstellung der neuen Wärmedämmschichten können die Ublichen organischen geschlossenzelligen Schaumstoffteilchen eingesetzt werden, die vorzugsweise elastisch sind. Von besonderem Interesse hierfür sind Schaumstoffperlen, die insbesondere einen durehschnittlichen Durchmesser von 1 bis 4 mm haben ünd die vorzugseise äüs geschäumtem Polystyrol bestehen. tntr ge kommen ferner SchaumpolYstyrol- teilchen der genannten Abmessungen, die z.B. durch Zerreissen von Schaumpoly'styrol-Abfällen erhalten wurden sowie Schaumstoffteilchen aus Polyurethanen. Die Schaumstoffteilchen können in an sich üblicher Weise flammfest bzw. flammwidrig ausgerüstet sein. Die Schüttdichte der Schaumstoffteilchen beträgt im allgemeinen 6 bis 30, vorzugsweise 9 bis 15 g/l, wobei die Schüttdichte von vorzugsweise eingesetzten Perlen aus Schaumpolystyrol meist 9 bis 15 g/l beträgt. Die hier (und in den Beispielen) angegebenen Schüttdichten werden gemessen als Gewicht in Gramm eines lose ohne Rütteln oder sonstiges Verdichten mit den Schaumstoffteilchen gefüllten Volumens von 1 1. Bei überwiegend punktueller Bindung von Schaumstoffperlen gleichen Durchmessers, z.B. 2 mm, liegt hohe Kapillarität der Dmmungsschicht vor, so dass beim Trocknen entstehender Wasserdampf und die später stets auftretende Feuchtigkeit aus dem Gebäude praktisch ungehindert durchtreten können, wodurch eine Feuchtebelastung der Schaumstoffperlen und damit die Beeinträchtigung ihrer isolierenden Wirkung vermieden wird. Es wird also erstmals ein weitgehend konstanter Wärmeleitwert erreicht und die Diffusionswider- standszahl /u liegt nach DIN 53 429 für Wasserdampf bei etwa 4 bis 8 und beträgt somit nur etwa 10 bis 20 X der einer üblichen Schaumpolystyrolplatte gleicher Wärmeleitfähigkeit. Auf der Oberseite einer derartigen Wärme- dämmschicht mit verhältnismässig grosser Wasserdampfdurchlässigkeit wird, insbesondere wenn sie ru die Wärniedäm- mung an den Aussenseiten von Gebäuden, z.B. der Wände, vorgesehen ist, mit Vorteil eine Beschichtung, insbesondere ein Putz, aufgebracht, dessen Diffusionswiderstand W (Produkt aus seiner Diffusionswiderstandszahl /u für Wasserdampf nach DIN 53 429 und seiner Dicke in Meter) hoch- stens gleich gross ist, wie der entsprechende Diffusions- widerstand der darunter befindlichen Wärmedämmschicht. Hierdurch kann ein Feuchtestau in der Dämmschicht vermieden werden. Als Putze bzw. Beschichtung kommen z.B. wasser dampfabweisende jedoch möglichst wasserdampfdurchlässig konfektionierte mineralische Luftporen-Putze sowie entsprechend konfektionierte Kunststoffputze in Frage. Dabei soll nach Künzel (Mitteilung 18 des Inst. f. Bauphysik, Stuttgart, April 1976) der Diffusionswiderstand W einer wasserabweisenden Aussenbeschichtung im allgemeinen höchstens 2 Meter, das Produkt aus W und dem Wasseraufnahme- koeffizienten A rkg/m2.h0'l höchstens EMI5.1 <tb> 0,1 <SEP> kg/m.Vzeit <SEP> [in <SEP> Stunden <tb> betragen. Wählt man bei der Herstellung der neuen Wärmedärjrschichten die Schaumstoffteilchen als Gemisch von Teilchen verschiedener Durchmesser im Sieblinienaufbau z.B. bei einer Perlengrösse von geschäumtem Polystyrol von 1 bis 4 mm und wählt die Bindemittelmenge so, doS die verbleibenden Hohlräume zwischen den Schaumstoffteilchen praktisch vollständig damit ausgefüllt sind, so erhelt man Wcrme- dämmschichten, deren Wasserdampfdurchlässigkeit geringer ist, als die der im vorangehenden Absatz erwähnten Wärmedämmschichten, und die dementsprechend eine Diffusionswiderstandszahl /u von 40 bis 80 aufweisen. Solche Wärmedämmschichten kommen vor allem für die innenseitige Wärmedämmung von Gebäude-Aussenwänden in Betracht, wobei an deren nachfolgende Beschichtung hinsichtlich des Diffusionswiderstandes für Wasserdampf keine besonderen Anforderungen gestellt werden. Das Bindemittel für die Wärmedäitnschichten besteht aus mindestens 3 Komponenten. Das Gewichtsverhältnis von Bindemittel (Feststoff, ohne Komponente (c), d.h. ohne Härter oder Zement) zu Schaumstoffteilohen liegt im allgemeinen im Bereich von 10 : 0 > 9 bis 1 : 1,5, vorzugsweise von 4 : 0,9 bis 2 : 1,5. Die dafür verwendeten wässrigen Dispersionen von Copolymerisaten haben meist eine Konzentration von 40 bis 60 Gewichtsprozent, bezogen auf die dispersion an Copolymerisat, das eine minimale Filmbildetemperatur (MFT, gemessen nach DIN 53 787) von höchstens iOOC, vorzugsweise unter 1 0C haben soll. Geeignet sind auch wässrige Dispersionen solcher Copolymerisate, deren minimale Filmbildetemperatur über der angegebenen Obergrenze liegt, die jedoch Weichmacher für die Copolymerisate in solchen Mengen enthalten, dass sich aus den Dispersionen im Temperaturbereich von 0 bis 100C ein Film bildet. Als derartige Weichmacher kommen z.B. Adipinsäure- oder Phthalsäureester sowie vorzugsweise Polymerweichmacher auf Polyester- und/oder Polyätherbasis in Frage. Die wässrigen Copolymerisat-Dispersionen können in üblicher Weise durch Emulsionspolymerisation bzw. Emulsionsconoly- merisation aus den üblichen olefinisch ungesättigten Monomeren hergestellt sein. Als Monomere kommen z.B. monoolefinisch ungesättigte Carbonsäureester mit vorzugsweise 4 bis 12 C-Atomen, z.B. die Acryl- und/oder Methacrylsäureester des Methyl-, Xthyl-, Isopropyl-, n-Butyl-, Isobutyl- und 2-Athylhexylalkohols, sowie die Vinylester, insbesondere der Essig- und Propionsäure, monovinylaromatische Verbindungen, wie besonders Styrol, Vinyl- und Vinylidenhalogenide, wie besonders Vinylchlorid und Vinylidenchlorid, ferner comonomere Monoolefine wie Athylen in Frage, sowie in Mengen bis 20 Gewichtsprozent, insbesondere von 5 bis 20 Gewichtsprozent Nitrile, ,ss-monoolefinisch ungesättigter Monocarbonsäuren mit 3 bis 5 C-Atomen, wie besonders Acrylnitril, sowie in Mengen von bis zu 10, insbesondere von 0,5 bis 5 Gewichtsprozent < ,ss-monooleSinisch ungesättigte, vorzugsweise 3 bis 5 C-Atome enthaltende Mono- und Dicarbonsäuren und/oder deren Amide, N-Methylolamide und/oder N-AlkoxtJ- methylamide, wie besonders Acrylsäure, Methacrylsäure, Itaconsäure, Acrylamid, Methacrylamid, N-Methylolmethacrylamid, N-Methylolacrylamid, N-Methoxymethylacrylamid ünd N-n-Butoxymethylacrylamid sowie ferner Alkalisalze von Vinyl-Sulfonsäuren, wie vinylsulfonsaures Natrium. Derartige Copolymerisate können auch Butadien, vorzugsweise in Mengen von 40 bis 60 Gewichtsprozent, bezogen auf das Copolymerisat, einpolymerisiert enthalten, beispielsweise sind Emulsionscopolymerisate aus 30 bis 70 Gewichtsprozent Butadien und 70 bis 30 Gewichtsprozent Styrol sowie 0 bis 5 Gewichtsprozent einer iB-monoolefinisch ungesEt- tigten 3 bis 5 C-Atome enthaltenden Mono- und/oder Dicar bonsäure, Copolymerisate aus überwiegenden Mengen 4 bis 8 C-Atome im Alkoholrest enthaltenden Alkylacrylaten, wie besonders n-Butylacrylat, Isobutylacrylat und 2-Athyl- hexylacrylat, 0 bis 40 Gewichtsprozent Styrol, O bis 20 Gewichtsprozent Acrylnitril, 0 bis 5 Gewichtsprozent einer ,B-monoolefinisch ungesättigten 3 bis 5 C-Atome enthaltenden Monocarbonsäure und 0 bis 40 Gewichtsprozent Vinylacetat und/oder Vinylpropionat oder ferner Copolymerisate aus überwiegenden Mengen eines 4 bis 8 C-Atome im Alkoholrest enthaltenden Alkylacrylats mit bis zu 40 Vinylchlorid als Copolymerisate der wässrigen Dispersionen (a) von Interesse, soweit ihre minimale Filmbildetempe- ratur höchstens 10 C beträgt. Die wässrigen Dispersionen können die üblichen Emulgierhilfsmittel enthalten. Dispersionen der genannten Art sind im Handel erhältlich. Als für die Bindemittel geeignete Vorkondensate (b) können vorzugsweise wassermischbare Melamin-Formaldehyd- und/oder Harnstoff-Formaldehyd sowie Harnstoff-Melamin-F orrnaldehyd- -Kondensationsprodukte verwendet werden. Derartige Produkte enthalten vorzugsweise auf 1 Mol Melamin oder Harnstoff 1,4 bis 3 Mol Formaldehyd einkondensiert. Sie können mit niederen Alkoholen veräthert sein. Besonders geeignet sind beispielsweise Vorkondensate, die aus 15 bis 30 Gewichtsteilen Melamin, 80 bis 100 Gewicht steilen Formaldehyd und bis zu 20 Gewichtsteilen Harnstoff durch Kondensation unter üblichen Red ngungen hergestellt und die mit 10 bis 20 Gewichtsteilen Methanol in üblicher Weise veräthert sind. Die Dämmassen können also Harnstoff-ormaldehyd-Vorkonden- sate, Melamin-Formaldehyd-Vorkondensate, Melamin-Rzrnstoff- -Fortnaldehydvorkondensate, Verätherungsprodukte derartiger Vorkondensate oder beliebige Gemische solcher gegebenen- fal erätherten Vorkondensate enthalten. Zutzlich zu den Bindemitteln werden Härter (c) oder Zement verwendet. Für die Härtung geeignete Härter, die für die Vernetzung der Vorkondensate (b) Ublich sind, sind z.B. sauer reagierende Stoffe, wie wässrige Phosphorsäure- lösungen, Kaliumhydrogensulfat, Ammoniumchlorid und Maleinsäure. In den neuen Bindemitteln beträgt das Gewichtsverhält- nis von Copolymerisat der wässrigen Dispersion (a) zu Vorkondensaten (b) im allgemeinen 1 : 1 bis 10 : 1, vorzugsweise 1 : 1 bis 6 : 1. Das Verhältnis von Härtern (c) zu den Vorkondensaten (b) wird durch den pH-Wert der Bindemittelmischung beeinflusst. Ist es z.B. aus verarbeitungstechnischen Gründen erforderlich, die Bindemittelmischung alkalisch zu stabilisieren, um ein vorzeitiges Gelieren der Kondensationsharze zu verhindern, so muss mindestens so viel Härter verwendet werden, dass der pH-Wert vorzugsweise unter 6, insbesondere unter 4 liegt. Die Härtung der Vorkondensate verläuft in Gegenwart der wässrigen Copolymerisat-Dispersionen (a) sehr langsam, soweit die Vorkondensate (b) nicht mit niederen Alkoholen, wie Methanol oder Methanol, verethert sind. Verätherte Vorkondensate (b) sind daher von besonderem Vorteil für die Bindemittel der neuen Wärmedmmschichten, Zusätzlich zu den Bindemittelkomponenten (a) bis (c) enthalten die Wärmedämmassen noch als Verarbeitungshilfs- stoffe in an sich üblichen Mengen feinteilige Trocknungsmittel (d), die im allgemeinen quellend wirken, z.B. amphoter reagierende Hydroxide, wie Aluminium-Hydroxid, meist bis 12 kg, oder amorphe, hydrophile KieselsSure, meist 1,2 bis 20 kg, oder Blhsilikatmehle z.B. aus Perlite, meist 1,5 bis 3 kg, jeweils auf 9 bis 15 kg Polystyrolschaumperlen (jeweils je 1 m3 Schütt-Volumen. Die Trocknungsmittel (d) wirken als anorganische wasserunlösliche Thixotropierungsmittel und können hier auch als solche bezeichnet werden. Ein weiterer Bestandteil sind wasserlösliche Thxotropierungsmittel (e) wie hochviskose Methyl-, Hydroxiäthyl-, Hydroxipropyl-, Hydroximethyl- äthyl-, Hydroximethylpropyl-Cellulose und/oder Carboxymethylcellulose, meist 0,5 bis 1 kg auf a bis 15 kg Polystyrolschaumperlen (jeweils je 1 m3 Schütt-Volumen) die auch stabilisierend auf den Luftporengehalt der Wärme- dämmassen wirken. Als weitere Hilfsmittel kommen gegebenenfalls (f) Stabilisierungs- oder Quellmittel, wie Stärkeäther oft bis 1 kg je 9 bis 15 kg Polystyrolschaumperlen (1 m3 Schüttvolumen), (g) verzögert wirkende Porenbildner, z.B. an sich leicht mit Wasser unter Wasserstoffbildung reagierendes Metallpulver, das in an sich bekannter Weise mit einer wasserlöslichen Umhüllung versehen ist oder langsam unter Wasserstoffbildurig mit Wasser reagie rendes Metallpulver, die meist in Mengen von 0,1 bis 0,3 kg auf 9 bis 15 kg Polystyrolschaumperlen (1 m3 Schüttvolumen) eingesetzt werden. Durch die Porenbildung kann z.B. dem Schwinden der Wärmedämm- schicht beim Trocknen entgegengewirkt werden. (h) Plammschutzmittel, wie sie für Schaumstoffe der ver wendeten Art üblich sind, in üblichen Mengen, z.B. organische Chlor- und/oder Bromverbindungen und Anti montrioxid, (i) organische oder anorganische Fasern von 0,2 bis 1,0 mm Durchmesser und 3 bis 10 mm Länge zur Erhöhung der Eindruckfestigkeit der Dämmschicht, zur Vergrösserung der Oberflächenrauhigkeit sowie zur Begrenzung des Schwunds oft in Mengen von 5 bis 60 kg auf 9 bis 15 kg Polystyrolschaumperlen (1 m3 Schüttvolumen) in Frage, wobei die Komponenten (f) bis (i) einzeln oder in beliebigen Kombinationen mitverwendet werden können. Die WärmedCmmassen werden mit Vorteil unmittelbar vor ihrer Verarbeitung zu den neuen Wärmedämmschlchten hergestellt, wobei man von vorgefertigten Teilgemischen ausgehen kann, in denen Härter (c) einerseits und Vorkondensate (b) andererseits in beliebiger Mischung mit den anderen Komponenten vorliegen können, so dass Härter (c) und Vorkondensate (b) erst unmittelbar vor der Verarbeitung der WErmedEmmassen zusammengegeben werden. Die fertig angesetzten Wärmedämmassen können im allgemeinen innerhalb eines Zeitraums von etwa einer Stunde verarbeitet werden. Eine geeignete lagerfähige Ausgangstrockenmischung besteht z.B. aus (A) Perlen von geschäumten Polystyrol und pulverförmigem Härter, beispielsweise pulverförmiger Maleinsäure und (B) einer dazu getrennt zu lagernden Nasskomponente aus einer Polymerisat-Dispersion (a) und Lösungen von Vorkondensaten Cb), die gegebenenfalls gegen vorzeitiges Gelieren der Vorkondensate (b) stabilisiert ist Cz.B. durch Einstellen des pE-Werts auf 8 bis 9). Ein anderes geeignetes lagerfähiges System besteht z.B. aus (A)' einer Trockenmischung von Perlen aus geschäumtem Polystyrol und pulverförmigen Vorkondensaten (b) und (B) einer Nasskomponente aus einer Copolymerisatdispersion (a) und einer Härterlösung (c), z.B. einer 20ffligen wässrigen Phosphorsäurelösung. Derartige zusammengehörige Trockenund Nassmischungen können dann beispielsweise auf der Baustelle gemischt und unter Zusatz der weiteren Verar beitungshilfsstoffe vorteilhaft mit den im Putzgewerbe üblichen Doppelkolben- und Schnecken-Putzmaschinen verarbeitet, z.B. auf Mauerwerk aufgebracht werden. Man erhält so fugenlose Wärmedämmschichten, die in relativ kurzer Zeit durchhärten und trocknen, wobei sie ohne weiteres in Schichtstärken von bis zu 8 cm und oft mehr, beispielsweise 15 cm, aufgetragen werden können. Die neuen l{=rmedXmmschichten haften auf dem üblichen Untergrund für Putze, d.h. Mauerwerk aller Art, Beton und Leichtbauplatten sowie auf walten Putzen ausgezeichnet und sind geeignet, als Oberbeschichtung beliebige Putze zu tragen. Da die Oberfläche der neuen Wärmedämmschichten verhältnismässig rauh ist, haften darauf die üblichen Oberputze ohne zusätzliche Verwendung eines armierten Trägerstoffes 2us- gezeichnet. Eine weitere Vergrösserung der Rauhigkeit der Oberfläche lässt sich durch Einarbeiten von Fasern, die vorzugsweise einen Durchmesser von 0,2 bis 0,3 mm und eine Länge von vorzugsweise 3 bis 8 mm haben, erreichen. Für Anwendungsgebiete, für die eine Dämmschicht mit erhöhter Druckfestigkeit erwünscht ist, kann den D mmassen anstelle der Härter (c) für die Vorkondensate (b) auch ein mineraiisches Bindemittel, wie besonders Zement, zugefUgt werden Neben der Druckfestigkeitserhöhung der Dämmschicht erhält man vorzugsweise mit schnellabbindenden Zementen, wie Portlandzement 550 F oder RSC-Zement (Regulated-Set -Cement) - eventuell zusätzlich in Kombination mit einem hierfür geeigneten Abbindebeschleuniger - auch eine be schleunigte Verfestigung der Dä=schicht. Bei geringeren Zementanteilen kann man manchmal die graduelle Verschlechterung des Wärmedämmvermögens wegen der genannten Vorteile in Kauf nehmen, z.B. bei 35 bis 100 kg Zement auf 9 bis 15 kg Schaumstoffteilchen (d.h. 1 m3 Schüttvolumen) vor allem, wenn bei gleichzeitiger Verwendung eines weichen Dispersionsputzes als Beschichtung eine höhere Eindrück- festigkeit der Dämmlage erforderlich ist. Dies gilt auch, wenn Begehbarkeit der Dämmschicht erwünscht ist (z.B. Wärmedämmung von Flachdächern). Die in den folgenden Beispielen angegebenen Teile sind Gewichtsteile. Beispiel 1 Mischung 1 (trocken) 140 Teile schaumförmiges Polystyrol (Perlen, Durchmesser 2 mm, Schüttdichte 14 g/l) 15 Teile Maleinsäure (Härter), 50 Teile amorphe, hydrophile Kieselsäure (Schüttdichte 0,17 g/l Trocknungsmittel d) 6 Teile Hydroximethylpropylcellulose-Pulver (Viskosität einer 2%igen wässrigen Lösung nach Brookfield = 20 000 mPa.s, Schüttdichte 0,30 g/l; Thixotropierungsmittel e) und 8 Teile Stärkeäther-Pulver (Amylotex der Firma Eenkel KGaA; Schüttdichte 0,56 g/l). Mischung 2 (nass) 400 Teile einer vorigen wässrigen Dispersion (a) eines Copolymerisates (minimale Filmbildetemperatur 0 0C) aus 68 Gewiehtsprozent, bezogen auf das Copolymerisat, Butadien, 29 Gewichtsprozent Styrol und 3 Gewichtsprozent Methacrylamid, die in üblicher Weise durch Emulsionscopoly- merisation der Monomeren unter Zusatz von 2 Gewichtsprozent eines Gemisches aus gleichen Teilen üblicher nichtionischer und anionischer Emulgatoren hergestellt ist, 58 Teile einer 55eigen wässrigen Lösung eines mit Methanol verätherten Vorkondensates (b) aus 25 Teilen Melamin, 8 Teilen Harnstoff und 95 Teilen Formaldehyd, 200 Teile einer 70Eigen wässrigen Lösung eines weiteren Vorkondensates (b) aus 1 Mol Harnstoff und 2,2 Mol Formaldehyd und 800 Teile Wasser. Mischung 1 und Mischung 2 werden in einem Zwangsmischer gründlich gemischt und dann mit der erhaltenen Wärmedäi=irnas- se eine WärmedEmmschicht in einer Dicke von 4 cm hergestellt. Man lässt bei Raumtemperatur vollständig austrocknen (48 Stunden) und erhält eine Dämmschicht der Dichte 45 g/l. Die Wärmeleitfähigkeit dieser Dämmschicht beträgt EMI13.1 die Diffusionswiderstandszahl (für Wasserdampf) lu = 8 (DIN 53 429). Die Wärmedämmasse kann unter Verwendung der im Putzgewerbe üblichen Apparate auf Mauerwerk aufgebracht werden. Dabei können Schichtdicken bis 10 cm in einem Arbeitsgang angewandt werden. Auf die Dämmschichten kann auch bei Schichtdicken von 8 bis 10 cm ein üblicher mineralischer Oberputz nach DIN 18 550 ohne weitere Vorkehrungen nach Trocknung bei Raumtemperatur (nach etwa 96 Stunden) aufgebracht werden. Beispiel 2 Mischung 1 (trocken) 140 Teile schaumförmiges Polystyrol (Perlen, Durchmesser 2 mm, SchUttgewicht 14 gXl) 30 Teile pulverförmiges Vorkondensat (b) aus 25 Teilen Melamin, 8 Teilen Harnstoff und 95 Teilen Formaldehyd, das mit 15 Teilen Methanol veräthert ist, 34 Teile pulverförmige amorphe, hydrophile Kieselsäure (Schüttdichte 0,17 g/l; = Trocknungsmittel d) 7 Teile Hydroxymethylpropylcellulose (pulverförmig, Firma Wolff, Walsrode, HPMC 20 000 ; Thixotropierungsmittel e) 6 Teile handelsüblicher Stärkeäther ( Amylotex der Firma Henkel). Mischung 2 (nass) 600 Teile wässrige 50%ige copolymerisat-Dispersion Ca) > wie in Beispiel 1 angegeben, 650 Teile ziege wässrige Phosphorsäure-t5sung (Härter c) und 300 Teile Wasser. Mischung 1 und Mischung 2 werden gründlich gemischt und aus der erhaltenen Wärmedämmasse eine Dämmschicht von 4 cm Dicke hergestellt. Die Wärmedämasse ist etwa 1 Stunde verarbeitbar. Die Dämmschicht ist nach 48 Stunden bei Raumtemperatur ausgehärtet, so dass ein mineralischer Oberputz in üblicher Weise aufgebracht werden kann. Die Wärmedämmschicht ist nach weiteren 48 Stunden vollstwndig ausgetrocknet und hat dann bohne Oberputz) die WErme- leitfähigkeit EMI14.1 die Dichte 50 gil und die Diffusionswiderstandszahl Xu = 10. Demgegenüber beträgt bei einer in herkömmlicher Weise hergestellten Platte aus schaumförmigem Polystyrol vom Rawngewicht 15 g/l die Wärmeleitfähigkeit EMI14.2 die Diffusionswiderstands zahl (für Wasserdampf) = 40. Die erfindungsgemässe Wärmedämmschicht eignet sich insbesondere zur Herstellung von wärmedämmenden Aussenputzen auf Mauerwerk aller Art, auf dem sie sehr gut haftet. Beispiel 3 Wie in Beispiel 2 angegeben wird eine Wärmedämmschicht von 5 cm Dicke hergestellt, wobei jedoch die Wärmedämmasse an Stelle der 650 Teile Phosphorsäure-Lösung (Härter c), 720 Teile schnellabbindenden Zement und 600 Teile Wasser enthält. Nach 12 Stunden reicht die Festigkeit der Wärme dänmischicht für das Aufbringen eines Oberputzes aus. Die Wärmeleitfähigkeit der Dämmschicht beträgt EMI15.1 ihre Diffusionswiderstandszahl Xu - 20. Als Oberputz wird in einer Dicke von 1 mm ein handelsüb licher Dispersionsstreichputz (Die z CDiffusionswiderstands- zahl /u - 319, gemessen bei Luftfeuchtigkeitsgefälle von 93 auf 50 %, Basis n-Butylacrylat-Styrolcopolymerisat- -Dispersion, Pigmente, Filmbildehilfsmittel, Füllstoffe usw. = Riconal der Firma Rickert, Bocholt) aufgebracht. Bei dem erhaltenen System ist das Produkt aus Diffusionswiderstands zahl und Dicke in m (= Diffusionswiderstand) der Dämmlage = 0,05 x 20 t 1 m und des Oberputzes = 0,30 m. Beispiel 4 Mischung 1 (nass) 600 Teile einer 50iben wässrigen Dispersion (a) eines Copolymerisates aus 49 Gewichtsprozent n-Butylacrylat, 49 Gewichtsprozent Styrol und 2 Gewichtsprozent Acrylamid, die in üblicher Weise durch Emulsionspolymerisation unter Zusatz von 2 Gewichtsprozent eines Gemisches aus gleichen Teilen üblicher nichtionischer und anionischer Emulgatoren hergestellt ist, und die 5 % eines Weichmachers auf Polyesterbasis (AdipinsGure-Propandiol-1,2-Polykondensat) enthält (minimale Filmbildetemperatur ohne Weichmacher 180C, mit Weichmacher = 1 C), 100 Teile einer 70%igen wässrigen Lösung eines Vorkondensates (b) aus 40 Teilen Harnstoff und 100 Teilen Formaldehyd, das mit 50 Teilen Methanol veräthert ist und 1200 Teile Wasser Mischung 2 (trocken) 150 Teile Polystyrolschaumperlen im Körnungsaufbau nach Sieblinie von 1 bis 4 mm (Schüttdichte 15 g/l) 15 Teile Maleinsäure (Härter c) 15 Teile Blähsilikatmehl (Schüttdichte 0,075 gil; Trocknungsmittel d) 60 Teile amorphe, feinteilige und hydrophile Kieselsäure (Schüttdichte 0,15 g/l; Trocknungsmittel d) 6 Teile Stärkeäther (Schüttdichte 0,60 g/l und 8 Teile Carboxymethylcellulose Schüttdichte 0,53 g/l; Viskosität einer 2eigen wässrigen Lösung nach Brookfield = 30 000 mPa.s; Thixotropierungsmittel e). Mischung 1 und 2 werden gründlich gemischt und daraus eine 4 cm dicke Wärmedämmschicht, zur innenseitigen Dämmung einer Aussenwand, hergestellt. Die Wärme-Dämmschicht hat die Wärmeleitfähigkeit EMI16.1 und die Diffusionswiderstandszahl (für Wasser) 1u = 38. Beispiel 5 Mischung 1 (nah) 500 Teile einer 55%igen wässrigen Dispersion (a) eines Copolymerisates aus 75 Gewichtsprozent Vinylacetat und 19 Gewichtsprozent Äthylen, die durch Emulsionspolymerisation unter Zusatz von 5 % Polyvinylalkohol und 1 Z ionogenem Emulgator hergestellt ist CMFTS 10C), werden mit 100 Teilen einer wässrigen Kondensationsharzlösung (b) - wie in Beispiel 4 angegeben - und 800 Teilen Wasser gemischt. Mischung 2 (trocken) 130 Teile Polystyrolschaumperlen (2 bis 3 mm Durchmesser Schüttdichte 13 g/l) 24 Teile Maleinsäure (Härter c) 85 Teile Aluminiumhydroxid (Schüttdichte 0,2 g/l; Trocknungsmittel d) 10 Teile Hydroxiäthylcellulose (Viskosität einer 2%igen wässrigen Lösung nach Brookfield t 15 000 mPa.s; Thixotropierungsmittel e) und 150 Teile Polyesterfasern (0,5 mm Durchmesser und 8 mm Länge, Schüttdichte 0,3 g/l). Die Mischungen 1 und 2 werden gründlich gemischt. Die Wärmedämmmasse ist etwa 2 Stunden verarbeitbar. Aus ihr wird eine 4 cm dicke Wärmedänmischicht durch Aufbringen auf eine Gebäudeaussenwand hergestellt. Man erhält eine Wärmedämmschicht, die bevorzugt für die Aufbringung eines biegesteifen Polymerdispersions-Streichputzes geeignet ist CDiffusionswiderstandszahl /u : 15, Wärmeleitfähigkeit EMI18.1 Herstellung des Oberputzes Auf die DEmmschicht wird ein handelsüblicher mineralischer Kratzputz (TOTAL-Edelputz der Breisgauer Baustoffwerke Koch & Co. GmbH; DiSfusionswiderstandszahl /u = 9,6) in einer Schichtdicke von 2,5 cm aufgebracht. Bei dem erhaltenen System aus Wärmedämmschicht und handels üblichem mineralischem Edelkratzputz ist nun für die Beschichtung das Produkt aus Diffusionswiderstandszahl und der Dicke in Meter (9,6 x 0,025 : 0,24 m) kleiner als das der Wärmedämmschicht (15 x 0,04 t 0,6 m), so dass ein Wasserdampfstau praktisch nicht eintreten kann. Beispiel 6 Mischung 1 (nass) 400 Teile einer 65%igen wässrigen Dispersion (a) eines Copolymerisates aus 68 Gewichtsprozent, bezogen auf das Copolymerisat, 2-Athyl-hexylacrylat, 15 Gewichtsprozent Styrol und 15 Gewichtsprozent Acrylnitril, die unter Zusatz von je 1 Z, bezogen auf die Monomeren, üblichen anionischen und nichtionischen Emulgator durch Emulsionspolymerisation hergestellt ist (MFT < 1 C), werden mit 60 Teilen einer 60%igen wässrigen Lösung eines Vorkondensates (b) aus 45 Teilen Melamin und 90 Teilen Formalde hta, das mit 200 Teilen Methanol veräthert ist, sowie mit 130 Teilen einer 70%igen wässrigen Lösung eines weiteren Vorkondensates (b)' aus 60 Teilen Harnstoff und 220 Teilen Formaldehyd sowie 800 Teilen Wasser gemischt. Mischung 2 (trocken) 90 Teile Polystyrolschaumperlen (4 mm Durchmesser, Schüttgewicht 9 g/l) r 15 Teile Maleinsäure (Härter c), 50 Teile feinteilige, amorphe Kieselsäure (Schüttdichte 0,15 g/l; Trocknungsmittel d), 10 Teile Hydroxymethylpropylcellulose (Viskosität einer 2%igen wässrigen Lösung nach Brookfield = 38 000 mPa.s; Thixotropierungsmittel) 3 Teile Aluminiumpulver (beschichtet mit Celluloseäther; Porenbildner) und 60 Teile Polypropylenfaser (0,2 mm Durchmesser, 4 mm Länge) Nach gründlichem Mischen der Komponenten 1 und 2 erhält man Dämmassen für Wärmedä=schichten, die in getrockneter Form für Wasserdampf die Diffusionswiderstandszahl ,u = 4 und eine Wärmeleitfähigkeit von EMI19.1 haben.
tatentansprtche 1. Wärmedämmschicht auf Basis organischer, geschlossen zelliger Schaumstof*teilchen, Bindemittel und Verar beitungshilfsstoffe, dadurch gekennzeichnet, dass sie ein Gemisch aus (a) einer wässerigen Dispersion eines Copolrmerisats einer minimalen Filmbildetemperatur von höch stens iQOC, (b) Vorkondensaten von Harnstoff-Formaldehydharzen und/oder Vorkondensaten von Melamin-Formaldehyd- harzen und (c) einem Härter für die Vorkondensate (b) oder Zement als Bindemittel sowie (d) feinteilige quellend wirkende Trocknungsmittel und (e) wasserldsliche Thixotropierungsmittel enthalten. 2. Wärmedämmschicht nach Anspruch 1, dadurch gekennzeich net, dass ihre Oberseite mit einem Putz versehen ist, bei dem das Produkt aus Diffusionswiderstandszahl 1u für Wasserdampf und Dicke höchstens gleich gross ist, wie das entsprechende Produkt der Wärmedämm- schicht.
BASF AKTIENGESELLSCHAFT
ROTH, HANS J.; TEICHMANN, HELMUT
EP-0004891-B1
4,891
EP
B1
DE
19,810,415
1,979
20,100,220
new
B31B41
B65B43
B31B41
B31B 41/00
METHOD AND DEVICE FOR MAKING DOME-SHAPED PACKAGES
1. Method for producing packs (11) with a turned-down flap (16), which overlaps an opening slot, from a foil sheet or the like, the folded together foil sheet being longitudinally cut open, characterized in that at least one of the resulting superimposed foil strips (12, 13) is laterally displaced in such a way that the turned-down flap (16) are formed in the vicinity of the longitudinal cut.
Verfahren und Vorrichtung zur Her stellung von Verpackungen mit einer Stülpklappe Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Verpackungen mit einer Stülpklappe, die einen Uffnungsschlitz überlappt, aus einer Folienbahn oder dgl., wobei die zusammengefaltete Folienbahn in Längsrichtung aufgeschnitten wird. Für gewisse Verpackungsgüter, wie beispielsweise Damenbinden o.dgl., sind Verpackungsbeutel entwickelt worden, die als Stüipklappenbeutel oder auch Tresorpackungen bezeichnet werden. Diese haben einen von einer Klappe überappten offenen Schlitz, der beispielsweise mit kleinen Schweisspunkten geschlossen ist und vom Benutzer aufgerissen werden kann. Aus der US-PS 3 308 722 ist ein Verfahren und eine Vorrichtung zur Herstellung solcher Beutel bekanntgeworden, bei dem die Folienbahn unsymmetrisch zusammengefaltet und der breitere Bahnabschnitt zur Bildung der Stülpklappe über den schmaleren umgeklappt und längs verschweisst wird. Die Folienbahn wird im Bereich der Faltkante zur Bildung der Füllöffnung aufgeschnitten. Bei diesem Verfahren macht das Umklappen und insbesondere die genaue Führung des umgeklappten Abschnittes Schwierigkeiten. Ausserdem führt die Unsymmetrie bei der Zusammenfaltung der Folienbahn dazu, dass die Folienbahn eine Verzugsneigung erhält, der in der Praxis mit einer aufwendigen automatischen Kantensteuerung entgegengewirkt werden müsste. Die Kanten der Stülpklappe werden von den Kanten der Folie gebildet, die oft nicht frei von Beschädigungen sind und vorher besäumt werden müssen. Ausserdem baut die Vorrichtung aufgrund der Tatsache, dass weitere Stationen, z.B. zum Einlegen der M-förmigen Bodenfalte, erst weit hinter der Umklapp- und Längsschweissstation angeordnet werden können, relativ gross. Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung der eingangs erwähnten Art zu schaffen, die eine einfachere und unkompliziertere Herstellung von Stülpklappenbeuteln ermöglichen. Diese Aufgabe wird bei dem erfindungsgemässen Verfahren dadurch gelöst, dass wenigstens einer entstehenden Folienstreifen derart seitlich verschoben wird, dass im Bereich des Längsschnittes die Oberlappung entsteht. Ferner wird nach der Erfindung eine Vorrichtung mit einer Längsschneid Einrichtung für die einlaufende Folienbahn vorgeschlagen, die eine Parallel-Versetzeinrichtung aufweist, die den einen Folienbahnabschnitt um die gewünschte Oberlappung unter den anderen Folienbahnschnitt führt. Die Oberlappung erfolgt also durch eine seitliche Verschiebung, die eine genaue und definierte Führung der Folienbahn ohne Verzugsneigung ermöglicht. Die Ränder der Stülpklappe werden durch den Längsschnitt gebildet und sind daher sauber und fehlerfrei. Die doppelt liegende Folienbahn, die entweder aus einer flachliegenden Bahn mittig zusammengefaltet wird oder als Halbschlauch vorliegen kann, kann zur Vornahme des Parallel Versatzes vorteilhaft über eine doppelte Umleitung geführt werden. Danach können beide Streifen gemeinsam von einem Rollenpaar abgezogen und dahinter die Quer-Trennschweissungen vorgenommen werden. Die Längsschneid- und Parallel-Versetzeinrichtung kann vorzugsweise im Bereich einer Faltweiche für die übliche M-förmige Bodenfalte angeordnet sein. Die zum Parallel-Versatz umgelenkte Bahn erhält zwar gegenüber der durchlaufenden Bahn auch einen gewissen Längsversatz, der jedoch stets konstant ist und daher beim Bedrucken der Folienbahn berücksichtigt werden kann, so dass die Herstellung von Verpackungen mit passgenauem Druckbild auf Vorderund Rückseite möglich ist. Weitere Vorteile urd Merkmale von bevorzugten Ausführungsformen gehen aus den Unteransprüchen und der Beschreibung im Zusammenhang mit den Zeichnungen hervor. Ein Ausführungsbeispiel ist in der Zeichnung dargestellt und wird im folgenden näher erläutert. Es zeigen: Fig. 1 eine teilweise abgebrochene Draufsicht auf eine für das Verfahren und die Vor richtung nach der Erfindung hergestellte Verpackung Fig. 2 einen schematischen Schnitt nach der Linie II-II in Fig. 1, Fig. 3 eine schematische Draufsicht auf eine Vorrichtung nach der Erfindung, auf der das erfindungsgemässe Verfahren durchge führt werden kann und Fig. 4 einen schematischen Schnitt nach der Linie IV-IV in Fig. 3. Fig. 1 und 2 zeiten eine Verpackung 11 in Form eines Stülpklappenbeutels aus schweissbarer Kuntotoffolie, die aus zwei die Vorder- und Rückseite des Beutels bildenden Folienbahn-Abschnitten 12,13 besteht, die mit zwei Seiten Schweissnähten 14 miteinander verbunden sind. An der in Fig. 1 und 2 linken Kante wird später das zu verpackende Gut eingefüllt. Daher ist diese Seite bei dem dargestellten ungefüllten Behälter offen, wobei der Abschnitt 13 den Abschnitt 12 überragt, weil dort beim späteren Füllvorgang ein Festhaltebacken angreift, während der Absohnitt 12 durch Saugarme angehoben und somit der Beutel geöffnet wird. An der in den Fig. 1 und 2 rechten Seite ist der Folienbahn-Abschnitt 13 in eine M-förmige Bodenfalte 15 gelegt, an die sich ein Stülpklappenabschnitt 16 anschliesst, der den Abschnitt 12 um einen wesentlichen Betrag überlappt. Zwischen dem Stülplrla),penabschnitt 16 und dem rechten freien Ende des Folienbahnabschnittes 12 ist ein Eingangsschlitz gebildet, der auch nach der anfänglichen Offnung des Behälters durch die Überlappung optisch und gegen Auneneinflüsse geschlossen bleibt. Ein Anfangsverschluss bzw. eine Versiegelung ist durch die punktförmigen Schweissstellen 18 gegeben, die die Stülpklappe 16 mit der Folienbahn 12 verbinden und bei der erstmaligen Öffnung leicht aufgerissen werden können. Durch die Bodenfalte 15 kann der Behälter bis zu einer relativ grossen Dicke gefüllt werden, ohne, dass die Packung nachher Verzerrungen aufweist. Die in den Fig. 3 und 4 dargestellte Vorrichtung besitzt eine Folienrolle 20, die im dargestelltcn Beispiel einfach liegt und mit einer nicht dargestellten Bedruckung versehen ist. Die Folienrolle könnte jedoch auch einen sog. Halbschlauch, d.h. eine doppelt liegende Folie enthalten und würde dann vorzugsweise mit zur Zeichenebene senkrechter Achse angeordnet sein. Die Folie 21 läuft über eine Umlenk-und Faltwalze 22' und wird dadurch zu einem Halbschlauch bzw. einer doppelt liegenden Bahn zusammengefaltet. Diese wird der ei;entlichen Faltvorrichtung 22 zugeführt, die einen keilförmigen Vortrenner 23 aufweist. Die Vorrichtung 22, die die Grundform eines waagerechten Flügels hat, ist auf der in Fig. 3 olieren Seite, zu der die offene Seite des Halbschlauches vJeist,am Maschinengestell gelagert und ragt nach der anderen Seite frei vor. Über die in Fig. 3 untere freie Kante der Vorrichtung 22 läuft die Faltkante 24 des Halbschlauches hinwe. Durch eine Einlegefaltvorrichtung mit einer Faltweiche 25, die an einem Trager 26 von ausserhalb der Folienbahn auf die Faltkante 24 einwirkt, wird die Iz;-förnlige Bodenfalte 15 gebildet. Zumindest in diesem Bereich ist also die Vorrichtung 22 hohl ausgebildet. An dem Träger 26 ist ein Messerträger 27 betestigt, an dessen vorderen Ende eine Längsschneid-Einrichtung 28 in Form eines in einen Schlitz der Vorrichtlng 22 hineinragenden l:ng zur Transportrichtung 29 der Folienbahn ausgerichteten Messers angeordnet ist. Dieses Messer könnte bei;pi lsweise auch von unten aus der Vorrichtung herausragen oder'durch eine andere Schneidvorrichtung gebildet zein. Dic Lingsschneid-Einricht-ung 28 trennt die oben liegende Folienbahn in die Bahnabschnitte 12 und 13 auf. Der in Fig.3 oberhalb des Messers liegende Abschnitt ist der Abschnitt 12 und der darunter liegende Abschnitt ist Folie Stülpklappe;16, die zum Abschnitt 13 gehört. Kurz hinter dem Messer ist eine Parallel-Versetzeinrichtung 30 angeordnet, die aus zwei zueinander parallelen Stangen 31, 32 besteht, die unter einem spitzen Winkel gegenüber der Querrichtung zur Transportrichtung 2n geneigt anbeordnet sind. Sie sind, wie in Fig. 4 zu erkennen ist, auch in ihrer Hohe etwas gegeneinander versetzt, wobei dic in Fig. 4 rechte Stange 31 etwas höher liegt als die linke Stange 32. Diese Paraliel-Versetzeinrichtung 30 hat die Aufgabe, den durch die IEngsschneideinrichtung 28 abgetrennten Folienbahn-Äbschnitt 12 so Parallel zu versetzen, dass er mit seiner Kante 17 unter dem Stülpklaplen- abschnitt 16 liegt und von diesem überlappt wird. Dementsprechend reichen die Stangen 31,32 unter den Stülpklappenabschnitt 16 herunter. Die Parallel-Versetzçinrich- tung kann auch durch andere Mittel, wie Leitbleche o.dgl. gebildet sein, jedoch ist die Ausführung mit zwei parallelen Stangen besonders einfach und vorteilhaft, wobei die Stangen gegenüber Rollen den Vortei] haben, dass die Parallel-Versetzung besonders störungsfrei und gleichmässig erfolgt. Der Folienabschnitt 12 lEllft Z-förmig um die beiden Stangen herum und wird dabei um ein Mass parallel versetzt, d-s sich aus deri Abstand und der Schräg3tellung der Stangen 31,32 ergibt. Um die Verhältnisse in Fig. 3 deutlicher erkennen zu können, ist der Folienabschnitt 13 mit seiner Faltkante 24 und dem Stülpklappenabschnitt 16 mit einer zangen Strichlierung dargestellt, während der Folienabschnitt 12 strichpunktiert angedeutet ist. Am rechten Ausgangsende der Vorrichtung wird die zur Trennschweissung vorbereitete fertiggefaltete Folienbahn durch ein Walzenpaar 33 abgezogen und einer Trennschweiss- einrichtung 34 wugzführt, die die Seitenschweissnähte 14 vornimmt. Daran kaln sich unmittelbar die Verpackungsmaschine anschliessen, in der die Verpackung durch übliche Mittel an ihrer in Fig. 3 oben liegenden Füllkante ge öffnet und mit den Verpackungsgütern beschickt wird, während sie an ihrem untenliegenden Uberstehenden Abschnitt 13 festehnlten wird. Schon bei der Trennschweissung können die Schweisspunkte 18 durch besondere Schweissstempel vorgesehen werden. Bei der Verarbeitung aus einem Halbschlauch, bei dem anfänglich beide freien Kanten übereinander liegen entsteht automatisch der Versatz, durch den dann jedoch die Kante des Abschnittes 13 über die des Abs(hnitts 12 hinausragt. In Fig. 3 ist zur besseren Übersichtlichkeit der Darstellung die Faltweiche 25 nicht so tief dargestellt, dass der innere Scheitelpunkt des M der Bodenfalte die freie Kante des Altschnitts 12 überlappt, wie dies in Fig. 2 dargestellt ist. wie Stülpklappenöffnung kann an einer von der Bodenfalte weit entfernten Stelle liegen oder auch ohne sie anwendet werdeii. Bei der dargestellten Ausführungsform werden durch die Trennschweissvorrichtung 34 im Bereich der Stülpklappe und der 11-förmigen Randfalte alle Folienteile im Bereich der Seitenkante zusammengeschweisst, also in einem Teilbereich bis zu fünf Folien. Es ist auch möglich, eine andere Randfalte vorzusehen. Die Vorrichtung kann nach Herausnehmen des Messers und der Parallel-Versetzeinrichtung auch Beutel ohne Stülpklappe herstellen.
Verfahren und Vorrichtung zur Her stellung von Verpackungen mit einer Stülpklappe Ansprüche 1. Verfahren zur Herstellung von Verpackungen mit einer Stülpklappe, die einen Uffnungsschlitz überlappt, aus einer Folienbahn o.dgl., wobei die zusammengefaltete Folienbahn in Längsrichtung aufgeschnitten wird, da durch gekennzeichnet, dass wenigstens einer der ent stehenden Folienabschnitte bzw.-Streifen (12, 13) derart seitlich verschoben wird, dass im Bereich des Längsschnittes die Oberlappung entsteht. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der seitlich verschobene Folienabschnitt (12) unter den anderen, die Stülpklappe (16) bildenden Folienabschnitt geführt wird. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich net, dass das Legen einer M-förmigen Bodenfalte (15) in dem Bereich erfolgt, in dem der Längsschnitt und das überlappen durchgeführt wird. 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Längsschnitt nahe an einer M-förmigen Bodenfalte (15) und parallel zu dieser verläuft. 5. Vorrichtung zur Herstellung von Verpackungen mit einer Stülpklappe, die einen Uffnungsschlitz übergreift, aus einer Folienbahn o.dgl., mit Längsschneid-Einrichtung (28) für die einlaufende Folienbahn, gekennzeichnet durch eine Parallel-Versetzeinrichtung (30), die den einen Folienabschnitt (12) um die gewünschte Oberlap pung (L) unter den anderen Folienabschnitt (16) führt. 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Parallel-Versetzeinrichtung (30) aus wenigstens zwei zueinander parallelen, schräg zur Transportein richtung (29) angeordneten Umlenkungen für den einen Folienbahnabschnitt (12) besteht. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Umlenkungen Stangen (31,32) sind, um die der Folienbahnabschnitt (12) geführt ist. 8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Längsschneid-Einrichtung (28) ein vor der Parallel-Versetzeinrichtung (30) wirksames Messer ist. 9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Parallel-Versetzeinrichtung (30) im Bereich einer Faltweiche (25) für eine M-för mige Bodenfalte (15) angeordnet ist. 10. Vorrichtung nach einem der Ansprüche 7 bis 11., dadurch gekennzeichnet, dass auf die Parallel-Versetzeinrich tung (30) eine Abzugseinrichtung (33) und eine Quer Trennschweissvorrichtung (34) folgt.
OPTIMA-MASCHINENFABRIK DR. BUHLER GMBH & CO.
MEYER, ERICH
EP-0004896-B1
4,896
EP
B1
DE
19,810,520
1,979
20,100,220
new
C07D417
null
C07D277, C07D417
124HC1B7F1+B3D1, C07D 277/80, M07D277:80
MANUFACTURE OF 2 (MORPHOLINOTHIO) BENZOTHIAZOLE
1. A process for the preparation of 2-benzothiazolylsulphenic acid morpholide by the reaction of 2-benzothiazolyl disulphide, mercaptobenzothiazole or its sodium salt with morpholine in an aqueous medium under the action of an oxidizing agent, characterised in that the reaction product is separated in the molten state from the resulting suspension, which contains more than 0.5 mol of morpholine per mol of 2-benzothiazolyl sulphenic acid morpholide, by (a) heating the suspension with melting of the solid reaction product, (b) subsequent rapid separation of the melt phase from the aqueous phase, and (c) removal of volatile constituents still present in the melt phase, the sum of residence times from beginning to end of the three stages (a) to (c) amounting to not more than 15 minutes.
Verfahren zur Herstellung von Benzthiazolylsulfensäure- morpholid Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 2-Benzthiazolylsulfensäuremorpholid (nachfolgend als MBS bezeichnet), bei dem MBS als Schmelze aus einem wässrigen Reaktionsgemisch abgetrennt und in hoher Reinheit und Lagerstabilität erhalten wird. Das wässrige Reaktionsgemisch fällt an bei der Synthese von MBS aus 2-Benzthiazolyl-disulfid, Mercaptobenzthiazol oder dessen Natriumsalz und einem mehrfachen molaren Über- schuss von Morpholin durch Einwirkung eines Oxydationsmittels wie NaOCl, C12 oder202. Unter MBS ist im Sinne der Erfindung nicht nur 2-Benzthiazolylsulfonsäuremorpholid zu verstehen, sondern auch die entsprechenden im Morpholinrest alkylsubstituierten Verbindungen, wie z.B. das aus der Umsetzung mit 2,6-Dimethylmorpholin erhältliche Produkt. MBS stellt einen wichtigen Vulkanisationsbeschleuniger aus der Klasse der Sulfenamide dar. Es ist bekannt, die Synthese von Benzthiazolylsulfenamiden in einem organischen Lösungsmittel durchzuführen. Das ge wunschte Endprodukt fällt hierbei als Lösung im organischen Lösungsmittel an und wird entweder durch Wasserzugabe ausgefällt oder durch Abdampfen des Lösungsmittels als Schmelze gewonnen (US-Patentschrift 2 782 202). Es ist ferner bekannt (US-Patentschrift 3 178 428), MBS in einem wässrigen Gemisch herzustellen, in welchem das Sulfenamid unlöslich ist. Man kann hierbei die Temperatur so hoch wählen, dass das MBS direkt als Schmelze anfällt. In diesem Falle darf jedoch die molare Menge des eingesetzten Morpholins das 1,5fache der molaren Menge des vorgelegten Benzthiazolderivats nicht überschreiten, um eine vorzeitige Zersetzung des gebildeten MBS, d.h. noch während des Reaktionsablaufs, zu vermeiden. Der geringe Überschuss an Morpholin von 50 Mol-% hat andererseits eine Reaktionszeit von mehreren Stunden zur Folge. Will man die Reaktionszeit dagegen kurz halten, so muss die Reaktion im wässrigen Gemisch gewöhnlich mit einem molaren Morpholinberschuss von 200 % oder mehr durchgeführt werden. Um bei einem derart grossen Morpho1.inüberschuss eine Zersetzung des MBS bereits bei der Herstellung zu vermeiden, muss die Reaktionstemperatur wesent.lich unter dem Schmelz 0 punkt des MBS (ca. 82-85 C) gehalten werden. Gewöhnlich wird die Reaktion daher bei 30-60CC durchgeführt. Es ist bekannt, dass erhebliche Nachteile damit verbunden sind, das aus einem Reaktionsgemisch mit grossem Morpholin überschuss hergestellte MBS in den geschmolzenen Zustand zu überführen und dort zu halten, da MBS eine relativ instabile Substanz ist, die sich bei erhöhter Temperatur schnell zersetzt. Es ist ferner bekannt, dass die Zersetzung der Sulfenamide umso schneller abläuft, je höher die Konzentration an freiem Amin ist. Man ist daher bis jetzt gezwungen, die wässrigen Reaktionsgemische aus der Herstellung von MBS bei Verwendung eines grossen molaren Überschusses an Morpholin als Suspension bei Raumtemperatur aufzuarbeiten, d.h.,indem man z.B. das kristalline unlösliche MBS aus dem Reaktionsgemisch abfiltriert, durch intensives Auswaschen mit grossen Mengen an Wasser von der Mutterlauge befreit und anschliessend trocknet. Diese Aufarbeitungsschritte,wie auch die RUckgewinnung des Morpholins aus den Waschwässern,sind aber zeitraubende und teure Operationen. Bei der Herstellung von MBS mit einem grossen Morpholin überschuss wird eine Suspension von festem MBS in einem Gemisch von Wasser und Morpholin erhalten, in dem noch organische Nebenprodukte und gegebenenfalls bei der Reaktion gebildete anorganische Salze gelöst sind. Eine solche Suspension enthält pro Mol MBS mehr als 0,5 Mol, i.a. 1,5 bis 2 Mol Morpholin. Es wurde nun gefunden, dass aus solchen Suspensionen MBS in Form einer Schmelze von hoher Oualität und Stabilität er halten wird, wenn man die Suspension unter Aufschmelzen des kristallinen MBS erwärmt, die entstandene Schmelzphase schnell von der wässrigen Phase abtrennt,und anschliessend die Schmelzphase von den noch vorhandenen flüchtigen Anteilen wie Wasser und Morpholin befreit. Diese Verfahrensschritte werden unmittelbar aufeinander foigend in einer Gesamtzeit von nicht mehr als 15 Minuten durchgeführt. Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von 2-Benzthiazolylsulfensäuremorpholid durch Umsetzung von 2-Benzthiazolyl-disulfid, Mercaptobenzthiazol oder dessen Natriumsalz mit Morpholin unter Ein- wirkung eines Oxydationsmittels in wässrigem Medium, da- durch gekennzeichnet, dass aus der erhaltenen Suspension das Reaktionsprodukt in geschmolzenem Zustand abgetrennt wird durch a) Erhitzen der Suspension unter Aufschmelzen des festen Reaktionsprodukts, b) anschliessende schnelle Abtrennung der Schmelzphase von der wässrigen Phase,und c) Entfernung der in der Schmelze noch vorhandenen flüchtigen Anteile, wobei die Summe der Verweilzeiten ;:wischen Beginn und Ende der drei Verfahrensschritte a) bis c) nicht mehr als 15 Minuten beträgt. Überraschenderweise wird mit diesem Verfahren trotz des ursprünglich grossen Morpholinüberschusses eine lagerstabile Schmelze von MBS erhalten, in der die sonst auftretende schnelle Zersetzung von MBS nicht mehr beobachtet wird. Das erfindungsgemässe Verfahren ist in gleicher Weise zur Herstellung und Abtrennung von analogen Reaktionsprodukten, insbesondere von 2-Benzthiazolylsulfensäure-2,6-dimethylmorpholid geeignet. Zur Durchführung der Teilschritte des erfindungsgemässen VerfahrenS können an sich bekannte Methoden angewendet werden. So kann die Erwärmung der Suspension und ihre Überführung in ein Gemisch aus wässriger Phase und Schmelzphase durch direkte Energiezufuhr oder indirekt,z.B. in einem Wärmeaustauscher,durchgeführt werden. Die daran anschliessende Abtrennung der Schmelzphase kann durch Einwirkung von Fliehkraft, z.B. in einem Separator, oder durch Schwerkraft, z.B. in einer Trennflasche erfolgen. Die abschliessende Befreiung der Schmelzphase von flüchtigen Anteilen wie Wasser und Morpholin wird zweckmässigerweise durch Kurzzeitverdampfung erreicht, vorzugsweise unter Vakuum, z.B. in einem Dünnschichtverdampfer. Bei dem Teilschritt der Ausdampfung der Schmelzphase hat es sich als zusätzlicher Vorteil erwiesen, dem ablaufenden Schmelzfilm einen Gasstrom, z.B. Stickstoff, Luft und/oder Wasserdampf, entgegenzuschicken. Durch die beschriebene Verfahrensweise werden die zeitraubenden Schritte der Filtration, Wäsche und Trocknung des in Suspension in Gegenwart eines hohen Morpholin überschusses erzeugten MBS ebenso vermieden wie die kostspielige Rückgewinnung des Morpholins aus den Wasch wasser. Die Schmelze des MBS, die nach Teilschritt c) anfällt, kann in bekannter Weise durch Abkühlen in den festen kristallinen Zustand überführt und das MBS in eine handels übliche Form gebracht werden. Die Erfindung wird durch die nachstehenden Beispiele erläutert. Die t-Angaben sind Gew.-%. FselsPiel 1 150 kg eines bei der Synthese von MBS anfallenden Reaktionsgemisches mit der Zusammensetzung 20 t MBS, 20 % Morpholin, 10 S Kochsalz, 49 S Wasser und 1 z Nebenprodukt und einer Temperatur von ca. 30 C werden durch einen dampfbeheizten Rohrwärmetauscher gepumpt. Die Verweilzeit beim Aufheizen beträgt 1,6 Minuten. Aus dem Rohrwärmetauscher wird das Ge 0 misch mit einer Temperatur von ca. 85 C dem vorderen Ende einer mit 30 geneigten Trennflasche zugeführt. Während hier die wässrige Phase an der höchsten Stelle des hinteren Endes der Trennflasche in einen Sammelbehälter abfliesst, sinken die Schmelztropfen zu Boden und fliessen als Schicht dcm tiefsten Punkt der Flasche zu, wo sie durch ein Bodenablassventil kontinuierlich entnommen werden. Die Standhöhe der Schmelzphase wird mit Hilfe des Ventils so eingestellt, dass eine Verweilzeit von 4 Minuten nicht überschritten wird. An das Bodenablassventil der Trennflasche ist ein kurzes geneigtes Rohrstück angeschlossen, das am Zulauf eines handelsüblichen Dünnschichtverdampfers von 0,2 m2 Heizfläche mündet. Der Dünnschichtverdampfer wird bei 30 Torr 0 und 120 C betrieben. An seinem unteren Ende werden ca. 2 kg/h Wasserdampf gleicher Temperatur eingeblasen. Die Verweilzeit im Dünnschichtverdampfer beträgt weniger als 1 Minute. Aus dem Sumpf des Dünnschichtverdampfers werden ca. 30 kg/h einer Schmelze von MBF abgezogen, deren Restgehalt an Morpholin ca. 0,2 Gew.-9 beträgt und die eine ausgezeichnete Lagerstabilität besitzt. Die Schmelze kann durch Abkühlen auf einer Schabewaize in die handelsübliche Schuppenform überführt werden. Beispiel 2 138 kg/h eines Reaktionsgemisches aus der Synthese von MBS mit der Zusammensetzung 21,7 % MBS, 21,7 % Morpholin, 1,1 8 organische Nebenprodukte und 55,5 % Wasser werden durch ein wärmeisoliertes Rohr geleitet. Kurz hinter dem Eingang des Rohres wird dem Gemisch Wasserdampf in einer Menge von 12 kg/h zugefügt. Das Gemisch verlässt das Rohr mit 0 ca. 85 C, die Verweilzeit im Rohr beträgt ca. 10 Sekunden. Das Gemisch läuft nun in einen Fliehkraftseparator von 1 Liter Inhalt und wird dort in eine Schmelzphase und eine wässrige Phase getrennt. Die Verweilzeit der Schmelze im Separator beträgt weniger als 60 Sekunden. Die Schmelze fliesst über ein Vorratsgefäss von 0,5 1 Inhalt einem Dünnschichtverdampfer von 0,2 m2 Heizfläche zu, der bei 1200C und 30 Torr betrieben wird. An seinem unteren Ende werden ca. 2,5 Nm3/h StiCkstoff gleicher Temperatur eingeblasen. Aus dem Sumpf des Dünnschichtverdampfers werden ca. 30 kg/h einer Schmelze von MBS abgezogen, deren Restgehalt an Morpholin ca. 0,2 Gew.-% beträgt'und die eine sehr gute Lagerstabilität besitzt. Beispiel 3 138 kg/h eines Reaktionsgemisches, bestehend aus 20 Gew.-% 2-Benzthiazolylsulfensäure-2, 6-dimethylmorpholid, 20 % 2,6-Dimethylmorpholin, 7,5 % Natrixnchlorid, 51 % Wasser und 1,5 * Nebenprodukten werden in gleicher Weise behandelt, wie in Beispiel 2 beschrieben. Man erhält 27,5 kg einer Schmelze von 2-Benzthiazolylsulfensäure-2,6-dimethylmorpholid von sehr guter Lagerstabilität, die durch Abkühlen auf einer Schabewalze in eine handels übliche Form überführt werden kann.
Patentansprüche 1. Verfahren zur Herstellung von 2-Benzthiazolylsulfen säuremorpholid durch Umsetzung von 2-Benzthiazolyl disulfid, Mercaptobenzthiazol oder dessen Natrium salz mit Morpholin unter Einwirkung eines Oxy dationamittels in wässrigem Medium, dadurch gekenn zeichnet, dass aus der erhaltenen Suspension das Reaktionsprodukt in geschmolzenem Zustand abgetrennt wird durch a) Erhitzen der Suspension unter Aufschmelzen des festen Reaktionsprodukts, b) anschliessende schnelle Abtrennung der Schmelzphase von der wässrigen Phase,und c) Entfernung der in der Schmelzphase noch vorhandenen flüchtigen Anteile wobei die Summe der Verweilzeiten zwischen Beginn und Ende der drei Verfahrensschritte a) bis c) nicht mehr als 15 Minuten beträgt. 2. Herstellung von 2-Benzthiazolylsulfensäure-2,6-dl- methylmorpholid nach dem Verfahren gemäss Anspruch 1.
BAYER AG
HULLSTRUNG, DIETER, DR.; SCHERHAG, BERNHARD, DR.; WICKE, MANFRED, DR.; Hüllstrung, Dieter, Dr.
EP-0004907-B2
4,907
EP
B2
EN
19,870,325
1,979
20,100,220
new
G05B19
C03B9
C03B9, G05B19, G05B23
G05B 23/02, G05B 19/042P, G05B 19/042S
OVERRIDE SYSTEM FOR GLASS FORMING MACHINERY
A glass forming machine having a plurality of sections each of which includes a plurality of movable components which operate in timed relationship with respect to one another. An electronic control system effects the automatic synchronous operation of the various sections of the machine to thereby automatically and continuously form hollow glass articles. An automatic override system monitors each of the plurality of sections to determine whether each of the plurality of movable components are in the proper position at any given time. If the aforementioned movable components are not in the proper position at any given time, the machine is either stopped or the operation thereof modified to appropriately correct the operation of the machine.
BACKGED Or T INVENTION This invention relates to an automatic override system for modifying the operation of glass forming machinery. The individual section or IS glass forming machine, which is well-known in the art, has a plurality of glass forming means integrated into a single plural section machine fed by a single source of molten glass. The sections are operated in synchronism in such relative phase relationship as to permit the several sections to acquire gobs in ordered sequence from a single gob feeder. Thus, as one of the sections is taking a gob from the gob feeder, another section is delivering 2 finished particle to an output conveyor and other sections are engaged in various forming steps intermediate the taking of a gob and the production of the finished ware. Further, it has been customary to provide two molds rather than one in each section of an individual section machine whereby a gob is received in a first mold called the blank or parison mold, for the initial process of forming a parison, followed by transfer of the parison to a second mold, called the blow mold, for final blowing of the article. By this means each section of the machine is operating simultaneously upon two work pieces. In order to control the operation of the various functional components of the glass forming machine, a means must be provided for actuating each of the elements in a preselected cyclic time format so that the operation of one element does not interfere with, but rather complements, the operation of the other components. The several functional elements or components of the glass forming stations in the individual section machine are typically driven by pneumatic pressure which is controlled by an electronic timing circuit. An example of prior art controllers utilizing electronic timing means may be found in Quinn et al, U.S. Patent 3,762,907 and Kwiatkowski et al, U.S.Patent 3,969,703, both of which are assigned to the common assignee herewith. Other examples of prior art electronic controllers may be found in Croughwell U.S.Patent 3,905,793, Mylchreest et al U.S. Patent 3,877,915, and, Bublitz et al U.S.Patent 4,007,028. Each of these controllers typically includes a timing means for generating a machine cycle clock pulse train in -synchronism with the operation of a machine being controlled, wherein the cycle clock pulses provide an instantaneous indication of the time elapsed in each cycle of operation of the machine. A storage unit such as a random access memory or a shift register stores the relative times in the machine cycles when each of the plurality of components of the machine are to be actuated. A comparator then compares the output of the pulse generator which indicates the time elapsed in each cycle with the stored values in the storage unit. When a comparison is made an actuating signal is generated for indicating that the functioning of the machine component is to be either started, stopped, or modified. To determine which machine component is to be actuated, an addressing means is provided which when enabled by the output of the comparator, selects the particular component which is to be actuated at that time in the machine cycle. A component operating command is then provided to the appropriate component to thereby control the operation thereof. These electronic controllers include systems for varying the time at which a particular machine compo- nent is to be actuated while the machine is operated. Further, these machines include systems for initiating a starting or. stopping sequence at any time during the machine cycle so that once a starting or stopping sequence is initiated, the machine is controlled according to a preselected starting or stopping cycle so that the machine can be safely and efficiently turned on or shut down. A drawback of the prior art is that if a partic- ular machine component or the material being operated on, i.e., the molten glass or parison, is not in the proper position at any given time, expensive molding equipment can be damaged and production time lost. Further, when each individual section machine is being started up, the machine must be carefully monitored manually in order to insure that each component is in a proper o?erating posi- tion. This results in expensive manpower reauirements. Accordingly, it is an object of this invention to provide a glass forming machine having an automatic override system for continuously monitoring the glassware machine and for permitting correction of the position of the respective components of the machine if not in the proper operating position. SHORT STATEEBT OF THE INVENTION Accordingly, this invention relates to a glass ware forming machine having a plurality of individual sections, each of which includes a plurality of movable components which operate an time relationship with respect to one another. A molten glass feeder feeds gobs of molten glass at a uniform rate from a predetermined location to each of the sections with the sections forming rigid glassware articles from the gobs, wherein each of the movable components are actuated at respective relative times in each of a plurality of machine cycles. The machine includes a timer for indicating the instantaneous time in each cycle of operation of the machine and a storage unit for storing the sequential relative times in a cycle of machine operation when each of the plurality of components are to be actuated. A comparator compares the instantaneous time elapsed in each cycle with the stored relative component actuated times to provide a signal for controlling the machine component whose component actuating time compared with the cycle time elapsed. In the alternative, the storage unit can store the operational status of each of the components for each of a plurality of increments of time in a cyle. The stored status for each component is'read during each increment of time during the machine cycle and the components are actuated, or left in their currect state depending on the stored status of each component from the storage unit. A counter means is provided for selectively varying the actuating times of selected components stored in the storage unit while the machine is operated to thereby change the relative times in each machine cycle when the selected components are to be actuated. In addition, circuitry is provided for initiating a machine starting or stopping sequence at any time during the machine cycle so that the machine is started or stopped in a predetermined desired sequence. A system mnTenr which comprises a detecting means, such as, a T.V. camera, for each individual section generates signals for indicating the relative position of each of the movable components of the machine. These signals are compared with stored signals which correspond to the desired position of the machine components at any given time during a machine cycle. Thus, during each machine cycle a comparison is made to determine whether the machine components are in the proper position. If a component is not in the proper position a signal is generated for inhibiting the start of the machine or for initiating a stop sequence. In the alternative the generated signal can be used for advancing or retarding the component which is out of position to its proper position before the next operation of the component is initiated. BRIEF DESCRIPTION OF THE DRAWINGS Other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the preferred embodiment, the appended claims and the accompanying drawings in which: FIGURE 1 is a block diagram of the control system for a glass forming machine of the present invention; FIGURE 2 is a more detailed functional block diagram of the control system of the glass forming machine of the present invention; FIGURE 3 is a perspective view, with portions being broken away for clarity, of one section of the glass forming machine; FTGUKF 4 is a schematic representation of the sequence of events occurring in one section of a typical individual section machine; FIGURE 5 is a schematic block diagram of the. automatic override system of the present invention; FIGURE 6 is a schematic block diagram of the video digitizer of FIGURE 5; and FIGURE 7 is a schematic block diagram of the X-Y marker of the automatic override system of FIGURE 5. DZTAItED ILESCRIPtION or THE e vr EMBOD IMNT Refer now to Figure 1 which is a schematic block diagram of the preferred control system for the glass forming machine of the present invention. A pulse generator 11 provides a train of cycle clock pulses having a frequency which is dependent upon the cycle time of the glassware forming machinery of the present invention. The generator also provides a reset pulse at the completion of each machine cycle. The pulse generator may operate on a time base in which case the machine cycle is divided up into a convenient nwmbe¯ of clock pulse intervals or the generator may operate on a machine cycle base in which case 360 clock pulse intervals or a multiple thereof are provided per cycle. As an example, the pulse generator may include a conventional pulse generating means mounted on the drive shaft of the glass forming machine for generating two pulse trains. The first pulse train provides a cycle clock pulse for every degree of machine rotation and the second pulse train provides one pulse per machine revolution. The output of a pulse generator is coupled to each of a plurality of individual machine section control units 13. Each section control unit preferably includes storage, comparing and addressing circuits which when arranged as described hereinbelow determines which elements of the machine being controlled are to be actuated at any given time. In addition, each section memory unit includes a counter for changing the relative time in 2 machine cycle when selected machine components are to be actuate. It should be understood, however, that each section control unit may include a storage unit for storing signals corresponding to the on/off or operational status of each of the machine components for each of a plurality of increments of time in each cycle of operation of the machine. These signals are read out during each increment of time and utilized to actuate, or maintain the present status of each of the machine components. This system of control is disclosed in greater detail in our co-pending patent application Number Xq ZG l; c.'t:? filed 1979. The subject matter of this application is incorporated herein by reference thereto. The operator controls 15 include start and stop push-buttons for initiating a sequence of machine control commands for starting up or shutting down the machine being controlled. In addition, the operator controls include a degree display for instantaneouslsr displaying the cycle time elapsed for a particular machine being operated. Finally, the operator controls include sooner and later push-buttons for controlling the counter in the section control unit 13 and a function select control for designating which operational element is having its timing changed by the counter. The operator controls are preferably positioned near the IS machine 18 being controlled so that the operation of the machine can be manually monitored if desired while the various control functions in the operator controls are being changed. The output of each of the section control units 13 is coupled to an associated valve block machine interface 17 which provides the mechanical drive means for the machine 18 being controlled. If, for example, the machine being controlled is operated-on a pneumatic basis, the valve block interface might include a number of valves which are controlled by solenoid actuators, the solenoid actuators being in turn controlled by the output of the section memory unit. A detailed description of the valve block machine interface will not be presented herein because actuators and valves for operating machine elements are known in the art. A tape recorder 19 is provided which stores operational commands generated by a decimal keyboard. Thus, if the machines being controlled are to be operated in a number of different modes, each particular program mode may be stored on tape until it is utilized. The tape recorder 19 also stores the X-Y coordinates and the video levels of each machine component being monitored by the monitoring system 16 of the present invention. As will be seen hereinbelow, this information is utilized to override the normal program of operation of the glass forming machinery. The output of the tape is coupled to a micro-computer 20 of conventional design in a central console 21 which synchronizes the machines being controlled via the section control units so that if a plurality of machines are to be operated in a preselected time relationship with respect to one another, the central console insures that each of the section memory units are appropriately timed to operate in the preselected sequence. Further, the timing sequence in which the various components of the individual machines are to be operated is coupled from the central console to each of the associated control units .ati=, as each of the individual sections are operated under the control of their associated section control units 13, the section memory units provide an output to the central console verifying the order in which the respective components of the machine are actuated. This information may be stored in the tape recorder for future use. Refer now to Figure 2 with respect to which a more detailed description will be given of the preferred section control memory units 13 and the preferred operator controls 15. The output of the pulse generator 11 is coupled to the firing order latch and signal conditioning circuit 23. The firing order and latch circuit is disclosed in greater detail in Xwiatkowski et al, U.S. Patent 3,969,703, the subject matter of which is incorporated herein by reference thereto. The firing order latch circuit is controlled by means of a signal derived from a data link preload shift register 25. The input to the preload shift register is derived from the central console 21 and temporarily stores a timing command signal which instructs the firing order latch circuit 23 when to couple a reset pulse signal to the main storage memory unit 27. The clock pulse signals are coupled from the signal conditioning circuit to a comparator in the main storage unit 27 wherein the clock pulses which represent the time elapsed in a machine cycle are compared with component actuating times stored in a shift register or random access memory. The component actuating times stored in the main storage are coupled thereto via the data link preload shift register 25 which in turn derives the timing input information from the central console 21. The particular times at which the machine elements are to be actuated may be varied by the operator by appropriately pressing a sooner or later button in the operator control console 15. Thus, during the operation of the machine, by appropriately pushing either the sooner or the later button together with a function select control which selects the machine component whose cycle operating time is being changed, the manner of operating the machine can be readily varied. The main storage also provides signals for controlling the function degree display 29 in the operator control 15 which degree display displays the stored cycle operating degree of the selected function. When a comparison is made in the main storage unit between the clock pulse timing input and a stored component actuating time signal, an output is provided to the enable gating circuit 31. The enabled gating circuit 31 provides an energizing signal to the decoder and valve drive circuit 33. The decoder circuit selects which component is to.be actuated and hence which valve drive is to be energized. When the appropriate valve driver is energized, the associated machine component is actuated by either initiating or terminating its operation. If the machine is initially shut down and it is desired to start up the machine, an appropriate starting signal is coupled to the program start sequence memory 35 from the start-stop control switches in the operator control 15. The particular starting sequence program is coupled to the start sequence memory 35 via the data link shift register 25 which in turn receives its input information from the central console 21. Thus, by appropriately typing into a storage circuit in the central console a preselected starting sequence, the sequence is coupled to the start sequence memory unit 35 which memory unit is actuated when the start button in the control 15 is pressed As will be explained more fully hereinbelow, the output of the micro-Drograrmer of the central console 21 can also be utilized to modify the starting sequence by aborting the start of the machinery or by varying the timing of operation of selected components, depending upon the condition of the various machine components during start-up. The output of the start memory sequence is coupled to the enable gating circuit 31 which in turn couples this signal to the decoder and valve driver circuit 33 for operating in a preselected manner the various components of the machine being controlled. If it is desired to shut down the machine, the stop button in the operator control 15 is pressed to provide an appropriate signal to the stop sequence memory unit 37. The particular stop sequence utilized depends upon the type of machine being controlled and the approDri- ate commands are typed by means of a decimal keyboard into a memory unit in the central console 21. As with the case of the start sequence, the stop sequence can be modified depending upon the monitored condition of the movable components of the machinery. This will be explained more fully hereinbelow. If an immediate abort is desired, the override system provides a signal on line 22 for inhibiting gate 31. The stop sequence information is coupled to the stop sequence memory unit 37 via the data link shift register 25. The stop sequence contol commands stored memory 37 are coupled from the stop sequence memory 37 to the enable gating circuit 31 and then to the decoder and valve drive circuit 33 for appropriately controlling the various machine components of the machine being controlled. The operational sequences of the main storage memory and the firing order latch circuit are each coupled to a data accumulator shift register 39 which in turn couples the input information thereto in serial fashion back to the central console where this data may be recorded on tape for reply should the same machine cycle be again run. Should it be desired that the machine be started or stopped on a manual basis, a manual switch 41 is closed. This enables the machine section firing order to be selected from a T.W.S. and overrides the program start and stop memories with hardwired circuitry for a simple start and stop procedure. Referring now to Figure 3, an individual section of an exemplary glass forming machine of the individual section type is shown in perspective, with portions broken away for clarity. It is to be understood that the glass forming machine as shown, however, is merely representative of the type of machine to which the present invention is applicable, since the particular details of the forming machine and the control system adapted thereto may be varied to suit the needs of a given installation. For example, the glassware forming machine to which reference is made herein is known as 2 blow-and-blow machine, whereas the invention is eajially applicable to a press-and-blow machine. GLass XtS + 5 --Achines, generally, and individual section machines, in particular, are well known to those skilled in the art, end no detailed description of the structure or operation thereof is necessary in a disclosure of the present invention. However, irrespective of the particular type of glass forming machine contemplated, certain basic elements are present, and 2 brief description of such elements, their operation and their relationship to a few of the elements peculiar to the blow-and-blow machine is in order to gain a clearer perspective of the invention. As illustrated in Figure 3, one of the sections 18 of a blow-and-blow machine is shown from the back side or blank mold side displaying such elements as scoop 49, delivery means 51 and both runnel 53 and baffle 55 as associated with blank mold 52. A transfer or invert mechanism 59 is positioned intermediate the front and back sides of the machine for inverting the parison formed in the blank mold 52 while transferring it to a blow mold 61 at the front of the sectlon. A suitable takeout mechanism 63 is positioned near blow mold 61 for removal of the hot finished ware therefrom and transfered to z corresponding dead plate 65. Also, on the front side of the machine is pushout or pusher arm 67 for delivering the ware from the dead plate 65 to conveyor means 69, which, as stated above, will normally serve to transport the ware for further processing, as, for example, to a suitable lehr (not shown) for annealing and subsequent cooling and any other desired treatment (such as a lubricant coating). It viii be =nÅaerstood, as stated above, that the machine illustrated in Figure 3 is but one section of a plural-section machine. In the embodiment of the invention to be described herein, the overall machine will comprise a plurality of sections, each being fed a gob of molten glass in ordered sequence from single-feeding means 71, which constitutes a portion of a suitable source of molten glass, such source usually including means for weighing and mixing the several dry ingredients and means for delivering batches of such mix to a furnace, in which the mix is converted to a molten mass and maintained at a desired temperature for delivery to a feeding means, such as feeding means 71. The continuous flow molten glass from feeding means 71 is interrupted by a shear means 73, which cuts the molten glass into individual gobs for delivery to the several sections of the machine in sequence. It is custon2ry to employ pneumatic pressure as the motive force for actuating each of the plurality of moving elements of the individual section machine, and the control system of the present invention, being well suited to pneumatic actuation, actuates a plurality of pneumatic valves in a desired sequence for applying pneumatic pressure selectively to a corresponding plurality of pneumatic actuators (such as piston-cylinder assemblies) which serve as the respective motive means for the several moving elements of the machine. However, it should be understood that the present invention is not limited to pneumatic drive means and instead, for example, motor or solenoid drives could be used. The machine elements have been shown, at least generally, in connection with the description of Figure 3, but the interrelated operation thereof will be more fully appreciated and understood in connection with a combined description of Figures 1, 3 and 4, the latter showing schematically the sequence of events in one section of a blow-and-blow machine. First, the continuous flow of molten glass from the feeder 71 is repetitively severed at a predetermined rate by means of shears 73 to separate the flow into a series of gobs. As each section of the machine acquires a gob in sequence, the gob falls from the shears 73 and is carried by the delivery means 51 (including a scoop, trough and deflector) to the blank mold 52, over which the funnel 53 is positioned in order to guide the gob into the mold. Thus, as is indicated in the first step in the sequence illustrated in Figure 4, the gob falls through funnel 53 into the interior of the mold. As a second step, the baffle 55 is positioned over the funnel 53 and air discharged into the mold through baffle 55 forces the molten glass. into the neckring 75 and around the plunger 77, in a step referred to as settle-blow. The third step illustrated in Figure 4 shows the funnel 53 removed and baffle 55 in place on top of the blank mold, with plunger 77 retracted. Counterblow air now is introduced into the depression left in the glass by the plunger, causing the glass to fill the blank, forming a parison. During this counterblow step, the third step in Figure 4, the body of the blank mold extracts heat from the parison sufficiently to form a cooled skin thereon which is sufficiently rigid to permit manipulation of the parison by a transfer mechanism which carries the parison to the blow mold 61 on the front side of the machine. This transfer of the parison from blank to blow mold is illustrated as the fourth step in Figure 4, wherein the pivotal transfer mechanism 59 removes the parison from between the opened halves of the split blank mdld and places it between the closing halves of the blow mold, having inverted the parison in the process, so that it is now in an upright position, with the mouth at the top, and supported by the neckring 75. Subsequent to the invert step, the neckring halves are separated, so that the parison is left hanging by the now-closed halves of the blow mold. In this position, the reheat step takes place, in which the cooler skin of the glass is reheated by the relatively hot interior glass, and the parison then becomes sufficiently soft for final blowing. In the final blowing, indicated in step 6 of Figure 4, blowhead 79 is positioned over the blow mold 61, and blow air is forced into the soft parison, causing it to fill the blow mold and take the shape thereof, i.e., the shape of the desired finished ware. Here again, heat is absorbed by the mold walls, cooling the glass to render it sufficiently stiff for handling. In the last step shown in Figure 4, the split halves of the blow mold have parted, and the tongs of the takeout mechanism 63 grip the ware at the neck and transfer it to the dead plate, for further cooling and pushout to the conveyor. As is obvious, the timing of the movements of all of the foregoing glass forming elements is critical, and each element must be moved with precision not only to perform its function in the overall process, but to prevent collisions between elements, whereby one faulty element would prevent other elements from performing their tasks. For example, if the scoop for a given section fails to retract in time from a position under the shears, the scoops of other sections will be jammed in attempting to acquire gobs. If the blank mold fails to oe properly, the next gob will fall on top of the blank. If the funnel is not positioned over the blank at the proper time, the gob might fail to enter the blank. Should the baffle fail to come down as needed, the parison would be misformed. If either the funnel or the baffle failed to leave the top of the blank after parison formation, the transfer arm would then collide with the faulty element on attempting invert. If the plunger fails to rise or retract as required, faulty parison formation follows. Should the transfer arm fail to revert, remaining in a position over the blow mold, the blowhead would be prevented from being seated atop the blow mold as required for final forming. Were the blowhead not to retract after final forming, a collision would occur with the takeout mechanism, as well as wit the transfer arm on the next invert. Malformation of the ware results from failure of the blow mold to close and open properly, as well as from a failure of final blow. Should the takeout mechanism fail to retrieve a finished ware, the next subsequent parison will be jammed down on top of the previously finished piece. Where the neckring fails to open after invert, the parison will remain in the neckring And on revert will be placed back in the blow mold. The foregoing tabulation of operating failures, tedious as it is, is only a partial listing of the faults that may occur in each section of an individual section machine. Accordingly, it can readily be seen that it is essential that accuracy and facility of control is essential to the synchronous operation of the many elements of each section of the machine as well as with respect to the timing of gob acquisition and finished ware delivery in the related control of the severed sections. It is an important feature of the present invention that the operation of each of the movable components as well as the timing of gob acquisition and maneuvering the monitored and controlled. Thus, the present invention automatically provides a system for correcting inaccurate or faulty operation of the components of each individual section machine as well as providing a means for aborting a start-up or initiating a shut-down of the machine should a serious misoperation occur. Refer now to Figure 5, which is a schematic illustration of the automatic override system of the present invention. As illustrated, a monitor 16-lEN is associated with each of the E individual sections of the glass forming machine. With specific reference to section 1 of the machine, a monitoring device which in the preferred embodiment is a T.V. camera 81, is mounted in position to view each of the movable components illus trated in Figure 3. The composite video signal derived from the T.V. camera is coupled directly to a video monitor 83, by means of a selector switch 85, and in addition is coupled to a local video digitizer 87. The horizontal sweep end vertical sweep signals generated in the T.V. camera 81 are also coupled to the local video digitizer 87 as separate signals. Also coupled to the digitizer 87 are X-Y coordinate signals and a strobe signal generated by micro-computer 20. Micro-computer 20 may be of any type conventionally known in the art, such as, for example, a PDP 1103 manufactured by Digital Manufacturing Corporation. The local video digitizer 87 converts the composite analog video signal from the T.V. camera to a digital signal having values which correspond to each X-Y coordinate coupled to the digitizer from the microcomputer 20. The X-Y coordinate signals and the digitized video level signal are each stored in the microcomputer 20 for use during the operation of the monitoring system. Also electrically connected to the input of the micro-computer 20 is a start pushbutton 91 which enables the monitoring system for the first IS machine. As an output of the micro-computer 20, when an override command occurs, a signal is coupled to a light remitting diode or other such indicating means 93 for visually indicating that the override system is in operation and that the normal program sequence for the I5 section is being overridden. Also connected to the output of the micro-computer 20 is the section control line 95, which is connected to the enabling gate 31, illustrated in Figure 2, for inhibiting the gate if a start is to be aborted. A second signal control line 97 is connected to the data link preload shift register 25 of Figure 2-for coupling thereto a new sequence of instructions for controlling either the main storage 27, the program start sequence memory 35 or the program stop sequence memory 37, in accordance with a routine which depends upon the relative positions of the various components of the IS machine with respect to where these components should be at any given time. As aforementioned, the composite video signal from the camera 81 is coupled to the video monitor so that the video monitor displays a picture of the movable components of the IS machine. During set-up of the system, X-Y coordinates are assigned to each component part of the IS machine. To do this, the light pen 99 is placed upon the video monitor at each location of the parts to be monitored. The light pen detects the level of light at each location and this information in addition to the time information which defines the X-Y coordinate of the components is coupled to the micro-computer 20. The micro-computer 20 then prints out, records on a cassette tape and/or stores in its internal memory the corresponding X-Y coordinates and video levels of each of the components selected by the light pen. This procedure is repeated for each moving part of the IS machine to be monitored. If the machine components are to be monitored for a plurality of time increments during a machine cycle, the video level signal from the light pen 99 and the X-Y coordinates of the various machine components for each increment must be determined and stored. After each of the coordinates and video levels are recorded on the cassette tape and/or stored in the micro-computer 20, it is only necessary to play back the tape or address the storage in the micro-computer to effect operation of the system. The stored X-Y coordinates for each of the components are then sent to the X-Y marker circuit 101 which will be described more fully in connection with Figure 7. The X-Y marker modulates the video monitor's Z axis signal to thereby cause a bright spot to appear on the picture tube at each of the selected X-Y coordinates to thereby provide a visual indication of all monitored points on the picture at start-up and if de sired at each increment in the machine cycle when monitoring occurs. After the set-up has been completed, a command is given to the micro-computer to initiate monitoring by appropriately depressing the start button 91. The microcomputer, in the meantime, internally scans the start pushbottons of all of the IS sections, and when a start button. has been detected as being depressed, the microcomputer sends a first X-Y coordinate to the video digitizer 87. The micro-computer then compares the digitized video level signal from the video digitizer 87 with the reference value which was stored during the set-up procedure. The next X-Y coordinate for the component being monitored is then sent to the video digitizer 87. This sequence is repeated until all of the video levels of the component being monitored have been compared against the stored reference values. A simplified weighting algorithm is used in the comparison process to allow for small variations in the video levels dependent upon the ambient light conditions in the environment of the IS machine. Utilizing a majority test rule, if the majority of reference values do not compare, the operator is signalled by the light emitting diode 93, that the machine section components are not correctly positioned. At this time the micro-computer makes a decision as to whether start-up of the IS machine should be aborted or whether modifications in the sequence o operation of the respective machine components should be varied. Depending upon the decision made by the microcomputer, a signal is provided on line 95 to abort start or on line 97 to modify the sequential operation of the machine components. The routines for the weighting and majority test algorithms are easily prepared using ordinary programming techniques and accordingly are not described herein in detail. It should be understood, however, that other tests can be applied other than to majority test'rule to determine whether one or more of the movable components are accurately and correctly positioned. On the other hand, if the majority of the reference values compare with the video levels presently being detected, then the X-Y coordinate positions for the next component are compared and tested in the same manner. When each of the components of the IS machine have passed the majority rule test, the IS machine is run in accordance with the normal program initially written into the main storage 27, start sequence memory 35 and stop sequence memory 37. This process is repeated in an interleaved sequential manner for each of the plurality of N sections of the glass forming machine, so that each of the individual sections of the glass forming machine are continuously monitored by the system of the present invention. In addition, this process, if desired, is repeated for each of a plurality of time increments in the machine cycle so that during any given cycle time the position of the IS machine components are monitored and corrected or machine operation aborted. Depending upon the time in the cycle and the component which is not in place, the micro-computer describes what routine or sequence of shut-down or component position modification will be followed. These various shut-down routines or component position changes routines can be stored on tape or other suitable memory unit. The routines are coupled to program step sequence memory 37 or the main storage memory 27 via the data link preload shift register 25 illustration in Figure 2. Refer now to Figure 6 which is a more detailed schematic illustration of the local video digitizer 87 illustrated in Figure 5. As aforementioned, the function of the local video digitizer 87 is to convert the composite video signal level at each selected X-Y coordinate specified by the micro-computer 20, to a digital binary representation thereof. In order to accomplish this, the microcomputer sends both the X and Y coordinate digital signals of the X-Y coordinate being monitored to the X position register 103 and the Y position register 105, respectively. These registers may be, for example, serial to parallel shift registers for temporarily storing the values of the X and Y coordinates coupled thereto. At the same time the vertical retrace signal from the T.V. camera 81 is coupled on line 107 to the Y counter 109 and to the OR gate 111. This vertical retrace signal is utilized to reset Y counter 109 and the X counter 113. At the same time the horizontal sweep signal on line 115 triggers an oscillator 117, which increments the X counter 113, 256 counts for each horizontal sweep, i.e., each horizontal scan is divided into 256 X coordinate increments. The number 256 is arbitrarily selected for the number of X axis increments since for each vertical sync interval there are 256 horizontal sweeps. Hence, the vertical axis is divided into 256 increments, the same as the X axis. At the end of each horizontal scan, i.e., after a count of 256, counter 113 generates a reset pulse which is coupled via OR gate 111 to the recent input of counter 113 to reset the counter. At the same time, the Y counter 109 is incremented one count. Thus, in effect, counter 113 and counter 109 represent, respectively, the X coordinate and the Y coordinate of the instantaneous video composite signal on line 119. Digital comparators 121 and 123 each compare the count in the X counter 113 and Y counter 109, respect tively, with the stored X coordinate in register 103 and Y register 105, respectively. When a comparison exists in both comparators 121 and 123, AND gate 125 is enabled and provides a trigger signal to a sample-and-hold circuit 127 of conventional design. The sample-and-hold circuit samples the analog video signal on line 119 and holds that voltage level for the analog-to-digital converter 129. Analog-to-digital converter 129 may be of any type conventionally known in the art and converts the value of the signal stored in the sample-and-hold circuit 127 to a binary digital signal which is coupled to the micro-computer 20. The binary digital signal coupled to the micro-computer represents the video signal level at the particular X-Y coordinate stored in the X and Y registers 105 and 103, respectively. Refer now to Figure 7, which is a more detailed schematic illustration of the X-Y marker of Figure 5. The purpose of the X-Y marker is to provide a bright spot at each location on the video monitor which corresponds to the X-Y coordinate of a machine component being monitored. To achieve this, as the video monitor, which for example, may be a conventional cathode ray tube, adapted to receive T.V. signals, generates horizontal and vertical sweep signals for driving an electron beam across the face of the scope, the horizontal sync signal from the video monitor 83 is coupled to oscillator 131, which, for example, may be of. the same type as oscillator 117, in the video digitizer. Thus, oscillator 131 generates 256 output pulses for each horizontal sync signal, which pulses are coupled to X counter 133. After the X counter 133 counts to 256, a reset pulse is generated and coupled via OR gate 135 to the reset input of the X counter 133. The horizontal sync signal is also coupled to the Y counter 137. t the end of each horizontal scan, the Y counter 137 is incremented one count. At the end of a vertical sweep, the vertical sync pulse is coupled to the reset input of the Y counter 137 and the reset input of X counter 133 to reset each of these counters. The output-of counter 133 is coupled to digital comparator 139, while the output of Y counter 137 is coupled to a second digital comparator 141. Each of the respective X and Y coordinates to be displayed on the video monitor 83 is coupled to a random access memory unit 143 of conventional design known in the art. These signals are stored in predetermined locations in the memory 143 and read out to the digital comparators 139 and 141, in accordance with an address signal coupled thereto by the select gate 145. The select gate selects the addresses of the X-Y coordinates stored in the RENI 143 in a sequence which depends upon whether the A or the 3. address mode is being utilized. The selection of the A or B address mode is derived from the micro-computer 20 dependent upon the particular sequence in which the various movable components of the IS machines are to be controlled. If, for example, the X-Y coordinates from the micro-computer are read in the =! 103, in the sequence in which they would normally be actuated or deactuated, counter 147 con-. trols the sequence in which the respective stored X-Y coordinates are read out of the RA! 143 and into the comparators 139 and 141. On the other hand,'if only certain components are to be actuated or actuated in a sequence which is not normally used in order to re-position one or more of the machine components, an address sequence generated by the micro-computer is coupled to the R;LM 143 via input B of select gate 145. Thus, the sequence of X-Y coordinates selected by the micro-computer are read out of the RSutt 143 and into the comparators 13.9 and 141. When comparisons exist in comparators 139 and 141, output signals are generated which enable MYD gate 149. The output of AND gate 149 increments the counter 147 and at the same time generates a brightness signal on the Z axis line 141 for displaying on the video monitor 183 a bright spot at the particular x-Y coordinate selected. It should be understood that a monitoring device other than a T.V. camera, such as, for example, a photocell array could be used in keeping with the present invention. In addition, if desired, only startup conditions can be monitored such that start-up is overridden if each movable component is not in its proper position at start-up. However, the present invention also contemplates monitoring the individual machine sections at a plurality of times during each machine cycle causing one or more sections to be shut down if the machine components are not in the proper position at any given time. Further, the present invention contemplates modi-fying machine component timing should the machine com?o- nents not be in proper position at any given time in the machine cycle. As aforementioned, this is accomplished in accordance with a predetermined routine stored on tape or other memory and selected by the micro-computer 20 depending upon the component that is not in proper position and the time in the cycle when the error in component position is detected. While the present invention has been disclosed in connection with the preferred embodiment thereof, it should be understood that there may be other obvious modifications of the present invention which fall within the spirit and scope of the appended claims.
What is claimed is: 1. In a glassware forming machine having a plurality of sections, each of which includes a plurality of movable components which operate in timed relationship with respect to one another, Åa gob feeder for feeding gobs of molten glass from a predetermined location to each of said sections, said sections forming rigid glassware articles from the gobs taken from said gob feeder, wherein said movable components are each actuated at respective relative times in each of a plurality of machine cycles, a controller for said glassware forming machine comprising: : means for indicating the machine cycle position, timing means responsive to said cycle position indicating means for generating a signal in synchronism with the movement of said cycle position indicating means, said signal providing an indication of the time elapsed in each cycle of operation of said machine, means responsive to said timing means for generating component operation commands for at least one movable component of a section during the machine cycle, means for continuously monitoring the change in position of at least one of said components of said section of said glassware forming machine, means responsive to said monitoring means for determining if said at least one monitored component is in the correct poEition during at least one portion of the cyclic operation of said section, and means responsive to said determining means for inhibiting the operation of said machine if at least one of said monitored components is not in the correct position. 2. The controller for a glassware forming machine of claim 1 wherein said means for inhibiting the operation of said machine further comprises means for initiating a machine stopping sequence at any time during a machine cycle if at least one of said monitored components is not in the correct position during said cycle. 3. The controller for the glassware forming machine of claim 1 wherein said means for determining if said at least one monitored component is in the correct position comprises means responsive to said monitoring means for generating a signal representing the location of said at least one movable component at each of a plurality of time intervals in said machine cycle, means for storing the correct machine component location of said at least one movable component for each of said plurality of time intervals in said machine cycle, and means for comparing said generated signal representing the location of said at least one movable component with said stored correct machine component location at each time interval. 4. In a glassware forming machine having a plurality of sections, each of which includes a plurality of movable components which operate in timed relationship with respect to one another, a gob feeder for feeding gobs of molten glass from a predetermined location to each of said sections, said sections forming rigid glassware articles from the gobs taken from said gob feeder, wherein said movable components are each actuated at respective relative times in each of a plurality of machine cycles, a controller for said glassware forming machine comprising: : means for indicating the cycle position of said machine, timing means responsive to said cycle position indicating means for generating a signal in synchronism with the movement of said cycle position indicating means, said signal providing an indication of the time elapsed in each cycle of operation of said machine, means responsive to said timing means for generating component operation commands for at least one movable component of a section at each of a plurality of times in the machine cycle, means for continuously monitoring the change of position of at least one of said movable components of said section of said glassware forming machine, means responsive to said monitoring means for determining if said at least one monitored component is in the correct position during the cyclic operation of said section, and means responsive to said determining means for varying the actuating time of said at least one monitored component, if said at least one component is not in the correct poSition, to thereby move said component into the correct position. 5. In a glassware forming machine having a plurality of sections, each of which includes a plurality of movable components which operate in timed relationship with respect to one another, a gob feeder for feeding gobs of molten glass from a predetermined location to each of said sections, said sections forming rigid glassware articles from the gobs taken from said gob feeder, wherein said movable components are each actuated at respective relative times in each of a plurality of machine cycles, a controller for said glassware forming machine comprising: : means for indicating the machine cycle position, timing means responsive to said cycle position indicating means for generating a signal in synchronism with the movement of said cycle position indicating means, said signal providing an indication of the time elapsed in each cycle of operation of said machine, means responsive to said timing means for generating component operation commands for the movable components of a machine section at each of a plurality of times in the machine cycle, means for continuously monitoring the change of position of at least one of said movable components of each section of said glassware forming machine, means responsive to said monitoring means for determining if said at least one monitored component in each section of said machine is in a correct position during at least one portion of the cyclic operation of each section, and means responsive to said determining means for inhibiting the operation ot said machine if said at least one monitored component in each section is not in a correct position. 6. The controller for the glassware forming machine of claim 5 wherein said means for inhibiting the operation of said machine includes means responsive to said determining means for generating a stopping sequence at any time during the machine cycle if said at least one monitored component is not in a correct position at any time during said cycle. 7. The controller for the glassware forming machine of claim 5 wherein said determining means includes means responsive to said monitoring means for generating a signal representing the location of each of said movable components, means for storing the correct machine component location for each movable component, and means for comparing said generated signal representing the location of each of said movable components with the corresponding stored correct machine component location. 8. In a glassware forming machine having a plurality of sections, each of which includes a plurality of movable components which operate in timed relationship with respect to one another, a gob feeder for feeding gobs of molten glass from a predetermined location to each of said sections, said sect ions forming rigid glassware articles from the gobs taken from said gob feeder, wherein said movable components are each actuated at respective relative times in each of a plurality of machine cycles, a controller for said glassware machine comprising: : means for indicating the machine cycle position, timing means responsive to said cycle position indicating means for generating a signal in synchronism with the movement of said cycle position indicating means, said signal providing an indication of he time elapsed in each cycle of operation of said machine, means responsive to said timing means for generating component operation commands for at least one movable component in a machine section at each of a plurality of times in the machine cycle, means for sequentially continuously scanning each of the movable components of said machine, means responsive to said scanning means for generating a signal representing the location of each of said movable components, means for storing the correct machine component locations for each movable component, means for comparing said generated signal representing the location of each movable component with said stored correct machine component locations, and means responsive to said comparing means for changing the operation of said machine if said at least one of said components is in an incorrect position. 9. In a glassware forming machine having a plurality of sections, each of which includes a plurality of movable components which operate in timed relationship with respect to one another, a gob feeder for feeding gobs of molten glass from a predetermined location to each of said sections, said sections forming rigid glassware articles from the gobs taken from said gob feeder, wherein said movable components are each actuated at respective relative times in each of a plurality of machine cycles, the method of controlling said glassware forming machine comprising the steps of: : indicating the machine cycle position, generating a signal in synchronism with said machine cycle for indicating the time elapsed in each cycle of operation of said machine, generating component operation commands for the movable components of a section at each of a plurality of times in a machine cycle, continuously monitoring the change of position of at least one of said movable components of said section of said machine, determining in response to said monitoring step if said at least one monitored component is in a correct position during the cyclic operation of said sect ion, and varying in response to said determining means the actuating time of said at least one monitored component if said at least one component is not in a correct position to thereby move said component into the correct position. 10. The method of controlling the glassware forming machine of claim 9 wherein said varying step further includes the step of generating in response to said determining step a stopping sequence at any time during the machine cycle if said at least one monitored component is not in the correct position at any time during said cycle. 11. The method of controlling the glassware forming machine of claim 9 where said determining step includes the steps of: generating in response to said monitoring step a signal representing the location of each of said movable components, storing a signal corresponding to the correct machine component location for each movable component, and comparing said generated signal representing the location of each of said movable components with the corresponding stored correct machine component location signal.
BALL CORPORATION
WOOD, CHARLES LEE
EP-0004915-B1
4,915
EP
B1
DE
19,820,512
1,979
20,100,220
new
G05D22
D21F5
F26B13, D21F5, G05D22, D21F7, H05B6
G05D 22/02, D21F 5/16C, D21F 5/00, D21F 7/00C, H05B 6/50
ARRANGEMENT FOR REGULATING THE DRYING OF A PAPER WEB IN A PAPER MAKING MACHINE
1. An arrangement for the control of drying in a papermaking machine, in which a controllable capacitive high-frequency drier (4) is connected after the controllable drying section (3) having steam-heated drying cylinders, and the measured moisture content of the paper web (1) serves to control the high-frequency drier (4), characterised in that the final moisture content of the paper web (1), which is determined by means of a traversing measuring device (5), is fed to a computer (6), that the controller (31) of the drying section (3) is adjusted by means of the computer (6) to correspond to a predetermined average final moisture content (UE ) of the paper web (1), and that, in order to maintain a predetermined difference in moisture content (DELTA UHF ), the controller (41) of the high-frequency drier (4) is set by the computer (6) to give an average value of the electric power output (NH ) which is maintained constant by control of the field strength.
Verfahren zum Regeln der Trockenpartie mit einem HR- Trockner an einer Patiermaschine Die Erfindung bezieht sich auf ein Verfahren zum Regeln der Trocknung einer Papierbahn bei einer Papiermaschine, bei der der Trockenpartie ein kapazitiver Hochfrequenztrockner nachgeschaltet ist und die gemessene Endfeuchte der Bhn zur Steuerung des Trockenvorganges dient. Die kapazitive Hochfrequenztrocknung der Papierbann bei Papiermaschinen ist bekannt und hat sich recht gut bewährt (vgl. z.B. DT-PS 2 je7 674). Die Aufgabe der vorliegenden. Erfindung besteht darin, Trockenpartie und Hochfre quenztrockner so aufeinander abzustimmen, dass sich eine optimale Vergleichmässigung des Feuchteprofils der Papierbahn mit besonders wirtschaftlichem Energieverbrauch ergibt. Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Mittelwert der Verdampfungsleistung im Hochfrequenz trockner durch Änderung der Elektrodenfeldstärke auf einen vorgegebenen Wert gehalten wird und die Verdampfungsleistung der Trockenpartie so geregelt wird, dass die vorgegebene mittlere Endfeuchte der Papierbahn konstant bleibt und dass im HF-Trockner bei konstanter Elektrodenfeldstärke Kurzzeitschwankungen des Mittelwertes seiner Eingangsfeuchte durch Bereitstellung entsprechen- der Leistungsreserven selbsttätig so ausgeregelt werden, dass die vorgegebene Endfeuchte ebenfalls in etwa konstant gehalten wird. Als Mass für die Vergleichmässigung kann dabei das Verhältnis der Abweichungen von der mittleren Feuchte vor und hinter dem Hochfrequenztrockner dienen. Die Regelung beruht auf der Erkenntnis, dass die Vergleichmässigung sowohl von der durch Rochfrequenz verdampften Feuchtemenge als auch von der gewtinschten mittleren Endfeuchte abhängig ist. Bei einem kapazitiven Hochfrequenztrockner kann als ErsatzgröBe für die Verdampfungsleistung der Mittelwert des Anodenstromes des HF-Generators dienen und durch Änderung der Elektrodenfeldstärke auf -einen vorgegebenen Wert gehalten werden. Die Regelung und Steuerung der vorgenannten Vorgänge wird vorteilhafterweise von einem programmierten Rechner übernommen. Die Konstanthaltung der HF -Verdampfungs leistung kann auch ohne Rechner-mittels einer einfachen Regelstrecke im iF-Generator erfolgen. Anhand eines in der Zeichnung dargestellten Ausfubrungs beispieles sei die Erfindung näher beschrieben; es zeigen: Figur 1 den Aufbau der Regelstrecke und die Regelein richtungen in schematischer Darstellung und Figur 2 den ZusammeBhang zwischen Vergleichmässigung der Trocknung und der Verdampfungsleistung des Hochfrequenztrockners. Die in Richtung des Pfeiles 2 laufende Papierbahn 1 wird zunächst in der Trockenpartie 3 auf den nichtgezeigten Trockenzylindern weitgehend getrocknet. Daran schliesst sich eine weitere Trocknung und Vergleichmässigung des Feuchteprofils im kapazitiven Hochfrequenztrockner 4 4 an. Dieser Hochfrequenztrockner 4 kSnn in an sich bekannter Weise entsprechend dem vorgenannten Patent 2 027 674 aufgebaut sein. Die Feuchtewerte der getrockneten Bahn 1 werden mittels einer traversierenden Messvorrichtung 5 erfasst' und einem Rechner 6 zugeführt. Im Rechner 6 werden hieraus Feuchteprofil, mittlere prozentuale Endfeuchte UE und mittlere Abweichung b UE von der mittleren prozentualen Feuchte UE errechnet; die entsprechenden Daten für die p=entuale mittlere Feuchte UA und die mittlere Abweichung d Ua am Eingang'des Hochfrequenztrockners 4 können über eine weitere Messvorrichtung 7 ebenfalls im Rechner 6 bestimmt werden. Die Trockenpartie 3 wird über den Regler 31 hinsichtlich ihrer Verdampfungsleistung Nz so ausgeregelt, dass sich eine vorgegebene Einfangsfeuchte UA für den HF- trockner und bei einer mittleren Feuchtedifferenz von auch auch eine mittlere prozentuale Restfeuchte UE ein- stellt. Dem Regler 41 des Hochfrequenztrockners 4 wird als Sollwert vom Rechner 6 eine bestimmte mittlere Verdampfungsleistung H' die proportional zur Feuchtediffe renz des Hochfrequen2trockners 4 ist, vorgegeben. Die Elektrodenspannung bzw. die Feldstärke des Hochfrequenztrockners 4 wird so geregelt, dass der Mittelwert des Anodenstromes konstant gehalten wird, Als Zeit für die Mittelwertbildnng können z.B. zwei Minuten dienen. Auf diese Weise arbeitet Regler 41 in Verbindung mit der fünffachen Stellzeit des Reglers 31 so, dass sich ein optimaler Vergleichmässigungsfaktor F für die Trocknung ergibt. Kurzzeitschwankungen der Feuchte werden selbsttätig durch den HF-Trockner 4 bei konstanter Feldstärke ausgeglichen. Entsprechend dem im Programmspeicher 61 des Rechners niedergelegten Programm können die vorgenannten Werte Nz usw. vorteilhafterweise Je nach den vorliegenden Betriebsbedingungen und Papierqualitäten verändert werden. Die Zusammenhange für die vorgenannte Regelung seien anhand von Figur 2 naher erläutert, wobei zunächst folgende Definitionen eingeführt seien: UA = prozentuale mittlere Feuchte der Bahn 1 am Eingang des Hochfrequenztrockners 4. fl Ua = mittlere Abweichung von der mittleren prozentu alen Feuchte UA am Eingang des Hochfrequenztrock ners 4. UE = prozentuale mittlere Feuchte am Ausgang des Hoch frequenztrockners 4. fl UE = mittlere Abweichung von der mittleren Feuchte U. UA = F = Vergleichmässigungsfaktor des Hochfrequenz #UE trockners. UA - UE = #UHF = Feuchtedifferenz, die proportional der Verdampfungsleistung des Hochfrequenztrockners 4 ist. Es wurde festgestellt, dass der Vergleichsmässigungsfaktor F sowohl von der Feuchtedifferenz #UHF, d.h. also von der Verdampfungsleistung NR des Hochfrequenztrockners 4 als auch von der prozentualen mittleren Endfeuchte UE abhängig ist. Dieser durch Messergebnisse erwartete Zusammenhang zwi- schen Vergleichmässigungsfaktor F und Feuchtedifferenz #UHF ist in Figur 2 näher für verschiedene mittlere prozentuale Endfeuchten UE näher-dargestellt; ferner ist als Parameter noch die relative Feldstärke # = E/Emax ein- getragen, wobei E die jeweilige Feldstärke und Emax die maximale Feldstärke im EF-Trockner ist. Um einen optimalen und definierten Vergleichmässigungs faktor zu erhalten, sollte daher #UHF nicht sich selbst überlassen bleiben, sondern auf einen vorgegebenen Wert, z.B. auf einen konstanten WertJlUs gehalten werden. Falls dies nicht geschieht, würde sich bei einer Endfeuchte von z.3. 7% beim Arbeitspunkt A bei einer zufälligen Sen- kung von #UHF von 7 auf 3 eine Verringerung des Vergleichmässigungsfaktors F von 2,75 auf 2, d.h. -der Är- beitspunkt 5 ergeben, Die Konstanthaltung der Feuchte differenz auf dem Wert #US, d.h. des Langzeitmittelwer- tes der Verdampfungslelstung NH geschieht nun - wie vorstehend erwähnt - durch entsprechende Aussteuerun± des Bochfrequenztrockners 4 über den Mittelwert des Boch- frequenzstromes mittels Verändern der Elektrodenfeld- stärke (Richtung a). Der mittlere prozentuale FeuchteS gehalt UE wird dann vom Rechner durch entsprechence Aus- steuerung der Trockenpartie 3 auf dem vorgegebenen Wert gehalten. Damit ergibt sich auch eine definierte prozentuale mittlere Feuchte UA am Eingang des Hochfrequenz trockners 4. Kurzzeitschwankungen des Mittelwertes seiner Eingangsfeuchte werden bei konstanter Feldstärke durch Bereitstellung entsprechender Leistungsreserven selbsttätig so ausgeregelt, dass die vorgegebene End- feuchte ebenfalls in etwa konstant gehalten wird (Rich- tung b). Auf die vorgenannte Verfahrensweise erhält man bei einem hohen Vergleichmässigungseffekt eine optimale VerHteilnng der Heizleistung zwischen Trockenpartle und Hochfrequenztrockner. Damit wird die Produktion der Maschine erhöht und wertvolle Energie eingespart. 3 Patentansprüche 2 Figuren
PatentansrUche 1. Verfahren zum Regeln der Trocknung einer Papierbahn bei einer Papiermaschine, bei der der Trockenpartie.ein kapazitiver Hochfrequenztrockner nachgeschaltet ist und die gemessene Endfeuchte der Bahn als Regelgrösse für den Trockenvorgang dient, d a d u r c h g e k e n nz e i c h n e t, dass der Mittelwert der Verdampfungsleistung (NH) im Hochfrequenztrockner (4) durch Anderung der Elektrodenfeldstärke auf einem vorgegebenen Wert gehalten wird und die Verdampfungsleistung der Trockenpartie (3) so geregelt wird, dass die vorgegebene mittlere Endfeuchte (UE) der Papierbahn (1) konstant bleibt und dass im EF-Trockner bei konstanter Elektrodenfeldstärke Kurzzeitschwankungen des Mittelwertes seiner Eingangsfeuchte durch Bereitstellung entsprechender Leistungsreserven selbsttätig so ausgeregelt werden, dab die vorgegebene Endfeuchte E) ebenfalls in etwa konstant gehalten wird. 2. Verfahren nach Anspruch 1, -d a d u r c h g e- k e n n z e i c h n e t, dass die vorgegebenen Werte programmabhängig änderbar sind. 3. Verfahren nach Anspruch 1 und 2, d a d u r c h g e k e n n z e i c h n e t, dass als der mittleren Endfeuchte (UE) proportionale Grösse die Feuchte (UF) der Papierbahn am Einlauf des HF-Trockners gemessen wird.
SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUNCHEN
GRASSMANN, HANS-CHRISTIAN, DIPL.-ING.
EP-0004918-B1
4,918
EP
B1
DE
19,810,923
1,979
20,100,220
new
C07D233
A61K31
A61P31, C07D521, A61K31, C07D233
124AA19D20B, M07D521:00B1E3A, C07D 231/12, C07D 249/08, C07D 233/56
OPTICALLY ACTIVE (-)-2-(2,4-DICHLOROPHENOXY)-1-(IMIDAZOL-1-YL)-4,4-DIMETHYL-PENTAN-3-ONE PROCESS FOR ITS PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
1. Optically acitve (-)-2-(2,4-dichlorophenoxy)-1- (imidazol-1-yl)-4,4-dimethyl-pentan-3-one of the formula (I) see diagramm : EP0004918,P7,F3 and its physiologically acceptable acid addition salts.
Optisch aktive 1-0thyl-imidazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel Die vorliegende Erfindung betrifft neue optisch aktive l-Äthyl-imidazole, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel, insbesondere als Antimykotika. Es ist bereits bekannt geworden, dass racemische 1-Xthyl- imidazole und deren Säureadditions-Salze, wie insbesondere das racemische 2- 2-(2,4-Dichlorphenoxy)-1-(imida zol-1-yl) -4, 4-dimethyl-pentan-3-on-hydrochlorid, gute antimykotische Wirkung aufweisen (vergl. DT-OS 2 242 454 bzw. US-Patentschrift 3 940 413). Gegenstand der Erfindung sind nun die neuen optischen Antipoden1) der l-Äthyl-imidazole der Formel EMI2.1 in welcher X für Halogen, Methyl, Nitro oder Phenyl steht und n für 0, 1, 2 oder 3 steht, und deren physiologisch verträglichen Säureadditionssalze gefunden. Sie weisen starke antimykotische Eigenschaften auf. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der neuen optischen Antipoden der 1-Athyl-imidazole der Formel (I), welches darin besteht, dass man racemische 1-Äthyl-imidazole der Formel 5)Mit den optischen Antipoden sind Jeweils die optisch * aktiven Verbindungen gemeint, die am C -Atom die gleiche absolute Konfiguration besitzen, wie die (-)-Antipode (in Aethanol gemessen) von: : EMI2.2 EMI3.1 in welcher X und n die oben angegebene Bedeutung habe, in einer ersten Stufe mit optisch aktiven Säuren, gege benenfalls in Gegenwart eines Verdiinnungsmittls, umsetzt, dann in einer zweiten Stufe die entstandenen Salze aufgrund ihrer unterschiedlichen Löslichkeit trennt, und danach in einer dritten Stufe die optischen Antipoden der l-Aethyl-imidazole der Formel (I) aus den entsprechenden Salzen mit Hilfe von Basen, gegebenenfalls in Gegenwart eines Verdünnungsmittels, in Freiheit setzt. tiberraschenderweise zeigen die erfindungsgemässen neuen optischen Antipoden der 1-Xthyl-imidazole der Formel (I) eine bessere antimykotische Wirksamkeit als die bekannten entsprechenden racemischen 1-{thyl-imidazole. Die erfin dungsgemässen Stoffe stellen somit eine wertvolle Bereicherung der Pharmazie dar. Verwendet man 2-(2,4-Dichlorphenoxy)-l-(imidazol-l-yl)4,4-dimethyl-pentan-3-on als Ausgangsstoff, L(+)-Weinsäure als optisch aktive Säure und wässrige Natriumhydrogencarbonat-lösung als freisetzende Base, so kann der Reaktionsablauf durch das folgende Formelschema wiedergegeben werden: EMI4.1 Die als Ausgangsstoffe zu verwendenden racemischen 1 Aethylimidazole sind durch die Formel (II) allgemein definiert. In dieser Formel steht X vorzugsweise für Halogen, insbesondere Fluor, Chlor und Brom sowie für Methyl, Nitro und Phenyl. Der Index n steht vorzugsweise für die ganzen Zahlen 0, 1, 2 oder 3. Die erfindungsgemäss verwendbaren racemischen Ausgangsstoffe der Formel (11) sind bekannt (vergleiche DT-OS 2 242 454 bzw. US-Patentschrift 3 940 413). Sie werden erhalten, indem man entsprechende 2-Halogenäthyl- bzw. 2-Hydroxyäthyl-ketone oder entsprechende l-Halogenäthylketone mit Imidazol in Gegenwart eines organischen Lösungsmittels, wie beispielsweise Acetonitril oder Toluol, bei Temperaturen zwischen 60 und 1200C umsetzt. Bei der Durchführung des erfindungsgemässen Verfahrens werden die Ausgangsstoffe der Formel (II) in der ersten Stufe mit optisch aktiven Säuren umgesetzt. Als solche optisch aktiven Säuren können vorzugsweise verwendet werden: die D- bzw. L-Formen von Apfelsäure, Weinsäure, Diacetylweinsäure, Di-o-toluylweinsäure, Mandelsäure, Camphersäure, Camphersulfonsäure oder a-Bromcamphersulfonsäure. Die genannten optisch aktiven Säuren sind bereits bekannt. Als Verdünnungsmittel kommen bei der Durchführung der ersten Stufe des erfindungsgemäBen Verfahrens alle inerten organischen Lösungsmittel in Frage. Hierzu gehören vorzugsweise Kohlenwasserstoffe wie Benzin, Benzol, Toluol und Xylol, halogenierteKohlenwasserstoffe, wie Chloroform, Dichlormethan, Chlorbenzol und Dichlorbenzol, ferner Alkohole wie Aethanol und Methanol, weiterhin Ketone, wie Methyläthylketon oder Aceton, darüberhinaus Aether, wie Diäthyläther, Tetrahydrofuran oder Dioxan und Ester, wie Essigsäureäthylester. Die Reaktionstemperaturen können bei der Durchführung der ersten Stufe des erfindungsgemässen Verfahrens in einem grösseren Bereich variiert werden. Im allgemeinen arbeitet man zwischen -200C und 1200C, vorzugsweise zwischen OOC und 600C. Bei der Durchführung der ersten Stufe des erfindungsge mäusen Verfahrens setzt man auf 1 Mol Ausgangsverbindung der Formel (II) vorzugsweise 0,5 bis 1 Mol an optisch aktiver Säure ein. Die Menge der Säure kann Jedoch variiert werden, um die Bildung des diastereomeren Salzes der gewünschten optisch aktiven Base von vornherein zu begünstigen. Eine allgemein gültige Aussage lässt sich diesbezüglich nicht machen, denn von Fall zu Fall muss entschieden werden, in welcher Menge die Säure einzusetzen ist, da die Löslichkeit des Jeweils entstehenden Salzes der gewünschten optisch aktiven Base nicht bei allen Derivaten gleich ist. In der zweiten Stufe des erfindungsgemässen Verfahrens erfolgt die Trennung der beiden diastereomeren Salze Jeweils aufgrund der unterschiedlichen Löslichkeit durch fraktionierte Kristallisation. In der dritten Stufe des erfindungsgemässen Verfahrens werden die gewünschten optisch aktiven Antipoden der l-Aethyl-imidazole der Formel (I) mit Hilfe von Basen in Freiheit gesetzt. Als Base kann dabei vorzugsweise wässriges Alkali, wie Natron- und Kalilauge oder wässrige Natrium- und Natriumhydrogen-carbonat-Lösung, verwendet werden. Als Lösungsmittel können bei der Durchführung der dritten Stufe des erfindungsgemässen Verfahrens alle inerten organischen Lösungsmittel verwendet werden. Hierzu gehören vorzugsweise diejenigen organischen Lösungsmittel, die auch bei der Umsetzung in der ersten Stufe dieses Verfahrens vorzugsweise in Frage kommen. Die Reaktionstemperaturen können bei der DurchfUhrung der dritten Stufe des erfindungsgemässen Verfahrens in einem grösseren Bereich variiert werden. Im allgemeinen arbeitet man zwischen -200C und 600C, vorzugsweise zwischen 0 C und 30 C. Bei der Durchführung der dritten Stufe des erfindungsgemässen Verfahrens setzt man auf 1 Mol des betreffenden diastereomeren Salzes mindestens 2 Mol einer verdünnten wässrigen Alkalilösung ein und überschichtet das Reaktionsgemisch zweckmässigerweise mit einem in Wasser kaum lös- lichen organischen Lösungsmittel, wie zum Beispiel AetherDie Isolierung der gewünschten optisch aktiven Antipoden der Basen der Formel (I) erfolgt in der Weise, dass man nach beendeter Reaktion die organische Phase abtrennt, huber Natriumsulfat trocknet, durch Abdestillieren des Lösungsmittels einengt und gegebenenfalls durch Umkristallisation von noch vorhandenem Racemat oder anderer optisch aktiver Antipode befreit. Zur Herstellung von Säureadditionssalzen der Verbindungen der Formel (I) kommen alle physiologisch verträglichen Säuren in Frage. Hierzu gehören vorzugsweise die Halogenwasserstoffsäuren, wie z.B. die Chlörwasserstoffsäure und die Bromwasserstoffsäure, insbesondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salizylsäure, Sorbinsäure sowie Sulfonsäure, wie z.B. p-Toluolsulfonsäure und 1,5-Naphthalindisulfonsäure. Die Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden. Die erfindungsgemässen Verbindungen der Formel (I) und ihre Säuraadditions - Salze weisen antimikrobtelle, insbesondere starke antimyotische Wirkungen auf. Sie besitzen ein sehr breites antimyko- tisches Wirkurgsspektrum, insbesondere gegen DermaWo- phy-ten und Sprosspilze sowie biphasische Pilze, z.B. gegen Candida-Arten, wie Candida albicans, Epidernophyton-Arten, wie Epidermophyton flocccsum, Aspergillus Arten, wie Aspergillus niger und Aspergillus fumigatus, wie Trichophyton-Arten, wie Trichophyton mentagrophytes, Microsporon-Arten, wie Microsporcn felineum sowie Peni cillium-Arten, wie Penicillium ccmmune. Die Aufzählung dieser Mikroorganismen stellt keinesfalls eine Beschränk- ung der bekämpfbaren Keime dar, sondern hat nur erläutern- den Charakter. Als Indikationsgebiete in der Hwnanmedizin können beispielsweise genannt werden: termatomykosen und Systemmykosen durch Trichophyton mentagrophytes und andere Trichophytonarten, Mikrosporonarten, Epidermophyton floccosum, Sprosspilze und biphasische Pilze sowie Schimmelpilze hervorgerufen. Als Indikationsgebiet in der Tiermedizin können bei spielsweise aufgeführt werden: Alle Dermatomykosen und Systemmykosen, insbesondere sclche, die durch die obengenannten Erreger beivorgerufen werden. Zur vorliegenden Erfindung gehören pharnazeutische Zube reitungen, die neben nicht toxischen, inerten pharmazeutisch gecigneten Trägerstoffen einen ocer mehrere erfindugsge- mMsse Wirkstoffe enthalten oder die aus einem oder =ne.-.reren erfindungsgemässen Wirkstoffen bestehen sowie Verfahren zur Herstellung dieser Zubereitungen. Zur vorliegenden Erfindung gehören auch pharmazeutische Zubereitungen in Dosierungseinheiten. Dies bedeutet, Cal die Zubereitungen in Form einzelner Teile, z.B. Tabletten, Dragees, Kapseln, Pillen, Suppositorien und Ampullen vor- liegen, deren Wirkstoffgehalt einem Bruchteil oder einem Vielfachen einer Einzeldosis entsprechen. Die Dosierungseinheiten können z.B. 1, 2, 3 oder 4 Einzeldosen oder 1/2, 1/3 oder 1/4 einer Einzeldosis enthalten. Eine Einzeldosis enthalt vorzugsweise die Menge Wirkstoff, die bei einer ^?c?.4kation verabreicht wird und die gewöhnlich einer ganzen, einer nalben oder einem Prittel oder einem Viertel einer Tagesdosis entspricht. Unter nicht toxischen! inerten pharmazeutisch geeigneten Trägerstoffen sind feste, halbfeste oder flüssige Verdün- r.ungsmittel, Füllstoffe und Formulierungshilfsmittel jeder Art zu verstehen. Als bevorzugte pharmazeutische Zubereitungen seien Tabletten, Dragees, Kapseln, Pillen, Granulate, Suppositorien, Lösungen, Suspensionen und Emulsionen, Pasten, Salben Gele, Cremes, Lotions, Puder und Sprays genannt. Tabletten, Dragees, Kapseln, Pillen und Granulate können den oder die Wirkstoffe neben den üblichen Trägerstoffen enthalten, wie (a) Füll- und Streckmittel, z.B. Stärken, X,ilchzucker, Rohrzucker, Glukose, Mahnit und Kieselsure, (b) Bindemittel, z.B. Carboxymethylcellulose, Alginate, Gelatine, Polyvinylpyrrolidon, (c) Feuchthalter.littel, z.B. Glycerin, (d) Sprengmittel, z.B. Agar-Agar, Calciumcarbonat und Natriumbicarbonat, (e) LösungsverzSgerer, z.B. Paraffin und (f) Resorptionsbeschleuniger, z.B. quartenäre Ammonium- verbindungen, (g) Netzmittel, z.B. Cetylalkohol, Glycerinmoncstearat, (h) Adsorptionsmittel, z.B. Raolin und Bentonit und (i) Gleitrittel, z.B. Talkum, Calcium- und Magnesium- stearat und feste Polyäthylenglykole oder Gemische der unter (a) bis (i) aufgeführten Stoffe. Die Tahletten, Dragees, Kapseln, Pillen und Granulate können mit den üblichen gegebenenfalls Opakisierungs- nittel enthaltenden Uberzügen und Hüllen versehen sein und auch so zusammengesetzt sein, dass sie den oder die Wirkstoffe nur oder bevorzugt in einem bestimmten Teil des Intestinaltraktes, gegebenenfalls verzögert abgeben, wobei als Einbettungsmassen z.B. Polymersubstanzen und Wachse verwendet werden können. Der oder die Wirkstoffe können gegebenenfalls mit einem oder mehreren der oben angegebenen Trägerstoffen auch in mikroverkapselter Form vorliegen. Suppositorien können neben dem oder den Wirkstoffen die üblichen wasserlöslichen oder wasserunlöslichen Träger stoffe enthalten, z.B. Polyäthylenglykole, Fette, z.B. Kakaofett und höhere Ester (z.B. C14-Alkohol mit C16 Fettsäure) oder Gemische dieser Stoffe. Salben, Pasten, Cremes und Gele können neben dem oder den Wirkstoffen die Üblichen Trägerstoffe enthalten, z.B. tierische und pfanzliche Fette, Wachse, Paraffine, Stärke, Tragant, Cellulosederivate, Polyäthylenglykole, Silicone, Bentonite, Kieselsäure, Talkum und Zinkoxid oder Gemische dieser Stoffe Puder und Sprays können neben dem oder den Wirkstoffen die tblichon Trägerstoffe enthalten, z.B. Milchzucker, Talkum, Kieselsäure, Aluminiumhydroxid, Calciumsilikat und Pcly- amidpulver oder Gemische dieser Stoffe. Sprays können zu sa:tzlich die üblichen Treibmittel z.B. Chlorfluorkohlenwasserstoffe enthalten. Lösungen und Emulsionen können neben dem oder den Wirkstoffen die Üblichen Trägerstoffe wie Lösungsmittel, Lösunrsvermittler und Emulgatoren, z.B. Wasser, Aethylalkohol, Isopropylalkohol, Methlcarbonat, Aethylacetat, Benzylalkohol, Benzylenzoat, Propylenglykol, 7,3-Butylen- glykol, DimethylformAmid, Oele, insbesondere Baumwollsaatöl, Erdnussöl, Maiskeimöl, Olivenöl, Ricinusöl und Sesambl, Glycerin, Glycerinformal, Tetrahydrofurfurylalkohol, PolyGthylenglykole und Fettsäureester des Sorbitans oder Gemische dieser Stoffe enthalten. Zur parenteralen Applikation können die Lösungen und Emulsionen auch in steriler und blutisotonischer Form vorliegen. Suspensionen können neben dem oder den Wirkstoffen die Üblichen Trägerstoffe wie flüssige VerdÜnnungs.ittei, z.B. Wasser, Aethylalkohol, Propylenglykol, Suspendier- nittel, z.B. äthoxylierte Isostearylalkohole, Polyoxy- äthylensorbit- und Sorbitanester, mikrokr-stalline Cellulose, Aluminiunmetahydroxid, Bentonit, Agar-Agar und Tragant oder Gemische dieser Stoffe enthalten. Die ganannten Formulierungsformen können auch Färbemittel, Konservierungsstoffe sowie geruchs- und gesc;=mackver- bessernde Zusätze, z.B. Pfefferminzöl und Eukalyptusöl und Süssmittel, z.B. Sacharin enthalten. Die therapeutisch wirksamen Verbindungen sollen in den oben aufgeführten pharmazeutischen Zubereitungen vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew,-S der Gesamtmischung vorhanden sein. Die oben aufgeführten pharmazeutischen Zubereitungen können ausser den erfindungsgemässen Wirkstoffen auch weitere pharmazeutische Wirkstoffe enthalten. Die Herstellung der oben aufgetifhrten pharmazeutischen Zubereitungen erfolgt in übliche Weise nach bekannten Methoden, z.B. durch Mischen des oder der Wirkstoffe mit dem oder den Trägerstoffen. Zur vorliegenden Erfindung gehört auch die Verwendung der erfindungsgemässen Wirkstoffe sowie von pharmazeutischen Zubereitunger., die einen oder mehrere erincungs- gefässe Wirkstoffe enthalten, in der Human- und Veterinärmedizin zur Verhütung, Besserung und/oder Heilung der oben angeführten Erkrankungen. Die Wirkstoffe oder die pharmazeutischen Zubereitungen können lokal, oral, parenteral, intraperitoneal und/oder rectal, vorzugsweise parenteral, insbesondere intravenös appliziert werden. Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder dle erfindungsgemässen Wirkstoffe in Gesamtmengen von etwa 10 bis etwa 300, vorzugsweise 50 bis 200 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben zur Erzielung der gewünschten Ergebnisse zu verabreichen. Es kann jedoch erforderlich sein, von den genannten Do sierungen abzuweichen und zwar in Abhängigkeit von der Art und dem Körpergewicht des zu behandelnder. Objekts der Art und der Schwere der Erkrankung, der Art der Zubereitung und der Applikation des Arzneimittels sowie dem Zeitraum bzw. Intervall, innerhalb welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der oben genannten Menge Wirkstoff auszukommen, während in anderen Fällen die oben angeführte Wirkstoffmenge überschritten werden ruB. Die Festlegung der jeweils erforderlichen optimalen Dosierung und Applikationsart der Wirkstoffe kann durch jeden Fachmann aufgrund seines Fachwissens leicht erfoigen. Beispiel A Antimykotische in-vitro-Wirksamkeit Versuchsbeschreibung Die in-vitro-Prüfungen wurden im ReiWenverdunnungstest mit Keiminokula von 10 Keimen/ml Substrat bei Hefen und 10 Keimen/ml Substrat bei Dermatophyten durchgeführt. Als Nährmedium diente Yeast-Nitrogen-Base, ein allgemein bekanntes Nährsubstrat, das von der Firma Difco unter der Nummer: Difco-Nr.0392-15 vertrieben wird. Die Bebrütungstemperatur betrug 280C; die Bebrütungsdauer lag bei 48 - 72 Stunden. In diesem Test zeigen die erfindungsgemässen optisch aktiven Antipoden eine bessere antimykotische Wirkung als das Racemat und als die jeweilige andere optisch aktive Antipode. HerstellungsbeisDiele Beispiel 1 EMI16.1 l.Stufe : Darstellung des Weinsäuresalzes 34 g (0,1 Mol) 2-(2,4-Dichlorphenoxy)-l-(imidazol-l-yl)4,4-dimethyl-pentan-3-on und 15 g (0,1 Mol) L(+)-Weinsäure werden in 50 ml warmem Aethanol gelöst und filtriert. Beim Abkühlen kristallisiert das Tartrataus. Der entstandene Kristallkuchen wird abgesaugt und getrocknet. Man erhält 47 g (96 % der Theorie) an diastereomerem Tartrat vom Schmelzpunkt 142es. 2.Stufe: Trennung der diastereomeren Tartrate Man löst 47 g (0,096 Mol) Tartrat in heissem n-Butanol, filtriert und lässt drei Tage bei Raumtemperatur aus kristallisieren. Der ausgefallene Feststoff wird abgesaugt (26,8 g Fp:136-1420C) und abermals aus heissem n-Butanol umkristallisiert. Diese Prozedur wird mehrfach wiederholt. Aus den jeweils anfallenden Mutterlaugen kristallisieren weitere, unreinere Fraktionen an schwerer löslichem Tartrat, die gesammelt und separat umkristallisiert werden. Der dabei anfallende Feststoff wird jeweils dem schwerer löslichen Salz zugeschlagen, während die Mutterlauge mit denen der primären Kristallisationen vereinigt wird. Durch diese Verfahrensweise erhält man schliesslich einen Feststoff, in dem das schwerer lösliche Tartrat angereichert ist, das die (+)-Antipode enthält, sowie eine Mutterlauge, in der sich der überwiegende Teil des leichter löslichen Tartrats befindet, das die (-)-Antipode enthält. Man engt die Mutter lauge zur Trockne ein und erhält 17,3 g (73,5 % der Theorie) Tartrat der (-)-Antipode des 2-(2,4-Dichlorphenoxy)-l-(imidazol-l-yl)-4,4-dimethyl- pentan-3-ons vom Schmelzpunkt 132-137 C. Stufe Darstellung der (-)-Antipode In einem 250 ml Scheidetrichter werden 33 g (0,069 Mol) Tartrat der (-)-Antipode in 300 ml Aether aufgeschlämmt und mit gesättigter, wässriger Bicarbonatlösung versetzt. Man schüttelt so lange,bis alles gelöst ist, trennt die wässrige Phase ab und wäscht die organische Phase noch einmal mit 20 ml Wasser. Nach Trocknen über Natriumsulfat und Abziehen des Lösungsmittels wird das zurückbleibende Oel in etwas warmem, absolutem Aether aufgenommen und noch enthaltenes Racemat durch Zugabe eines Impfkristalls zuerst bei Raumtemperatur und dann bei OOC auskristallisiert. Nach Filtration und Abziehen des Aethers erhält man die (-)-Antipode des 2-(2,4-Dichlorphenoxy)-l-(imidazol-l yl)-4,4-dimethyl-pentan-3-ons, die mit 50 ml ätherischer Salzsäure versetzt und so lange gerührt wird, bis alles gelöst ist. Danach dampft man zur Trockne ein, nimmt den Rückstand in warmem Essigester auf und lässt auskristallisieren. Man erhält 6 g (23,1 % der Theorie) der (-)-Anti pode des 2-(2,4-Dichlorphenoxy)-l-(imidazol-l-yl)-4,4 dimethyl-pentan-3-on-hydrochlorids vom Schmelzpunkt 1601620C mit einem Drehwinkel von [cxjs,=-39,4 (5 5'-ige Lösung in Aethanol). Entsprechend Beispiel 1 können die erfindungsgemässen optisch aktiven Antipoden der folgenden Verbindungen der Tabelle 1 erhalten werden. Tabelle 1 EMI18.1 Bsp.Nr. Xn Schmelzpunkt ( C) 2 4-C1 123-27 (xHC1) 3 4-Br 148-50 (xHCl) 4 4-F 106 5 4-CH3 135 (xHC1) 6 2-C6H3, 144-46 (xHCl) 7 4-C6 Hf 111-12 8 2,3-(CH3)2 143-47 (xHCl) 9 3,4-(CH3)2 164-65 (xHC1) 10 2,4-(CH3)2 153-57 (xHcl) 11 2,5-Cl2 162 (xHC1) 12 2-CH3 ,4-C1 147-50 (xHC1) 13 2,4,5-C13 180-83 (xHcl) 14 2-C1 146-48 (xHCl) 15 3-Cl 87-90 (xHc1) 16 73-75 17 2,3-(cH3)2 97-98 Bsp.Nr. Xn Schmelzpunkt ( C) 18 2-C1 77-79 19 3-C1 80-82 20 2,4-cl2 85-87 21 4-NO2 118-20 22 2-Cl,5-NO2 122-23 23 2-CH3 ,4-Cl 49-51 24 4-C1 68-73
Patentansprllche 1. Optische Antipoden der l-Xthyl-imidazole der allge meinen Formel (I) EMI20.1 in welcher X für Halogen, Methyl, Nitro oder Phenyl steht und n für 0, 1, 2 oder 3 steht, und deren physiologisch verträglichen Säureadditionssalze 2. Verfahren zur Herstellung von optischen Antipoden der 1-{thyl-imidazole der allgemeinen Formel (I), dadurch gekennzeichnet, dass man racemische 1-0thyl- imidazole der allgemeinen Formel (II) EMI20.2 in welcher X und n die oben angegebene Bedeutung haben, in einer ersten Stufe mit optisch aktiven Säuren, gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt, dann in einer zweiten Stufe die entstandenen Salze aufgrund ihrer unterschiedlichen Löslichkeit trennt, und danach in einer dritten Stufe die optischen Antipoden der 1-Äthyl-imidazole der Formel (I) aus den entsprechen den Salzen mit Hilfe von Basen, gegebenenfalls in Gegen wart eines Verdünnungsmittels, in Freiheit setzt. 3. Arzneimittel, gekennzeichnet durch einen Gehalt an mindestens einer optischen Antipoden der 1-Sthyl-imi- dazole gemäss Anspruch 1. 4. Verfahren zur Behandlung von Mykosen, dadurch gekenn zeichnet, dass man optische Antipoden der 1-Sthyl- imidazole gemäss Anspruch 1 Menschen oder Tieren appliziert, die an Mykosen erkrankt sind.
BAYER AG
BUCHEL, KARL HEINZ, PROF. DR.; KRAMER, WOLFGANG, DR.; PLEMPEL, MANFRED, DR.; SCHMIDT, THOMAS, DR.; Büchel, Karl Heinz, Prof. Dr.; Krämer, Wolfgang, Dr.
EP-0004922-B1
4,922
EP
B1
EN
19,810,715
1,979
20,100,220
new
C10B57
C21C1
C10B57, C21C1
C21C 1/08, C10B 57/06
COKE FOR USE IN THE PRODUCTION OF GRAY IRON; METHOD OF PRODUCING SAID COKE AND METHOD OF PRODUCING GRAY IRON BY USING SAID COKE
An effective amount of silicon carbide, preferably mixed with graphite, is added to the blend of coals used to make a foundry coke, the blend is thoroughly mixed, pulverized, and coked in a by-product coke oven. The resulting coke has improved physical and chemical properties allowing production of gray iron with less fuel. Gray iron castings with improved hardness control at lower cost are produced by the inoculating effect of the silicon from silicon carbide and graphite in the mixture.
Iron, the commonest and most useful metal, is always used commercially in the alloyed form, as its properties can be varied as to hardness, ductility, flexibility, tensile strength, chemical resistance, and other properties by the choice, amounts, and combination of alloying elements. Gray cast iron is distinguished by a relatively high amount of carbon, approximately 3%, which imparts to it the characteristic hardness, castability, wear resistance, and machinability displayed by no other metal. Gray cast iron is unique in its high content of carbon, and in the form of a large portion of this carbon as a separate phase of graphite. The strength, wear resistance, brittleness or conversely toughness, and machinability are all controlled to a large and primary extent by the graphitic carbon content. Graphite in gray iron appears in several forms well-known to the foundry metallurgist, of which the so-called type A, a flake, is preferred, in a pearlitic iron matrix. If the carbon is present as iron carbide, or cementite, the metal will be what is known as white iron, hard, brittle, and unmachinable. If the carbon is present in the correct proportion as graphite in the pearlitic matrix, it will display the characteristic gray color and good machinability of gray iron. (This treatment ignores the effects of the other alloying elements and heat treatment and will be limited to the effects of silicon and carbon upon the properties of gray cast iron, in order to simplify its complex subject matter.) When gray iron is melted in a cupola over a bed of hot coke, it gains some carbon content from the coke, which may be varied by adjusting the coke-iron ratio, the air blast, by additives such as silicon, and by the slag chemistry. When it is poured into the molds to produce parts, the utility of these parts is affected by the cooling rate, and the rate of precipitation from solution of the various forms of iron. An iron melt which hardens too quickly will have an excess of iron carbide and have the characteristics of white iron, hard, brittle, poorly machinable, and relatively strong. If the iron has an excess of carbon as graphite with the metal predominantly in the form of primary ferrite from a toG slow cooling rate, the metal will have low tensile strength and be too soft to be commercially useful. The amount and shape, size, and distribution of graphite present in a gray cast iron are usually controlled by the addition of an inoculant to the metal in the cupola, the ladle, or the mold which furnishes seeds for formation of crystals of graphite. Inoculants commonly used are silicon in various forms, such as ferrosilicon or silicon carbide, and graphite itself. Other metals used include chromium, manganese, calcium, titanium, zirconium, aluminum, barium and strontium Some of the elements function as alloying elements as well, in particular molybdenum, chromium, and manganese. Aluminum and the alkaline earths are the most effective nongraphitic inoculants. Silicon is the principal element used as an inoculant, controlling graphite formation, allowing the formation of the pearlitic iron matrix over a wider temperature range, and thus decreasing the chill depth of the cast metal. The chill depth test is usually conducted by casting a graduated wedge-shaped test piece under specific conditions, and measuring the extent of the white iron from the tip of the wedge. Since the thinner portion cools faster, the tip will be of white iron or iron carbide, which will crystallize earliest, and is light colored, hard, brittle and unmachinable in normal operation. The extent of the chill depth controls principally the thickness of the casting which can be made from a particular melt, a melt with a low chill depth enabling a relatively thinner casting to be poured without the formation of white iron. A thick cross-sectioned casting is made witch iron with a greater chill depth to avoid the formation of excess graphite and ferrite. The desired metal consists of graphite flakes in a matrix of pearlitic iron, which is stabilized over a widely varying cooling rate. Past practice in this area has shown the use of silicon carbide as an added ingredient in the cupola charge or tc the ladle by U.S. 2,G20,171 and U.S. 2,119,521 tc Brown. The use of silicon carbide in briquette form is shuwn by U.S. 2,497,745 to Stohr; U.S. 2,527,829 to Leitten; U.S. 3,051,564 to Drenning; and U.S. 3,666,445 to Stone et al. U.S. 4,015,977 to Crawford claims briquettes of petroleum coke with refractory oxides or a derivative which will yield a metal oxide. A clear explanation of the use of silicon carbide in gray iron melts is given by Moore, U.S. 3,764,298, showing desirable and undesirable grain structures and chill wedges with small additions of silicon carbide to the metal. In accordance with the invention there is provided a coke suitable for use as fuel in a foundry cupola to produce gray iron, characterized by the fact that it contains in its structure an effective amount of silicon carbide which is blended with the coal or blend of coals used to produce said coke prior to coking said coal or blend of coals. The invention further provides a method of producing gray iron for castings in a cupola in which the improved coke of the invention is used as a fuel. The silicon carbide used in the practice of this invention is preferably a conventional silicon carbide which is a by-product of the Acheson graphite process. When baked carbon elr.trodes are packed with resistor coke and then covered l th a coke-silica mixture and electrically heated to transform the amorphous carbon to crystalline graphite, some . the silica reacts with carbon fqrming silicon cars due according to the following equation: SiO2 + 2C + SiC + CO2. The commercial grade preferably used in this invention contains approximately 50% to 60% graphite and 2025% silicon carbide with the remainder a mixture of silicon dioxide and other metallic oxides. In carrying cut the invention, an effective amount of the compositio consisting principally of graphite and silicon carbide, is added to the blend of coals used in making foundry coke. The addition is preferably from 0.2 to 2.5E by weight silicon and from 0.5 to 6% graphite based on the amount of coal or blend of coals. The mix is pulverized and coked in a by-product coke oven (see: Making Efficient Use of Coke in the Cupola, American Coke and Coal Chemicals Institute, Washington, D.C.). The resulting coke has superior physical and chemical properties. Its superior hot strength gives improved operation in the cupola; aids in maintaining the physical integrity of the coke in the cupola, avoiding breakdown into smaller particies and consequent plugging which increases the back pressure of the air draft necessary to maintain smooth operation of the cupola. This in turn contributes to operation with less fuel and consequent savings. The silicon carbide decomposes in the hot metal, releasing exothermic heat and lowering the overall coke combustion, When the silicon carbide is blended into the coal mix, preferably in combination with graphite powder, and consequently pulverized and coked, it is dispersed much more uniformly and homogeneously within the coke particles and is more uniformly and readily available to the liquid iron at the coke-iron interface. This availability aids in promoting the reactions of decomposition of the silicon carbide and its reactions with the iron. The availability of the silicon carbide in the coke also aids in simplifying the operation of the cupola in lessening the need for additional inoculants, reducing labor needed and the possibility of weighing and adding errors. The graphite, and silicon from the silicon carbide, act as inoculants for deposition of graphite in the desired pearlitic matrix on cooling and hardening of the metal when cast, thus controlling the grain structure, hardness, strength and machinability of the cast metal, enabling the founder to produce thinner cross-section castings economically and profitably. In a preferred procedure, from 1-10% of a commercial grade of impure silicon carbide containing graphitic carbon is added to the mix of coking coals in a physical blend, the mix pulverized and coked in a conventional by-product coke oven. The coke produced in the above fashion is then used as a replacement for the regular metallurgical coke in a gray iron foundry cupola. The invention will be further described with reference to the following specific Examples. EXAMPLE 1 To 95 parts by weight of a mixture of coking and non-coking coals 5 parts of commercial silicon carbide was added. The silicon carbide used had the following approximate anal-ysis: C - 50-60% (Graphitic) SiO2 - 9-15% SiC - 19-25% MeO - 12-15% (mixed metal oxides) This mixture was blended, pulverized, loaded into a by-product coke oven and coked during a 26-1/2 hour cycle The coke produced had the following analysis by various samples: Silicon Carbide Coke Regular Coke (typical) Volatile Matter 0.7-0.85% 0.65% Fixed Carbon 90-92% 92.2% Ash 8-9% 7.2% Sulfur 0.55% 0.52% SiC 0.5-0.88 .05% ASG* .945 .935 BTU/lb. 12,500-13,400 12,500-13,500 *Apparent Specific Gravity This coke was used in a gray iron cupola in a jobbing foundry with a daily melt of approximately 70 tons cf gray iron, with the following results reported: 1 - Approximately 5-10E less coke was required for melting. 2 - Silicon gain in the metal was approximately 0.108 at a 6 to 1 coke ratio (wt. iron to coke). 3 - Back pressure in the cupola was reported to be less variable than in the past. 4 - Carbon pickup in the iron increased considerably at normal coking levels. 5 - Melting rates and metal temperature were equal to or slightly higher than with regular coke. Nos. 3, 4 and 5 above were qualitative determina tio only and were not quantitatively determined. The reduction in back pressure was the result of a higher hot strength by the coke, which maintained its physical integrity while burning, and for that reason offered less resistance to the air flow. The fact that the melt rate and metal temperature were equal to or slightly higher than with regular coke verified that the silicon carbide reacted in the melt, releasing heat. The reactions are: EMI6.1 <tb> Sic <SEP> Si <SEP> & c <SEP> <tb> MnO <SEP> & SiC <SEP> ----+ <SEP> CO <SEP> & Si <SEP> & Mn <SEP> & AH <tb> <SEP> g <tb> FeO <SEP> & <SEP> SiC <SEP> ---a <SEP> COg <SEP> & Si <SEP> & Fe <SEP> & AH <SEP> <tb> EXAMPLE 2 Ten carloads of coke were made as in Example 1 with 5% of the same type silicon carbide in the blend. The coke produced had a composite analysis as follows: Volatile Matter 1.00% Fixed Carbon 91.47% Ash 7.59% Sulfur .59% The above coke was used in a four day run in a 90 diameter, water-walled, refractoryless front slagging cupola with water cooled projecting tuyeres, and a carbon lined wall. Typical operating data for this cupola during this run was: 1 - Bed height - 60 above centerline of tuyeres. Bed coke weight - 9,000 lbs. Limestone - 500 lbs. 2 - Stack holding capacity - 10-12 x 6,000 ib. charges. 3 - Typical cupola charges: A - Running charge Steel 1,100 lbs. Returns 3,160 lbs. 50% Ferrosilicon 140 lbs. 50% Borings/50E Steel Briquettes 1,600 Ibs. TOTAL 6,000 lbs. B - Start-up charge Steel 2,000 lbs. 50% Ferrosilicon 200 lbs. Steel Turnings Briquettes 1,800 lbs. TOTAL 4,000 lbs. C - Coke Charge Coke (SiC) 650 lbs. Coke (regular) 700 lbs. Running Coke to Iron Ratio 9 to 1 D - Limestone Charge Start-up Charge 50 lbs. Regular 150 lbs. E - Blast Rate 16,500 cfm. Back Pressure 40 ozs. 4 - Melting Rate - 32-41 T./hr. 5 - Metal Composition The iron produced with the coke containing SiC had the following analysis as compared to iron produced with regular coke: Typical Metal Composition: Regular Coke SiC Coke Silicon 2.34% 2.30% Charged Silicon 2.71% 2.60% Silicon Melting Loss 0.37% 0.30% Carbon 3.35% 3.36% Manganese 0.64% 0.63% Sulfur 0.120-0.160% 0.120-0.145% Brnnneli Hardness-Mean 223 218 Chill Depth-Mean 6.7 (1/32 ) 6.3 (1/32 ) In this test, there was an overall reduction in coke use of 6.2%. The running coke charge, not including booster charges or bed coke was reduced from 700 lbs. to 650 lbs. or 7.1%: These reductions in charged coke did not reduce carbon gain or pickup by the iron. Silicon melting loss or oxidation loss was reduced 18.98 Silicon pickup in the iron was 0.07%. There was a reduction in hardness and in chill depth apparent in this test, indicating the effectiveness of the graphite and silicon carbide as inoculants. From the above data, it can readily be observed that the use of this coke results in improvement of operation of a cupola by lowering the consumption of coke needed to melt the iron, or conversely, increasing the production rate, and lessening the amount of the expensive ferrosilicon alloy needed. Back pressure in the above run was also reduced and more uniform than in previous runs, indicating that this coke broke down less in the cupola and had higher hot strength than regular coke.
CLAIMS 1. A coke suitable for use as fuel in a foundry cupola to produce gray iron, characterized by the fact that it contains in its structure an effective amount of silicon carbide which is blended with the coal or blend of coals used to produce said coke prior to coking said coal or blend of coals. 2. A coke according to claim 1, characterized by the fact that it contains from 0.2-2.5% by wt. silicon carbide based on the amount of coal or blended coals. 3. A coke according to claim 1, characterized by the fact that an effective amount of graphite has been added to the coal or blend of coals used to produce said coke prior to coking. 4. A coke according to claim 3, characterized by the fact that it contains 0.5-6.0% graphite by wt. based on the amount of coal or blended coal. 5. A coke according to claims 3 or 4, characterized by the fact that a commercial grade of silicon carbide obtained as a by-product of the manufacture of graphite by the Ache son process has been added to the coal or blend of coals prior to coking, said by-product having approximately 20-258 silicon carbide and 50-60% graphite content by wt. 6. A method of producing an improved grade of coke particularly suitable for use as fuel in a gray iron foundry cupola, in which coal or a blend of coals is coked in a byproduct coke oven, characterized by adding to coal or blend of coals prior to coking an effective amount of silicon carbide. 7. A method accorcRjg ts clamlS/ 6 characterized by ad? g fror1 0.2 to 2.5% by wt. silicon carbide based on the amount of coal or blended coals. 8. A method according to claims 6 or 7, characterized by adding a commercial grade of silicon carbide containing from 20-25% silicon carbide and from 50-60% graphite. 9. A method of producing in a cupola gray iron for castings, characterized by using as fuel a coke according to any one of claims 1 to 5.
GREAT LAKES CARBON CORPORATION
BURTON, EDWARD DANIEL
EP-0004923-B1
4,923
EP
B1
DE
19,810,429
1,979
20,100,220
new
B26D1
B65B69
B65B69
B65B 69/00B
CUTTING DEVICE
1. A cutting apparatus for severing ties, in particular for severing tie wires (8) of cellulose bales (7), waste paper bales, rag bales and the like, comprising a knife beam (2, 3) with knives (9, 10) flatly engaging each other and associated to each other in pairs, the cutting flanks (35, 36) of which are movable against each other, the knife beam (2, 3) being pressure-engageable with the matter to be cut with its cutting side (20), characterized in that the knife beam (2; 3) is defined by two elongate knives (9, 10) which are shiftable in their longitudinal direction relative to one another, that the two knives (9, 10) have an array of teeth (33, 34) in regular spacings at their cutting sides (20), the flanks (36) of the teeth (34) of the one knife (10) defining the cutting blades and the flanks (35) of the teeth (33) of the other knife (9) defining the counterblades, that the teeth heads (33, 36) have an inclination (37, 38) toward the teeth roots from the blades in the plane of the respective knife, forming a relief-cut, and that the shifting of the knives (9, 10) relative to one another generally corresponds to about twice the tooth pitch.
Schneidvorrichtung Die Erfindung betrifft eine Schneidvorrichtung zum Durchtrennen von Verschnürungen, insbesondere zum Durchtrennen der Verschnürungsdrähte von Zellstoffballen, Altpapierballen, Lumpenballen und dergleichen, bestehend aus einem Messerbalken mit paarweise einander zugeordneten, flach aneinanderliegenden Messern, wobei die Schneidflanken der Messer Schneide und Ge genachneide bilden und vom Zahnkopf aus in der Ebene des jeweiligen Messers nach Art eines Hinterschnitts schräg nach hinten verlaufen und wobei der Messer- balken mit seiner Schneidseite an das Schneidgut andrückbar ist. Eine aus der US-PS 3 513 522 bekannte Scnneidvorrichtung der genannten Art besteht aus mehreren, in vorgegebenem Abstand nebeneinander angeordneten Zangen. Die Schneidhebel der Zangen sind an zwei gemeinsame Betätigungsstangen angelenkt, die mit Hilfe von Druckmittel zylindern verschoben werden können, wodurch der Schneidvorgang ausgelöst wird. Mit dieser bekannten Vorrichtung lassen sich nur Drähte durchtrennen, die in genau vorbestimmten Abständen angeordnet sind. In einer mit einer solchen Schneidvorrichtung ausgerüsteten Anlage können also nur Ballen bestimmter Grösse mit genau vorgegebener Anordnung der Verschnürungsdrähte verarbeitet werden. Der Erfindung liegt die Aufgabe zugrunde, eine Schneidvorrichtung zu schaffen, mit der sich beliebig angeordnete Verschnürungsdrähte von verschieden grossen Ballen bequem durchtrennen lassen. Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass der esserbalken aus zwei langgestreckten Messern gebildet ist, die in ihrer Längsrichtung relativ zueinander verschieblich sind, dass die beiden Messer an ihre Schneidseiten in regelmässigen Abständen hintereinander angeordnete Zähne aufweisen, wobei die Flanken der Zähne des einen Messers die Schneiden und die Flanken der Zähne des anderen Messers die Gegenschneiden bilden, dass die Zahnköpfe von den Schneiden aus in der Ebene des jeweiligen Messers eine zum Zahn flug; hin geneigte Schräge aufweisen und dass die Ver so siebung der Messer relativ zueinander etwa der doppelten Zahnteilung entspricht. Die erfindungsgemässe Schneidvorrichtung ist wesentlich vielseitiger als die bekannte Vorrichtung, und es können mit ihr Verschnürungsdrähte in beliebigen Positionen an beliebig grossen Ballen durchtrennt werden. Aus der DE-OS 2 333 656 ist bereits ein Schneidbalken mit gegenläufigen esserstangen bekannt, der zur Verwendung in flähmaschinen und Heckenscheren benutzt wird. Die an den Messerstangen vorgesehene Zähne sind trapezförmig ausgebildet und auf beiden gegenüberliegenden Seiten mit Schneiden versehen. Mit einem solchen Schneidbalken lässt sich jedoch ein Verschnürungsdraht, der fest um einen Ballen gespannt ist, nicht durchtrennen. Erstens können die an den gegenläufigen Iiesserstangen vorgesehenen trapezförmigen Zähne den tief in den Ballen eingeschnittenen Draht überhaupt nicht ergreifen. Zweitens würde der Draht, selbst wenn man ihn mit einer gesonderten Vorrichtung in eine schneidgerechte Lage anheben würde, nicht von den Zähnen ergriffen und durchtrennt werden können, sondern er würde nach vorn zu den Zahnspitzen aus dem Schneidbereich herausgedrückt werden. Beim Einsatz der erfindungsgemässen Schneidvorrichtung zum Entdrahten von Ballen wird der Messerbalken senkrecht zu den zu durchtrennenden Drähten gegen den Ballen gedrückt, wobei die Zahnköpfe aufgrund ihrer abgeschrägten Stirnflächen leicht in das Ballenmaterial eindringen können. Dann wird der Schneidvorgang dadurch ausgelöst, dass die beiden Messer relativ zueinander verschoben werden. Die hinterschnittenen Zahnflanken ergreifen dabei mit ihren vorderen Spitzen die zu durchtrennenden Drähte und ziehen sie in die Mitte des Schneidbereichs hinein, so daÇ in jedem Falle ein Durchtrennen der Drähte erfolgen kann. Ein nachträgliches Herausrutschen der Drähte aus dem Schneidbereich wird dadurch wirksam unterbunden. Vorzugsweise steht eines der beiden Messer fest, während das andere Messer mit Hilfe einer Kraftbetätigungseinrichtung hin- und herverschiebbar ist. Zur Stabilisierung und Halterung der Messer sitzen diese zweckmässig zwisc hen zwei seitlichen Halteflanschen. Das verschiebliche Messer wird dabei zwischen dem festen Messer und seinem äusseren Halteflansch geführt. Senkrecht dazu kann das verschiebliche Messer dadurch geführt werden, dass es mit einem sich über seine gesamte Länge erstreckenden, an der der Schneidseite gegenüberliegenden Seite gebildeten seitlichen Vorsprung in eine entsprechende Ausnehmung des feststehenden Messers eingreift. Dadurch ist das verschiebliche Messer allseitig gehaltert. Um die Schneidreibung gering zu halten, können zwischen der aussenseite des verschieblichen Messers und dem angrenzenden Flansch sowie der der Schneidseite gegen überliegenden Seite des verschieblichen Messers und einem sich um diese Messerseite herumerstreckenden Flanschteil Lagermetallbleche angeordnet sein. Zur Spiel einstellung kann quer durch die beiden Messer sowie die beiden Flansche an vorgegebenen Stellen eine Schraube geführt sein, die an dem dem Schraubenkopf gegenüberliegenden Ende eine gesicherte Stellmutter trägt, wobei das verschiebliche Messer im Durchgangsbereich der Schraube einen Längsschlitz aufweist, so dass es trotz der durchgehenden Schraube einwandfrei verschieblich ist. Durch entsprechendes Anziehen der Mutter kann jedes gewünschte Spiel zwischen den Schneiden und Gegenschneiden eingestellt werden Zweckmässig ist der Messerbalken in Richtung auf seine Schneidseite vor- und zurückbewegbar, während in einem Abstand vor der Schneidseite des Iiiesserbalkens ein stationärer Anschlag angeordnet ist. Zum Durchtrennen der Verschnürungsdrähte eines Ballens wird dieser zwischen den Messerbalken und den Anschlag gebracht und dann wird der Messerbalken vorgefahren. Beim Vorfahren verschiebt der Messerbalken den Ballen,bis dieser an dem stationären Anschlag zur Anlage kommt. Beim weiteren Vorfahren drückt der Messerbalken gegen den Ballen, so dass der Schneidvorgang wirksam ausge führt werden kann. Sowohl der Messerbalken als auch der Anschlag können in einem gemeinsamen Gestell befestigt sein, das in der Höhe verfahrbar ist. Dadurch wird die Automatisierung des Vorgangs erleichtert, denn das Gestell braucht dann beim Durchlaufen eines Ballens auf einem beliebigen Förderer jeweils nur kurzzeitig zur Ausführung des Durchtrennvorgangs abgesenkt zu werden und kann anschliessend wieder nach oben gefahren werden, um den Durchgang freizugeben. Vorzugsweise ist an dem Gestell ein zweiter um 90 zu dem ersten Messerbalken versetzt angeordneter Messer- balken vorgesehen und ferner liegt dem zweiten Messer balken ein zweiter Anschlag gegenüber. Mit einer solchen Vorrichtung kann ein Ballen in einem Arbeitsgang rundum entdrahtet werden. Die Erfindung ist in der Zeichnung beispielsweise veranschaulicht und im nachstehenden im einzelnen anhand der Zeichnung beschrieben. Es zeigen: Fig. 1 eine Seitenansicht der Schneidvorrichtung, Fig. 2 in vergrösserter Darstellung einen Schnitt durch den esserbalken und Fig. 3 eine Draufsicht auf den Messerbalken gemäss Fig. 2, wobei der obere Flansch weggelassen ist. Nach Fig. 1 der Zeichnung snd an einem Gestell 1, welches in der Höhe ve < ahrbar ist, zwei um 900 zueinander versetzt angeordnete Nesserbalken 2 und 3 angeordnet, denen je ein Anschlag 4 bzw. 5 in einem Abstand gegenüberliegend zugeordnet ist. Uber einen beispielsweise als Plattenband 6 ausgebildeten Förderer können dem Gestell Ballen 7 zugeführt werden, die mit fest umlaufenden Drähten 8 zusammengehalten werden. Die Ballen 7 werden dabei in einer Lage zugeführt, in welcher sämtliche Drähte 8 senkrecht verlaufen. Wenn sich der Ballen 7 unter dem Gestell 1 befindet, wird dieses aus der strichpunktiert dargesteilten Lage in eine untere Lage verfahren, die in Fig. 1 in ausgezogenen Linien dargestellt ist. Dann werden die Messerbalken 2 und 3 in Richtung auf die Anschläge 3 und 5 gefahren, bis sie fest an dem Ballen 7 anliegen und sich ein Stück in das Ballenmaterial eindrücken. Dann wird der Schneidvorgang ausgelöst, durch welchen sämtliche Drähte 8, die den Ballen umgeben, in einem Arbeitsgang durchtrennt werden. Kernstück der Vorrichtung sind die Messerbalken 2 und 3, die in horizontaler Lage an dem Gestell 1 sitzen, um die Drähte 8 in einem Bereich zu durchtrenn, in denen sie vertikal verlaufen. Der in den Figuren 2 und 3 im ein7elnen dargestellte Messerbalken 2 weist zwei Messer 9 und 10 auf, die zwischen zwei an einem Doppel-T-Träger 12 befestigten Flanschen 13 und 14 gehaltert sind. Der untere Flansch 13, der eine L-förmige Gestalt aufweist, ist an den mittleren Bereich eines der beiden Gurte 15 des Trägers 12 angeschweisst, wobei der kürzere Schenkel 16 an dem Gurt 15 anliegt. An dem längeren Schenkel 17 des L-förmigen Flansches 13 ist das untere Messer 9 mit Hilfe von Schrauben 18 befestigt. Das obere Messer 10, das flach auf dem unteren, fest angeordneten Messer 9 aufliegt, ist relativ zu diesem verschieblich gelagert und mit Hilfe eines in Fig. 3 dargestellten Hydraulikzylinders 19 betätigbar. An der der Schneidseite 20 gegenüberliegenden Seite weist das verschiebliche Messer 10 einen sich über seine gesamte Länge erstreckenden seitlichen Vorsprung 21 auf, der in eine entsprechende Ausnehmung 22 des feststehenden Messers 9 eingreift. Die der Schneidseite 20 gegenüberliegende Kante 23 des verschieblichen Messers 10 stützt sich über einen zwischengeschalteten Blechstreifen 24 aus Lagermetall an dem Schenkel 16 des Flanschs 13 ab. Der obere Flansch 14 ist ebenfalls L-förmig ausgebildet, wobei der längere Schenkel 25 unter Zwischenschaltung eines Lagermetallstreifens 26 an der oberen Elachaeite des verschieblichen Messers 10 anliegt, während der kürzere Schenkel 27 an den Gurt 15 des Trägers 12 mit Hilfe von Schrauben 28 befestigt ist. Durch die durch die Flanschen 13 und 14 sowie den in die Ausnehmung 22 des festen Messers 9 eingreifenden Vorsprung 21 ist das verschiebliche Messer 10 relativ zu dem feststehenden Messer 9 formschlüssig geführt. Zur Spieleinstellung zwischen den beiden Messern 9 und 10 dienen mehrere über die F.wnge des Messerbalkens verteilt angeordnete Schrauben 29, die sich durch die beiden Flanschen 13 und 14 stt ie die Messer 9 und 10 hindurcherstrecken und an ihrem Gewindeende mit einer durch ein Sicherungsblech ,^ gesicherten Mutter 31 versehen sind. Durch Festziehen bzw. Lösen der I9lutter 31 kann das Spiel zwischen den beiden Messern 9 und 10 genau eingestellt bzw. bei Verschleiss oder Verformung des Messerbalkens nachgestellt werden. Um dem verschieblichen Nesser 10 trotz der durchgehenden Schraube 29 eine ausreichende Beweg'rngsmöglich keit zu geben, ist das Messer 10 im Bereich der Schraube 29 mit einem in Fig. 3 veranschaulichten Längsschlitz 32 versehen, der länger ausgebildet ist als der Hub des Messers 10, der durch den an dem Messer 10 angreifenden Hydraulikzylinder 19 bestimmt wird. Beide Messer 9 und 10 weisen an ihrer Schneidseite in regelmässigen Abständen hintereinander angeordnete Zähne 33 bzw. 34 auf, deren Flanken 35 bzw. 36 die jeweilige Schneide und Gegenschneide bilden. Die beiden Zahnflanken 35 und 36 verlaufen vom Zahnkopf aus in der jeweiligen Ebene des Messers nach Art eines Hinterschnitts schräg nach hinten, so dass sich Schneide und Gegenschneide bei Bewegung des verschieblichen Messers 10 in Schneidrichtung zunächst im Bereich der Zahnköpfe berükren, wahrend die übrigen Schneidbereiche erst bei Weiterbewegung des Messers 10 miteinander wirksam werden. Die Zahnköpfe weisen an inren Stirnseiten Schrägen 37 und 38 auf, die von den die Schneiden bzw. Gegenschneiden bildenden Zahnflanken 35 bzw. 36 aus zum Zahnfuss hin geneigt sind. Durch diese Ausbildung der Zähne 33 und 34 entstehen an der Schneidseite 20 der Messer 9 und 10 vorspringende Spitzen, die sich leicht in das Ballenmaterial eindrücken können, so dass die vorderen Enden der die Schneiden bildenden Zahnflanken 35 und 36 hinter die Drähte 8 des Ballens 7 greifen können. Bei Weiterbewegung des verschieblichen Messers 10 werden die zu zertrennenden Drähte zunächst ein Stück in Richtung auf die Zahnfüsse zu verschoben, wahrend sich die Lücke zwischen den Schneiden im Bereich der Zahnspitzen schliesst, wodurch die zu zertrennenden Drähte fest zwischen den Schneiden gehalten und dann wirksam durchschnitten werden können.
Patentansprüche: 1. Schneidvorrichtung zum Durchtrennen von Ver schnürungen, insbesondere zum Durchtrennen der Verschnürungsdrähte von 7ellstoffballen, Altpapier ballen, Lumpenballen und dergleichen, bestehend aus einem Messerbalken mit paarweise einander zuge ordneten, flach aneinanderliegenden Messern, wobei die Schneidflanken der Messer Schneide und Gegen schneide bilden und vom Zahnkopf aus in der Ebene des jeweiligen Messers nach Art eines Hinter schnitts schräg nach hinten verlaufen und wobei der Messerbalken mit seiner Schneidseite an das Schneid gut andrückbar ist, dadurch gekennzeichnet, dass der Messerbalken (2; 3) aus zwei langge streckten Messern (9, 10) gebildet ist, die in ihrer Längsrichtung relativ zueinander verschieblich sind, dass die beiden Messer (9, 10) an ihren Schneid seiten (20) in regelmässigen Abständen hinterein ander angeordnete Zähne (33, 34) aufweisen, wobei die Flanken (36) der Zähne (34) des einen Messers (10) die Schneiden und die Flanken (35) der Zähne (33) des anderen Messers (9) die Gegenschneiden bilden, dass die Zahnköpfe von den Schneiden (33, 36) aus in der Ebene des jeweiligen Messers eine zum Zahnfuss hin geneigte Schräge (37, 38) auf weisen und dass die Verschiebung der Messer (9, 10) relativ zueinander etwa der doppelten Zahnteilung entspricht. 2. Schneidvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eines (9) der beiden Messer feststeht, während das andere Messer (10) mit Hilfe einer Kraftbetätigungseinrichtung (19) hin- und herver schiebbar ist. 3. Schneidvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die beiden Messer (9, 10) zwischen zwei seit lichen Halteflanschen (13, 14) sitzen. 4. Schneidvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das verschiebliche Messer (10) mit einem sich über seine gesamte Länge erstreckenden, an der der Schneidseite (20) gegenüberliegenden Seite aus gebildeten seitlichen Vorsprung (21) in eine ent sprechenae Ausnehmung (22) des feststehenden Messers (9) greift. 5. Schneidvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass zwischen der Aussenseite des verschieblichen Messers (10) und dem angrenzenden Flansch (14) sowie zwischen der der Schneidseite (20) gegen überliegenden Seite (23) des verschieblichen Messers (10) und einem sich urs diese Messerseite herumerstreckenden Flanschteil (16) Lagermetall bleche (24, 26) angeordnet sind. 6. Schneidvorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass quer durch die beiden Messer (9, 10) sowie die beiden Flansche (13, 14) eine Schraube (29) ge führt ist, die an dem dem Schraubenkopf gegenüber liegenden Enae eine gesicherte Stellmutter (31) trägt, und dass das verschiebliche Messer (10) im Durchgangsbereich der Schraube (29) einen Längs schlitz (32) aufweist. 7. Schneidvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Messerbalken (2, 3) in Richtung auf seine Schneidseite (20) vor- und zurückbewegbar ist und dass in einem Abstand von der Schneidseite (20) des Messerbalkens (2, 3) ein stationärer Anschlag (4, 5) angeordnet ist. 8. Schneidvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Messerbalken (2, 3) sowie der Anschlag (4, 5) an einem gemeinsamen Gestell (1) befestigt sind, welches in der Höhe verfahrbar ist. 9. Schneidvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass an cem Gestell (1) ein zweiter um 90 zu dem ersten esserbalken (2) versetzt angeordneter Messerbalken (3) vorgesehen ist und dass dem zweiten Messerbalken (3) ein zweiter Anschlag (5) gegen überliegt.
B + G-FORDERTECHNIK G.M.B.H.
GRONAU, KURT
EP-0004924-B1
4,924
EP
B1
DE
19,810,429
1,979
20,100,220
new
B65D83
null
B65D83
B65D 83/14C
AEROSOL VALVE
1. Valve for an aerosol container, particularly for cold perming lotions and products which change through metallic contact, for example perfume sprays and polyurethane foams, with a piston rod (stem) (6) longitudinally slidable in a housing (1) and a valve opening (8) connecting the outflow opening (7) thereof with the interior (10) of the housing and a valve seal (9) engaging into the valve opening (8) and on longitudinal displacement releasing the product flow from the interior (10) of the housing to the outflow opening, wherein the piston rod (6) is longitudinally displaceable against the restoring force of a spring (13) lying around the piston rod (6), characterised thereby, that the piston rod (6) displays a prolongation (15), which is set at its lower end opposite the outflow opening (7) and projects into the opening (3) in the bottom (2) of the housing, with a longitudinal bore (16) reaching from the lower end through the spring (13), which surrounds the prolongation (15), up to a lateral opening (17), which is provided between the valve seal (9) and the spring (13) and leads to the interior (10) of the housing, and that the interior (10) of the housing is sealed off against access by product in the region (18) around the spring (13) by a respective additional seal (19, 20) enclosing the piston rod (6) at the bottom (2) of the housing and in the region between the lateral opening (17) and the spring (13).
Ventil zu einer Aerosoldose1 Die Erfindung betrifft ein Ventil zu einer Aerosoldose, insbesondere für Kaltwellmittel und Produkte, die sich durch Metallkontakt verändern, z.3 Parfumsprays, Poly urethanschäume, bestehend aus einer in einem Gehäuse längsverschiebbaren Kolbenstange (Stem) mit einer deren Ausströmöffnung mit dem Gehäuseinnern verbindenden Ventilöffnung und einer in letztere eingesetzten, bei de Längsverschieben den Produktstrom vom Gehäuseinnern zur Ausströmöffnung freigebenden Ventildichtung, bei dem die Kolbenstange gegen die RUckstellkraft einer im Bereich zwischen der Ventildichtung und dem mit einer zur Dose führenden Öffnung versehenen Gehäuseboden um die Kolbenstange liegenden Feder längsverschiebbar ist. Bei einem bekannten Ventil dieser Art gibt die fest eingelegte, beispielsweise aus Buna-N bestehende Aus lassdichtung bei dem Längsverschieben gegen die Feder kraft - in der Regel also beim vertikalen Betätigen der auch als Stem bezeichneten Kolbenstange den Produktstrom vom Gehäuseinnern her durch die Kolbenstange hindurch nach aussen frei. Die Kolbenstange kann zu diesem Zweck eine- von ihrem äusseren Ende bis etwa zu der Ventilöffnung reichende, die Ausströmöffnung bildende Längsbohrung aufweisen. Der vom Innern der Aerosoldose kommende Produktstrom umspült dabei auch die Feder. Diese hat die Aufgabe, das Ventil beim Loslassen der niedergedrückten Kolbenstange durch ihre Rückstellkraft wieder zu schliessen. Eine Vielzahl von aerosol-verpackten Produkten enthalten Substanzen, die die aus Stahl bestehende Feder angreifen beziehungsweise korrodieren. Beispielsweise enthalten aerosolverpackte Saltwellmittel 5 bis 10 ffi Tliioglykol- säure mit einem pH-Wert von 7 bis 9. Unter anderem bewirkt diese Säure durch Korrosion der Stahlfeder eine Rotfärbung der Well-Lösung. Die Rotfärbung des Produkts und die durch Korrosion gelösten Eisenionen bringen nicht nur optische Einbussen mit sich, sondern haben auch negative Auswirkungen auf das Haar. Auch unbenutzte Aerosoldosen zeigen eine Federkorrosion, weil aus dem Ventil Gas entweicht und das Produkt an die ungeschützte Feder gelangt. Der Erfindung liegt die Aufgabe zugrunde, die vorgenannten Nachteile aerosolverpackter Produkte, insbesondere aerosolverpackter Kaltwellmittel und Produkte, die sich durch Metallkontakt verändern, z.B. Parfum- sprays, Polyurethanschäume, zu beseitigen. Das bekannte Ventil soll dabei so weitergebildet erden, dass das Produkt nicht mehr in den Bereich der Stahlfeder gelangen und diese demgemäss nicht mehr korrodieren kann. Zu einem Ventil eingangs genannter Art besteht die erfindungsgemässe Lösung dieser Aufgabe darin, dass die Kolbenstange eine an ihr der Ausströmöffnung entgegengesetztes, unteres Ende angesetzte und in die Öffnung im Gehäuseboden hineinragende Verlängerung mit einer von dem unteren Ende durch die Feder hindurch bis zu einer zwischen der Ventildichtung und der Feder vorgesehenen, zum Gehäuseinnern führenden seitlichen Öffnung reichenden Längsbohrung aufweist und dass das Gehäuseinnere im Bereich um die Feder herum durch je eine die Kolbenstange umschliessende, zusätzliche Dichtung am Ge häusebocen und im Bereich zwischen der seitlichen Öffnung und der Feder gegen Produktzutritt abgedichtet ist. Ersichtlich wird durch die Erfindung erreicht, dass bei der neuen Ventilkonstruktion der Doseninhalt mit der Stahlfeder nicht mehr in Berührung kommen kaiin. Die Nachteile bekannter Aerosoldosen sind damit beseitigt. Um den Raum um die Feder herum besonders gut gegen Produktzutritt abzudichten, ist es zweckmässig, die Öffnung im Gehäuseboden zylinderartig dem unteren Ende der Kolbenstange anzupassen. Die zusätzliche am Gehäuse boden vorgesehene Dichtung so;l dabei fest mit dem Boden verbunden sein. Das nach unten verlängerte Ende der Kolbenstange ist dann im Bereich zwischen der Öffnung im Gehäuseboden und dem Raum um die Feder herum weitgehend gasdicht durch diese, insbesondere ringartig ausgebildete Dichtung verschlossen. Die zusätzliche, zwischen der mit der Längsbohrung im unteren Ende der Kolbenstange in Verbindung stehenden seitlichen Öffnung der Kolbenstange und der Feder vorge sehene Dichtung kann entweder fest mit der Kolbenstange verbunden sein und schlüssig bis zur Gehäusewand reichen oder aber an letzterer fixiert sein und radial schlüssig bis zu der Kolbenstange reichen, derart, dass bei dem Längsverschieben der Kolbenstange ein Zutritt von Produkt in den Raum um die Feder herum weitgehend ausgeschlossen ist. Anhand der schematischen Darstellung eines Ausführungsbeispiels werden weitere Einzelheiten der Erfindung erläutert. Zu dem erfindvmgsge¯ässen Ventil gehört ein Gehäuse 1 mit Gm Gehäuseboden 2 vorgesehener und insbesondere hohl zylinderisch ausgebildeter Öffnung 3, die über einen Stutzen 4 in das Steigrohr 5 einer (nicht gezeichneten) Aerosoldose führt. in das Gehäuse 1 eingesetzt ist eine auch als Stem bezeichnete - Kolbenstange 6. Diese weist in ihrem oberen, der (nicht gezeichneten) Austritts offnung zugewandten Ende eine Lärjgsbohrung 7 aur, von der aus eine Ventilöffnung 8 radial nach aussen führt. Im Bereich der Ventilöffnung 8 ist die Kolbenstange 6 von einer Auslassdichtung 9, die - das Gehäuseinnere 10 nach aussen verschliessend - fest in den insbesondere trichterförmigen Eingangsteil 11 der Ventilöffnurlg 8 eingelegt ist. Um einen unteren Teil 12 der Kolbenstange 6 ist eine aus Stahl bestehende Schraubenfeder 13 gelegt. Baim vertikalen Betätigen beziehungsweise bei dem Längsverschieben der Kolbens tange 6 in Pfeilrichtung 14 gibt die festeingelegte Auslassdichtung 9 den Produktstrom aus dem Gehäuseinnern 10 durch die Ventilöffnung 8 frei. Die Rückstellkraft der dabei zusammengedrückten Feder 13 bewirkt beim anschliessenden Loslassen der Kolbenstange 6, dass die Ventilöffnung 8 wieder verschlossen wird. Bei bekannten Ventilen dieser Art gelangt das Produkt aus der jeweiligen, vorzugsweise aus Aluminium oder Weissblech bestehenden Aerosoldose über den Stutzen 4 und die Öffnung 3 im Gehäuseboden 2 unmittelbar in das Gehäuseinnere 10. Ersichtlich wird dabei auch die Feder 13 von dem Produkt umspült, so dass letzteres infolge einer Korrosion der Feder 15 verunreinigt werden kann. Erfindungsgemäss ist Sedoch am unteren Teil 12 der Kolbenstange 6 eine vorzugsweise rohrförmige Verlängerung 15 vorgesehen, die insbesondere kolben-zylinder-artig in die Öffnung 7 hineinragt. Das aus der Aeroso7dose kommende Produkt kann nun durch eine in der unteren Verlänge- rung 15 und im unteren Teil 12 der Kolbenstange 6 vorgesehene Längsbohrung 16 und eine oberhalb der Feder 15 radial nach aussen führende seitliche Öffnung 17 in das Gehäuseinnere 10 gelangen. Der Raum 18 im Gehäuseinnern 10 um die Feder 15 henim ist dabei mit Hilfe mindestens einer die Kolbenstange 6 im Bereich zwischen der seitlichen Öffnung 17 und der Feder 13 gasdicht umschliessenden zusätzlichen Dichtung 19 gegen einen Zutritt des Produkts verschlossen. Diese erste zusätzliche Dichtung kann entweder mit der Kolbenstange 6 oder mit der Wand des Gehäuses 1 fest verbunden sein. Je nach Konstruktion wandert also diese über die Feder 13 befindliche zusätzliche Dichtung 19 beim Betätigen der Kolbenstange 6 mit oder schleift dichtend an der Kolbenstange 6. Im Ausführungsbeispiel ist vorgesehen, dass die erste zusätzliche Dichtung 19 an der Kolbenstange 6 fixiert ist und an der Wand des Gehäuses 1 schleift, wenn die Kolbenstange 6 i Pfeilrichtung 14 bewegt wird. Eine zweite zusätzliche Dichtung 20 kann die Verlängerung 15 der Kolbe###tange 6 am Gehäuseboden 2 dicht umschliessen und daL auf dem Gehäuseboden 2 fixiert sein. Diese zweite zasetzliche Dichtung 20 dient dann als Führung und zusätzliche Dichtung der zur Aerosoldose führenden Öffnung 5 des Gehäuses 1. Wesentlich ist, dass bei dem erfindungsgemässen Ventil der Produktstrom über eine rohrförmige Anordnung 16, 17 durch die Feder 13 hindurchgeführt wird, derart, dass die Feder 13 selbst nicht mehr von dem eventuell aggres siven Produkt berührt wird. Die seitliche Öffnung 17 am Ende der Längsbohrung 16 muss also oberhalb der Feder 15 beziehungsweise im Bereich zwischen der Feder 13 und der Ventilöffnung 8 liegen. Liste der Bezugszeichen 1 = Gehäuse 2 = Gehäuseboden 3 = Öffnung in 2 4 = Stutzen 5 = Steigrohr 6 = Kolbenstange 7 = Längsbohrung 8 = Ventilöffnung 9 = Ventildichtung 10 = Gehäuseinneres 11 = trichterförmiger Eingangsteil 12 = unterer Teil von 6 13 = Feder 14 = Pfeilrichtung 15 = Verlängerung von 6 bzw. 12 16 = Längsbohrung 17 = seitliche Öffnung 18 = Bereich um 13 19 = zusätzliche Dichtung zwischen 13 und 19 20 = zusätzliche Dichtung an 2
Ventil zu einer Aerosoldose Patentansprüche 1) Ventil zu einer Aerosoldose, insbesondere für Kalt heilmittel und Produkte, die sich durch Metallkontakt verändern, zum Beispiel Parfümsprays > Polyurethan- schäume, bestehend aus einer in einem Gehäuse langs- verschiebbaren Kolbenstange (Stem) mit einer deren Ausströmöffnung mit dem Gehäuseinnern verbindenden Ventilöffnung und einer in letztere eingesetzten, bei dem Längsverschieben den Produktstrom vom Gehäuse innern zur Ausströmöffnung hin freigebenden Ventil dichtung, bei dem die Kolbenstange gegen die Rück stellkraft eIner im Bereich zwischen der Ventil dichtung und dem mit einer zur Dose führenden Öffnung versehenen Gehäuseboden um die Kolbenstange liegenden Feder längsverschiebbar ist, dadurch gekennzeichnet, dass die Kolbenstange (6) eine an ihr der Ausström öffnung (7) entgegengesetztes, unteres Ende ange setzte und in die Öffnung (3) im Gehäuseboden (2) hineinragende Verlängerung (15) mit einer von dem unteren Ende durch die Feder (13) hindurch bis zu einer zwischen der Ventildichtung (9) und der Feder (13) vorgesehenen, zum Gehäuseinnern (10) führenden seitlichen Öffnung (17) reichenden Längsbohrung (16) aufweist und dass das Gehäuseinnere (1G) im Bereich (18) um die Feder (13) herum durch je eine die Kolben stange (6) umschliessende, zusätzliche Dichtung (19 > 20) am Gehäuseboden (2) und im Bereich zwischen der seitlichen Öffnung (17) und der Feder (13) gegen Produktzutritt abgedichtet ist. 2) Ventil nach Anspruch 1, dadurch gekennzeichnet, dass die Offnung (3) im Gehäuseboden (2) zylinderartig der Verlängerung (15) der Kolbenstange (6) angepasst ist. 3) Ventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zusätzliche am Gehäuseboden (2) vorgesehene Dichtung (20) fest mit dem Boden verbunden ist. 4) Ventil nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die zusätzliche, zwischen der seitlichen Öffnung (17) und der Feder (13) vorgesehene Dichtung (19) mit der Kolbenstange (6) fest verbunden ist und in jeder Längsstellung der letzteren dichtend, insbesondere kolben-zylinder-artig, an der sie umgebenden Gehäuses;and anliegt. 5) Ventil nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die zusätzliche, zwischen der seitlicnen Öffnung (17) und der Feder (13) vor gesehene Dichtung (19) an der umgebenden Gehäusewand fixiert ist und in jeder Längsstellung der Kolben stange (6) dichtend, insbesondere kolben-zylinder-artig > an letzterer anliegend ausgebildet ist. 6) Ventil nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Feder (13) aus Stahl besteht. 7) Ventil nach einem oder mehreren der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die Dichtungen (19, 20) die Kolbenstange (6, 15) ringförmig umgeben. 8) Ventil nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennseichnet, dass das Ventil - abgesehen von der Ventilöffnung (8) und der seitlichen Öffnung (17) axialsymmetrisch in bezug auf die -Längsachse der Kolben stange (6) aufgebaut ist.
HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN
BRADSCH, KLAUS
EP-0004928-B1
4,928
EP
B1
DE
19,810,408
1,979
20,100,220
new
D21C3
C07C49
D21C3
D21C 3/22B
DISPERSION TO BE USED IN THE PRODUCTION OF CELLULOSE AND PROCESS FOR PRODUCING CELLULOSE USING THIS DISPERSION
1. Dispersion for use in pulp production, characterised in that it contains organic, cyclic compounds containing keto groups and/or hydroxyl groups, and a liquid dispersing agent having a specific density which is the same as or similar to that of the organic, cyclic compounds containing keto groups and/or hydroxyl groups.
Dispersion zur Verwendung bei der Zellstoffgewinnung und Verfahren zur Zellstoffgewinnung unter Verwendung dieser Disoersion. Es ist beschrieben (siehe z.B. B.Bach, G.Fiehn, Zellstoff und Papier 21, 3 (1972); H.H. HoltonlPulp and Paper Canada 78, 19 (1977); US-PS 4 012 280; US-PS 4 036 680; US-PS 4 036 681, CA-PS 986 662, JA-OS 112 903/75, JA-OS 43403/76, JA-OS 109 303/76 und DD-PS 98 549), dass Anthrachinon, bestimmte Anthrachinonderivate und bestimmte Diketohydroanthracene eine günstige Wirkung bei bestimmten Verfahren zur Gewinnung und Bleichung von Zellstoff aus Lignocellulosematerialien wie Holz, Stroh und Bagasse ausüben, wenn sie von 0,001 bis 10 Gew.-E, bezogen auf das tignocellulosematerial, eingesetzt werden. Neben Anthrachinon, Anthrahydrochinon, sowie Diels-Alder Addukten aus Butadien und seinen Derivaten an p-Benzochinon oder 1,4-Naphthochinon werden hierfür die Monound Polyalkyl-, -Alkoxy-, -Amino-,-Hydroxy- und/oder -Sulfoderivate dieser Verbindungen empfohlen. Im folgenden werden diese Stoffe zusammenfassend als Zusatzstoffe bezeichnet. Die Zusatzstoffe sind im allgemeinen in Form von Pulvern zugänglich. Die Einbringung derartiger pulverförmiger Zusatzstoffe in Verfahren zur Gewinnung von Zellstoffen aus Lignocellulosematerialien und deren Bleichung ist jedoch problematisch. Wenn man die pulverförmigen Zusatzstoffe dem einzusetzenden Lignocellulosematerial zufügt, so ist hierbei damit zu rechnen, dass die feineren Anteile der Zusatzstoffe staubförmig in die Umgebung gelangen, somit teilweise der zugedachten Verwendung entzogen sind, die in der Nähe der Zugabestelle arbeitenden Menschen belästigen und die Gefahr von Staubexplosionen herbeiführen können. Ausserdem ist bei der relativ geringen Menge der benötigten Zusatzstoffe eine gleichmässige Verteilung schwierig. Eine gleichmässige Verteilung der Zusatzstoffe ist jedoch zur Erzielung. einer einheitlichen Zellstoffqualität erwünscht. Eine gleichmässige Verteilung der Zusatzstoffe wird zudem dadurch erschwert, dass die Zusatzstoffe in Wasser und in den in der Zellstoffgewinnung verwendeten wässrigen Elektrolytlösungen im allgemeinen nur sehr wenig löslich sind (z.B. lösen sich in 1 Liter Wasser bei 500C nur 6.10 4 g 9,10- Anthrachinon). Ausserdem werden die Zusatzstoffe von Wasser und wässrigen Elektrolytlösungen, wie sie bei der Zellstoffgewinnung zur Anwendung kommen, so schlecht benetzt, dass die feineren Anteile der pulverförmigen Zusatzstoffe sich nicht oder nur schlecht einrühren lassen, sondern unbenetzt, gegebenenfalls unter Lufteinschluss, auf der Oberfläche schwimmen. Weiterhin haben die Zusatzstoffe eine relativ hohe spezifische Dichte (z.B. hat Antrachinon bei 20 C eine spezifische Dichte von 1,438 g/cm ), sodass die gröberen Anteile der pulverförmigen Zusatzstoffe, die sich in Wasser oder Elektrolytlösung einrühren lassen, sich rasch wieder absetzen und nach kurzem Stehen am Gefässboden eine kompakte, nur mit Schwierigkeiten wieder aufwirbelbare Schicht bilden. Die Zugabe der Zusatzstoffe direkt zur Kochlauge,-in die Mischung von Lignoceliulosematerial und Kochlauge oder in Form einer Anschlämmung in Wasser oder veraünnten Elektrolytlösungen ist also ebenfalls kein Weg, um mit Sicherheit eine gleichmässige Verteilung der Zusatzstoffe zu erreichen. Es wurde nun eine Dispersion zur Verwendung bei der Zellstoffgewinnung gefunden, die dadurch gekennzeichnet ist, dass sie organische, cyclische, Keto- und/oder Hydroxygruppen enthaltende Verbindungen und ein flüssiges Dispersionsmittel gleicher oder ähnlicher spezifischer Dichte wie die organischen, cyclischen, Keto- und/oder Hydroxygruppen enthaltenden Verbindungen enthält. Hier und im folgenden werden unter dem Begriff Zellstoffgewinnung alle Verfahren und Verfahrensstufen verstanden, bei denen auf Lianin in Lignin und Cellulose enthaltenden Materialien auf chemische Weise eingwirkt wird. Beispiele hierfür sind alkalische, neutrale und saure Aufschlussverfahren bei Lignocellulosematerialien wie Holz, Stroh, Bagasse und Gräsern, sowie Bleichverfahren bei teilweise oder weitgehend aufgeschlossenen Lignorellulosematerialien, Als organische, cyclische, Xeto- und/oder Hydroxygruppen enthaltende Verbindungen kommen vorzugsweise carbocyclische Verbindungen in Frage, beispielsweise mono-, di und/oder polycyclische Verbindungen, insbesondere mono-, di- mnd/oder tricyclische Verbindungen, be- sonders bevorzugt tricyclische Verbindungen, insbesondere tricyclische Verbindungen mit kondensierten Ringen, die jeweils zwei Keto- und/oder zwei Hydroxygruppen enthal ten und die vorzugsweise Kohlenwasserstoffe sind mit Aus nalime der Keto- oder Hydroxygruppen und/oder sonstiger Substituenten. Vorzugsweise kommen hierfür p-Benzochi- non. 1 ,4-Naphthochinon, 9,1O-Anthrachinon, Diels-Alaer- Addukte von 1,3-Dienen, z.B. von unsubstituiertem oder substituiertem butadien an p-Benzochinon und/oder 1,4 Naphthochinon und/oder deren Mono- und Poly-Alkyl-, -Rydroxy-, -Amino-, -Alkoxy-, -Alkylaminc- und/oder -Sulfoderivate in Frage. Die Alkyl-, hlkoxy- und Alkylaminogruppen können jeweils z.B. 1 bis 12, vorzugsweise 1 bis 4 C-Atome enthalten. Beispielsweise können die erfindungsgemä8en Dispersionen 9,10-Anthrachinon, 2 Methylanthrachinon, 2-Äthylanthrachinon, 2,3-Dimethyl9,10-anthrachinon, 2,6-Dimethylanthrachinon, 2,7-Dimethylanthrachinon, 2-Aminoanthrachinon, 1 -Nethoxy- anthrachinon, 1,4,4a,9a-Tetrahydro-9,10-diketoanthracen, 2-Äthyl-1,4,4a,9a-Tetrahydro-9,10-diketoanthracen, 2,3 Dimethyl-1,4,4a,9a-tetrahydro-9,10-diketoanthracen, 1,4,4a,5,8,8a,9a,1Oa-Octahydro-9,10-diketoanthracen, 1,3 Dimethyl-1,4,4a,9a-tetrahydro-9,10-diketoanthracen und 2,3,6,7-Tetramethyl-1,4,4a,5,8,8a,9a,10a-octahydro-9,10 diketoanthracen enthalten. Ebenfalls einsetzbare Verbindungen sind solche, die eine reduzierte Form der vorstehend genannten Verbindungen sind, die anstelle von Ketogruppen Hydroxygruppen enthalten, beispielsweise Hydrochinon oder Anthrahydrochinon. Die erfindungsgemässe Dispersion kann zwei oder mehrere dieser Stoffe ent halten, insbesonaere zwei oder mehrere dieser Stoffe, die nahe beieinander liegende spezifische Dichten haben. Es ist auch möglich, Verbindungen einzusetzen, die zwei oder mehr der genannten SUbstituenten tragen, beispielsweise Hydroxy- und Aminogruppen. Bevorzugt enthält die erfindungsgemässe Dispersion jedoch. nur einen dieser Stoffe, ganz besonders bevorzugt 9,10-Anthrac-linon. m folgenden werden die organischen, cyclischen, Keto- und/ oder Hydroxygrupmen enthaltenden Verbindungen als dispergierte Stoffe bezeichnet. Die dispergierten Stoffe, z.B. monocyclische, dicyclische und/oder polycyclische Verbindungen, die Keto- znd/oder Hydroxygruppe enthalten, insbesondere 9,1 O-Anthrachinon, können in den verschiedensten Korngrössen vorliegen. Beispielsweise können die dispergierten Stoffe, insbesondere 9,10-Anthrachinon zu mindestens 80 Gew.-% aus Teilchen mit Korngrössen im Bereich 1 m bis 5 mm bestehen. Die dispergierten Stoffe, insbesondere Anthrachinon, können auch Teilchengrössen im Bereich von etwa 50 bis 500 um mit grösster Häufigkeit der Teilchen im Bereich von etwa 200 bis 300/um aufweisen. Die Korngrössenverteilung hat keiner besonderen Einfluss. Die Korngrössenverteilung kann relativ eng um einen Mittelwert liegen , sie kann sich je- doch auch über die gesamten vorgenannten Bereiche und darüber hinaus erstrecken. Hinsichtlich der Verwendung von 9,10- Anthrachinon hat dies den Vorteil, dass Anthrachinon in die erfindungsgemässe Dispersion eingebracht werden kann, wie es im allgemeinen bei der technischen Herstellung erhalten wird. Als Dispersionsmittel für die erfindungsgemässe Dispersion sind Flüssigkeiten geeignet, die eine gleiche oder ähnliche spezifische Dichte aufweisen wie der dispergierte Stoff oder die dispergierten Stoffe. Unter Flüssigkeiten werden hier reine flüssige Stoffe, Lösungen und Dispersionen verstanden. Das Dispersionsmittel kann beispielsweise eine wässrige Lösung von Elektrolyten sein, die eine spezifische Dichte im Bereich von 1,2 bis 1,6 g/cm3 aufweist. Im Falle von 9,10-Anthrachinon als dispergiertem Stoff beträgt die spezifische Dichte des Dispersionsmittels vorzugsweise 1,35 bis 1,5 g/cm , besondere bevorzugt 1,4 bis 1,45 g/cm3. Die wässrige Lösung von Elektrolyten kann beispielsweise eine Lösung von Oxiden, Hydroxiden una/oder Salzen der Metalle der ersten und/oder zweiten Hauptgruppe des Perioden systems und/oder eine Lösung von Stickstoffbasen und/oder von Salzen von Stickstoffbasen oder eine Lösung von Säuren sein. Die erste und zweite Hauptgruppe des Periodensystems sind die als Gruppe Ia und IIa bezeichneten Gruppen, s. beispielsweise die ietzten Seiten von Cotton & ilkinson, Advanced Inorganic Chemistry , 2. Auflage. Durch einfache Vorversuche oder durch Nachschlagen in entsprechenden Tabellen kann leicnt ermittelt werden, welche dieser Elektrolyte sich in solchen Mengen in Wasser lösen, dass Lösungen der gewünschten spezifischen Dichte entstehen. Vorzugsweise ist die wässrige Lösung eine Lösung von Oxiden, Hydroxiden, Sulfiden, Sulfite, Bisulfiten, Sulfaten, Thiosulfaten und/oder Carbonaten von Natrium, Kalium, Calcium und/oder Magnesium. Als Stickstoffbasen kommen beispielsweise Alkylamine, Hydroxyalkylamine oder Alkylenamine, wie Äthylendiamin, Propylamin und/oder Äthanolamin, als Salze von StickstoPfbasen beispielsweise Ammoniumsalze, wie Säureadditionssalze oder quartäre Salze, in Frage Beispiele für Säuren sind Schwefelsäure, Phosphorsäure und Salpetersäure. Besonders bevorzugt ist die wässrige Lösung eine Lösung von lsatriumhydroxid, Natriumsulfid, Natriumsulfit, Natrumbisulfit1 Natriumsulfat, Natriumthiosulfat, Natriumcarbonat, Kaliumsulfid, Magnesiumbisulfit, Calciumbisulfit und/oder Ammoniumsulfit oder Schwefelsäure. Insbesondere bevorzugt ist die wässrige Lösung eine Lösung von Natriumhydroxid, Natriumbisulfit und/oder Natriumthiosuliat. Es ist nicht notwendig, sich auf einen einzigen der angegebenen Elektrolyte zu beschränken. Vielmehr können auch Lösungen oder Suspensionen von Mischungen der aufgeführten Elektrolyte verwendet werden. Es ist vorteilhaft solche wässrige Lösungen von Elektrolyten zu vawenden, wie sie an verschiedenen Stellen der Anlagen zur Zellstoffgewinnung entnommen werden können. Gegebenenfalls können Elektrolytlösungen, die an verschiedenen Stellen der Anlagen zur Zellstoffgewinnung entnommen werden, nach Aufkonzentrierung, z.B. durch Verdampfung von Wasser, oder nach Zugabe weiterer Mengen von Elektrolyten als Dispersionsmittel verwendet werden. Beispielsweise können als Dispersionsmittel, gegebenenfalls nach entsprechender Einstellung der Dichte durch Verdampfung von Wasser oder Zugabe weiterer Elektrolytmengen die sogenannten Weisslaugen, Kochlaugen, Schwarzlaugen, Dicklaugen und/oder Grünlaugen verwendet werden. Hier und im folgenden werden unter diesen Begriffen folgende Lösungen verstanden: Als Kochlauge werden. Lösungen bezeichnet, die vor dem Aufschluss mit dem Lignocellulosematerial vereinigt werden. Sie können in ihrer Zusammensetzung je nach Art des aufzuschliessenden Lignocellulosematerials und des angewendeten Aufschlussverfahrens in Art und Konzentration der Bestandteile in weiten Grenzen schwanken. Beispielsweise kann die Kochlauge 8 bis 20 Gew.-E Alkalimetallbase ausgedrückt als ProzentFffektives Alkali, bezogen auf das Gewicht des Lignocellulosematerials, daneben normalerweise auch Alkalimetallcarbonat enthalten. Kochlauge kann aber auch beispielsweise 8 bis 15 Gew.-% Alkalimetallbase, ausgedrückt als prozenteffektives Alkali (TAPPI T-120 S 61) und 5 bis 40 Gew.-c Alkalimetallsulfid, ausgedrückt als Rrozentpulfidität (TAPPI T-1203 OS-61)1bezogen auf Lignocellulosematerial enthalten. Diese Kochlauge enthält normalerweise auch Alkalimetallsulfat und Alkalicarbonat, gegebenenfalls auch Schwefel in einer Menge von 1 bis S Gew.-%. Als Schwarz laugen werden die nach erfolgtem Aufschluss des Lignocellulosematerials vom Zellstoff abgetrennten gebrauchten Koch laugen bezeichnet. Diese enthalten als organische Bestandteile die löslich gemachten Begleitsubstanzen der Cellulose, beispielsweise Ligninsulfonate und/oder Alkalilignine, gegebenenfalls auch Hemicellulosen und niedermolekulare Umwandlungsprodukte der Bestandteile des Lignocellulosematerials, als anorganische Bestandteile beispielsweise in der Hauptsache Alkalimetallsulfat und Alkalimetallcarbonat' sowie an saure organische Bestandteile gebundene Alkalimetalwbase, daneben normalerweise auch freie Alkalimetallbase, Alkalisulfid, Alkalisulfit und Alkalithiosulfat. Die spezifische Dichte der Schwarzlaugen kann je nach Konzentration der gelösten Stoffe beispielsweise 1,05 bis 1,40 g/cm3 betragen. Der Feststoffgehalt kann sich beispielsweise in den Grenzen von 10 bis 70 Gew.-% bewegter. Als Dicklauqe werden jene Schwarz laugen bezeichnet, die aufgrund eines hohen Feststoffgehaltes von beispielsweise mehr als 50 Gew.-% bei Raumtemperatur hochviskos sind. Dicklaugen können je nach Aufschlussverfahren unmittelbar durch Abtrennung von Zellstoffen erhalten werden oder durch Eindampfen von Schwarzlaugen mit geringem Feststoffanteil. Als Grünlaugen werden die Lösungen bezeichnet, die beispielsweise 5 bis 20 Gew.-% Alkalimetallcarbonat und beispielsweise 1 bis 5 Gew.-t Alkalimetallsulfid enthalten, welche aus Wasser und jener Salzschmelze bereitet werden, welche erhalten wird beim Verbrennen der organischen Bestandteile der Dicklaugen. Normalerweise enthalten Grünlaugen auch Natriumsulfat, Natriumsulfit, Natriumthiosulfat und Schwefel. Grünlauge weist beispielsweise eine spezifische Dichte im Bereich von 1,1 bis 1,30 g/cm auf. Die aus Grünlaugen durch Behandlung mit gebranntem Kalk erhaltenen Laugen werden als Weisslauge bezeichnet. Weisslaugen enthalten beispielsweise 80 bis 200 g Alkalimetallbase, 10 bis 80 g Alkalimetallsulfid und 20 bis 50 g Alkalimetallcarbonat pro Liter Lösung. Normalerweise enthalten sie noch Alkalimetallsulfit, Alkalimetallsulfat und Alkalimetallthiosulfat, gegebenenfalls auch Schwefel. Ihr Feststoffgehalt beträgt beispielsweise etwa 10 bis 35 Gew.-%. Die spezifische Dichte der Weisslaugen liegt beispielsweise zwischen 1,1 und 1,3 g/cm3. Die Konzentration der erfindungsgemässen Dispersion an dispergierten Stoffen lässt sich in weiten Grenzen beliebig einstellen. Praktische Grenzen sind bei hohem Gehalt an dispergierten Stoffen durch die Forderung nach Pumpfähigkeit, bei niederem Gehalt an dispergierten Stoffen durch den im Verhältnis zum dispergierten Stoff hohen Elektrolyteinsatz gegeben. Die erfindungsgemässe Dispersion kann beispielsweise einen Gehalt an dispergierten Stoffen von 5 bis 70 Gew.-%, vorzugsweise von 30 bis 60 Gew.-t aufweisen. Eine besondere Ausführungsform der erfindungsgemässen Dispersion ist dadurch gekennzeichnet, dass sie zusätzlich Netzmittel enthält. Als Netzmittel kommen kationische, anionische oder nichtionische Netzmittel in Frage, vorzugsweise solche, welche in den Verfahren zur Zellstoffgewinnung als Nebenprodukte anfallen. Beispielehierfür sind Schwarzlauge, Dicklavge und/oder die daraus erhältlochen Ligninsulfonate oder Alkalilignine. Netzmittel können, bezogen auf das Gewicht der Dispersion in Mengen von beispielsweise 0,01 bis 20 Prozent, vorzugsweise von 0,05 bis 10 Prozent zugesetzt werden. Der Zusatz von Netzmitteln kann beispielsweise so erfolgen, dass vor Bereitung der Dispersion dem pulverförmigen zu dispergierenden Stoff pulverförmiges Netzmittel zugegeben wird. Das Netzmittel kann ebenso dem flüssigen Dispersionsmittel in flüssiger oder fester Form beigefügt werden. Eine weitere besondere Ausführungsform der erfindungsgemässen Dispersionen ist dadurch gekennzeichnet, dass sie zusätzlich die Viskosität erhöhende Stoffe enthalten. Als die Viskosität erhöhende Stoffe kommen beispielsweise wasserlösliche polymere Verbindunge, wie Polyvinylalkohol ud/oder Methylcellulose in Frage. Es kann auch Dicklauge verwendet werden, d.h. beispielsweise auf 50 bis 70 % Feststoffanteil eingeengte Schwarzlauge. Reine Dicklauge, beispielsweise mit einem Feststoffanteil von 64 i, welche bei 200C eine hochviskose Masse darstellt, bildet z.B. bei 800C trotz einer spezifischen Dichte von nur 1,25 g/cm3 mit Anthrachinon eine stabile Dispersion. Der günstige viskositätserhöhende Effekt der Dicklauge wirkt sich noch aus bei Mischungen aus 60 Teilen Dicklauge und 40 Teilen Wasser oder bei Mischungen aus 50 Teilen Dick lauge und 50 Teilen Weisslauge. Als die Viskosität erhöhende Stoffe können auch anorganische Stoffe, wie Polysilikate, beispielsweise pyrogen gewonnene Kieselsäure mit einer spezifischen Oberfläche von ca. 380 m2/g eingesetzt werden. Der Einsatz anorganischer, die Viskosität erhöhender Stufe ist normalerweise nicht besonders vorteilhaft, da diese durch Verbrennung nicht beseitigt werden und sich im Zellstoffgewinnungsverfahren anreichern können. Besonders bevorzugt werden deshalb als die Viskosität erhöhende Stoffe Polyvinylalkohol und Methylcellulose verwendet. Die Verwendung von Dicklauge oder Dicklauge enthaltenden Mischungen mit Wasser oder Elektrolytlösungen ist ebenfalls günstig. Polyvinylalkohol und/oder Methylcellulose können beispielsweise in Mengen von 5 bis 20 Gew.- & Dicklauge in Mengen von beispielsweise 50 bis 100 Gew.-% im Dispersionsmittel enthalten sein. Die erfindungsgemässe Dispersion, die die Viskosität erhöhende Stoffe enthält, hat den Vorteil, dass diese Dispersion auch stabil ist, wenn die spezifische Dichte des Dispersionsmittels von der spezifischen Dichte des dispergierten Stoffes merklich abweicht. Man kann deshalb bei Gegenwart von die Viskosität erhöhenden Stoffen als Dispersionsmittel eine relativ gering konzentrierte Elektrolytlösung verwenden. Beispielsweise werden 9,10-Anthrachinon enthaltende Dispersionen (spezifische Dichte von Anthrachinon bei 200C 3 1,438 g/cm > in Gegenwart von die Viskosität erhöhenden stoffen schon erhalten, wenn das Dispergiermittel eine spezifische Dichte von etwa 1,25 g/cm3 aufweist. Man kann so einen Teil der Elektrolyte für die Bereitung des Dispersionsmittels einsparen. Einen ähnlichen Effekt, wie der Zusatz von die Viskosität erhöhenden Stoffen wird bei der erfindungsgemässen Dispersionen erhalten, wenn man als Dispersionsmittel eine Trägerdispersion verwendet. Unter den Begriff Trägerdispersion wird hier und im folgenden ein Dispersions- mittel verstanden, das bereits vor Zugabe der organischen, cyclischen, Keto- und/oder Hydroxygruppen enthaltenden Verbindungen als Dispersion vorliegt. Derartige Trägerdispersionen können z.B. erhalten werden, wenn man Dicklauge oder Schwarzlauge mit konzentrierten wässrigen Elektrolytlösungen der vorbeschriebenen Art oder mit festen Elektrolyten der vorbeschriebenen Art, insbesondere Natronlauge oder Atznatron zusammenbringt. Die Verwendung von Trägerdispersionen hat den besonderen Vorteil, dass man unter Verwendung von prozesseigenen Abfallstoffen mit einer verminderten Menge an Elektrolyten eine bei Raumtemperatur problemlos handhabbare Dispersion erhält. Die Temperatur ist bei der Herstellung, Lagerung und Applikation der erfindungsgemässen Dispersion keine entscheidende Grösse und kann in weiten Grenzen beliebig gewählt werden. Als praktischer unterer Wert ist die Umgebungstemperatur,als praktischer oberer Wert die Temperatur anzusehen, bei der unter normalem Druck wesentliche Mengen Wasser verdampfen unter Verschiebung der spezifischen Dichte des Dispersionsmittels. Beim Einsatz von Dicklauge als Netzmittel, als viskositätserhöhender Stoff und/oder als eine Komponente zur Bildung einer Trägerdispersion empfiehlt sich eine Arbeitstemperatur im Bereich von 50 bis 900C, da Dicklauge bei Kontakt mit kaltem Wasser oder kalter Elektrolytlösung erstarrt und nur allmählich aufgelöst oder dispergiert wird. Die Herstellung der erfindungsgemässen Dispersion kann auf verschiedene Weise erfolgen. Beispielsweise kann man den zu dispergierenden Stoff in das vorbereitete Dispersionsmittel einrühren. Wenn sich das Dispersionsmittel aus zwei oder mehreren Teilen zusammensetzt, ist die Reihenfolge der Zugabe frei wählbar. Der zu dispergierende Stoff kann in das vorgefertigte, gegebenenfalls ein Netzmittel und/oder einen die Viskosität erhöhenden Stoff und/oder eine Trägersuspension enthaltende Dispersionsmittel eingerührt werden. Der zu dispergierende Stoff kann auch in die dichtegleiche oder dichteähnliche wässrige Elektrolytlösung eingerührt und nachfolgend mit einem Netzmittel und/oder einem viskositätserhöhenden Stoff versetzt werden. Man kann auch so vorgehen, dass man den zu dispergierenden Stoff zunächst mit einem Netzmittel in fester oder flüssiger Form vermischt und dann dieses Gemisch in eine Elektrolytlösung einbringt. Weiterhin kann man den zu dispergierenden Stoff mit dem festen Elektrolyten, beispielsweise mit festem Natriumhydroxid, gegebenenfalls zusammen mit einem Netzmittel, mischen und zu dieser Mischung Wasser zugeben oder diese Mischung in Wasser geben. Man kann den zu dispergierenden Stoff auch in Dicklauge dispergieren und dann eine Elektrolytlösung zusetzen, wobei eine Trägerdispersion entsteht. Eine besonders bevorzugte Dispersion im Rahmen der erfindungsgemässen Dispersionen ist dadurch gekennzeichnet, dass sie 30 bis 60 Gew.-% 9,10-Anthrachinon enthält, das mindestens zu 80 % eine Korngrösse im Bereich 50 bis 500/um aufweist und 40 bis 70 Gew.-% einer wässrigen Lösung enthält, die Natriumhydroxid, Natriumsulfid, Natriumsulfit, Natriumthiosulfat, atriui3arbonat, Magnesiumbisulfit, Calciumbisulfit und/oder Ammoniumsulfit oder Schwefelsäure enthält und eine Dichte im Bereich 1,35 bis 1,5 g/cm aufweist, sowie 0,05 bis 10 Gew.-% Netzmittel enthält und in der gegebenenfalls die wässrige Lösung zu 50 bis 100 Gew.-% durch Dicklauge oder durch eine Trägerdisperion ersetzt ist. Eine ganz besonders bevorzugte Dispersion im Rahmen der erfindungsgemJen Dispersion weist die vorstehenden Charakteristika auf, wobei die wässrige Lösung Natriumhydroxid, Natriumbisulfit und/oder Natriumthiosulfat enthält. Die erfindungsgemässe Dispersion, insbesondere Anthrachinon enthaltende Dispersion, findet Verwendung in Verfahren zur Zellstoffgewinnung. Die erfindungsgemässe Dispersion kann bei der Zellstoffgewinnung vor der Kochung, vorteilhaft jedoch bereits vor der Imprägnierung eingespeist werden, in der das Lignocellulosematerial bei einer Temperatur von 80 bis 1000C mit der wässrigen Lösung der Aufschlusschemikalien getränkt wird. Die wässrige Lösung der Aufschlusschemikalien dient auch als Fördermedium zur Beschickung von Imprägnierer und/oder Kocher mit Lignocellulosematerial. Die erfindungsgemässe Dispersion, insbesondere eine Anthrachinon enthaltende Dispersion, kann in die rücklaufende Lösung oder in die mit Hackschnitzeln beladene Lösung dosierend eingepumpt werden, gegebenenfalls auch unmittelbar in den Imprägnierer oder Kocher. Dabei geht das Anthrachinon im allgemeinen in Lösung und kann somit in molekularer Verteilung beim Imprägniervorgang in die Hackschnitzel eindringen. Das hat zur Folge, dass Zellstoffe einheitlicher Qualität erhalten werden. Die Menge und Zusammensetzung der erfindungsgemässen Dispersion beim Einsatz in der Zellstoffgewinnung kann so bemessen werden, dass der Aufschlusslösung z.B. 0,01 bis 1,0 Gew.-E der zum Aufschluss benötigten Chemikalienmenge in Form der erfindungsgemässen Dispersion zugefügt wird. In einem Verfahren zur Zellstoffherstellung mit beispielsweise 99 %iger Rückführung der Aufschlusschemikalien entspricht das der 0,01 bis 1,0 fachen Menge an Aufschlusschemikalien, die zum Ausgleich von Verlusten frisch zugesetzt werden muss. Die erfindungsgemässe Dispersion, insbesondere eine Anthrachinon enthaltende Dispersion, hat eine Reihe von Vorteilen So ist die Herstellung dieser Dispersionen einfach und kann ohne spezielle Apparate erfolgen. Die erfindungsgemässe Dispersion ist pumpfähig, d.h. sie kann mit Hilfe einer zum Pumpen von Dispersionen geeigneten Pumpe, beispielsweise einer Schlauchquetschpumpe,einer Exzenterschneckenpumpe oder einer Kolbenpumpe dosiert und durch Rohrleitungen gefördert werden. Die erfindungsgemässe Dispersion ist längere Zeit stabil. Sie kann wenigstens einige Tage, im allgemeinen eine oder mehrere Wochen gelagert werden, wobei sich die dispergierten Stoffe nicht oder nur so wenig absetzen bzw. aufschwimmen, dass sie mit einfachen Mittelntz.B. einem langsam laufenden Rührer, wieder in den dispergierten Zustand gebracht werden können. Das hat den Vorteil, dass eine grössere Menge der Dispersion auf einmal hergestellt werden kann, deren Dosierung dann z.B. durch eine einfache Volumen- oder Mengenmessung er erfolgen kann. Die Herstellung der erfindungsgemässen Dispersion kann örtlich getrennt von der Zellstoffgewinng erfolgen, beispielsweise beim Anthrachinonhersteiler. In diesem Fall kann dem Zellstoffhersteller die fertige Dispersion zur Verfügung gestellt werden. Die Ferstellung der erfindungsgemässen Dispersion kann jedoch auch beim Zellstoffhersteller erfolgen, da beispielsweise mit Ausnahme des zu dispergierenden Stoffes nr solche Stoffe verwendet werden können, die bei der Zellctoffgewinnung ohnehin verwendbar sind und/oder dabei anfallen. In diesem Fall braucht nur der reine Wirkstoff, z.B. ;,nthrachinon,transportiert zu werden. Die Dosierung der erfindungsgemässen Dispersion ist besonders einfach. Bei gegebener Förderleistung einer Dosierpumpe kann man die Dosierung des dispergierten Stoffes in die Zellstoffgewinnungsanlage verändern, in dem man höhere Gehalte an dispergiertem Stoff durch Zu gabe von pulverförmigem zu dispergierendem Stoff und niedrigere Gehalte an dispergiertem Stoff durch Zugabe von Dispersionsmittel einstellt. So kann die erfindungs gemässe Dispersion den Betriebsbedingungen der Zellstoff gewinnung angepasst und verändert werden, ohne die Leistung der DosierpumDe zu ändern. Durch den Einsatz der erfindungsgemässen Dispersion in Verfahren zur Zellstoffgewinnung einschliesslich der Zell stoffbleichung können die günstigen Effekte der Gegenwart von organischen, cyclischen, Keto- und/oder Hydroxy gruppen enthaltenden Stoffen optimal genutzt werden, ohne dass dadurch Nachteile eintreten. Die organischen Bestandteile der erfindungsgemässen Dispersion werden bei der Verbrennung der Prozessabwässer mit verbrannt. Die anorganischen Bestandteile der erfindungsgemässen Dispersion insbesondere die wässrige Elektrolytlösungen, können so ausgewählt werden, dass keine prozeB- fremden Stoffe in das jeweilige Zellstoffgewinnugsver- fahren gelangen. Ausserdem können die anorganischen Bestandteile an verschieaene Zellstoffgewinnungsverfahren angepasst werden. Es kann dann nicht zu einer Anreicherung prozessfremder Stoffe kommen, was bei den modernen Zellstoffgewinnungsverfahren, bei denen die Aufschlusschemikalien im Kreis geführt werden, von besonderer Bedeutung ist. Es ist als ausgesprochen überraschend zu bezeichnen, dass die erfindungsgemässe Dispersion die Anforderungen für den Einsatz bei der Zellstoffgewinnung einschliesslich der Zellstoffbleichung vollständig erfüllt. Stabile Dispersionen werden nämlich üblicherweise nur dann erhalten, wenn die dispergierten Teilchen eine Korngrösse in der Grössenordnung von Kolloidteilchen aufweisen. Bei gröberen Dispersionen setzen sich die dispergierten Teilchen normalerweise früher oder später ab (siehe Römpp, Chemielexikon, 6. Auflage, Seite 6286 (1966)). Kolloidteilchen können nur in aufwendigen Mahlverfahren erhalten werden. Solche Mahlverfahren sind bei der Herstellung der erfindungsgemässen Dispersion nicht erforderlich. Weiterhin war es überraschend, dass sich die erfindungsgemässe Dispersion mit Dispergiermitteln herstellen läBtdie eine Anpassung an das jeweilige Zellstoffgewinnungsverfahren gestatten, da die Dispergiermittel aus einer grossen Anzahl ausgewählt werden können. Es kann damit praktisch für jedes übliche Zellstoffgewinnungsverfahren eine erfindungsgemässe Dispersion zur Verfügung gestellt werden, bei der keine prozessfremden Stoffe eingebracht werden müssen. Es wurde weiterhin ein Verfahren zur Zelistortgewinnung aus Lignocellulosematerialien in Gegenwart von organischen, cyclischen, Xeto- und/oder Hydroxygruppen enthaltenden Verbindungen gefunden, das dadurch gekennzeichnet ist, dass man die organischen, cyclischen, Keto- und/oder Hydroxygruppen enthaltenden Verbindungen in Form einer der zuvor beschriebenen Dispersionen einsetzt. Mit Ausnahme des Einsatzes der erfindungsgemässen Dispersion kann dieses Verfahren in an sich bekannter Weise durchgeführt werden. Beispielsweise kann dieses Verfahren durchgeführt werden, indem man Lignocellulosematerialien in einer Sulfitlösung, die sauer, neutral oder alkalisch sein kann, digeriert und der Digerierlösung vor oder nach Zugabe des Lignocellulosematerials die erfindungsgemässe Dispersion zufügt. Mann kann die erfindungsgemässe Dispersion auch in die bekannten Zellstoffgewinnungsverfahren einsetzen, die als Kraft-Verfahren, Soda-Verfahren und Polysulfid-Verfahren bezeichnet werden. Man kann die erfindungsgemässe Dispersion weiterhin in das bekannte Sauerstoff-Alkali-Verfahren zur Zellstoffgewinnung und/oder in die für die Zellstoffgewinnung bekannten Bleichverfahren einsetzen. In das erfindungsgemässe Verfahren zur Zellstoffgewinnung und Zellstoffbleichung kann man die erfindungsgemässe Dispersion beispielsweise in einer solchen Menge einsetzen, dass 0,01 bis 1,0 Gew.-E der im jeweiligen Verfahren benötigen Chemikalienmenge in Form einer erfindungsgemässen Dispersion eingesetzt werden. Vorzugsweise wird in das erfindungsgemässe Verfahren 9,10 Anthrachinon in Form einer der erfindungsgemässen Dispersionen eingesetzt. Besonders bevorzugt ist dabei der Einsatz der als im Rahmen der erfindungsgemässen Dispersionen als besonders bevorzugt bezeichneten Dispersion. Das erfindungsgemässe Verfahren hat eine Reihe von Vorteilen. So ist beispielsweise die Dosierung und gleichmässige Verteilung von organischen, cyclischen, Ketound/oder Hydroxygruppen enthaltenden Verbindungen ohne Schwierigkeiten möglich und es werden als Folge davon Zellstoffe einheitlicher Qualität erhalten. Weiterhin ist es möglich, die unter idealen Bedingungen im Labormassstab festgestellten positiven Effekte des Zusatzes von organischen, cyclischen, Keto- und/oder Hydroxygruppen enthaltenden Verbindungen in grosstechnischen Zellstoffgewinnungsanlagen zu realisieren. Bei den Laborexperimenten wurde z.B. das Lignocellulosematerial in der Aufschluss- bzw. Bleichflüssigkeit bewegt, was die Verteilung der Zusatzstoffe erleichtert. In grosstechnischen Zellstoffgewinnungsanlagen ist dies nur in untergeordnetem Mass der Fall und damit die Verteilung der Zusatzstoffe erschwert, wenn sie nicht in Form der erfindungsgemässen Dispersion eingesetzt werden. Beispiele Soweit nichts anderes angegeben ist, wurde in den Beispielen ein Anthrachinon eingesetzt, wie es in einem technischen Herstellungsprozess anfällt. 80 Gew.-% dieses Anthrachinons hat eine Korngrösse im Bereich 10G bis 500 m Beispiel 1 50 g 9,1G-Anthrachinon werden unter Rühren eingetragen in 50 g einer 41 %igen wässrigen Natronlauge (spezifische Dichte 1,44 g/cm). Das Anthrachinon wird gut benetzt, und man erhält eine dickliche, pumpfähige Dispersion, deren Feststoffantel infolge eirgeschlossener Luftbläschen im Laufe einiger Tage aufschwimmt. Durch langsames Rühren der Dispersion wird eine homogene Verteilung erreicht. Beispiel 2 20 g 9,10-Anthrachinon werden unter Rühren eingetragen in ein Gemisch aus 75 g 41 %iger wässriger Natronlauge und 5 g Schwarzlauge mit einer spezifischen Dichte von 1,1g/ cm und einem Feststoffgehalt von 16,4 Gew.-56. Es resultiert eine gleichmässige dünnflüssige Dispersion. Lässt man eingeschlossene Luft nach etwa 24 Stunden unbewegten Stehens durch vorsichtiges Rühren entweichen, ist die Dispersion stabil über Wochen. Beispiel 3 5500 g 9,10-Anthrachinon werden eingerührt in eine Mischung aus QXC g 41 %iger wässriger Natronlauge und 500 g Schwarzlauge entsprechend der in Beispiel 2 verwendeten Schwarzlauge. Die dicke geschmeidige, leicht thixotrope Dispersion lässt sich vorzüglich pumpen und zeigt auch über Wochen keine Neigung zur Trennung. Beispiel 4 5 g 9,10-Anthrachinon werden allmählich mit einem Gemisch von 90 g 41 %iger wässriger Natronlauge und 5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge, verrührt. Die erhaltene sehr dtlnnflüssige Dispersion schwimmt weder auf, noch setzt sie sich ab. Beispiel 5 (Vergleichsbeispiel) 40 g 9,10-Anthrachinon werden eingerührt in eine Mischung von 55 g Wasser und 5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge. Das Anthrachinon wird vollkommen benetzt und bildet eine relativ dünnflüssige Dispersion, die sich jedoch nach kurzer Zeit bereits zu trennen beginnt. Nach einigen Tagen hat sich der Feststoff zu einem harten Bodenkörper verdichtet, der sich praktisch nicht mehr aufrühren lässt. Beispiel 6 40 g 9,10-Anthrachinon werden eingerührt in eine Mischung aus 55 g 37 zeiger wässriger Natronlauge (spezifische Dichte 1,40 g/cm3) und 5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge. Das Anthrachinon lässt sich leicht benetzen zu einer dickflüssigen, durch Pumpen gut dosierbaren D-spersion. nach einigen Tagen hat sich das Anthrachinon am Gefässboden locker abgesetzt. Beispiel 7 Die aus 40 g 9,10-Anthrachinon, 55 g 50 %Liter wässriger Natronlauge (spezifische Dichte 1,53 g/cm3) und 5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge, hergestellte Dispersion lässt den Feststoff aufschwimmen. Nach 24 Stunden ist die Dispersion noch einfach wieder herzustellen. Nach 14 Tagen aber hat sich die Feststoffschicht zu einer dicken zähen Haut verdich tet, so dass eine Wiederherstellung der Dispersion erschwert ist. Bereits durch langsames Rühren lässt sich die Trennung vermeiden. Beispiel 8 40 g 9,10-Anthrachinon werden eingerührt in eine Mischung aus 55 g 41 %-iger wässriger Natronlauge und 2 g Dicklauge mit einer spezifischen Dichte von 1,30 g/cm3 und einem Feststoffgehalt von 64 Gew.-%, welche vor der Vereinigung mit der Natronlauge mit 3g Wasser verdünnt wurde. Die über mehrere Wochen stabile Dispersion zeigt keinen Unterschied zu einer gleich konzentrierten Dispersion, bei deren Herstellung jedoch 5 g Schvlarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge, als Netzmittel eingesetzt wurden. Beispiel 9 100 Teile 9,10-Anthrachinon werden in einer Mühle mit 1 Teil isoliertem trockenem Ligninsulfonat unter Mahlen gemischt. Die Korngrösse des Anthrachinons betrug danach etwa 40 bis 100 um. 50,5 g dieser Mischung werden eingerührt in 49,5 g 41 %ige wässrige Natronlauge. Man erhält eine sähmige, über Wochen stabile Dispersion, die sich leicht durch Pumpen fördern und dosieren lässt. Beispiel 10 50 g 9,10-Anthrachinon werden mit 18,5 g Ätznatron versetzt und mahlend gemischt. Die Korngrösse des Anthrachinons betrug danach etwa 40 bis 100/um. Nach Zugabe von 5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge und 26,5 g Wasser resultiert eine gleichmässige über Wochen unverändert stabile Dispersion. Beispiel 11 50,5 g der in Beispiel 9 beschriebenen Mischung aus 9,10 Anthrachinon und Ligninsulfonat im Verhältnis 100:1 werden mit 20,3 g Ätznatron versetzt und mahlend gemischt. Das trockene Pulver (Anthrachinongehalt: 70,6 %) wird mit 29,2 g Wasser zu einer 50 %igen Anthrachinondispersion angerührt. Die Dispersior. ist mindestens über 4 Wochen stabil. Beispiel 12 30 g 9,10-Anthrachinon werden dispergiert in der Mischung aus 65 g einer 47,5 %,-igen wässrigen Natriumthiosulfatlösung (spezifische Dichte bei 500C, 1,44 g/cm3) und 5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge. Die dünnflüssige Dispersion zeigt keinerlei Tende- zur Trennung der festen von der flüssigen Phase. Beispiel 13 300 g Na2S2O3 # 5 H2O werden in 100 ml Wasser bei 50 C auf- gelöst zu einer 47,5 -igen wässrigen Natriumthiosulfat- lösung, welche bei 500C mit 9,10-Anthrachinon dichtegleich ist. 45g dieser Lösung werden mit 5g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarz lauge und anschliessend mit 50 g 9,10-Anthrachinon versetzt. Die bei Raumtemperatur dickliche pumpfähige Dispersion ist bei 800C dünnflüssig und bleibt wenigstens über 3 Wochen als Dispersion stabil. Beispiel 14 120 g 9,10-Anthrachinon werden dispergiert in einer Mischung aus 100,7 g Weisslauge, 54,3 g Ätznatron und 15 g Schwarzlauge. Die Weisslauge enthielt 92,8 g Na0H, 34,3 g Na2S und 2,3 g Na2C03 pro Liter. Das entspricht einer effektiven Alkalität von 113 g/l und einer Sulfidität von 27,5 %. Die Weisslauge wies bei 20 C eine spezifische Dichte von 1,14 g/cm3 auf. Die Schwarzlauge entsprach der in Beispiel 2 verwendeten Schwarzlauge. Die spezifische Dichte der Mischung aus Weisslauge und Ätznatron beträgt bei 200C 1,44 g/cm3. Für die sich im Laufe einiger Stunden rötlich verfärbende stabile dünnflüssige Dispersion wird relativ wenig Ätznatron benötigt. (Für die im Beispiel 8 beschriebene Dispersion wird 25 % mehr Ätznatron benötigt). Es empfiehlt sich, die Weisslauge zuerst mit der Schwarzlauge und erst danach mit Ätznatron zu versetzen, da Weisslauge und Ätznatron im angegebenen Verhältnis sonst einen grobkristallinen Niederschlag bilden. Beispiel 15 (Vergleichsbeispiel) 40 g.9,10-Anthrachinon eingebracht in 48 g Weisslauge, entsprechend der in Beispiel 14 verwendeten Weisslauge, unter Zusatz von 12 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarz lauge bildet eine Dispersion, in der das Anthrachinon rasch zu Boden sinkt und eine nur schwierig aufzurührende kompakte Schicht bildet. Beispiel 16 40 g 9,10-Anthrachinon bilden in 54 g Dicklauge, entsprechend der in Beispiel 8 verwendeten Dicklauge, die mit 6 g Wasser verdÜnnt wurden, eine fast schwarze Dispersion. Diese ist bei Raumtemperatur sehr zäh, bei 800C jedoch pumpfähig. Beispiel 17 50 g 9,10-Anthrachinon werden gemischt mit 50 g auf 800C erwärmter Dick lauge, entsprechend der in Beispiel 8 verwendeten Dicklauge. Zu dieser Mischung werden 5 g Wasser gegeben, um die Pumpfähigkeit der Mischung zu verbessern. Die Dispersion ist bei 800C stabil und dosierbar. Bei Raumtemperatur ist sie hochviskos. Beispiel 18 40 g 9,10-Anthrachinon werden bei 800C mit 48 g Dicklauge mit einer spezifischen Dichte von 1,25 g/cm3 bei 800C und einem Feststoffgehalt von 64 Gew.-t, und 12 g gesättigter Sodalösung gemischt. Die spezifische Dichte des Dispersionsmittels beträgt bei 20 C 1,34 g/cm . Die Dispersion hat bei 800C geringe Tendenz, den Feststoff absitzen zu lassen. Dies Lässt sich vermeiden durch langsames Rühren der Dispersion. Beispiel 19 40 g 9,10-Anthrachinon werden eingerührt in ein Gemisch aus 48 g Dicklauge, entsprechend der in Beispiel 8 verwendeten Dicklauge, und 12 g Weisslauge, entsprechend der in Beispiel 14 verwendeten Weisslauge. Die bei Raumtemperatur schlecht rÜhrbare stabile Dispersion neigt bei 800C im Laufe von zwei Wochen zur Bildung eines Bodenkörpers, der wieder aufgerührt werden kann. Durch langsames Rühren kann das Absetzen vermieden werden. Beispiel 20 Aus 40 g 9,10-Anthrachinon und 60 g einer Trägerdispersion, bereitet aus 12 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarz lauge und 48 g einer 50 %igen Natronlauge, wird eine gut handhabbare stabile Dispersion erhalten. Beispiel 21 50 g 9,10-Anthrachinon werden zugegeben zu einer Träger dispersion, die hergestellt wurde aus 32,5 g Schwarzlauge, entsprechend der in Beispiel 2 verwendeten Schwarzlauge, und 17,5 g Ätznatron und bei 20 C eine spezifische Dichte von 1,39 g/cm besitzt. Die erhaltene Dispersion ist pumpfähig und setzt sich nicht ab. Beispiel 22 4D g 9,10-Anthrachinon werden in eine Mischung bestehend aus 55 g 56 -iger wässriger Schwefelsäure (spezifische Dichte 1,46 g/cm3) und 5 g Schwarzlauge entsprechend der in Beispiel 2 verwendeten Schwarzlauge eingerührt. Nach 2 Monaten hatte sich aus der besonders gut handhabbaren Dispersion Arthrachinon in lockerer Form auf dem Gefässboden abgesetzt Beispiel 23 Die gut handhabbare Dispersion, die aus 40 g 9,10-Anthrachinon und 60 g 60 %-iger Phosphorsäure (spezifische Dichte 1,43 g/cm3) hergestellt wird, bleibt als Dispersion mindestens für 2 Wochen stabil.
Patentansprüche 7. Dispersion zur Verwendung bei der Zellstoffgewinnung, dadurch gekennzeichnet, dass sie organische, cyclis.,e, Keto- und/oder Hydroxygruppen enthaltende Verbindungen und ein flüssiges Dispersionsmittel gleicher oder ähn licher spezifischer Dichte wie die organischen, cyclischen, Xeto- und/oder Hydroxygruppen enthaltenden Verbindungen, enthält. 2. Dispersion gemäss Anspruch 1, dadurch gekennzeichnet, dass sie als flüssiges Dispersionsmittel eie wässrige Lösung von Elektrolyten enthält, wobei diese wässrige Elektrolytlösung eine Dichte im Bereich von 12 bis 1,6 g/cm3 aufweist. 3. Dispersion gemäss Ansprüchen 1 und 2, dadurch gekenn zeichnet, dass sie p-Benzochinon, 1,4-Naphthochinon, 9,10-Anthrachinon, Diels-Alder-Addukte von 1,3-Dienen n p-Benzochinon und/oder 1,4-Naphthochinon und/oder deren Mono- und Poly-Alkyl-, -Hydroxy-, -Amino-, -Alkoxy-, -Alkylamino und/oder -Sulfoderivate enthält. 4. Dispersion gemäss Anspruch 2, dadurch gekennzeichnet, dass die wässrige Lösung eine Lösung von Oxiden, Hydroxiden und/oder Salzen der Metalle der ersten und/ oder zweiten Hauptgruppe des Periodensystems und/oder eine Lösung von Stickstoffbasen und/oder von Salzen von Stickstoffbasen oder eine Lösung von Säuren ist. 5. Dispersion gemäss Ansprüchen 1 bis 4, dadurch ge kennzeichnet, 4ass sie zusätzlich Netzmittel ent hält. 6. Dispersion gemäss Ansprüchen 1 bis 5, dadurch geker.n zeichnet, dass sie zusätzlich die Viskosität erhöhende Stoffe enthält. 7. Dispersion gemäss Ansprüchen 1 bis 6, dadurch ge kennzeichnet, dass das Dispersionsmittel bereits eine Dispersion ist. 8. Dispersion gemäss Ansprüchen 1 bis 7 , dadurch ge kennzeichnet, dass sie 30 bis 60 Gew.-% 9,10-Anthrachinon enthält, das mindestens zu 80 % eine Korngrösse im Be reich 50 bis 500/ um aufweist und 40 bis 70 Gew.-% einer wässrigen Lösung enthält, die Natriumhydroxid, Natriumsulfid, Natriumsulfit, Natriumthiosulfat, Natriumcarbonat, Magnesiumbisulfit, Calciumbisulfit und/oder Ammoniumsulfit oder Schwefelsäure enthält und eine Dichte in Bereich von 1,35 bis 1,5 g/cm3 aufweist sowie 0,05 bis 10 Gew.-% Netzmittel und in der gegeben nenfalls die wässrige Lösung zu 50 bis 100 Gew.-% durch Dicklauge oder durch eine Trägerdispersion ersetzt ist 9.Verfahren zur Zellstoffgewinnung aus Lignocellulose materialien in Gegenwart von organischen, cyclischen, Keto- und/oder Hydro > :ygruppen enthaltenden Verbindungen, dadurch gekennzeichnet, dass man die organischen, cyclischen, Keto- und/oder Hydroxygruppen enthaltenden Verbindungen in Form einer Dispersion entsprechend den Ansprüchen 1 bis 8 einsetzt. 10. Verfahren gemäss Anspruch 9 , dadurch gekennzeichnet, dass man 0,01 bis 1,0 Gew.-% der zur Zellstoffge- winnung benötigten Chemikalien in Form einer Dis persion entsprechend den Ansprüchen 1 bis 9 ein setzt.
BAYER AG
BLANK, HEINZ ULRICH, DR.; KLAG, GUNTHER, DR.; SCHNEGG, PETER, DR.; Klag, Günther, Dr.
EP-0004933-B1
4,933
EP
B1
DE
19,811,014
1,979
20,100,220
new
A22C17
A22B5
B26D7, B23Q1
B26D 7/01, B23Q 1/74
BAND SAWING MACHINE FOR DIVIDING MEAT AND BONES
1. Band saw equipment for dividing meat and bones in slices, with a fixed supporting table (12) through which the saw band (16) is guided, with a portioning plate (18) located parallel to the saw band (16), with a retaining plate (24) located opposite the portioning plate (18) in respect of the saw band (16) and essentially parallel to said plate, wherein the distance from the portioning plate (18) and retaining plate (24) to the saw band (16) can be adjusted respectively and the retaining plate (24) can be swung down from the supporting table (12), and with a pressing device (28) adjustable parallel to the portioning plate (18) and retaining plate (24) in respect of the saw band (16), characterised in that the retaining plate (24) is connected fixedly to a guide rod (38) which extends perpendicularly to the face of the retaining plate (24) and which is mounted longitudinally displaceably in a guide bearing (40), and in that the guide bearing (40) rests on a pivoting lever (46) which can be pivoted, together with the guide rod (38) and retaining plate (24), about a pivot axis (48) extending underneath the supporting table (12) parallel to the retaining plate (24), into a stop position, in such a way that the retaining plate (24) withdrawn into a position lying against the guide bearing (40) is aligned with the supporting table (12) and adjoins the latter.
Bandsägegerät zum Zerteilen von Fleisch und Knochen Die Erfindung betrifft ein Bandsägegerät zum sceiben- weisen Zerteilen von Fleisch und Knochen, mit einem festen Auflagetisoh, durch den das Sägeband hindurchgeführt ist, einer parallel zum Sägeband angeordneten Portionierplatte, einer der Portionierplatte bezüglich des Sägebandes gegenüberliegenden, im wesentlichen zu dieser parallelen Halteplatte, wobei der Abstand von Portionierplatte und Halteplatte vom Sägeband jeweils einstellbar und die Halteplatte vom Auflagetisch abklappbar ist, und mit einer parallel zu Portlonierplatte und Halte platte bezug ich des Saseandes einstellbaren Andrückein- richtung. Da die Halteplatte häufig beim Auflegen von grossen Fleisch- stücken auf dr Auflagetisch im Weg ist, ist diese Sei e. < annten Geräten entweder nach oben oder zur Seite parallel zu sicr. selbst abklappbar. In der abgeklappten Stellung ist die Halteplatte nicht benützbar und trägt in keiner Weise zur Führung und Stützung des Schneidgutes bei. Wenn besonders grosse Fleischstücke auf den Aufleget-sch gelegt werden, kommt es jedoch häufig vor, dass Sie ber cen äusseren Rano desselben hinausragen. Eine sichere Führung von Hand ist in dieser Fall nur schwer zu erreichen, da einerseits des Fleischstück gegen das Sägeband gedrückt und andererseits verhindert werden muss, dass es durch die andrückende Hand um die Kante des Auflagetisches nach unten @ekippt wird. Durch die Erfindung soll ein Gerät der eingangs genannten Art so verbessert werden, dass auch bei sehr grossen Fleisch- stücken eine durchgehend feste Auflage und Führung während des Betriebes gewährleistet ist. Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Halteplatte mit einer Führungsstange rest verbunden ist, die sich senkrecht zur Fläche der Halteplatte erstreckt und in einem Führungslager längsverschiebbar gelagert ist, und dass das Führungslager an einem Schwenkhebel sitzt, der um eine unterhalb des Auflagetisches parallel zur Halteplatte verlauf ende Schwenkachse samt Führungsstange und Halteplatte derart in eine Anschlagstellung verschwenkbar ist, dass die in eine am Führungslager angiegende Stellung zurückgezogene Halteplatte mit dem Auflagetisch fluchtend an diesen anschliesst. Wenn daher die Halteplatte abgeschwenkt wird, um dem Auflegen eines grossen Fleischstückes nicht im Wege zu zein, wird sie nicht für den weiteren Betrieb unbrauchbar, sondern verlängert unmittelbar den Auflagetisch, so dass auch grössere Fleischstücke voll aufliegen und von einer Hand ohne Gefahr des Abkippens vorgeschoben werden können. Sobald die Zerteilung des Fleischstückes soweit fortgeschritten ist, dass sein hinterer Rand die abgeklappte Halteplatte verlässt, kann der Schwenkhebel mit Führungslager, Führungsstange und Halteplatte wieder in die normale Stellung herauf ge- klappt werden und die Halteplatte kann in üblicher Weise an der Rückseite des Fleischstückes zur Anlage gebracht werten. Durch Verschieben der Führungsstange im Führungs- lager kann die Halteplatte sodann bis zum Ende des Zerteilungsvorganges dem Fleischstück in Richtung zum Sägeband hin nachgeführt werden. In zweckmässiger Ausgestaltung der Erfindung trägt die Führungsstange auf der der Halteplatte egenüberliegenden Seite des Führungslagers einen Betätigungsknopf, der einerseits ein Vorschieben und Zurückziehen der Halteplatte gestattet und andererseits verhindert, dass das Ende der Führungsstange durch das Führungslager gleiten ka.n. Somit stellt er einen Endanschlag für den Vorschub der Halteplatte in Richtung Sägeband dar. Vorzuosweise ist die Führungsstange im Führungslager frei verschiebbar gelagert, so dass nach dem Abklappen des Schwenkhebels die nunmehr vertikal stehende Pührungsstange durch ihr Eigengewicht und das Gewicht der Halteplatte nach unten fällt, bis die Halteplatte am Führungslager anliegt. In dieser Stellung fluchtet sie mit dem Auflagetisch und schliesst sich an diesen an. Zum Zurückklappen der Halteplatte in die aufrechte Stellung kann unmittelbar an dieser in an sich bekannter Weise ein weiterer Handgriff befestigt sein. Derselbe kann auch zum Andrücken der Halteplatte von Hand an der Rückseite des zu verarbeitenden Fleischstückes verwendet werden. Anhand der Figuren wird ei Ausführungsbeispiel der Erfin dung näher erläutert. Es zeigt: eine 1 eine Vorderansicht des erfindungsgemassen Gerätes; und 2 2 eine bezüglich Fig. 1 um 90 C verdrehte Seitenansicht des Geräts, betrachtet gemäss Fig. 1 von rechts. Das dargestellte Bandsägegerät weist ein allgemein C-för- miges Gehause 10 auf, an dessen unterem Schenkel der A. asetisch 12 befestigt ist. Durch einen Schlitz 14 des Auflagetisches ist das vertikal verlaufende Sägeband 16 hindurchgeführt. Eine Portionierplatte 18 liegt mittels Gleitfüssen 20 auf dem Auflagetisch 12 auf und kann mit Hilfe einer Portionierstange 22 in wählbarem Abstand vom Sägeband 16 eingestellt und in nicht näher gezeigter Weise in der eingestellten Lage festgelegt werde. Der Portionierplatte 18 bezüglich des Sägebandes 16 gegenüber und zur Portionierplatte 18 parallel ist eine Halteplatte 24 angeordnet, die ebenfalls mit Hilfe von Gleltfüssen 26 auf dem Auflagetisch 12 aufliegt. Portionierplatte 18 und Halteplatte 24 sind parallel zum Sägeband 16 angeordnet. Zwischen .portionierplatte 18 und Halteplatte 24 ist eine Andrückeinrichtung 28 angeordnet, die um eine im oberen Schenkel 30 des Gehäuses 19 gelegene Schwenkachse 32 verschwenkbar ist. Sie kann mittels eines Handgriffs 34 vom, Sägeband 16 weg oder zu diesem hin geschwenkt werden. Die Halteplatte 24 weist zu ihrer Betätigung einen schräg nach oben stehenden Handgriff 36 auf. Sie ist ferner mit einer senkrecht zu ihrer Fläche verlaufenden Führungsstange 38 starr verbunden, die in einem Führungslager 40 gleitend gelagert ist. Das der Halteplatte 24 entgegengesetzte Ende der Führungsstange trägt einen Betätigungsknopf 42, der gleichzeitig einen Anschlag zur Festlegung der dem Sägeband 16 am nächsten gelegenen Stellung der Halteplatte 24 bildet. Durch Hin- und Herschieben der Führungsstange 38 im Führungslager 40 lässt sich die Halteplatte 24 gemäss dem Doppelpfeil 44 zwischen der durch Anliegen des Betäti gungsknopfes 42 am Führungslager 40 festgelegten vordersten Stellung und einer durch Anliegen der Halteplatte 24 am Führungslager t0 festgelegten hintersten Stellung verschieben. Das Pührungslager 40 sitzt an einem Schwenkhebel 46, der um eine an der Unterseite des Auflagetisches 12 gelegene, parallel zur Halteplatte 24 verlaufende Schwenkachse 48 um 900 gemäss dem Doppelpfeil 50 in die in Fig. 1 in gestrichelte Linien dargestellte Anschlagsstellung 46' verschwenkbar ist. Wenn sich der Schwenkhebel 46 in der verschwenkten Stellung 46' befindet, befindet sich gleichzeitig das Füh rungslager in der ebenfalls gestrichelt gezeichneten Stellung 40'. Wenn sich die Halteplatte 24 in der verschwenkter. Stellung nicht bereits in Anlage am Führungslager 40 befindet, fällt die Führungsstange 38 und die Halteplatte 24 durch Schwerkraft in die in Fig. 1 in gestrichtelten Linien gezeichneten Stellungen 38' und 24', wobei sich der Handgriff 36 in der gestrichelten Stellung 36' befindet. In der abgeklappten Stellung 24' fluchtet die Halteplatte mit dem Auflagetisch 12 und setzt diesen nach rückwärts fort, so dass sie einerseits grösseren Fleischstücken nicht im We e ist und andererseits dieselben über den rückwär tigen Rand 52 des Auflagetisches 12 hinaus unterstützt. Sobald die Zerteilung eines auf der Halteplatte in der Stellung 24' aufliegenden Fleischstückes soweit fortge sonritten ist, dass der rückwärtige Rand die Halteplatte verlässt, kann diese mittels des Handgriffs 36' wider nach oben in die aufrechte Stellung geklappt und an die Rückseite des Fleischstückes angedrückt werden.
Patentansprüche 1. Bandsägegerät zum scheibenweisen Zerteilen von Fleisch und Knochen, mit einem festen Auflagetisch, durch den das Sägeband hindurchgeführt ist, einer parallel zum Sägeband angeordneten Portionierplatte, einer der Portionier- platte bezüglich des Sägebandes gegenüberliegenden, im wesentlichen zu dieser parallelen Halteplatte, wobei der Abstand von Portionierplatte und Halteplatte vom Sägeband Jeweils einstellbar und die Halteplatte vom Aulagetisch abklappbar ist, und mit einer parallel zu Portionierplatte und Halteplatte bezüglich des S=ce- bandes verstellbaren Andrückeinrichtung, dadurch gekenn zeichnet, dass die Halteplatte (24) mit einer Führungs stange (38) fest verbunden ist, die sich senkrecht zur Fläche der Halteplatte (24) erstreckt und in einem Füh rungslager (40) längsverschiebbar gelagert ist, und dass das Führungslager (40) an einem Schwenkhebel (46) sitzt, cer um eine unterhalb des Auflagetisches (12) parallel zur Halteplatte (24) verlaufende Schwenkachse (48) samt Führungsstange (38) und Halteplatte (24) derart in eine Anschlagstellung verschwenkbar ist, dass die in eine am Pührungslager (4Q) anliegende Stellung zurückgezogene Halteplatte (24) mit dem Auflagetisch (12) fluchtend an diesen anschliesst. 2. Gerät nach Anspruch 1, dadurch gekennzeichnet, dass die Führungsstange (38) auf der der Halteplatte (24) gegen überliegenden Seite des Führungslagers (40) einen Betä tigungsknopf (42) trägt.
MASCHINENFABRIK DORNHAN GMBH & CO.
GROZINGER, HORST HERBERT; SCHADOW, HANS-PETER; Grözinger, Horst Herbert
EP-0004934-B1
4,934
EP
B1
EN
19,820,505
1,979
20,100,220
new
C02F3
null
C02F3
C02F 3/12C
A PLANT FOR BIOLOGICAL PURIFICATION OF WASTE WATER
The plant is a tank (10) forming an aeration chamber in which waste water is treated with active sludge and is aerated, and which has mounted therein a plate insert (24) defining an upwardly open secondary sedimentation chamber having inclined side walls and an overflow for purified waste water (40) as well as a bottom opening (25) through which precipitated sludge flows back to the aeration chamber. Two vertical plates (31) define a central channel in the plate insert, said channel being in communication with the aeration chamber through tubes (32) and causing auxiliary currents to be generated in the tubes and the lower portion of the plate insert, said currents contributing towards keeping the bottom opening free from accumulations of sludge.
Tne invention relates to a plant for biological purification of waste water, said plant comprising an aeration chamber in which the waste water is mixed with active sludge and is aerated through immersed diffusers, and a secondary sedimentation chamber in which the slidge is precipitated and from which the purified water flows away through an overflow, and which is defined by an upwardly open plate insert mounted in an aeration tank, said plate insert having bottom and side walls inclining downwrdly towards a bottom opening. In operation of such a plant, the sludge precipitated in the secondary sedimentation chamber slides down the ln- clined bottom and side walls of the plate insert, out through the bottom opening and back to the aeration chamber However, sludge may accumulate at the bottom of the secon- dary y sedimentation chamber, which more or less clings the bottom opening and impedes the operation of the plant. This drawback is overcome by the plant of the invention where a central charnel is defined in the plate insert between two substantially vertical, parallel plates extending between the end plates of the insert and substantially from their upper edges to a level spaced somewhat from the bottom opening, said central channel being connected to the aeration chamber through a plurality of tubes. This construction causes auxiliary currents to be generated in the portion of the plate insert which is located below said tubes, said auxiliary currents contributing towards making the sludge present on the lower portions of the inclined walls of the insert slide down these walls without accumulating over the bottom opening and clogging fully or ach of tl form an essentially closed path extending upwardly from tne bottom opening of the insert through the space between sne of the inclined walls of the insert and the tank wall, in through the tubes and down through the central channel and the lower portion of the insert to its bottom opening. are plant of the invention is further characterized by the provision of an outlet chamber which is defined at one end of the central channel by means of transverse walls an a bottom wall, said outlet chamber being connected to an outlet channel and receiving purified water which overflows the secondary sedimentation chamber formed by the plate insert, and having mounted therein a diffusor for oxidizing the water. This construction has the advantage that the purified water s oxidized so effectively before it leaves the plant that it 5 not required to provide a separate, subsequent oxidizing plant. The invention will be explained more fully below with reference to the drawing, in which 1 shows a vertical section of an embodiment of the plant according to the invention, Fig. 2 shows 2 horizontal section taken along the line II-II in fig. 1, and Fig. 3 is a perspective view of a detail of the plant. In the drawing 10 is a cylindrical tank, which is dug into the ground and consists of a bottom 11 of reinforced concrete, a plurality of concrete rings forming the cylindrical wall 12 and a concrete cover 13 with an oblong, rectangunlar central opening 14 covered by a plate A substantially rectangular frame 18 is mounted in the upper portion of the tank by means of three brackets 17 secured to the tank wall. The frame 18 is composed of square pipes and extends across the interior of the tank, symmetrically with respect to a diametral plane 23. At one end the frame 18 carries a rotary blower 19 whose suction side is connected to an inlet pipe 21 through an air filter 21, and whose delivery side is connected to the frame pipes in a manner not shown in detail. The frame 18 carries also an essentially wedge-shaped plate insert generally designated 22. The insert has two inclined walls 24 located symmetrically about the diametral plane 23 and forming both bottom and side walls and whose lower edges are so spaced from each other that they define a comparatively narrow bottom opening 25. At the top the inclined walls 24 merge into comparatively low, vertical wall portions 26, and together with these and two gable walks 27 they define an upwardly open secondary sedimen- tatlo¯ chamber rthin the aeration chamber formed by the ret cf ine thank space. The aeration chamber is aerated by a plurality of diffusors 28, six in the embodiment shown which are located near the bottom of the tank on both sides of the diametral plane 23, and which are connected to the pipe frame 18 through angularly bent carrier and air supply pipes 29 extending upwardly through the insert 22. Each dIffusor 28 is formed of a cylindrical bod of foam plastic having open pores and a central channel terminating in one end face, the end of the air supply pipe being inserted into said central channel. In the plate insert 22 a longitudinal central channel 30 is defined by means of two parallel plates 31 extending between the gable walls 27 on their respective sides of and in parallel with the diametral plane 23. The upper edge of the plates 31 is flush with the upper edge of the vertical size walls 26 and the gable walls, and the lower edge of the plates 31 is located somewhat above the bottom opening 25 of the insert. The central channel 30 communicates with the aeration chamber by means of said bottom opening and also through a plurality of tubes 32 which extend upwardly towards the plates 31 from the inclined walls 24, and whose ends are passed through holes in these walls and plates. In the embodiment shown six tubes 32 are provided substantially above their respective diffusors 28. As shown more clearly in fig. 3, an outlet chamber 34 is defined at the end of the central channel 30 which is located substantially diametrically opposite the waste water rnlet pipe 33. The outlet chamber is defined partly by the plates 31 and one gable wall 27, partly by a transverse wall 36 and a bottom 35. In the outlet chamber a diffusor 37 is mounted cn w air supply pipe 38 in communication With the pip-- frame 18 through a transverse p¹te 59, fig. 2. The outlet chamber 34 receives purified water from overflow channels 40 extending along the inner sid and the lower eag o the vertical side wall portions 26 as -well as along the inner side of the gable wall 27 at the outlet chamber and terminating in the bottom of a cut-out 41 in the upper corner of each plate 31. The oxidized water leaves the outlet chamber via an overflow edge fored by the bottom of a rectangular cut-out 42 in the gable wall 27. An outlet channel 43, fig. 2, for the purified an oxidized water extends from said cut-out. A vent pipe 44 is mounted in the cover 15. The level of liquid in the tank 10 is determined by the location of the upper edge of the overflow channels 40. In operation of the plant, air bubbles from the diffusors 28 will generate currents in the waste water which is thus mixed intimately with the active sludge in the tank, and processes with which the active sludge attacks impurities in the water. Part of the mixture of water and sludge moves upwardly through the bottom opening 25 and into the secondary sedimentation chamber, which is formed by the plate insert 22 and in which the sludge settles on and slides down the inclined walls 24. The pure surface water overflows the edge of the overflow channels 41 and from there out into the outlet chamber 34. Some of the liquid currents generated in the aeration chamber flow through the tubes 34 into the central channel 30 and from there downwardly towards the bottom opening 25 where they contribute towards removing any accumulations of sludge. The diffusor 37 in the outlet chamber 34 effectively oxidi d i Z35 the purified water before it leaves the plant through the outlet channel 43. The embodiment shown and described above may be modified in Dy respects within the scope of the invention. For example, the central channel 30 may also be connected to the aeration chamber through tubes terminating in the gable walls 27, and the plate insert may be a substantially t--nc-ted cone or pyramid instead of being wedge-shaped as shown.
1. A plant for biological purification of waste water, comprising an aeration chamber in which the waste water is mixed with active sludge and is aerated through immersed diffusors, and a secondary sedimentation chamber in which the sludge is precipitated and from which the purified water flows away through an overflow, and which is defined by an upwardly open plate insert mounted in an aeration tank, said plate insert having bottom and side walls inclining downwardly towards to a bottom opening, c h a r a c t e r i z e d in that a central channel is defined in the plate insert between b substantially vertical, parallel plates extending between the end plates of the insert and substantially from tneir upper edges to a level spaced somewhat from the bottom opening, and that the central channel is connected to t aeration chamber through a plurality of tubes. z plant according to claim 1, c h a r a c t e r i z e d by < ¯ provision of an outlet chamber which is defined at one end of the central channel by means of transverse walls and a bottom wall, said outlet chamber being connected to an outlet channel and receiving purified water which overflows the secondary sedimentation chamber formed by the plate insert, and havrn:ag mounted therein a diffusor for oxidizing the water.
A/S HOTACO
JACOBSEN, ANKER JARL
EP-0004949-B1
4,949
EP
B1
EN
19,830,921
1,979
20,100,220
new
C07J73
A61K31, C07J71
C07J17, C07J3, C07J33, C07J11, C07J43, C07J73, C07J41
M07C103:16, 124JA3B2B1E, C07J 17/00, C07J 41/00B2, C07J 33/00C1, C07J 41/00C30, C07J 43/00B, C07J 3/00B, C07J 11/00, C07J 73/00B2
4-AZA-17-SUBSTITUTED-5-ALPHA-ANDROSTAN-3-ONE, THEIR A AND D HOMO ANALOGS, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
4-Aza-17-substituted-5α-androstan-3-ones and their A- and D- homo analogs of the formula: where Formula (I) may also have the structure of partial Formulas (II) and or (III); wherein, A is (1) - CH₂ - CH₂ -; (2) - CH = CH -; or B is (1) where R¹ is, (a) hydrogen; (b) methyl or ethyl; (c) ethenyl; (d) ethynyl; (e) NR²R³ where R² and R³ are hydrogen or methyl; (f) cyano; or where X⊖ is any anion and R⁴ is , (a) OR5 where R⁵ is C1-4 alkyl; or (b) NR⁶R⁷, where R⁶ and R⁷ are hydrogen or methyl; R′ is hydrogen or methyl; R″ is hydrogen or β-methyl; R‴ is B-methyl or hydroxy; Z is (1) oxo ; (2) β-hydrogen and α-hydroxy; or α-hydrogen or α-hydroxyl and (3) (Y)n Q where n = 0 or 1, Y is a straight or branched hydrocarbon chain of 1 to 12 carbon atoms and Q is (a) , where R⁸ is, (i) hydrogen, (ii) hydroxyl, (iii) C₁₋₄ alkyl (iv) NR⁹ R¹⁰, where R⁹ and R¹⁰ are each independently selected from hydrogen, C₁₋₄ straight or branched chain alkyl, C₃₋₆ cycloalkyl, phenyl; or R⁹9 and R¹⁰ taken together with the nitrogen to which they are attached represent a 5-6 membered saturated ring comprising up to one other heteratom selected from oxygen and nitrogen. (v) OR¹¹, where R¹¹ is M, where M is hydrogen or alkali metal, or C₁₋₁₈ straight or branched chain alkyl; benzyl; or (b) OR¹², where R¹² is, (i) C₁₋₂₀ alkylcarbonyl , (ii) phenyl C₁₋₆ alkylcarbonyl, (iii) C₅₋₁₀ cycloalkylcarbonyl, (iv) benzoyl, or (v) C₁₋₈ alkoxycarbonyl; (4) where the dashed bond replaced the 17α hydrogen; (5) NH-R¹³, where R¹³, is (a) C₁₋₁₂ alkyl; or (b) NR⁹NR¹⁰; (6) cyano; or (7) tetrazolyl; and pharmaceutically acceptable salts of the above compounds; active as testosterone 5α-reductase inhibitors, and thus useful topically for treatment of acne, seborrhea, female hirsutism and male pattern baldness, and systemically in treatment of benign prostatic hypertrophy, breast carcinoma, and prostate carcinoma.
TITLE OF THE INVENTION 4-Aza-17-Substituted-5&alpha;-Androstan-3-One-Testosterones, process for their preparation and pharmaceutical com- positions containing the same BACKGROUND OF TE INVENTION Field of the Invention The present invention is concerned with novel 4-aza-17-substituted-5&alpha;-androstan-3-ones and their A and Dhomo analogs7 and the use of these compounds as testosterone 5-reductase inhibitors. Description of the Prior Art It is well known in the art that certain undesirable physiological manifestations, such as acne vulgaris, seborrhoea, female hirsutism, and male pattern baldness and benign prostatic hypertrophy7 are the re sult of hyperandrogenic stimulation caused by an excel sive accumulation of testosterone or similar androgen hormones in the metabolic system. Early attests to provide a chemotherapeutic agent to counter the undesir- able results of hyperandrogenicity resulted in the dis- covery of several steroidal antiandrogens having undesirable hormonal activities of their own. The estrogens, for example, not only counteract the effect of the androgens but have a feminizing effect as well. Non-steroidal antiandrogens have also been developed, for example, 4'-nitro-3'-trifluoromethylisobutyranilide. See Neri et al., Endo., Vol. 91, No. 2 (1972). However, these products, though devoid of hormonal effects, are peripherally active, competing with the natural androgens for receptor sites, and hence have a tendency to feminize a male host or the male fetus of a female host. It more recently became known in the art that the principal mediator of androgenic activity in some target organs is 5&alpha;-dihydrotestosterone, and that it is formed locally in the target organ by the action of testosterone-5&alpha;-reductase. It therefore has been postulatex and demonstrated that inhibitors of testosterone-5creductase will serve to prevent or lessen symptoms of hyperandrogenic stimulation. Nayfeh et al., Steroids, 14, 269 (1969) demonstrate in vitro that methyl 4-androsten-3- one-17ss-carboxylate was a testosterone-5c-reductase in hibitcr. Then Voigt and Asia, Endocrinology, 92, 1216 (1973), Canadian Patent No. 970,692, demonstrated that the above esther and the parent free acid, 4-androsten-3-one-17ss- carboxylic acid are both active inhibitors of testosterone 5&alpha;-reductase in vitro. They further demonstrated that topical application of either testosterone or 5&alpha;-dihydro- testosterone caused enlargement of the female hamster flank organ, an androgen dependent sebaceous structure. However, concommitant administration of 4-androsten-3-one-17 -car- boxylic acid or its methyl ester inhibited the response elicited by testosterone but did not inhibit the response elicited by 5&alpha;-dihydrotestosterone. These results were interpreted as indicating that the compounds were anti androgenic by virtue of their ability to inhibit testo sterone-5&alpha;-reductase. The novel compounds of the present invention are, therefore, selective antiandrogens by virtue of their ability to specifically inhibit testosterone-5a-reductase. Heretofore, it has not been known to use 4-aza 17-substituted-5&alpha;-androstan-3-ones for treating hyperandrogenic conditions, although Selye, in Belgian Patent No. 775,919, describes such a compound, and a number of other compounds, additionally having one or more carbonitrile substituents, as a catatoxic agent useful in the treatment of, among other conditions, prostatic hypertrophy. A number of 4-aza steroid compounds are known. See, for example, U.S. Patents Nos. 2,227,876; 3,239,417; 3,264,301; and 3,285,918; French Patent No. 1,465,544; Doorenbos and Solomons, J. Phar. Sci. 62, 4, pp. 638-640 (1973) and Doorenbos and Brown, J. Phar. Sci., 60, 8, pp. 1234-1235 (1971). However, none of the known compounds suggest the 4-aza compounds of the present invention or their use in treating hyperandrogenic conditions. SUMMARY OF THE INVENTION The present invention is concerned with novel antiandrogenic 4-aza-17ss-substituted-5&alpha;-androstan-3-ones. their A-homo analogs, certain isosteres and derivatives thereof, processes for their preparation, pharmaceutical formulations comprising the novel compounds as active ingredient, and methods of inhibiting 5c-reductase and of treating hyperandrogenic conditions with the novel compounds or their pharmaceutical formulations. The present invention is particularly concerned with novel compounds of the formula: EMI3.1 where ZDrumula (I) may also have the structure of partial PDrmulas (II) and/or (III); wherein, A is (1) - CH2 - CH2 -; (2) - CH = CH -t EMI4.1 3 is EMI4.2 where R1 is, (a) hydrogen; (b) methyl or ethyl; (c) ethenyl; (d) ethyl; (e) NRêR where Rê and R are hydrogen or methyl; (f) cyano; or EMI4.3 where x (3 is any anion and R4 is, (a) OR5 where R5 is C1-4 alkyl, or (b) NR6R7, where R6 and R7 are hydrogen or methyl; R' is hydrogen or methyl; R'' is hydrogen or ss-methyl; R''' is ss-methyl or hydroxy; Z is (1) oxo; (2) ss-hydrogen and &alpha;-hydroxy; or hydrogen or a hydroxyl and (3) (Y) Q where n = O or 1, Y is a straight or branched hydrocarbon chain of 1 to 12 carbon atoms and Q is (a) EMI5.1 where R8 is, (i) hydrogen, (ii) hydroxyl, (iii) C1-4 alkyl (iv) NR9R10, where R9 and R10 are such independently selected from hydrogen, C1-4 straight or branched chain alkyl, C! 6 cycloalkyl, phenyl; or and R take together with the nitrogen to which they are attached represent a S-6 membered saturated ring comprising up to one other heter atom selected from oxygen and nitrogen. ii 11 ( v) OR , where R is M, where M is hydro gen or alkali metal, or C1-18 straight or branched chain alkyl; benzyl; or (b) OR12, provided that for 17&alpha;-OH, n must = 1, where R12 is, (i) hydrogen, (ii) C1-20 alkylcarbonyl, (iii) phenyl C16 alkylcarbonyl, (iv) C5-10 cycloalkylcarbonyl, (v) benzoyl, or (vi) C1-8 alkoxycarbonyl, EMI5.2 where the dashed bond replaces the 17a hydrogen; Representative compounds of the present invention are, among others, the following: : 17ss-N,N-diethylcarbamoyl-4-methyl-4-aza-5a-androstan- 3-one 17ss-N,N-diethylcarbymoyl-4-aza-5&alpha;-androstan-3-one 17ss-N,N-diethylcarbamoyl-4-amino-4-aza-5&alpha;-androstan- 3-one 17ss-acetoxy-4-aza-5&alpha;-androstan-3-one 4-aza-20-spirox-5&alpha;-an-3-one 4-methyl-4-aza-5-20-spiroxan-3-one 17ss-N-ethylcarbamoyl-4-methyl-4-aza-5&alpha;-androst-3-one 4-methyl-4-aza-5&alpha;-pregnane-3,20-dione 4-ethyl-4-aza-5&alpha;-20-spiroxan-3-one 17ss-carbomethoxy-4-methyl-4-aza-5&alpha;-androstan-3-one The novel compounds of Formula I and of Formula I having the structure of partial formula III of the present invention may be prepared by a method comprising the following steps: a compound of the formula: : EMI7.1 where A has the meanings above except -CH=CH-, is (1) treated with an oxidizing agent at reduced tempera tures to form the corresponding 5-oxo-3,5-seco androstan-3-oic acid compound; (2) treating thj product of step (1) with an amine of formula: R1NH2 to form the corresponding 4 aza-5-androsten-3-one compound substituted in the 4-position with l 1; and (3) treating the product of step (2) with hydrogen under catalytic conditions to form the of Formula I and I + III wherein B is EMI8.1 Thus, the last step of this method is an hydrogenation step which introduces the Sa hydrogen. The above reactions are further detailed in Examples 1-8 following, and are -ohematically represented in the following diagram: EMI8.2 Where it is desired to prepare compounds of Formula I wherein B is EMI9.1 there may be added tionally carried out, on the products prepared by the procedures discussed immediately above, the following steps: (1) Alkylating the lactim carbonyl by treating it with triaikyloxonium strafluoroborate to form the cor responding alkyl iminium ether, i.e., thf compound of Formula I where B is as above and R4 OR5. A typical procedure of this type is described in the first portion of Example 11 following. (2) Treating the product of step (1) with an amine of formula HNR6R7 followed by treatment with a mineral acid to form the compound of Formula I where B is as above and R4 = NR6R7. typical procedure f this type is described in Example 13 following. Where it is desired to prepare compounds of Formula I wherein A is - CH = CH-, there may be additionally carried out, on the products prepared by the procedures dis- cussec above on pages 7 and 8 the following steps: (1) treating the 1,2 saturated compound with lithium diisopnryl amide to form the corresponding enolate; (2) treating the enolate of step (1) in situ with diphenyldisulfide to form the corresponding a-pheny- thio compound; (3) oxidizing the product of step (2) to form the corres- ing sulfoxide compound; and (4) heating the product of step (3) to form the compound of Formula I wherein A is - CH = CH -. A typical procedure of this type is described in Example 10 following. A preferred process for preparing 176-N,N- diethylcarbamoyl-4-methyl-4-aza-5&alpha;-androstan-3-one, an especially preferred compound of the present invention, comprises the following steps: (a) pregnenolone (V), an available starting material, is treated by the haloform King reaction with iodine and pyridine to form the 20pyridinum iodide derivative of the pregnenolone (VI); (b) the pyridinium iodide derivative (VI) is methanolyzed to the methyl ester of 17-carboxy androstenol (VII) with sodium methoxide and methanol, the ester form bering pre Erred for carr'ing out the following Oppenhauer reaction; (c) the methyl ester of 17-carboxy androstenol (VII) is treated with aluminum isopropoxide and cyclohexanone in ar. appropriate solvent such as toluene to yield methyl 4-androstene-3-one-17-carboxylate (VIII) (d) the methyl -4-androstene-3-one-17-carboxylate (VIII) thus formed is hydrolyzed to the 17-acid (IX) under acid conditions in a methanol: water solvent of approximately 4:1 proportions; Ce) the 17 acid (IX) is then treated with an oxalyl chloride: pridine complex of approximately 1:1 proportions in toluene or other suitable solvent, e.g. xylene, to form the 17acid chloride (X); (f) the 17-acid chloride (X) is then treated ib situ with an excess of diethylamine to form the 17ss-N,N-diethylcarbamoyl-4-androstene-3-one (XI); (g) the 4-androstene-3-one (XI) thus formed is oxidized by treatmat with sodium periodate and potassium permanganate, using tert-butanol and water as a solvent system, to the ccrresponding 5-oxo-3,5-secoandrcsten-3-oic acid (XII): : (h) the secoandrostanoic acid (XII) is then converted to the corresponding 4-aza compound (XIII) by treating it wit methylamine in ethylene glycol for a period of about 1 hour over which time the reaction mixture temperature is raised to from 1400 - 1800C. where it is maintained from 0.5 to 5 minutes; (i) the resulting 17ss-N,N-diethyl- carbamoyl-4-methyl-4-aza-5-androsten-3-one (XIII) is then hydrogenated by treating it with hydrogen at room tempere- ture to 600C. or higher, using platinum oxide as the catalyst, to form the 17ss-N,N-diethylcarbamoyl-4-methyl- 4-aza-5c-androstan-3-one (XIV) final product, which is then separated and purified. The above reactions are further detailed in Example 12 following, and are schematically represented in the following diagram: EMI11.1 EMI12.1 The novel compounds of Formula I which incorporate the structure of partial Formula II of the present invention, i.e., the A-homo analogs, may be prepared by a method comprising the steps of (1) reacting a testosterone with ethanedithiol in the presence of boron trifluoride etherate to form a 3-dithioketal derivative of the testosterone; (2) reacting the product of step (1) with sodium and liquid ammonia to remove the 3-dithioketal substituent; (3) reacting the product of step (2) with dihydropyran in the presence of p-toluene-sulfonyl chloride to form a 17-tetrahydropyranyloxy derivative; (4) reacting the product of step (3) with borane and then with sodium hydroxide and hydrogen peroxide to form a 4-hydroxy-5a-hydrogen compound; (5) reacting the product of step (4) with chromium trioxide to form a 4-keto compound; (6) treating the product of step (5) with acid to remove the 17-tetrahydropyranyl protective group and form a-.17-hydroxy compound; (7) reacting the product of step C6r with acetic anhydride to form a 17-acetoxy compound; (8) reacting the product of step (7) with hydroxylamine hydrochloride to form a 4-oxime compound; and (9) re reacting the product of Step (8) with thionyl chloride and then potassium hydroxide to form a compound of Formula I which incorporates the structure of partial Form ula II, an A-homo-4a-aza compound. The above reactions are further detailed in Example 9 following, and are schematically represented in the following diagram: EMI14.1 EMI15.1 EMI16.1 The novel compounds of Formula I which incorporate the structure of partial Formula III of the present invention, i.e., the D-homo analogs, may be prepared by a number of different methods known in the art, including those described in J. Steroid Biochem., Vol. 5, No. 4, p. 298 (June 1974) by Alig et al. and Kerb et al., and in Helv. Chim. Acta, Vol. 23, pp. 376-384 and 840-845 by Goldberg and Mannier. Novel compounds of the present invention having a 1,2a-methylene substituent, i.e. where A EMI16.2 may be prepared in accordance with methods known in the art, including,.e.g., that described in Chem. and Ind., -: p. 1710 (Oct. 10, 1964) by Loev et al. , Novel compounds of the present invention which are II 1, i.e. where A is -CH =CH, and in which the 4nitrogen carries a substituent other than hydrogen, may be prepared in accordance with the procedures described in example 10 which follows. Where the 4-nitrogen is sub diluted only with hydrogen, the novel compounds of the present invention may be prepared in accordance with the procedures described in Example 11 following. The compounds of the present invention, prepared in accordance with the method described above, are, as already described, potent antiandrogens by virture of their ability to specifically inhibit test osterone-5-red'ctase. Accordingly, the present invention is parti cularly concerned with providing a method of treating the hyperandrogenic conditions of acne vulgaris, seborrhea, male pattern baldness and female hirsutism by topical administration, and a method of treating all of the above conditions as well as benign prostatic hypertrophy breast carcinoma, and prostate carcinoma, by parenteral administraton, of the novel compounds of the present invention. Breast carcinoma and prostate carcinoma are conditions or diseases which are androgen responsive, that is, they are aggravated by the presence of androgens, whether in normal or hyper-normal amounts, in the metab-olic system. The present invention is thus also concerned with providing suitable topical and parenteral pharmaceutical formulations for use in the novel methods of treatment of the present invention. The compositions containing the compounds of the present invention as the active ingredient for use in the treatment of benign pro static hypertrophy can be administered in a wide variety of therapeutic dosage forms in conventional vehicles for systemic administration as, for example, by oral administration in the form of tablets, capsules, solutions, or suspensions, of by intravenous injection. The daily dosage of the products may be varied over a wide range varying from 50 -a 2,000 mg. The compositions are preferably provided in the form of scored tablets containing 5, 10, 25,50, 100, 150, 250, and 500 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. An effective amount of the drug is ordinarily supplied at a dosage level of from about 1 mg. to about 50 mg./kg. of body weight per day. Pre-ferably the range is from about 1 m. to 7 mg./kgs. of body weight per day. These dosages are well below the toxic dose of the product. Capsules containing the product of this invention can be prepared by mixing an active compound of the present invention with lactose and magnesium stearate, calcium stearate, starch, talc, or other carriers, and placing the mixture in gelatin capsule. Tablets may be prepared by mixing the active ingredient with conventional tableting ingredients such as calcium phosphate, lactose, corn starch or magnesium stearate. The liquid forms in suitably flavored suspended ing or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methylcellulose and the like. Other dispersing agents which may be employed include glycerin and the like. For parenteral administration sterile suspensions and solutions are desired. Isotonic preparations which generally contain suitable preservative are employed when intravenous administration is desired. For the treatment of acne vulgaris, seborrhoea, female hirsutism and male pattern baldness, the compounds of the present invention are administered in the formula of pharmaceutical composition comprising the active compound in combination with a pharmacologically acceptable carrier adapted for topical administration. These topical pharmaceutical compositions may be in the form of a cream, ointment, gel or aerosol formulation adapted for application to the skin. These topical pharmaceutical compositions containing the compounds of the present invention ordinarily include about 0.1% to 15%, preferably about 5%, of the active compound, in admixture with about 95% of vehicle. The method of preparing the novel compounds of the present invention, already described above in general terms, may be further illustrated by the following examples: EXAMPLE 1 17ss-N,N-dietnylcarbamoyl-4-methyl--aza-5c-androstan-3- one A. 3-oxo-N,N-diethyl-4-etienamiae Twenty grams of sodium 3-oxo-4-etienate was suspended in 360 ml. of dry benzene and 0.13 ml. of pyridine and cooled to 140C. The suspension was treated with 20 ml. of oxalyl chloride and stirred at 150 C. for 15-20 min. The suspension was evaporated to dryness and then slurried up, as a suspension, in 125 ml. of dry tetrahydrofuran. This suspension was then added to e solution of 25 ml. of diethylamine in 125 ml. of tetrahydrofuran and stirred at room temperature for 1 hr., after which the mixture was poured into 41. of ice water. A semi-crystalline precipitate resulted which was extracted with ethyl acetate, washed with water and then saturated brine, and dried and evaporated to 25.7 g. of product. The product-was recrystallized from ethyl ether; the first crop of 10.0 g. had a m.p. of 1270-1290C. and the second crop of 3.lg. had a m.p. of lla-1190C. B. l7-N ,N-diethylcarbamoyl-5-oxo-3, 5-secoandrostan-3- oic acid Fifteen grams of the product of Step A. was dissolved in 150 ml. of dichloromethane and 75 ml. of methanol and cooled to -78 C., after which ozone was bubbled through the solution until a blue color persisted. The reaction -solution was then warmed to room temperature and purged with nitrogen, after which it was evaporated to dryness at 350C. The residue was dissolved in benzene and extracted three times with 2.5N NaOfl. These basic washes were combined and acidified with concentrated HC1, extracted wtih benzene, washed, dried, and evaporated to 11.5g. of a white crystalline solid. The product was recrystallized from ethyl acetate and found to have a m.p. of 2050-2080C. C. 17B,-N, N-diethylcarbamoyl-4-aza-4-methyl-5-androsten 3-one To 190 ml. of ethanol was added 26.3g. of the product of Step B to form a solution. The solution was cooled in an ice bath and saturated with methylamine, and then heated at 1800C. for 8 hrs. The reaction mixture was then cooled to room temperature and evapora- ted to yield 22.3g. of a yellowish solid. After chromatographing and recrystallization from ethyl ether, the final product was found to have a m.p. of 1200-1220C. D. l7-N,N-diethylcarbamoyl-4-methy1-4-aza- 5a-androstan- 3-one To 1 liter of glacial acetic acid was added 36.5 g. of the product of Step C to form a solution. The solution was then treated with 3.5 g. of platinum oxide catalyst and hydrogenated at 40 p.s.i. at room temperature for 8 hrs. The reaction mixture was then filtered and evaporated to dryness. The residue was dissolved in chloroform and washed with a bicarbonate solution, brine, and then dried and evaporated to dryness. The product was recrystallized from ethyl ether to yield 30.65g. of a white crystalline final product having a m.p. of 1680-1700C. EXAMPLES 2-8 following the procedures described in Example 1 above, but substituting for the 3-oxo-4-etienate in Step A an equimolar amount of other available or readily prepare 3-oxo-#4 compounds, or substituting for the diethylamine anequimolar amount of another appropriate amine, there were prepared the compounds of Formula I of the present invention enumerated in the following table. EMI21.1 <tb> <SEP> x <tb> <SEP> t <SEP> .¯ <tb> Example <SEP> - <SEP> p <tb> <SEP> ( c.j <tb> <SEP> 2 <SEP> CO7(CH2CF) <SEP> 2 <SEP> 2-265 <tb> <SEP> 3 <SEP> 2dr285 <tb> <SEP> r <tb> <SEP> 4 <SEP> Cm, <SEP> 1 <SEP> 138-1i?0 <tb> <SEP> 5 <SEP> H <SEP> COC3 <SEP> 272-275 <tb> <SEP> 6 <SEP> CH3 <SEP> COCK3 <SEP> 218-220 <tb> <SEP> CH3 <SEP> CONhCH, <SEP> CH <SEP> 249-251 <tb> <SEP> 8 <SEP> H <SEP> COOT. <SEP> 3uu-302 <tb> EXAMPLE 9 17ss-acetoxy-4a-aza-5&alpha;-A-homoandrostan-4-one A. 17ss-hydroxy-4-androstene-3-thioketal A solution was prepared from 7.5 g. of testosterone, 37.5 ml. of glacial acetic acid, 4.5 ml. of ethanedithiol, and 3.0 m. of boran trifluoride etherate at 000. The mixture was allowed to cone to room temperature where it was maintained for 1.5 hrs. The mixture was then diluted with water, extracted with chloroform, an washed with 5% sodium bicarbonate, then water several times, then a saturated sodium chloride solution. The mixture was then dried and evaporated zo yield a white slid which was recrystallized from methanol to give 9.0g. cf final product (95% yield) having a m.p. of 160 -162 C. B. 17ss-hydroxy-4-androstene To 60 ml. of anhydrous liquid ammonia was added 1.2g. of metallic sodium. To this solution was added 1.0 c. of the thioketal in 10. ml. of dry tetrahydrofuran and the solution was refluxed for 2C min. The solution was quenched with a few ml. of ethanol and evaporated at room temperature. The solution was then diluted with water, extracted with di- chlcromethane, washed with water, HC1, then water, and dried and evaporated to a white solid having a m.p. of 149 -152 C. (609 mg., 81% yield). C. 17 Q - tetrahydropyranyloxy-4-androstene To 30 ml. of dihydropyran containing 450 mg. of p-toluenesulfonyl chloride was added 6.0g. of the product of Step B and the solution was stirred at room temperature for 1 hr. The solution was then diluted with ethyl ether and washed with a 20% pyridine water mixture twice, and then water, then brine, and dried and evaporated to yield a pale yellow oil which crystallized (8.5g.), and had a m.p. of 920-960C. D. 17ss-tetrahydropyranyloxy-4ss-hydroxy-5&alpha;-androstane To a cooled solution (0 C.) of 5 ml. of 1M borane in tetrahydrofuran in 2.7 ml. of dry tetrahydrofuran was added 500 mg. (1.4 millimole) of the product of Step C. in 2.0 ml. of dry tetrahydrofuran. The clear solution was stirred for 1 hr. at room temperature and then cooled to OOC. and treated with 5 ml. of 2.5 N sodium hydroxide followed by 4 ml. of 30% hydrogen peroxide. The solution was stirred for 1 hr. at room temperature, diluted with water and extracted with ethyl ether, washed with water, brine, dried and evaporated to an oily crystalline material. The product was washed with cold methanol and pumped dry to give 175 mg. of final product having a m.p. of 167 -170 C. E. 17ss-tetrahydropyranyloxy-5&alpha;-androstan-4-one To 0.42 ml. of dry pyridine and 6.3 ml. of dry dichloromethane was slowly added 0.264g. of chromium dioxide ...d the mixture was stirred for 15 min. at roo temperature. To the mixture was added a solution of 175 mg. of the product of Step D in 0.7 m'. cf dichloromethane and the resulting mixture was stirred for 20 min. at room temperature. The mixture was dilutec with water, extracted with ethyl -her, and washed with 2.5 N sodium hydroxide, water, and brine. The mixture was then dried and evaporated to a clear c:l. F. 17ss-hydroxy-5&alpha;-androstan-4-one To '5 ml. of ethanol was added 2.32 g. of the product of St p E to form a solution which was then treated with i ml. of 2.5 N hydrochloric acid and warmed on a steam ba.i for 40 min. to yield 2.1 g. of a crystalline product 1, ving a m.p. of 123 -126 C. 17ss-acetoxy-5&alpha;-androstan-4-one - To 12 ml. of dry pyridine and 6 ml. of acetic anhydride was added 2.0g. of the product of Step F to form a solution which was heated on a stem bath for 30 min. and then poured into 175 ml. of ice water and stirred to decompose the excess anhydride. The reaction mixture was filtered, washed with water, and pumped dry under high vacuum at 50 C. to yield 1.7 g of final product ain a m.p. of 160 -163 C. H. 17ss-acetoxy-5&alpha;-androstan-4-oxime To 125 ml. of ethanol and 30ml. of dry pyridine was adced 2.0 g. of the product of Step G to form solution which was treated with 420 mg. of hydroxylamine hydrochloride and stirred at room temperature. The reaction mixture was chromatographed by thin layer chromatography on silica gel in 20% ethylacetate/benzene which was allowed to run overnight. The product was concentrated to low volume at 300 40 C. under high vacuum and diluted slowly with water to or-.- a white crystalline material which was filtered, washed with water, dissolved in ethyl ether, dried, and recrystallized from ethyl ether. The final product had a m.p. of 2220-2240C. I. 17ss-acetoxy-4a aza-5&alpha;-A-homoandrostan-4-one To 3.3 ml. of distilled thionyl chloride at -78 C; was added 500 mg. of the product of Step E and the resulting solution was stirred for 1-2 min. and then slowly added to 50 ml. of AN potassium hydroxide at 200C. A solid precipitate formed which was filtered and washed well with water and then ethyl ether. The product was recrystallized from ethylacetate, washed with ethylacetate, ethyl ether and dried to yield 210 mg. of final product having a m.p. of 232-2350C. EXAMPLE 10 17ss-N,N-diethylcarbamoyl-4-methyl-4-aza-Sa-androst-l-en-3- one A solution of 0.20 g. of anhydrous diisopropylamine in 5.0 ml. of anhydrous tetrahydrofuran is treated at -780C. under nitrogen with 0.9 ml. of 2.2 M butyllithium. After 20 minutes at -780C., a solution of 388 mg. of 176-N, N-diethylcarbamoyl-4-methyl-4-aza-5a-androstan-3-one in 3 ml. of tetrahydrofuran is added dropwise to the reaction mixture. After stirring at -780C. for 30 minutes, a solution of 440 mg. of phenyl disulfide in 1 ml. of tetrahydrofuran is added slowly to the reaction mixture. After stirring for 10 minutes at 780C., the reaction mixture is allowed to warm to room temperature. The mixture is then added to water, and the product is extracted into ethyl acetate. The organic layer is washed with dilute sodium hydroxide solution, then water, then dilute hydrochloric acid, and finally with saturated sodium chloride solution. The solution is dried over calcium sulfate and is then concentrated to the crude solid product. Elution through 30 g. of silica gel with increasing amounts of ethyl acetate in hexane affords the 2-phenylthio derivative as an apparent mixture of two isomers. This material, suspended in 5 ml. of 20% aqueous methanol is treated with a solution of 225 mg. of sodium metaperiodate in 2 ml. of water. After stirring 16 hours, the reaction mixture is diluted with water and extracted with methylene chloride. The organic layer is washed with water, dried, and concentrated to leave the crude sulfoxide. A solution of this material in 5 ml. of toluene is refluxed for 30 minutes. The solvent is removed and the residue is chromatographed on 20 g. of silica gel eluting with increasing amounts of ethyl acetate in ether. The final product crystallizes on trituration with ether. EXAMPLE 11 A solution of 291 mg. of 17ss-N,N-diethylcarbamoyl- 4-aza-5a-androstan-3-one in 3 ml. of methylene chloride is added at OOC. to a solution of 117 mg. of triir.ethyloxonium fluoroborate in methylene chloride. The mixture is then stirred at OOC. for 6 hours and then is treated with 125 mg. of 1,5 diazabicyclo 1S,4,0] undec-5-ene. Stirring is continued for 2 hours and the reaction mixture is diluted with anhydrous ether. The organic solution is separated from the residue and concentrated under reduced pressure to leave the crude lactim ether. This material is then converted to the corresponding Al compound in accordance with the procedures described above in Example 10. EXAMPLE 12 17a-N ,N-diethylcarbamoyl-4-methyl-4-aza-5a-androstan-3-one A. (3ss-hydroxypregn-5-en-20-one-21-yl) pyridinum iodide To 2 1. of pyridine was added 1 kg. (3.16 moles) of pregnenolone, and the mixture was heated to 90-95tC. with moderate stirring, after which the pregnenolone was all dissolved. To the mixture was then cautiously added a total of 866.1 g. (3.41 moles) of iodine over 15-20 minutes, and the reaction mixture temperature was observed to rise to 1200C. The mixture was stirred for 1 hour with the temperature at 1000C. or above, after which it was allowed to cool gradually for 1 hour and was then placed in a cool water bath to bring it to room temperature. The product was collected on a medium porosity silica gel fun nel and was found to be rubbery and gel-like. Filtration was aided by addition of pyridine, and the filtered pro duct was washed 6 times with 300 ml. of pyridine, and then 6 times with 300 ml, of ether, followed by air dry ing. The product, having a m.p. of 2280-2300C., was obtained in 99% yield (1635. 8 g.). B. methyl 5-androsten-3B-ol-17 carboxylate To a flask there was charged 2.7 kg. (5.177 moles) of (3ss-hydroxypregn-5-en-20-one-21-yl) pyridinium iodide, 13.5 1. of methanol, and 900 g. of sodium methoxide. The mixture was refluxed for 1 hour, after which it was allowed to cool to about 530C., and then quenched by adding 24 1. of ice and 2 1. of water, to bring the reaction mixture temperature to 50C. The mix ture was then neutralized by adding 2100 ml. of 1:1 hydrochloric acid and water, giving a pH of 6-7. The mixture was aged for 45 minutes and then collected on z Lapp funnel, after which it was washed well with cold water, until mos of the color was washed out. The product was dried briefly on the funnel and then trans ferred to two glass trays for drying in an air oven at :0 C. overnight. The yield of product was 83.68 (1440 g.). C. methyl 4-andosten-3-one-17e-carboxylate To a flask there was charged 160.0 g. of method 5-androsten-35-ol-17B-carboxylate, 2.4 1. of sieve dried toluene, and 680 ml. of cyclohexanone. The mixture was heated to reflux and any water present was removed by azeotroping for 15 minutes, i.e., until the distillate was clear. Then, 88 g. of aluminum isopropoxide in 320 ml. of dry toluene was added all at once as a slurry. The reaction mixture was refluxed while removing about 800 ml. of toluene over 1 hour. The mixture was then cooled to 250C. and 40 g. of diatomaceous earch was added, followed by 80 ml. of water. The mixture was stirred for 10 minutes and filtered through diatamaceous earth, then washed three times with 300 ml. of toluence. The filtrate was concentrated to near dryness, then chilled in an ice bath. The product crystallized out, was aged at 00-50C., collected, and washed wIth cold hexane, then dried in vacuo. The yield of product was 83.6% (133 g.), which had a m.p. of 130 -132 C. D. 4-androsten-3-one-175-carboxYlic acid To 2.462 kg. of methyl 4-androsten-3-one-17ss- carboxylate in 24.6 1 of methanol was added 1.23 kg. of potassium hydroxide in 4.9 1. of water. The reaction mixture was refluxed under nitrogen for 6 hours, and then allowed to cool to room temperature overnight. The mixture was acidified with 3200 ml. of 6N hydrochloric acid. ost of the product crystallized as fine crystals. Then, 14 1. of water was added in a stream over 30 minutes, which precipitated all of the product. The mixture was aged with stirring for 4 hours at 30 C. The mixture was filtered on a cap funnel and washed with water until the wash water showed neutral. The product was dried in an -oven at 500C. overnight The product, having a m.p. of 245 -248 C., was obtained in 98% yield (2.313 g.). E. 17ss-N,N-diethylcarbamoyl-4-androsten 3-one To a flask were charged 700 g. of 4-androsten 3-one-17v-c2rboxylic acid and 11.6 1. of toluene dried by azeotroping. To the mixture was added 226 ml. of sieve-dried pyridine, after which there was cautiously added 250 ml. of oxalyl chloride in 250 ml. of dried toluene over 20 minutes. The reaction mixture was aged for 1 hour at room temperature, and then chilled to 10 C. There was then added sieve-dried diethyl amine in equal volume of dry toluene in sufficient amount to obtain a persistant alkaline pR. About 2.4 1. of solution were required. The reaction mixture was aged for 30 minutes and then quenched by addition of 16 1. of ice water. The resulting layers were separated and the aqueous layer was extracted three times with 4 1. of ethyl acetate. The combined organic layers were washed with 8 1. of water and hydrochloric acid to make the batch acidic (pH3), and then with 8 1. of water alone, and finally with 8 1. of saturated sodium chloride solution. The batch was dried over sodium sulfate and then concen trated to a small volume of 3 to 4 1. on a large rotating evaporator. Then, 4 1. of hexane were added to the batch and it was chilled to 0 -5 for 1 hour. The product was collected and washed three times with small amounts of cold hexane, then dried in an air oven overnight at 400- SO-C. The product, having a m.p. of 1190-1210C., was obtained in 75% yield (616.5 g.). F. 176-N,N-diethylcarbamoyl-5-oxo-3,5-secoandrostan-3- oic acid ¯¯¯¯¯¯¯¯¯ To a flask was charged 600 g. of 175-N,N-di- ethylcarbamoyl-4-androsten-3-one and 18 1. of tertbutanol in which it was dissolved. Then, a solution of 258 g. of sodium carbonate in 1200 ml. of water was added. Next, a solution of 2.4 kg. of sodium periodate in 18 1. of water was added over a period of 1.5 hours, while adding 1340 ml. of 2% potassium permanganate over the same period of time to maintain the pink color of the reaction mixture. The temperature was maintained between 250 and 400C. during the addition period. The mixture was aged for 2 hours, filtered, and the cake washed with water. The tert-butanol was concentrated off until only aqueous solution was left, and this was then cooled to 100C. and acidified with 110 ml. of 50% sulfuric acid (pre3). The aqueous solution was extracted 3 times with 6 1. of ethyl acetate. The combined ethyl acetate washings were washed with 4 1. of 5% sodium bisulfate solution, then twice with 4 1. of saturated sodium chloride solution. The combined extracts were dried over sodium sulfate and concentrated to 1.5 1., then brought to the boiling point and aged for 2 hours at 50 - 100C. The batch was filtered and the filter cake washed with ethyl acetate. A yield of 77% (488 g.) of product having a m.p. of 2050 - 2080C. was obtained. G. 17ss-N,N-diethylcarbamoyl-4-methyl-4-aza-5-androsten 3-one Into a graduated cylinder maintained in a dry ice bath there was condensed 200 ml. of methylamine, which was then added with stirring to 1250 ml. of ethylene glycol at room temperature. A 16% volume increase was observed. The methylamine/ethylene glycol solution was added to 250 g. of l7-N,N-diethylcarbamoyl'-5-oxo-3,5-secoandros- tan-3-oic acid in a 3 1. flask. Solution was obtained in few minutes. The reaction mixture was heated to 1100C. over 40 minutes, and the -heating was continued at the rate of 2 per minute until the temperature reached 180 0C. Then, the heat was removed. The total elapsed heating time as 70 minutes. The reaction mixture was quenched into 10 1. of water, and a milky solution resulted which was extracted 5 times with 2 1. of dichloromethane. The combined organic extracts were washed with 4 1. of water acidified with concentrated hydrochloric acid, 4 1. of 5% sodium bicarbonate solution, and 3 times with 4 1. of water. The combined organic extracts were then dried over sodium sulfate and treated with 50 g. of silicon dioxide, then concentrated to dryness. The residue was dissolved in a solution of 750 mg. of cyclohexanone in 750 ml. of n-hexane, and then aged with stirring at room temperature overnight. The product was filtered, washed with n-hexane, and dried in vacuo. The final yield of product having a Tap. of 115 -118 C. was 91% (226 g.). H. 17b-N,N-diethylcarbamoyl-4-methyl-4-aza-5a-androstan -3-one To a flask there was charged 150 g. of 178-N,N- diethylcarbamoyl-4-methyl-4-aza-5-androsten-3-one and 750 ml. of glacial acetic acid, and the mixture was heated to 600C. under nitrogen at 45 psi for 4 hours. The product was filtered, the filter cake washed with dichloromethane, and the filtrate concentrated to dryness. The residue was dissolved in 750 ml. of dichloromethane and washed twice with 500 ml. of 1N sulfuric acid, once with 500 ml. of water, once with 500 ml. of saturated sodium bicarbonate solution, and once with saturated sodium chloride solution. The solution was dried over magnesium sulfate and treated with 15 g. of activated charcoal, filtered through a pad of 75 g. of silicon dioxide. The filter cake was washed with 1 1. of dichloromethane and concentrated to dryness. The residue was dissolved in 450 ml. of ethyl acetate dnd then aged 1 hour at room temperature and one hour an an ice bath. The product was filtered and washed with 50 ml. of ethyl acetate, then 100 ml. of n-hexane, and dried. The filtrate was concentrated to dryness, dissolved in 100 ml. of ethyl acetate, aged 2 hours at room temperature, filtered, and washed with 15 ml. of ethyl acetate and 100 ml. of n-hexane. The yield of product having a m.p. of 1720-1740C. was 76.6% (115 g.). EXAMPLE 13 N-methyl-N-[17ss-(N',N'-diethylcarbamoyl)-4-aza-4-methvl-5c -androst-3-en-3-yliamine hydrochloride To a mixture of 160 mg. of trimethyloxonium fluoroborate in 3 ml. of methylene chloride is added at OOC. a solution of 375 mg. of 175-N,N-dieUhylcarS2moyl- 4-methyl-4-aza-5-androstan-3-one in 3 ml. of methylene chloride. After stirring at 0 - 5 C. for 6 hours the mixture is allowed to stand at room temperature overnight. Diazabicyclo [5.4.0.] undec-5-ene (160 mg.) is added and the organic layer is diluted with anhydrous ether. The solid residueis removed by centrifugation and the organic layer is concentrated to dryness to leave the A2- lactimino methyl ether. A mixture of this material with 1.0 g. of methylamine in 5 ml. of toluene is heated in a sealed tube at 100 C. for 24 hours. After cooling, the tube is opened and the solution is concentrated to dryness under a nitrogen stream. The residue is dissolved in 8 ml. of ethyl acetate and a slow stream of anhydrous hydrogen chloride is introduced at OOC. The precipitated product, which is removed by centrifugation, washed twice with ether and dried in vacuo, is N-methyl-N-[17ss-(N', r N' -diethylcarbamoyl) -4-aza- 4-mEthyl-5a-androstan-3-en-3-ylfamine hydrochloride.
WHAT IS CLAIMED IS: 1. A compound of the formula: EMI33.1 where Formula (I) may also have the structure of partial Formulas (II) and/or (III); wherein, A is (1) - CH2 - CH2 -; (2) - CH = CH -; EMI33.2 B is EMI33.3 where R1 is, (a) hydrogen; (b) methyl or ethyl; (c) ethenyl; (d) ethynyl; (e) NRêR where Rê and are hydrogen or methyl; (f) cyano; or EMI34.1 where X e is any anion and R4 is, (a) OR5 where R5 is Cl4 alkyl; or (b) NR6R7, where R6 and R7 are hydrogen or methyl; R is hydrogen or methyl; R is hydrogen or ss-methyl; R is S-methyl or hydroxy; Z is (1) oxc; (2) ss-hydrogen and &alpha;-hydroxy; or hydrogen or a hyc' -oxyl and (3) (Y)n Q where n = 0 or 1, Y is a straight or branched hydrocarbon chain of 1 to 12 carbon atons and O is EMI34.2 where R8 is, (i) hydrogen, (ii) hydroxyl, (iii) C1-4 alkyl (iv) NR9R10, where n9 and R10 are such independently selected from hydrogen, C1-4 straight or branched chain alkyl, C3-6 cycloalkyl, phenyl; or R9 and R10 taken together with the nitrogen to which they are attached represent a 5-6 membered saturated ring comprising up to one other heter atom selected from oxygen and nitrogen. 11 11 ( v) OR , where R is M, where M is hydro gen or alkali metal, or C1-18 straight or branched chain alkyl; benzyl; or (b) OR12, provided that for 17&alpha;-OH, n must = 1, where R12 is, (i) C1-20alkylcarbonyl, (ii) phenyl C1-6 alkylcarbonyl, (iii) C5¯10 cycloalkylcarbonyl, (iv) benzoyl, or (v) C1-8alkoxycarbonyl; EMI35.1 where the dashed bond replaces the 17&alpha; hydrogen; EMI35.2 provided thatfor 17&alpha;-OH, n must 1, where R13 is, (a) C1-12 alkyl; or (b) NR9R10; (6) cyano; or C) tetrazolyl; and pharmaceutically acceptable salts of the above compounds. 2. A compound of Claim 1 of the formula: EMI35.3 wherein R1 is hydrogen, methyl, or amino; and T is CONHCH2CH3, EMI36.1 3 A compound of Claim 1 wherein the compound is 17ss-N,N-diethylcarbamoyl-4-methyl-4-aza-5&alpha;-androstan- 3-one. - - 4. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of formula: EMI37.1 where Formula (I) may also have the structure of partial Formulas (Il) and/or (III); wherein, A is (1) - CH2 - CH2 (2) - CH = CH -; EMI37.2 B is EMI37.3 where R1 is, (a) hydrogen; (b) methyl or ethyl; (c) ethenyl; (d) ethynyl; (e) NR-êR where Rê and 3 (f) cyano; or EMI38.1 where X ' is any anion and R4 is, (a) OR5 where R5 is C1-4 alkyl; or (b) NR6R7, where R6 and R7 are hydrogen or methyl; R' is hydrogen or methyl; R'' is hydrogen or ss-methyl; R''' is ss-methyl or hydroxy; Z is (1) oxo; (2) ss-hydrogen and &alpha;-hydroxy; or &alpha;-hydrogen or &alpha;- hydroxyl and (3) (Y)n Q where n = O or 1, Y is a straight or branched hydrocarbon chain of 1 to 12 carbon atoms and Q is EMI38.2 where R8 is, (i) hydrogen, (ii) hydroxyl, (iii) C1-4 alkyl Civ) NR9R10, ere R9 and R10 are each independently selected from hydrogen, C1-4 straight or branched chain alkyl, C3-6 cycloalkyl, phenyl; or R9 and R10 taken together with the nitrogen to which they are attached represent a 5-6 membered saturated ring comprising up to one other heter atom selected from oxygen and nitrogen. (v) OR11, where R11 is M, where M is hydro gen or alkali metal, or C1-18 straight or branched chain alkyl; benzyl; or (b) OR12, provided that for 17a-OH, n must = 1, where R12 is, (i) hydrogen, (ii) $C1-20 alkylcarbonyl, (iii) phenyl C1-6 alkylcarbonyl, (iv) C5-10 cycloalkylcarbonyl, (v) benzoyl, or (vi) C1-8 alkoxycarbonyl; EMI39.1 where the dashed bond replaces the 17&alpha; hydrogen; EMI39.2 provided thatfor 17&alpha; - OH, n must = 1, where R13 is, (a) C1-12 alkyl; or (b) NR9R10; (6) cyano; or C) tetrazolyl; and pharmaceutically acceptable salts of the above compounds. 5. A method of preparing the compound of the formula: EMI40.1 comprising the steps of (1) treating pregnenolone with iodine and pyridine to form the corresponding 20-pyri-inium iodide deri vative of pregnenolone; (2) methanolyzing the product of sten (1) to form the methyl ester of 17-carboxy androstenol: (3) treating the product of step (2) with aluminum isopropoxide and cyclohexanone to form methyl-4- androsten-3-one-17-carboxylate; (4) hydrolyzing the product of step (3) to form the cor responding 17-acid compound; (5) treating the product of step (4) with an oxalyl chloride: pyridine complex to form the corresponding 17-acid chloride compound; (6) treating the product of step (5) in situ with di ethylamine to form 17ss-N,N-diethylcarbamoyl-4- androstan-3-one; (7) oxidizing the product of step (6) with sodium perlodate and potassium permanganate in a tert butanol: water solvent system to form the corresponding 5-oxo-3,5-secoandrostan-3-oic acid compound; (8) treating the product of step (7) with methylamine in ethylene glycol to form 17ss-N,N-diethylcarbamoyl-4- methyl-4-aza-5-androstan-3-one; (9) hydrogenating the product of step (8) by treating it with hydrogen under catalytic conditions to form the final product, 17ss-N,N-diethylcarbamoyl-4-methyl-4 aza-5&alpha;-androstan-3-one. 6. A method of preparing the compound of the formula: EMI41.1 comprising the steps of (1) treating 4-androsten-3-one-175-carboxylic acid with an oxalyl chloride: pyridine complex to form the cor responding 17-acia chloride; (2) treating the product of step (1) in situ with diethyl- amine to form 17-,-diethylcarSamoyl-4-androsten-3- one; (3) oxidizing the product of step (2) with sodium perlodate and potassium permangenate in a tert-butanol: water solvent system to form the corresponding 5-oxo-3,5- seconanÅarostan-3-oic acid compound; (4) treating the product of step (3) with methylamine in ethylene glycol to form 17ss-N,N-diethylcarbamoyl-4- nethyl-4-aza-5-androsten-3-one; (5) hydrogenating the product of step (4) by treating it with hydrogen under catalytic conditions to form the final product, 17ss-N,N-diethylcarbamoyl-4-methyl-4 aza-5-androstan-3-one.
MERCK & CO. INC.
ARTH, GLEN EDWARD - DECEASED; JOBSON, RONALD BRADFORD; JOHNSTON, DAVID BRUCE RANDOLPH; RASMUSSON, GARY HENRY; REINHOLD, DONALD FLOYD; UTNE, TORLEIF
EP-0004955-B1
4,955
EP
B1
DE
19,820,113
1,979
20,100,220
new
A62C3
B64D1
B64D1, A62C3
A62C 3/02, B64D 1/16
FIRE-EXTINGUISHING METHOD AND APPARATUS
1. A method of extinguishing fires in which an upwardly-open container, hanging from an aircraft and filled with extinguishing liquid, more especially extinguishing water, is rotated forwardly with regard to the aircraft and thereby emptied, characterised in that the container, with the aircraft flying straight ahead, is suddenly rotated forwardly and downwardly through almost 180 degrees in order to throw the extinguishing liquid as a whole in a targeted manner onto the location that is to be extinguished.
Brandlöschverfahren und Vorrichtung zur Durchführung des Verfahrens Es sind Brandlöschverfahren bekannt, bei denen Löschflüssigkeit, insbesondere Löschwasser, von einem Luftfahrzeug aus über der Brandstelle versprüht oder jeweils ein mit Wasser gefülltes, aus Folienmaterial bestehendes Behältnis abge worfen wird, das beim Aufprall auf den Boden zerplatzt (CH-PS 566 885 und 573 839). Beim Versprühen verdampft ein nennenswerter Teil des Wassers in der Sitze über der Brandstelle, so dass cie eingesetzte Wassermenge nur teilweise zur Wirkung kommt. Die mit Wasser gefüllten Behältnisse haben bei Waldbränden keine Löschwirkung auf Baumkronen, von denen Teile durch den beim Brand entstehenden Luftzug mitgenommen werden und den Brand ausbreiten. Auch das beim Platzen cer Behältnisse unter hohem Druck verspritzte Wasser reiss brennende Teile mit, die dabei den Brand ausbreiten. Das Füllen der aus Folienmaterial bestehenden, also nicht formsteifen Behältnisse mit Wasser ist zeitraubend und verzögert die Löscharbeiten. Die Behältnisse sind ein kostspieliges Verbrauchsmaterial. Nach einem nicht zum Stand der Technik gehörenden Vorschlag (CH-PS ... ..., Ges. 15 552/76), der diese Nachteile vermeidet, wird ein mit der Löschflüssigkeit gefüllter Behäl ter über der Brandstelle bei stillstehendem (oder sehr langsam fliegendem) Luftfahrzeug plötzlich entleert, derart, dass die Töschflüssigkeit als Ganzes herabfällt. Die nach diesem Vorschlag zu verwendende Einrichtung hat einen um eine horizontale Achse drehbaren bzw. kippbaren Behälter. Die Ijöschwirkung dieses Verfahrens erstreckt sich auch auf brennende Baunkronen. Das Verhältnis der Oberfläche zum Volumen des als ein zusammenhängendes Ganzes herabfallenden Wassers ist sehr viel grösser als bei versprühtem Wasser, so dass die Verdampfung über der Brandstelle vernachlässng- bar ist und das ganze Wasser zur Wirkung kommt. Da das Was- ser nicht in einem Behältnis auf die Brandstelle kommt, das durch den beim Aufschlagen auf den Boden entstehenden Druck zerplatzt, sondern etwa wie ein Wasserfall auf die Brandstelle trifft, verspritzt es nur geringfugig und führt nicht zur Ausbreitung des Brandes durch beim Verspritzen mitgerissene brennende Teile. Jeder Behälter kann rasch mit geringem Personalaufwand gefüllt werden. Verbrauchsmaterlal ist nur das Löschwasser selbst. Der Erfindung liegt die Aufgabe zugrunde, nicht nur diese Vorteile zu erzielen, sondern ausserdem noch rascher und entsprechend noch wirksamer zu Aöschen. Das erfindungsgemässe Verfahren zur Lösung dieser Aufgabe ist Gegenstand des Patentanspruchs 1, vorzugsweise Ausführungsarten sind Gegenstände der Patentansprüche 2 bis 4. Während das Luftfahrzeug beim Verfahren nach dem genannten Vorschlag über der Zielstelle schweben oder sehr langsam darüber fliegen muss, um zielsicher nach unten zu löschen, kann nach dem erfindungsgemässen Verfahren z.B. mit einer Fluggeschwindigkeit von 60 km/Std. aus einer Flughöhe von 15 bis 25 m - etwa vergleichbar mit dem gezielten Abwurf von F@iegerbemben - vorzugsweise im sog. Stechflug gezielt ge- löscht, d.h. der Behälter gezielt auf die Brandstelle oder einen bestimmten Teil derselben entleert werden. Weil dabei relativ rasch über die Brandstelle geflogen wird, können die eizr öschflüge rascher aufeinander folgen, es kommt in einer bestimmten Zeit mehr Löschwasser zur Wirkung, und der rand hat zwischen den einzelnen Löschvorgängen wenIger Zeit, wieder aufzuflammen. Ausserdem wird die Wirt- schaftlichkeit verbessert. Wesentlich ist auch, dass der Rotorabwind eines über der Bran5stelle schwebenden oder diese langsam überfliegenden Drehflügelflugzeuges (für die vorliegenden Zwecke ausschliesslich üblich) das Feuer anfacht, was beim erfindungsgemässen Verfahren vermieden wird. Nach dem nicht zum Stande der Technik gehörenden Vorschlag hängt der zum Entleeren um eine horizontale Achse drehbare Behälter für Löschflüssigkeit an zwei Tragseilen, die an ihrer Befestigungsstelle am Luftfahrzeug miteinander vereinigt sind. Bei dieser Aufhängung kann der Behälter sich um eine vertikale Achse drehen, d.h. die horizontale Achse kann in einer horizontalen Ebene schwenken. Wenn der Pilot eine Arretierung löst, um den Behälter zu entleeren, weiss nicht, nach welcher Seite (b@zogen auf das Luftfahrzeug) der Behälter sich entleeren wird, und er hat auch keinen Einfluss a & suf. Deshalb muss er beim Entleeren des Behälters über der Brandstelle schweben oder ganz langsam darüber fliegen, um möglichst zielsicher löschen zu können. Dabei ist das oben genannte anmachen oes Brandes schwerlich vermeidbar, wenn das Luftfahrzeug, wie üblich, ein Drehflügel- flugzeug ist. Kit der Vorrichtung nach dem nicht zum Stande der Technik gehörenden Vorschlag ist es nicht möglich, den Behälter während des Fluges nach vorn abwärts zu entleeren. Eine Vorrichtung, welche dies zur Durchfahrung des erfindungs- gemässen Verfahrens ermoglicht, ist Gegenstand des Patentanspruchs 5. Bevorzugte Ausführungsformen dieser Vorrichtung sind Gegenstand der Anspruche 6 bis 10. Als Ausführungsbeispiel der erfindungsgemässen Vorrichtung is, in den beiliegenden Zeichnungen eine Vorrichtung zum Aufhängen eines oben offenen Behälters für Löschflüssigkeit an einem Drehflügelflugzeug dargestellt. Es zeigen: Fie. 1 eine Vorderansicht der Vorrichtung in Blickrichtung des Pfeiles I in Fig. 2, Fig. 2 eine teilweise Seitenansicht in Richtung des Pfeiles II in Fig. 1, Fig. 3 eine Einzelheit von Fig. 2 in grösserem Massstab, Fig. 4 eine Einzelheit von Fig. 1 in noch grösserem Mass stab und Fig. 5 einer. Schnitt nach der 1 nie V - V in Fig. 3. Ein oben offener, zylindrischer Behälter 1 für Löschwasser ist an den Schenkelenden eines U-förmigen Bügels 2 um eine Achse 3 dretar gelagert. In der ausgezogen dargestellten Behälterruhelage liegt die Achse 3 tiefer als der Schwerpunkt t des mit Wasser gefüllten Behälters 1 und höher als der Schwerpunkt 5 des leeren Behälters 1. Der Bügel 2 hat an zwei Tragseilen 6, die unten mit den Enden des die Bugel- schenkel verbindenden Bügelteile@ und oben in einem Abstand voneinander an einem Verbindungselement 7 befestigt sind, das auf der (nur teilweise dargestellten) Lastklinkenkabelschleife 8 eines (nicht dargestellten) Drehflügelflugzeuges abgestützt ist. Die Klinkenkabelschleife 8 ist einerseits fest und andererseits in einem Abstand davon durch die Lastklinke lösbar mit dem Flugzeug verbunden. Der Abstand liegt in der Geradeausflugrichtung (14 in Fig. 2). Die Drehung des Behälters 1 ist mittels zweier an ihm befestigter Stifte 9 und 10 auf einen Bereich (11 bzw. 12) begrenzt, der grösser als 900 und kleiner als 1800 ist. In der ausgezogen dargestellten Stellung des Behälters 1 stösst der Stift 9 an die in Fig. 2 rechte, d.i. die in Geradeaus- flugrichtung 14 vordere Seite des Bägelschenkels 13. Nach der maximalen Drehung 11 im Uhrzeigersinn ist der Behälter 1 in der strichpunktiert darges-ellten Lage 1', wobei der Stift 10 in seiner Lage 10' an die in Fig. 2 linke Seite des Bügelschenkels 13 anstösst. Bei dieser Drehung 11 bewegt sich die Behälteröffnung 15 in Geradeausflugrichtung 14 nach vorn abwärts, d.h. in Richtung des Pfeiles 11 In die Lage 15'. Am Bügelschenkel 13 ist eine Klinke 16 angebracht, die den Stift 9 am Bügelschenkel 13 häl4, wenn der Behälter 1 in der ausgezogener, Stellung (Geffrung 15 oben) ist. Die Klinke 16 kann mittels eines Zugseiles 17 vom Drehflügelflugzeug aus gegen die Kraft einer Feder 18 ausgeklinkt werden, um den Stift 9 freizugeben. Danach schwenkt der Behälter 1, wenn er gefüllt ist, wobei sein Schwerpunkt 4 höher als die Achse 3 liegt, in Pfeilrichtung 11, und entleert sich dabei nach vorn (14) abwärts. Danach liegt der Schwerpunkt 5' des leeren Behälters (in dessen Stellung 1') höher und bezogen auf die Geradeausflugrichtung 14 hinter der Achse 3, so dass der Behälter in Pfeilrichtung 12 aus der strichpunktier tF (1') in die ausgezogen dargestellte Lage 1 zuruckkehrt, in welcher die Klinke 16 unter der Wirkung der Feder 18 wieder einklinkt und in der eingeklinkter, Stellung gehalten bleibt. Die Achse 3 ist, wie Fig. 2 zeit, so angeordnet, dass sie in (vertikaler) Behälterruhestellung 1 in Geradeausflugrichtung 14 hinter dem Schwerpunkt 4 des gefüllten Behälters liegt. Dadurch wird erreicht, dass der gefüllte Behälter sich beim Ausklinken der Klinke 16 unverzüglich entleert. Das *, wichtig denen der Pilot kann während des Fluges (mit z.B. 60 km/Std. Fluggeschwindigkeit) nur dann erfolgreich gezielt löschen, wenn er das Entleeren des Behälters in einem ganz bestimmten Zeitpunkt auslösen kann. Das gelingt in der Praxis auch dann, aber nicht mit derselben Sicherheit, wenn die Achse in vertikaler Behälterruhestellung (abweichend von Fi@ . 2) vertikal unter dem Schwerpunkt des gefüllten Behälters liegt. Denn dann liegt der Schwerpunkt des gefüllten Behälters während des Fluges in Flugrichtung auch etwas weiter vorn als die Achse, weil der Behälter mit den Tragseilen wegen seines Luftwiderstan- des nicht vertikal hängt, sondern etwas nach hinten geschwenkt ist. In der Behälterstellung 1' liegt der Schwerpunkt 5' des leeren Behälters sowohl dann, wenn er in vertikaler Behälterruhelage 1 vertikal unter der Achse 3 liegt als auch dann, wenn er dabei in Flugrichtung 14 nach vorn versetzt ist, in Flugrichtung 14 hinter der Achse 3, weil die Drehung 11 grösser als 900 und kleiner als 1800 ist. Dadurch ist die Zurückdrehung 12 des Behälters 1' in seine Ruhelage 1 gewährleistet. Das Verbindungselement 7 besteht aus einem gleichschenklig- dreieckiger. Stahlrohrrahmen 19 (Fig. 4 und 5), in dessen oberer, innerer Ecke eine auf dem Klinkenkabel 8 aufliegende Auflage 20 befestigt ist. Die Auflage 20 ist kreisbogen- förmig und hat ein der Klinkenk@belschleife 8 angepasstes Seilrillenprofil. Die Enden der Auflage 20 liegen in einem Abstand a voneinander symmetrisch beiderseits der Rahmenfläche. Die oberen Enden der Tragseile 6 sind an den unteren Ecken des Rahmens 19 befestigt. Bin am Basisteil 21 des Rahmens 19 nach oben in den Rahmen hineinragender Vorsprung 22 hält die oberen Enden der Tragseile 6 zuverlässig in einem Abstand b voneinander. Die Abstände 2 und b sind so bemessen, dass der Bügel 2 mit dem Behälter 1 in bezug auf Drebungabewegungen um eine vertikale Achse in einer stabilen Lage am Flugzeug hängt, d.h. sich während des Fluges nicht nennenswert um eine vertikale Achse drehen kann und nach einer solchen Drehung un verzglich in seine diesbezügliche Ausgangslage von selbst zurückkehrt. Da die zwischen dem Flugzeug und dem Verbindungselement 7 verlaufenden Teile der Klinkenk@belschleife 8 am Flugzeug einen in Geradeausflugrichtung 14 liegenden Abstand und am Verbindungselement 7 den Abstand a voneinander haben, die Tragseile 6 am Verbindungselement 7 im Abstand b voneinander una unten an Boden Enden des die Fügelschenkel miteinander verbindenden Teils des Bügels 2, also ebenfalls in einem Abstand voneinander befestigt sind und dle Abstände a und b durch das Verbindungselement 7 rechtwinklig zueinander fixiert sind. verläuft die Achse rechtwinklig zur Geradeausflugrichtung 14. Da die Abstände a und b wie oben angegeben bemessen sind, ist die Achse 3 in dieser Lage stabil, d.h. sie kehrt nach einer Auslenkung (Drehung um eine vertikale Achse) stets von selbst in diese Lage zurück. Da @usser- dem der Stift 9 wie oben erwähnt (in der dargestellten Siel- lung des Behälters 1), in Geradeausflugrichtung 14 vor dem Bügel 2 liegt, kann der Behälter 1, wenn die Klinke 16 ausgeklinkt wird, nur in Geradeausflugrichtung 14 nach vorn abwärts kippen (Pfeil 11). Beim Ausklinken entleert sich der Behälter 1 somit zwangsläufig in Geradeausflugrichtung 14 nach vorn (11). Dies ermöglicht das gezielte Löschen während des Fluges. Der am Luftfahrzeug hängende Behälter 1 kann aus einem offenen Gewässer sehr schnell gefalzt werden, indem er vom Luftfahrzeug bei eingeklinkter Klinke 16 mit seiner Oeffnung 5 voran an der Oberfläche des Gewässers geschleppt wird, so dass er untergeht und sich mit Wasser füllt, durch Vergrösserung der Flughöhe aus dem Wasser gehoben und dann zur Brandstelle geflogen wird.
P a t e n t a n s p r ü c h e 1. Verfahren zum Löschen von Banden durch von einem Suft- fahrzeug aus auf die Brandstelle applizierte Löschflüssigkeit, insbesondere Löschwasser, bei dem ein mit der Tösch- flüssigkeit gefüllter Behälter am Luftfahrzeug so plötzlich entleert wird, dass die Löschflüssigkeit als Ganzes auf die Brandstelle herabfällt, dadurch gekennzeichnet, dass der oesen offene Behälter (1) während des Fluges nach vorn ent- leert wird. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Behälter (1) zum Entleeren mit seiner Oeffnung (15) nach vorn abwärts geneigt wird. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Behälter (1) entleert wird, während das Suftfahr- zeug schräg abwärts fliegt. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der am Luftfahrzeug hängende Behälter (1) zum Ballen aus einem offenen Gewässer mit seiner Oeffnung (15) voran an der Oberfläche des Gewässers so geschleppt wird, dass er untergeht, und dats er dann aus dem Wasser gehoben und über die Brandstelle geflogen wird. 5. Vorrichtung zum Halten eine oben offenen Behälters für Löschflüssigkeit an einem Luftfahrzeug, zur Durchfüh rung des Verfahrens nach Anspruch 1, bei welcher der Behälter zum Entleeren um eine horizontale Achse drehbar ist, dadurch gekennzeichnet, dass die Achse (3) des am Luftfahr- zeug gehaltenen Behälters (1) rechtwinklig zur Geradeausflugrichtung (14) des Luftfahrzeugs gehalten und der Behälter aus seiner Ruhelage (1), In der seine Oeffnung (15) oben ist, zum Entleeren nur mit der @effnung (15) in Geraceaus- flugrichtung (14) nach vorn abwärts (11) um die Achse (3) drehbar ist. 5. Vorrichtung nach Anspruch 5, bei welcher in Ruhelage des Behälters der Schwerpunkt des gefüllten Behälters höher und der Schwerpunkt cec leeren Behälters tiefer als die Achse liegt, und der Behälter aus seiner Ruhelage gegen eine Drehung um die Achse in einer Richtung durch einen Anschlag und gegen eine Drehung in der entgegengesetzten Richtung durch eine vom Suftfahrzeug aus lösbare Klinke geslcnert ist, dadurch gekennzeichnet, ds die Klinke (16) den Behälter in seiner Ruhestellung (1) daran hindert, sich mit seiner Oeffnung (15) nach vorn abwärts (11) zu drehen. 7. Vorrichtunz nach Anspruch 6, dadurch gekennzeichnet, dass in der Behälterruhestellung g der höher als die Achse (3) liegende Schwerp@nkt (4) des gefüllten Behälters (1) in Geradeausflugrichtung (14) vor der Achse (3) und in der Stellung (1'), in welcher der Behälter mit seiner Oeffnung (15') nach vorn abwärts gedreht ist, der in dieser Stellung höher als in Behälterruhelage (1) liegende Schwer- punkt (5') des leeren Behälters (1') in Geradeausflugrichtung (14) hinter der Achse (3) liegt. 8. Vorrichtung nach Anspruch 5. 6 oder 7, bei welcher der Behälter an den freien Schenkelenden eines U-förmigen Bügels um die Achse drehbar gelagert ist, der an zwei Tragseilen am Luftfahrseug hängt, dadurch gekennzeichnet, dass die rau seile (6, in einem solchen horizontalen Abstand voneinander gehalten sind, dass sie einander im Flugbetrieb nicht berühren, so dass der Bügel (2) in bezug auf Drehbewegungen um eine vertikale Achse stabil hängt. 9. Vorrichtung nach Anspruch 8, zum Aufhängen an einem Drehflügelflugzeug, das eine Lastklinkenkabelschleife hat, die einerseits in einer Lastklinke des Flugzeugs lösbar gehalten ist und andererseits in einem in Geradeausflug- richtung liegenden Abstand davon am Flugzeug befestigt ist, gekennzeichnet durch ein Verbindungselement (7), das oben eine auf der Klinkenkabelschleife (8) abzustützende Auflage (20) hat, deren Enden einen horizontalen Abstand (a) voneinander haben, der eine gegenseitige Berührung der beiden je zwischen einem Ende der Auflage (20) und dem Dreh flügelflugzeug verlaufenden Teile der Klinkenkabelschleife (8) verhindert, und unterhalb der Auflage (20) fest mit dieser verbundene Befestigungsstellen für die oberen Enden ar Tragseile (6) sowie ein Organ (22) hat, das einen eine gegenseitige Berührung der Tragseile (6) verhindernden Abstand (b) der oberen Tragseilenden sicherstellt. 10. Vorrichtung nach Anspruch @, dadurch gekennzeichnet, dass die Auflage (20) ein Rillenprofil hat, in der oberen, inneren Ecke eines gleichschenklig-dreieckigen Rahmens (19) ange@rdnet ist und beiderseits @ber die Rahmenfläche vorsteht, dass die Basisecken aes rahmens (19) die Befestigungs- stellen fUr die oberer. Enden de@ Tragseile (6) bilden, und dass aie Innenseite ca Basisteils (21) des Rahmens (19) mit einem das Organ bildenden, in d@n Rahmen hineinragenden Vorsprung (22) versehen ist, der sich bis an die Befestigungsstellen fWr die oberen Tragseilenden erstreckt, um den gegenseitigen Abstand (b) der zur Be@estigung je durch eine der inneren Basisecken des Rahmens 19) hindurchgeführten Enden der Tragseile (6) sicherzustell@n.
AIR-ZERMATT AG
PERREN, BEAT H.
EP-0004961-B1
4,961
EP
B1
DE
19,830,126
1,979
20,100,220
new
H01H19
H01H19, G06M1, G08C9, H03K13
H01H19, H01H9
H01H 19/00B2, H01H 9/16C, H01H 19/63
CODING SWITCH
1. Coding switch for the conversion of the digital values of a linear geometric quantity settable in n stages, for example an angle, a stroke or the like, into a number allocated according to a code modulo m/n, of closed contacts of an m-bit-pole, n-stage switch, which are electrically interrogatable by machine and supplement with characteristic data, with a circuit arrangement to which there pertain contact springs and counter-contact or bridge positions which lie in two surfaces parallel to the plane of displacement of the geometric quantity, with an externally manually operable step-setting mechanism for the n stages, in an at least approximately parallelepipedic housing the side faces of which, in the case of stacking of similar coding switches in building block manner into a switch pack, abut on one another possibly through an interlayer, and which possesses a front and a rear face, with m contact springs (21 to 24) which are non-displaceably arranged in one plane parallel with one another, electrically form the one poles of the multi-pole switch and co-operate with contact points likewise lying non-displaceably in one plane parallel with one another, are acted upon by a cam disc (16), the cams (27) of which are adaptedly dimensioned and arranged in m paths (part circles 28 to 31) according to the switch programme of the code as regards the position and length of their sections allocated to the n stages, characterised in that the contact springs (21 to 24) together with their connection terminal (39) are united by a bridge (20) integrally into a leaf spring (19) (Figure 1 and Figure 3), which co-operate each with a contact point, while support faces (108, 109 in Figure 6) serve for the retention of the leaf spring (19) in one part of the housing and a clamping counter-support face (55 in Figure 2) and pegs (56, 57) serve for the adjustment of the leaf spring (19 in Figure 1) in another part of the housing which is positively adjusted with the first part by skeleton forms.
Codierschalter Die vorliegende Erfindung betrifft einen Codiersclalter zur Umsetzung der Ziffernwerte einer in n Stufen einstellbaren linearen geometrischen Grobe, z3. eines Winkels, eines Hubs, od.dglq, in eine gemäss einem Code modulo m/n zugeordnete Anzahl von geschlossenen kontakten eines m-bit-poligen, n-stufigen Schalters, die maschinell elektrisch abfragbar und mit Kennzeichnungsdaten ergänzbar sind, mit einer Schalteinrichtung, zu der Kontaktfedern und Gegenkontakt- bzw. Brückenbahnen gehören, die in zwei zu der Verschiebungsebene der geometrischen Grösse parallelen Flächen liegen, mit einem Schritteinstellmechanismus für die n Stufen, in einem mindestens annähernd quaderförmigen Gehäuse, dessen Seitenflächen bei bausteinartiger Stapelung von gelicharigen Codierschaltern zu einem Schalterpaket gegebenenfalls über eine Zwischenlage aneinander anliegen, und das eine frontseitige, sowie eine rückseitige Stirnfläche aufweist. Codierschalter der vorbeschriebenen Gattung finden ihr Hauptanwendungsgebiet bekanntlich überall dort, wo unmittelbar von Hand oder mittels einer mechanischen bzw. elektromechanishen Vorrich',,,mg mittelbar oder automatisch einstellbare Daten, wie Ziffern-, Zahlenwerte, oder mechanische Grössen in Digitalform in eine maschinell elektronisch lesbare Form umgewandelt dh. elektrisch abgefragt und dann gegebenenfalls mit auf anderen Wege vorgewählten Daten oder Kennzeichnungs- daten in eine elektronische Datenverarbeitungs-Schal- tungsanordnung eingegeben und dort mit den eingegebenen oder vorgegebenen Solldaten verknüpft werden. 3eispiels- weise sollen dabei Schaltsignale oder -impuls für die Auslösung anderer elektrischer oder mechanischer Vorgänge bzw. die Einstellung entsprechender Betriebssu- stünde gewonnen werden. Bekannte Codierschalter der hier in Rece stehenden Gattung weisen im allgeeinen die Nachteile auf, dass sie entweder kompliziert aufgebaut sind, was eine aufwendige Herstellung bedeutet, oder die an sie gestellten Anforderungen hinsichtlich der Zuverlässigkeit ihrer technischen Funktion, unter Umständen lediglich in Verbindung mit den Betriebsbedingungen, nicht in aus- reichendem Grade ertwllen. So ist ein Codierschalter bekannt, der - um eine einfache Bedienung und eine ge fahrlose Punktion auch unter Bedingungen, die eine gute Abdichtung gegenüber der Umgebungsatmosphare voraussetzen, zu ermöglichen - mit zwei aufeinander senkrecht stehenden Achsen für den Einstellknopf einerseits und die Ziffernrolle andrerseits ausgestattet ist (Dm-OS 24 61 231). Codierschalter, die durch ein Daumenrad oder durch einen oder zwei Drucktaster eingestellt werden, weisen in den bekannten Ausführungsformen dagegen - abgesehen von ihrer aufwendigen Zusammenbau - den Nachteil einer Schalteinrichtung mit Kontaktplatte, deren Anschlusslbcher in aufwendiger Weise gebohrt werden müssen, und mehr oder weniger komplizierter Schleifkon- taktanordnung auf, bei denen - abgesehen von den bekannten prinzipiellen Nachteilen, wie zB. dass hierbei meist rationelle Fertigungsmethoden wie mit einem Lötpad verschlossen sind (laut D-OS 24 61 231)- hohe Xontaktqualität durch einen kostenbelastenden Aufwand schon für den Erst-Zusammenbau und dann in der Folge für vielfach und wiederholt erforderliches Nachjustieren erkauft werden muss. Bei einem wiederum anders ausgeführten Codierschalter - in Verbindung mit einem elektromechanisch abgetasteten Zählwerk - wird durch eine wurvenscheibe mit einer PP in der Fläche der Xontaktfedern liegenden Achse ein Kontaktfedersatz über eine mehrteilige Hebelanordnung mit Federn, getrennten Lagerstellen usw. betätigt (DD-OS 24 31 565). Alle beschriebenen Vorrichtungen des Standes der Technik weisen also, wie teilweise schon dargelegt, einen ziemlich komplizierten mechanischen Aufbau und teilweise schwerwiegende funktionstechnische Mangel auf. Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, bei einem Codierschalter der eingangs besciirie- benen Gattung den Montageaufwand wesentlich zu vermindern, damit und unabhängig davon empfindliche bzw. schwer justierbare Baugruppen zu vermeiden und so - bei möglichst weitgehend gesteigerter Funktions-Zuverlässigkeit - die Montierbarkeit in der Serienfertigung ohne besonders geschulte Fachkräfte und ohne komplizierte Hilfs-Montagewerkzeuge und ohne nach bzw. Justierarbeiten zu gewähr- leisten. Diese Aufgabe schliesst naturgemäss ein, dass die Zahl der mechanischen und der elektrischen Teile des Codierschalters gegenWber den bekannten Ausbildungen wesentlich vermindert ist. Die vorbeschriebene Aufgabe wird bei einem Codierschalter der eingangs beschriebenen Gattung erfin dungsgemass dadurch gelöst, dass m Kontaktfedern, die in einer Ebene parallel zueinander ortsfest angeordnet sind, elektrisch die einen Pole des mehrpoligen Schalters bilden und mit ebenfalls ortsfest in einer Ebene parallel zueinander liegenden Kontaktbahnen zusammenwirken, von einer Nockenscheibe beaufschlagt werden, deren Nocken in n konzentrischen bzw. zueinander parallelen und zu der Verschqebungsebene parallelen Binnen entsprechend dem Schaltprogrn-m des Code hinsichtlich der Lage und Länge ihrer den n Stufen zugeordneten Abschnitte angepasst bemessen und angeordnet sind. Schon bei dieser Grundausstattung des Codierschalters ist gegenüber dem Stand der Technik der technische Fortschritt erreicht, dass der Raumbedarf verringert ist, indem mehrere 3auteile bzw. Baugruppen, beispielsweise in besonders raumsparender Weise in mehre ren parallel ubereinander liegenden Ebenen angeordnet sind. Dieser technische Vorteil wird noch dadurch gesteigert, indem einige Bauteile bzw. 3augruppen gleichzeitig mehrere, z3. elektrische und mechanische Funk- tionen erfüllen, wie zB. die Funktion des Anschlusses und der Xontaktgebung oder die elektrische Verbindung der Kontaktfedern untereinander und die mechanische mit der Anschlussfahne0 Schon dadurch wird mindestens eine Leiterplatte zusammen mit den dabei notwendigen Bohrungen und Lötungen eingespart. Dieser Portschritt wird dadurch erreicht, dass die Anschlüsse der Kontaktfedern und/oder der Kontaktbahnen eine zur Verschiebungsebene senkrechte, vorzugsweise die hintere Stirnfläche des Gehäuses durchragen einerseits und/oder die Kontaktfedern zusammen mit ihrer zorzugsweise rechtwinklig abgebogenen Anschlussfahne durch eine Brücke einstückig zu einer Blattfeder insbesondere mit t stufenweise versetzten lJängenabschnitten vereinigt sind andrerseits. In noch gesteigerten Grade ist der Grundgedan- ke der Verminderung der Zahl von Teilen, wozu auch die Einsparung von kostensteigernden Bohrlöchern für das Einlöten von elektrischen Bauelementen und Anschlussdräh- ten gehört, wobei der Einsparung von Bestückungszeit besonders grosse Bedeutung zukorvmt, dann verwirklicht, wenn die Kontaktbahnen als Drähte, vorzugsweise in insbesondere über die Länge abwechselnd nach den beiden Seiten o: :tfenen Keilnuten und/oder keilnutig aufgeformten Führungen und/oder Vierkant-Durchbrüchen gelagert ausgebildet sind einerseits und andererseits als Drähte der Kontaktbahnen die Anschlussdrähte von Bauelementen, wie ZBe dioden, Widerständen od.dgl. und als Anschluss drähte des Codierschalters deren Anschlussdrähte am gegenseitigen Ende dienen. Diesen Besonderheiten liegt also übergeordnet das erfindungswesentliche Grundprinzip zugrunde, möglichst viele Teile des Codierschalters als eine Funktionseinheit zu sehen. Das neuartige Konstruktions-Prinzip mit del vorbeschriebenen Merkmalen zeichnet sich in ebenfalls erfindungswesentlicher Weise auch noch zusätzlich da- durch aus, dass es ohne weiteres mit verschiedenen an sich bekannten Schritteinstellmechanismen in einfacher und logischer Weise so vereinigt werden kann, dass dafür kein zus-tzlicher Raumbedarf von wesentlicher Aus- wirkung entsteht. In dieser Weise wird der mit der Erfindung erreichbare technische Fortschritt noch gesteigert, wenn e der Schritteinstellmechanismus von aussen, vorzugsweise an einer der Stirnflächen von Hand bedienbar und/oder mittels eines sogenannten Daumenrods einstellbar sein muX, oder auch, indem er mittels eines an sich bemannten Klinkenmechanismus, vorsugsweise durch einen einer der Stirnflächen durchragenden Drucktaster Je Druckbetätigung um eine positive bzw. gege benenfalls eine negative Stufe weitergerückt einstellbar ist. Zu einen besonders wichtigen Teil der erfindungswesentlichen Besonderheiten des Anmeldungsgegen- standes gehören diejenigen, die sich gezielt auf das mindestens annähernd quaderförmige Gehäuse beziehen. Hierzu gehört zunächst, dass das Gehäuse aus nur zwei Teilen, ns-rich einem Grundkörper und einen Gegen-Passstück besteht, die fugenlos ausgebildet und/oder zusam mensteckbar und/oder aus thermoplastischem Werkstoff gefertigt sind. Bei einem Codierschalter mit einer konzentrischen Anordnung der Nocken ist es sodann besonders vorteilhaft, wenn Bohrungen zur gegenseitigen Justierung von Codierschaltern bzw. mit einem Endstück bei der Paketierung und Stützflächen zur Halterung der Blattfeder, ein Wellenstumpf für die kreisförmige Träger Scheibe der Nocken im einen Teil, vorzugsweise im Grundkörper des Gehäuses, und/oder eine Klemm-Gegenstützfläche und Dorne zur Justierung der Blattfeder, eine Passbohrung für den Wellenstumpf bzw. seinen Ansatz zur gegenseitigen räumlichen Justierung der Teile, sowie zur Aufnahme der den Bohrungen zugeordneten Zapfen des benachbarten Codierschalters bzw0 Endstücks im anderen Teil des Gehäuses, vorzugsweise einem Gegenpassstuck untergebracht sind. Schliesslich ist es in nochmals gesteigerter weiterer Fortbildung des erfindungsgemässen Codierschalters zweckmässig, wenn ausserdem der Grundkörper und das Gegen Passstück die Zapfen an der einen zur Verschiebungsfläche parallelen Aussenfläche und die Bohrungen an der anderen Aussenfläche an entsprechenden Stellen aufweisen und/oder durch Schnappelemente miteinander zwangsjustiert verbunden sind. In allen aufgrund der vorbeschriebenen Ausbildungen eines Codierschalters mit einer konzentrischen Anordnung der Nocken ist es schliesslich allgemein vorteilhaft, wenn die Umfangsfläche des Nockenträgers mit Zeichen gemäss den umzusetzenden Ziffernwerten beschriftbar und mindestens der einem dieser Zeichen auf der Umfangsfläche gegenüberliegende Teil, vorzugsweise an der vorderen Stirnfläche des Gehäuses, aus thermoplastischem Werkstoff mit Gegenzeichen beschriftbar gefertigt ist. Durch eine Ausbildung des Codierschalters unter Verwertung mindestens mehrerer der beschriebenen Merkmale wird vor allem - ausser der bereits erwähnten Möglichkeit einer raumsparenden Konstruktion - der technische Fortschritt erreicht, dass beim Zusammenbau nur noch wenige - automatisch - vorgefertigte Teile ohne besonders ausgebildete Hilfswerkzeuge und ohne zusätzliehe Nacharbeit (z3. für Justage) bereits durch das Zusammensetzen infolge der ausgeklügelten Formgebung der Teile mit aneinander auf engstem Raum angepassten Formteilen und entsprechenden Gegenstücken in der Schlage gehalten, räumlich zugeordnet und zwangsjustiert werden. Eine weitere Vervollkommnung des Anmeldungsgegenstandes ist vor allem durch das zuletzt erwähnte Merkmal begründet, weil der eingestellte Ziffernwert leicht von aussen ablesbar und trotzdem das Gehäuse sei es als ganzes durchsichtig oder mit elnen einstückig eingeformten Fenster-schon infolge der konstruktiven Formgebung ohne zusätzliche Massnahmen in Verbindung mit dem Zusammenbau des Codierschalters weitgehend abgedichtet ausgebildet ist. Im folgenden ist ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Es stellen dar: Fig.1: den Codierschalter im zusammengebau- ten Zustand a) in Untersicht b) im Schrfttt (AZ in Fig. 1c) c) in Draufsicht Fig.2: das Gegen-Passstück des Gehäuses a) in (seitlichen) Schnitt tt A- der Fig.2b b) in Untersicht (Innenseite) c) in (seitlichem) Schnitt C-D in Fig.2b Fig.3: die aus Kontaktfedern und einem Ans durch eine Brücke vereinigte Blattf im Schnitt Fig.4: die Nockenscheibe, teilweise im Sch Fig.5: den Schieber des Klinkenmechanismus für die Schritteinstellung der Noch scheibe Fig.6: den Grundkörper des Geh a) in einer Seitenansicht (von aussen) b) in der Drauf c) in der anderen Seitenansicht Fig.7: das Pass-Gegenstück des Geh a) in der einen SeItenansIcht b) in der Vorderansicht c) in der anderen Seitenansicht Fig.8: die Blattfeder von Fig der Draufsicht Fig.9: die Nockenscheibe a) in der Draufsicht b) in der Unteransicht Fig.10: den Grundkörper des Geh a) seitlich im Schnitt B-S (Fig.10b) b) im Schnitt A-B (Fi c) seitlich im Schnitt G-t (Fig.lob) In Fig.1 ist - wobei zweckmässig alle drei Teile a, b und c gleichzeitig betrachtet werden - dargestellt, wie auf bzw. in dem Grundkörper 1 das Gegen-Pass stück 2 auf- bzw. eingesteckt ist, so dass das aus ihnen gebildete Gehäuse mindestens annähernd quaderförmig ist. Bei bausteinartiger Stapelung von gleichen Codierschaltern tauchen beim daneben angeordneten Codierschalter (oder Endstück) in die Bohrungen 3, 4 an der Unterseite des Grundkörpers 1 die angeformten Pass-Zapfen 5, 6 an der Oberseite des Gegen-Passstücks 2 ein und führen so eine r=iIch definierte und passende und nach Wunsch geklemm- te Zusammenfügung der Gehäuse zweier Codierschalter herbei. In der Bodenöffnung 7 ist der Zapfen 8 sichtbar, auf dem die Feder 9 für die Vorspannung des Schiebers io für den Schritteinstellmechanismus eineseitig aufgesteckt gehalten wird und auf der entgegengesetzten Seite auf den konischen Fortsatz 13 aufgesteckt ist, so dass der Schieber 10 mit seinem die verdere Stirnfläche 11 des Grundkörpers 1 durchragenden Drucktaster 12 in die Ruhelage mit Anschlag an der Innenfläche der vorderen Stirnfläche 11 des Gehäuses (1, 2) anliegt. Auf dem ander Bodenfläche 14 des Grundkörpers 1, die bei bausteinartiger Stapelung als Seitenfläche fungiert, ist der Wellenstunlpf 15 angeformt, der zur Lagerung der Nockenscheibe 16 dient, die ihrerseits als Ziffernrolle ausgebildet ist, wobei der Wellenstumpf mit seinem Ansatz 17 in die Pass-Bohrung 18 des Gegen Pass stücks 2 eintaucht und dabei sowohl dessen Justierung als auch die räumliche Zuordnung von Grundkörper 1 und Gegen-Passstück 2 zwangsweise festgelegt wird. Zwischen letzteren ist ausserdem die Blattfeder 19 mit den durch die Brücke 2c mechanisch einstückig und damit auch elek- trisch verbundenen Kontaktiedern 21 bis 24 - in Fig.10 gestrichelt gezeichnet - zwischen Stützflächen und Klemm- Gegenstützflächen, wie noch in Verbindung mit Fig.2, 6, 7 und 10 ausführlicher darzustellen sein wird, mit Hilfe von Dornen 25 und Bohrungen 26 usw. eingeklemmt und zwangsjustiert befestigt. Die Kontaktiedern 21 bis 24 werden durch die Nocken 27 auf entsprechenden Abschnitten der Teilkreis 28 bis 31 - in Fig.1b nach oben, d.h. - in Richtung auf das Gegen-Passstück 2 hin ausgelenkt. In diesem liegen, in Keilnuten 32, 33 bzw. keilnutartig aufgeformten Führungen 34 gehalten, die als Kontaktbahnen wirkenden Drähte 35, zwischen denen und der Kontaktnase 36 bei Be aiifschlagung der Xontaktfeder 22 ein Kontakt geschlossen wird, so dass dann der Stromkreis zwischen dem zugehörigen die hintere Stirnfläche 37 durchragenden Anschluss 38 und der Anschlussfahne 39 der Blattfeder 19 bzw. deren Brücke 20 geschlossen ist. Bei dem Ausführungsbeispiel der Fig.1 ist also eine Codierung von n = 10 Stufen entsprechend der Dekade o bis 9 auf m = 4 bit Leitungen verwirklicht, beispielsweise nach dem BOD-Code, In Fig.1 ist bereits ein weiterentwickeltes AusfLilirungsbeispiel dargestellt, weil als Anschluss 38 der eine Anschlussdraht 40 der als Bauelement eingebauten Diode 41 und als Draht 35, der als Gegenkontakt für die Kontaktfeder 19 wirkt, der andere Anschlussdraht 42 der Diode 41 verwendet ist. Dies veranschaulicht besonders überzeugend den erdungswesartlichen Grundgedanken der Verminderung der Zahl von Teilen, Anschlüssen, mechanischen und elektrischen Verbindungen usw. Fig.2 zeigt - wiederum zweckmässig bei gleichzeitiger Betrachtung der Teile a, b und v - das Begen- Passstück (2 in Fig.1) , dessen Deckplatte vier unterschiedliche dicke Zonen 51, 52, 53 und 54 aufweist, wo bei die relativ dünne Zone 51 von der dickeren 52 durch die Zwischenwand 55 getrennt ist, die - wie schon aus Fig.1 (allerdings ohne Bezugsziffern) erkennbar ist die Blattfeder 19 bzw. deren Brücke 2c zwischen sich und den (hier nicht dargestellten) Gegen-Stützflächen des Grundkörpers festklemmt. Zwischen den dicken Zonen 52 und 54 liegt die dünnere 53 mit keilnutartig aufge formaten Führungen 56, die zusammen mit den Keilnuten 57 der dickeren Zonen 52 und 54 die als Kontaktbahnen dienenden Drähte 35 halten, so dass diese nach der einen Seite in der mittleren Zone 53 und nach der anderen Seite in beiden äusseren Zonen 52 und 54 fixiert sind. Im übrigen sind in Pig.2 noch die Dorne 57, 58 für die Justierung der Blattfeder 19 bzw. deren Brücke 20, sowie die Schnappelemente Finger 59, 60 bzw. Nase 61 erke=baz, mit deren Hilfe der Grundkörper 1 und das Gegen-Passstück 2 des Gehäuses fest, aber doch lösbar miteinander mindestens annähernd fugenlos und zwangs- justierend verbunden sind. Die Passbohrung 62 ist in Fig.2a auch im gebrochenen Schnitt wiedergegeben, Fig.3 zeigt die im Ausfünrungsbeisoi el verwendete Blattfeder (19 in Fig.?b) im Schnitt mit - von links nach rechts - der rechtwinklig abgebogenen Anschlussfahne 71, den als Brücke dienenden Teil 72 und die eigentlichen Kontaktfedern 73, die gegen die Brücke in der Höhe stufenweise versetzt sind und an der der Achse 74 der (nicht dargestellten) Nockenscheibe zugeordneten Längs stelle 75 die nasenförmige Kröpfung 76 und am Ende den ebenfalls abgekröpften Kontaktfinger 77 besItzt, welch letzterer bei BeauSschlagung durch die Nocken mit den als Kontakt- bahnen dienenden Drähten (35 in Fig.1b) zusammenwirkt. In Fig.4 ist - räumlich wiederum in gleicher Weise wie die Blattfeder der Fig.3 entsprechend der tatsächlichen Einbaulage achsenweise zugeordnet - die Nokkenscheibe 81 dargestellt, wobei die linke geschnittene Hälfte die Bohrung 82 für den Wellenstumpf (15 in Fig.1b) und den Führungshals 83 mit dem Absatz 84 und dem oberen Rand 85, die beide zur Höhenfixierung auf dem Wellenstumpf (1o in Fig.1) zwischen Schieber (10 in Fig.1) und Gegen-Passstück (2 in Fig.1) dienen. Auf dem Umfang 86 (hier nicht dargestellt) sind die Ziffern entsprechend der gewählten Winkeleinteilung und dem für die Umsetzung geltenden Code, dh. gemäss den einstellbaren Winkelstufen als digitalen Werten angebracht. Der zu dem Schritteninstellmechanismus gehörende Schieber (10 in Fig.lb) - vgl. Fig.5 - besteht aus der Grundplatte 91, der angeformten Drucktaster 92, der Führungsplatte 93 mit den konischen Fortsatz 94 (13 in Fig. 1b) für die in Fig.ib eingezeichnete Feder, sowie den wegen der Verschiebbarkeit oval-ähnlich geformten Durch- bruch 95 für den Wellenstumpf (15 in Fig.1b) und schliess- lich die beiden zahnähnlichen Aufsatzfinder 96, 97, von denen der eine 96 beim ersten Eingriff in den Stern- kranz 98 (gestrichelt gezeichnet) der Nockenscheibe beim Eindrücken des Drucktasters 92 eine Teildrehungsbewegung der Nockenscheibe entgegen den Uhrzeigersinn bewirkt, worauf beim Loslassen des Drucktasters 92 der Aufsatzfinger 97 diese Drehung fortsetzt und schliesslich die Einstellung der Nockenscheibe in der um einen wiscel- schritt weitergerückten Lage erzwingt. Der oval-ähnliche Durchbruch führt dabei und begrenzt die Verschiebung des Schiebers (10 in Fig.1b). Mit den gestrichelten Linien 99 sind die Aussenkonturen des Gehäuses in grober Annähe- rung angedeutet, um die Lagenzuordnung erkennen zu lassen. In Fig.6 ist der Grundkörper von der Vorder- Stirnseite 101 (a), von der einen Seitenfläche (hier oben, b) und von der anderen, rückwärtigen Stirnfl-äche (Stirnseite) 102 (c) dargestellt; in Fig.6a ist der Durchbruch 103 für den Drucktaster (92 in Fig.5), in Fig.6c sind Ausschnitte 104 bis 107 für die Aussenan- schlüsse erkennbar. In Fig.6b sind vor allem die Klemm- Gegenstützflächen 108, 109 mit den Bohrungen 110 111 (26 in Fig. Ib) für die schon erwähnten Dorne (57, 58 in Fig.2) zum Festklemmen der Blattfeder (19 in Fig.1b) hervorzuheben. Im übrigen sind der angeformten Zapfen (8 in Fig. 1a und 1b), die Bodenöffnung (7 in Fig.1a) und der Wellenstumpf 112 mit seinem Ansatz 113 (15, 17 in Fig.1b) genau entsprechend der Zeichnung der Fig. 1 ausgebildet und angeordnet; lediglich im Interesse des besseren Verständnisses ist t auch noch der Schieber (io in Fig.1b) des Einstellmechanismus gestrichelt eingezeichnet. Fig.7 soll ebenfalls lediglich dem besseren Verständnis des Gegen-Passstücks (2 in Fig.1) dienen; mit 121 sind die Zapfen (5, 6 in Fig.1c), mit 122, 123 die Schnappfinger (59, 60 in Fig.2), mit 124 die Dorne (57, 58 in Fig.2), mit 125 die unterschiedlich dicken Zonen mitden Führungen, Keilnuten usw, bezeichnet. In dieser Darstellung sind die gestuften Ausschnitte im Bereich 126 hervorzuheben, die zusammen mit den entsprechenden Ausschnitten (104 bis 107 in Fig.6) bzw. den dazwischen liegenden Lappen öffnungen für die Anschlussdrähte belassen. Die Darstellung der Fig.8 lässt die Blattfeder (19 in Fig.1b) im Grundriss in ihren Einzelheiten erken- nen, mit den Kontaktfedern 131 bis 135, der Bücke 136, der Anschlussfahne 137, der Bohrung 138 und der Aussparung 139 für die Aufnahme der Dorne (57, 58 in Fig.2), den Kröpfungen 140 und den Kontaktfingern 141, wobei die axiale Zuordnung in der Zeichnung gegenüber der Fig.7 und der Fig.@ 9 den räumlichen Verhältnissen im eingebauten Zustand entspricht. In Fig.9 ist im Teil a die Nockenscheibe mit Blick auf die gemäss dem Code auf den Teilkreisen 151 abschnittsweise verteilten Nocken 152 entsprechender Länge und in Teil b die Untersicht mit den Sternkranz 153 für den Schrittschaltmechanismus dargestellt. In Fig.1o zeigt der Schnitt B (vgl.Fig.iob) der Fig.10a wieder die rückwärtigen Ausschnitte 161 des Grundkörpers und die Gegenstützflächen 162, 163 für die nicht dargestellte Blattfeder sowie den Zapfen 164 für die ebenfalls nicht dargestellte, zum Schrittschaltmecha- mismus gehörende Feder. Fig.10b entspricht etwa der Zeichnung in Fig.1b, so dass auf nähere Angaben verzichtet und stattdessen darauf verwiesen werden kann; im übrigen dient sie nur dem besseren Überblick. Der Schnitt G-H der Fig.ioc zeigt die Innenfläche der vorderen Stirnwand mit der Aussparung 165, die e gegebenenfalls - wenn nicht der ganze Grundkörper - mindestens für sich aus durchsichtigem Werkstoff sein muss, damit die Beschriftung auf dem Umfang der Nockenscheibe (16 in Fig.1b), von aussen lesbar ist. Die weiteren konstruktiven Einzel- heitcn sind, wenn nicht schon an sich, dann auf jeden Fall in Verbindung mit den anderen Figuren verständlich. Diesem Zweck dient auch die achsenweise zuordnung aller Teilzeichnungen sowohl der Fig.2 bis 6, als auch der Fig.7 bis 10.
Patentansprüche 1. Codierschalter zur Umsetzung der Ziffernwerte eines in n Stufen einstellbaren linearen geometrischen Grösse, zBO eines Winkels, eine mlbs, od.dgl., In eine gemäss einem Code nodulo m/n zugeordnete Anzahl vor ge schlossenen Kontakten eines m-bit-poligen, n-stu- figen Schalters, die maschinell elektrisch abfrag- bar und mit Kennzeichnungsdaten ergänzbar sind, mit einer Schclteinrichtung, zu der Kontaktfedern und Gegenkontakt- bzw. Brückenbahnen gehören, die in zwei zu der Verschiebungsebene der geometri schen Grösse parallelen Flächen liegen, mit einem Scritteinstellmechanismus für die n Stufen, in einen mindestens annähernd quaderförmigen Ge häuse, dessen Seitenflächen bei bauseinartiger Stapelung von gleichartigen Codierschaltern zu einem Schalterpaket gegebenenfalls über eine Zwi schenlage aneinander anliegen, und das eine front seitige, sowie eine rückseitige Stirnfläche auf weist, dadurch gekennzeichnet, dass m Kontaktfedern (21 bis 24), die in einer Ebene parallel miteinander ortsfest angeordnet sind, elektrisch die einen Pole des mehrpoligen Schalters bilden und mit ebenfalls ortsfest in einer Ebene parallel zu einander liegenden Kontaktbahnen (35) zusammen- wirken, von einer Nockenscheibe (16) beaufschlagt werden, deren Nocken (27) in m konzentrischen bzw. zuein ander parallelen und zu der Verschiebungsebene parallelen Bahnen (feilkreise 28 bis 31) entspre chend dem Schaltprogramm des Code hinsichtlich der Lage und Länge ihrer den n Stufen zugeordneten Abschnitte angepasst bemessen und angeordnet sind. (Fig.1) 2. Codierschalter nach Anspruch 1, dadurch gekennzeichnet, dass die Anschlüsse (39) der Kontaltfedern (19 > und/oder der Kontaktbahnen (Drähte 35) eine zur Verschiebungsebene senkrechte, vorzugsweise die hintere Stirnfläche (37) des Ge häuses durchragen (FIg.1). 3. Codierschalter nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Kontaktfedern (21 bis 24) zusaininen mit ihrer vorzugsweise rechtwink lig abgebogenen Anschlussfahne (39) durch eine Brücke (20) einstückig zu einer Blattfeder (19) insbesondere mit stufenweise versetzten Längen- abschnitten vereinigt sind (Fig.1 bzw. Fig. 3). 4. Codierschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kontaktbahnen als Drähte (35), vor=ugsweise In inebesondere über die Länge abwechselnd nach den beiden Seiten offenen Keilnuten (32, 33 in Fig.1) und/oder keil nutartig aufgeformten Bohrungen (34 in Fig.1) und/oder Vierkant-Durchbrüchen (34 bzw. 56, 57 in Fig.2) gelagert ausgebildet sind, 5. Codierschalter nach Anspruch 4, dadurch gekennzeichnet, dass als Drönite der Kon- taktbahnen die Anschlussdrähte (4o, 42) von Bau elementen (41), wie ZBe Dioden, Widerständen od. dgl. und als Anschlussdrähte (38) des Codier schalters deren Anschlussdrähte am gegenseitigen Ende dienen (Fig.1). 6. Codierschalter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Schritteinstell mechanismus von aussen, vorzugsweise an einer der Stirnflächen (11), von Hand bedienbar ist. 7. Codierschalter nach einem der Anspüche 1 bis 6, dadurch gekennzeichnet, dass der Schritteinstell mechanismus mittels eines sogenannten Daumenrads einstellbar ist. 8. Codierschalter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Schritteinstell mechanismus mittels eines an sich bekannten Xlin- kenmechanismus, vorzugsweise durch einen eine der Stirnflächen durchragenden Drucktaster (12) je Druckbetätigung um eine positive bzw. gegebenen falls eine negative Stufe weitergerückt einstell bar ist (Fig.1 bzw. FIg.5) insbesondere mittels zweier versetzt in einen Sternkranz (98) eingrei fender Aufsatzfinger (96, 97 in Fig.5). 9. Codierschalter nach einem der Ansprüche 1 bis 8, gekennzeichnet durch ein Gehäuse mit einem Grund körper (1) und einem Gegen-Passstück (2), die fugen los ausgebildet und/oder zusammensteckbar und/oder aus thermoplastischem Werkstoff gefertigt sind (Fig. 1, 2 und 6). lo. Codierschalter nach einem der Ansprüche 1 bis 9, mit einer konzentrischen Anordnung der Nocken, gekennzeichnet durch Bohrungen (3, 4 in Fig.1) zur gegenseitigen Justierung von Codierschaltern bzw. mit dinem Endstück bei der Paketierung und Stütz- flächen (108, 1o9 in Fig.6) zur Halterung der Blattfeder, einen Wellenstumpf (15 in Fig. 1b) für die kreisför mige Trägerscheibe (16) der Nocken im einen Teil, vorzugsweise einem Grundkörper des Gehäuses und/ oder eine Elezm-Gegenstützfläche (55 ind Fig.2) und Dorne (56, 57) zur Justierung der Blattfeder (19 in Fig.1), eine Passbohrung (62) für den Wellen stumpf 15 bzw. seinen Ansatz 17 zur räumlichen gegenseitigen Justierung der Teile, sowie zur Auf- nahme der den Bohrungen (3, 4) zugeordneten Zapfen (5, 6) des benachbarten Codierschalters bzw. End stücks im anderen Teil des Gehäuses, vorzugsweise einem Gegen-Passstück. 11. Codierschalter nach Anspruch lo, dadurch gekennzeichnet, dass der Grundkörper (1) und das Gegen-Passstück (2) die Zapfen (5, 6) an der einen zur Verschiebungsfläche parallelen Aussenfläche und die Bohrungen (3, 4) an der ande ren Aussenfläche an entsprechenden Stellen nuf- weisen (Fig.1) und/oder durch Schnappelemente (59, 60 und 61 in Fig.2) miteinander zwangsjustiert verbunden sind. 12. Codierschalter nach einem der Ansprüche lo und 11, dadurch gekennzeichnet, dass die Umfangsfläche des Nockenträgers (86 in Fig.4) mit Zeichen gemäss den umzusetzenden Ziffernwerten beschriftbar und min destens der einem dieser Zeichen auf der Umfangs fläche gegenüberliegende Teil (102 in Fig.6), vor zugsweise an der vorderen Stirnfläche des Gehäu ses, aus thermoplastischem Werkstoff mit Gegen zeichen bescbriftbar gefertigt ist.
WESTDEUTSCHE ELEKTROGERATEBAU G.M.B.H.
PECK, ROGER; STANDOP, WOLFGANG
EP-0004966-B2
4,966
EP
B2
EN
19,880,330
1,979
20,100,220
new
C08F2
C08F10
C08F2, B01J8, C08F10
B01J 8/18H, B01J 8/24, L01J208:00C2D2D, C08F 10/00+2/34
Exothermic polymerization in a vertical fluid bed reactor system containing cooling means therein.
A continuous low pressure gas phase process for the production of solid particulate polymers during an exothermic polymerization reaction in a uniform diameter vertical fluidized bed reactor system which comprises feeding a polymerization catalyst and a gaseous stream containing at least one polymerizable monomer to a fluidized bed of polymer particles and removing the exothermic heat of reaction by indirect cooling means in the reactor and removing dry particulate polymer. Also, apparatus for the polymerization process is described. This application is a Continuation-in-Part of Patent Application Serial No. 897,512, filed April 18, 1978.
EXOTHERMIC POLYMERIZATION IN A VERTICAL FLUID BED REACTOR SYSTEM CONTAINING COOLING MEANS THEREIN AND APPARATUS THEREFORE. Background of the Invention This invention relates to a continuous low pressure gas phase process for the production of solid particulate polymers during an exothermic polymerization reaction in a uniform diameter vertical fluidized bed reactor system which process comprises feeding a polymerization catalyst and a gaseous stream containing at least one polymerizable monomer to a fluidized bed of polymer particles and removing the exothermic heat of reaction by indirect cooling means in the reactor and removing dry particulate polymer. Also, this invention relates to a uniform diameter vertical fluidized bed reactor system containing an indirect cooling means in the reactor. DescriDtlon of the Prior Art U.S. Patents 4,011,382 and 4,003,712 describe a gas phase fluid bed process for preparing olefin polymers in the presence of a high activity catalyst. Specifically, U.S. Patent 4,011,382 discloses that low density polyethylene can be produced commercially at pressures of < 1000 psi in a gas phase reaction in the absence of solvents by employing selected chromium and titanium (and, optionally, fluorine) containing catalysts under specific operating conditions in a fluid bed process. The fluid bed reactor is preferably described in said patents as a vertical reactor having a cylindrical lower section and an upper section having a cross section greater than that of said lower section which upper section is described as a velocity reduction zone. In the fluidization process, the portion of the gas stream which does not react in the fluidized bed constitutes the recycle stream, which is removed from the polymerization zone by passing it into said velocity reduction zone located above the bed. In the velocity reduction zone, the velocity of the recycle stream is reduced, allowing entrained particles to fall back into the bed. Particle removal from the recycle stream may be aided by a cyclone. The use of a velocity reducing zone and a cyclone was believed necessary to prevent the fine particles entrained in the gas from being carried into the recycle system where they build up and cause pluggage of the heat exchanger. In a fluid bed reactor with an upper velocity reduction zone of cross section greater than that of the lower bed section, the upper and lower sections are connected by a transition section having sloped walls. When using such a fluid bed reactor, a portion of the fine particles entrained by the gas in the polymerization zone of the lower section and separated from the recycle stream in the velbcity reduction zone, fall onto tlle sloped walls of the transitiorj section. These fine particles build up over a period of time. Since the fine particles contain active catalyst, they react with the monomer present in the recycle, forming solid sheets which can grow until they block recycle gas flow or slide off the sloped walls of the transition section of the reactor and into the polymerization zone. In the polymerization zone, these sheets block the flow of gas in a portion of the bed above the sheet resulting in decreased fluidization and also fusing of the polymer particles in the unfluidized region from lack of heat removal from the particles by the gas. Thus, large chunks of polymer which can block the entire polymerization zone can be formed unless the reaction is stopped and the sheets are removed. To minimize the formation of sheets on the sloping walls of the transition section, it is necessary to operate the reactor with the upper surface of the fluidized bed at or slightly below the bottom of the transition section. Operation at this level causes larger particles from t fluidized bed to be thrown onto the sloping walls of the transition section due to the bursting of gas bubbles at the surface of the fluidized bed whereby they tend to sweep the more reactive fine particles from the sloping walls back into the fluidized bed. This requires operation at an essentially constant fluidized bed level and prevents reducing that level to facilitate transitions or start-up. In U.S. Patent 3,298,792 a means to minimize build-up of sheets on sloped walls ih a fluid bed is disclosed, namely, a vertically-located scraper actuated by a driving shaft for removing particles adhering to the walls. This technique worked well in a small fluid bed reactor according to the patent examples, but operation of such a device on a large commercial scale reactor would be difficult if not impossible. The fluid bed in said patent is conically shaped having a smaller diameter at thebottom of the reactor than at the top; thus, it has sloping walls in both the fluid bed section or polymerization zone and in the velocity reduction section above the polymerization zone. The vertically-located scraper removes particles adhering to the wall in both the polymerization and velocity reduction zones of the reactor. Means to agitate a vertical fluidized bed and/or remove particles adhering to the reactor walls are disclosed in U.S. Patents 3,300,457 and 4,012,573, for example. It has been found that it is possible to operate a fluidized-bed polymerization reactor without a velocity reduction zone or a cyclone to separate fine particles from the gas, resulting in many advantages. The most important advantage is that the formation of sheets on the sloped walls of the transition zone is eliminated. This results in much reduced frequency of reactor stoppage to remove sheets from the reactor. A second advantage is that the depth of the bed in the polymerization zone can be varied over a wide range allowing greatly increased range of reactor output with good operation. The ability to vary the bed depth also allows a minimum amount of cross-contaminated material to be made when changing from the production of one product to that of a new product. This is done by lowering the bed to some minimum level prior to starting the product changeover and maintaining the bed at the minimum level until the product being produced meets the new product specification. The production rate per unit volume of bed used (pounds of product per hour per cubic foot) can usually be increased during the product changeover at reduced bed level since the heat removal capacity and product discharge capacity of the system are sized for operation at normal bed volume. This enables a reduction in changeover time as well as in the volume of resin produced during Åa product changeover. A further advantage of the uniform diameter reactor is that a smaller initial charge of powdered material is required to start up successfully without sheet formation The cost of fabrication of a fluid bed reactor without a velocity reduction zone of enlarged cross section is substantially reduced because the larger diameter portion is not required nor is the transition zone with sloping sides. The entrainment of particles is increased on operation without a velocity reduction zone, cyclone, or filter, typically by a factor of 100 to 1000 fold. It was expected that this increase in particle concentration in the recycle stream would make the reactor inoperable by causing an build-up of fines in the recycle piping and on the distributor plate below the bed. In addition it was expected that the particles would cause the recycle compressor to become inoperable }s abrasion or by build-up of particles on the moving parts of the compressor. Unexpectedly, it was found that if the velocity in all portions of the recycle piping is kept nign ana that the recycle system is designed so as to minimize areas of low velocity or dead zones, build-up of particles in the recycle piping and distributor plate was not a problem. It was also found that the build-up of particles on the moving parts of the compressor was minimal so as not to affect its operation or efficiency and that the fine polymer particles which were entrained did not cause abrasion of the compressor. It was also found, however, that the fine particles built-up rapidly on the heat exchanger. The possibility of particle build-up in the heat exchanger can be eliminated by the installatiof of cooling means within the fluid-bed itself; a so-called internal cooler. Since the gas is used as the heat transfer medium with an external cooler, the reaction rate was previously limited by the gas velocity through the bed which has to remain low enough so as not to entrain large amounts of solids from the bed yet high enough to permit adequate heat removal. Internal cooling means removes heat of reaction directly from the solid particles and the gas velocity can be much lower thus using considerably less energy. In addition since the heat removal is independent of gas mass flow rate, the reactor pressure can also be decreased to a limit defined by the polymerization kinetics. If cooling tubes are imbedded vertically in the fluidized bed of the present invention, they tend to deter the agglomeration of large bubbles, thus increasing the quality of fluidization. When bubbles agglomerate in a fluidized bed which is their natural tendency as they rise up the bed, gas is pulled from the edges of the bed toward the center which decreases the mixing ability near the walls and thus causes the bed to be inhomogeneous. Vertical tubes, which act as baffles, tend to deter the migration of bubbles to the center of the bed and to increase mixing near the walls. When external cooling is used in a gas phase fluidized bed, the gas entering the bottom of the bed is cooler than the bed itself. Since the physical properties of the polymers made with certain catalysts are temperature sensitive, the bottom portion of the bed which is cooler produces polymers with different physical properties. These particles are then mixed with the rest of the bed which causes, in particular, broadening of molecular weight distribution of the polymer. Using internal cooling means, heat is removed from the polymer itself and the entering fluidizing gas is therefore at the same temperature as the entire fluidized bed. An additional problem encountered with an external cooler is that low molecular weight oligomers which are produced during polymerization and which are volatile at reactor temperatures can condense on the cold surface of the external cooler and cause fines to adhere to the heat exchanger resulting in increased rate of pluggage. In addition, when olefin copolymers are produced using relatively high boiling comonomers, the monomers can also condense in an external cooler causing pluggage of the heat exchanger. This condensation cannot happen using internal cooling means since the recycle system is at the same temperature as the reactor. Summary of the Invention It has now been found that polymers or copolymers can be produced with relatively low catalyst residues for commercial purposes by a low pressure gas phase process, if at least one polymerizable monomer is polymerized or copolymerized in the presence of a polymerization catalyst in a vertical uniform diameter fluidized bed reactor system containing indirect cooling means in the reactor to remove the exothermic heat of reaction. The object of this invention is to produce polymers, particularly olefin polymers, in an improved reactor system which provides greater operating flexibility and continuity by the use of a vertical fluidized bed reactor of uniform diameter and variable bed height utilizing indirect internal cooling means for removing the heat generated by polymerization within the fluid bed. Brief Description of the Drawings Figure 1 shows a vertical fluid bed reactor system with an internal cooler. Description of the Preferred Embodiments 1. The Olefin Polymers The olefin polymers which are prepared in accordance with the teachings of the present invention are solid materials. The ethylene polymers have densities of about 0.91 to 0.97, inclusive, and melt indexes of about 0.1 tc; 100 or more. The olefin polymers produced herein are prepared by homo-polymerizing or copolymerizing one or more alphaolefins containing 2 to about 12, inclusive, carbon atoms; The other -olefins monomers may be mono-olefins or non-conjugated di-olefins. The mono-ccalefins which may be polymerized would include ethylene, propylene, butene-1, pentenew 3-methylbutene-1, hexene-1, 4-methyl-pentene-1 ,3-ethyl- butene-1, heptene-1, octene-1, decene-1, 4,4-dimethylpentene-1, 4,4-diethyl hexene-1, 3,4-dimethylhexene-1, 4-butyl-1 -octene, 5-ehtyl-1 decene, 3,3-dimethylbutene-1, and the like. Diolefins which may be used include 1,5-hexadiene, dicyclopentadiene, ethylidene norbornene, and other non-conjugated diolefins. 2. The High Activity Catalyst The catalyst employed herein is a high activity transition metal, preferably chromium and/or titanium, containing catalyst. By high activity catalyst is meant that it must have a level of productivity of > 50,000, and preferably > 100,000, pounds of polymer per pound of transition metal in the catalyst. This is so because fluidized bed gas phase processes usually do not employ any catalyst residue removing procedures. Thus, the catalyst residue in the polymer mts t be so small that it can be left in the polymer without causing any undue problems in the hands of the resin fabricator and/or ultimate consumer. Low catalyst residue contents are important where the catalyst is made with chlorine containing material such as the titanium, magnesium and/or aluminum chlorides used in some so-called Ziegler or Ziegler-Natta catalysts. High residual chlorine values in a molding resin will cause pitting and corrosion on the metal surfaces of the molding devices. The high activity transition metal containing catalysts which may be used in the practice of this invention include the following: I. The silyl chromate catalysts disclosed in U.S. Patent No. 3,324,101 to Baker and Carrick and U.S. Patent No. 3,324,095 to Carrick, Karapinka and Turbert, which are hereby incorporated by reference. The silyl chromate catalysts are characterized by the presence therein of a group of the formula: EMI9.1 wherein R is a hydrocarbyl group having from 1 to 14 carbon atoms. The preferred silyl chromate catalysts are the bis triarylsilyl chromates and more preferably bistriphenylsilyl chromate. This catalyst is used on a support such as silica, alumina, thoria, zirconia and the like, other supports such as carbon black, micro-crystalling cellulose, the non-sulfonated ion exchange resins and the like may be used. II. The bis(cyclopentadienyl) chromium (II) compounds disclosed in U.S. Patent No. 3,879,368, which patent is incorporated herein by reference. These bis(cyclopenta dienyl) chromium (II) compounds have the following formula: EMI10.1 wherein R and R;i may be the same or different C1 to C20, inclusive, hydrocarbon radicals, and n' and n may be the same or different integers of O to 5, inclusive. The R' and R hydrocarbon radicals may be saturated or unsaturated, they may include aliphatic, alicyclic and aromatic radicals such as methyl, ethyl, propyl, butyl, pentyl, cyclopentyl, cyclohexyl, allyl, phenyl and naphthyl radicals. These catalysts are used on a support as heretofore described. III. The catalysts as described in U.S. Patent No. 4,011,382, which patent is incorporated herein by reference. These catalysts contain chromium and titanium in the form of oxides and, optionally, fluorine and a support. The catalysts contain, based on the combined weight of the support and the chromium, titanium and fluorine, about 0.05 to 3.0, and preferably about 0.2 to 1.0, weight percent of chromium (calculated as Cr), about 1.5 to 9.0, and preferably about 4.0 to 7.0, weight percent of titanium (calculated as Ti), y 0.0 to about 2.5, and preferably about 0.1 to 1.0 weight percent of fluorine (calculated as F). The chromium compounds which may be used include CrO3, or any compound of chromium which is oxidizable to CrOD under the activation conditions employed. At least a portion of the chromium in the supported, activated catalyst must be in the hexavalent state. Chromium compounds other than CrO3 which may be used are disclosed in U.S. Patent 2,825,721 and U.S. Patent 3,622,521 (the disclosures of which patents are hereby incorporated by reference) and include chromic acetyl acetate, chromic nitrate, chromic acetate, chromic chloride, chromic sulfate, and ammonium chromate. Water soluble compounds of chromium, such as CrO3, are the preferred compounds for use in depositing the chromium compound on the support from a solution of the compound. Chromium compounds soluble in organic solvents may also be used. The titanium compounds which may be used include all those which are oxidizable to TiO2 under the activation conditions employed, and include those disclosed in U.S. Patent No. 3,622,521 and Netherlands Patent Application 72-10881 (the disclosures of which publications are hereby incorporated by reference). These compounds include those having the structures (R) nTi(OR')m and (RO)mTi(OR1)n where m is 1,2, 3, or 4; n is 0, 1, 2, or 3 and m + n = 4, and TiX4 where R is a C1 to C12 alkyl, aryl or cycloalkV6 and combinations thereof, such as aralkyl, alkaryl, and the like; R' is R, cyclopentadienyl, and C2 to C12 alkenyl groups, such as ethenyl, propenyl, isopropenyl, butenyl and the like; and X i8 chlorine, bromine, fluorine or iodine. The titanium compounds would thus include titanium tetrachloride, titanium tetraisopropoxide, and titanium tetrabutoxide. The titanium compounds are more conveniently deposited on the support from a solution in a hydrocarbon solvent. The titanium (as Ti) is present in the catalyst, with respect to the Cr (as Cr), in a mole ratio of about 0.5 to 180, and preferably of about 4 to 35. The fluorine compounds which may be used include HF, or any compound of fluorine which will yield HF under the activation conditions employed. Fluorine compounds other than HF which may be used are disclosed in Netherlands Patent Application 72-10881. These compounds include ammonium hexafluorosilicate, ammonium tetrafluoroborate, and ammonium hexafluorotitanate. The fluorine compounds are conveniently deposited on the support from an aqueous solution thereof, or by dry blending the solid fluorine compounds with the other components of the catalyst prior to activation. The inorganic oxide materials which may be used as a support in the catalyst compositions are porous materials having a high surface area, that is, a surface area in the range of about 50 to about 1000 square meters per gram, and an average particle size of about 50 to 200 microns. The inorganic oxides which may be used include silica, alumina, thoria, zirconia and other comparable inorganic oxides, as well as mixtures of such oxides. The catalyst support which may have the chromium and/or fluorine compound deposited thereon should be dried before it is brought into contact with the titanium compound. This is normally done by simply heating or predrying the catalyst support with a dry inert gas or dry air prior to use. It has been found that the temperature of drying has an appreciable effect on the molecular weight distribution and the melt index of the polymer produced. The preferred drying temperature is 100 to 3000C. Activation of the supported catalyst can be accomplished at nearly any temperature up to about its sintering temperature. The passage of a stream of dry air or oxygen through the supported catalyst during the activation aids in the displacement of the water from the support. Activation temperatures of from about 300 C to 9000C for a period of about six hours should be sufficient if well-dried air or oxygen is used, and the temperature is not permitted to get so high as to cause sintering of the support. IV. The catalysts as described in U.S. Patent Application, Serial No. 892,325, filed on March 31, 1978, in the names of F.J. Karol et al, and entitled, Preparation of Ethylene Copolymers in Fluid Bed Reactor and assigned to the same assignee as the present application. These catalysts comprise at least one titanium compound, at least one magnesium compound, at least one electron donor compound, at least one activator compound and at least one inert carrier material, as defined below. The titanium compound has the structure Ti (OR)aXb wherein R is a C1 to C14 aliphatic or aromatic hydrocarbon radical, or COR' where R' is a C1 to C14 aliphatic or aromatic hydrocarbon radical; X is Cl, Br, or I; a is O or 1; b is 2 to 4 inclusive; and a + b = 3 or 4. The titanium compounds can be used individually or in combination thereof, and would include Tic3, TiCl4, Ti(OCH3)Cl3, Ti (0C6H5)Cl3, Ti(OCOCH3)Cl3 and Ti(OCOC6H )C1 The magnesium compound has the structure MgX2 wherein X is Cl, Br, or I. Such magnesium compounds can be used individually or in combinations thereof and would include NgCl2, MgBr2 and MgI2. Anhydrous MgC12 is the preferred magnesium compound. About 0.5 to 56, and preferably about 1 to 10, moles of the magnesium compound are used per mole of the titanium compound in preparing the catalysts employed in the present invention. The titanium compound and the magnesium compound should be used in a form which will facilitate their dissolution in the electron donor compound, as described herein below. The electron donor compound is an organic compound which is liquid at 25 C and in which the titanium compound and the magnesium compound are partially or completely soluble The electron donor compounds are known as such or as Lewis bases. The electron donor compounds would include such compounds; as alkyl esters of a]iphatic and aromatic carboxylic acids, aliphatic ethers, cyclic ethers and aliphatic ketones. Among these electron donor compounds the preferable ones are alkyl esters of C1 to C4 saturated aliphatic carboxylic acids; alkyl esters of C7 to C8 aromatic carboxylic acids; C2 to C8, and preferably C to C4, aliphatic ethers; C to C4 cyclic ethers, and preferably C4 cyclic mono- or di-ether; C3 to C6, and preferably C3 to C4, aliphatic ketones. The most preferred of these electron donor compounds would include methyl formate, ethyl acetate, butyl acetate, ethyl ether, hexyl ether, tetrahydrofuran, dioxane; acetone l, and methyl isobutyl ketone. The electron donor compounds can be used individually or in combinations thereof. About 2 to 85, and preferably about 3 to 10 mols of the electron donor compound are used per mol of Ti. The activator compound has the structure Al(R1') cX' dHe wherein X' is Cl or OR1; R1 and R are the same or different and are C1 to C14 saturated hydrocarbon radicals, d is O to 1.5, e is 1 or 0, and c + d + e = 3. Such activator compounds can be used individually or in combinations thereof and would include Al(C2H5)3, Al(C2H5)2Cl Al C4Hg)3 Al2(C2H5)3Cl3, Al(i-C4H9)2H, Al(C6H13)3, Al(C2H5)2H, and Al(C2H5)2(0C2H5). About 10 to 400, and preferably about 10 to 100, moles of the activator compound are used per mole of the titanium compound in activating the catalyst emplÏye in the present invention. The carrier materials are solid, particulate materials and would include inorganic materials such as oxides of silicon and aluminum and molecular sieves, and organic materials such as olefin polymers, e.g., polyethylene. The carrier materials are used in the form of dry powders having an average particle size of about 10 to 250, and preferably of about 50 to 150 microns. These materials are also preferably porous and have a surface area of > 3, and preferably of > 50, square meters per gram. The carrier material should be dry, that is, free of absorbed water. This is normally done by heating or pre-drying the carrier material with a dry inert gas prior to use. The inorganic carrier may also be treated with about 1 to 8 percent by weight of one or more of the aluminum alkyl compounds described above to further activate the carrier. The residues in the above mentioned formulae have the following preferred definitions: R: C114alkyl, C6¯14aryl especially C18 and preferably C1 6alkyl; C61 0aryl. E.g. methyl, ethyl, propyl, i-propyl, butyl, i-butyl, pentyl, hexyl, octyl, i-octyl, nonyl, decyl, dodecyl, tetradecyl; phenyl, tolyl, xylyl, ethyl: phenyl, naphtyl. R: as R R and R ': aliphatic C1 14 residues as under R, includ ing cycloaliphatic residues with preferably 5-10 carbon atoms as cyclopentyl, cyclohexyl, cycloheptylJ methylcyclohexyl. 3. The Fluidized Bed Reaction System ¯ ¯¯ The fluidized reaction system which is used in the practice of this invention is illustrated in Figure 1. With reference to Figure 1, the reactor 10 consists of a reaction zone 12 comprising a bed of growing polymer particles, formed polymer particles and a minor amount of catalyst particles fluidized by the continuous flow of polymerizable and modifying gaseous components in the form of make-up feed and recylce gas through the reaction zone. To maintain a viable fluidized bed, the mass gas flow rate through the bed must be above the minimum flow required for fluidization, and preferably from about 1.5 to less than 10 times Gmf and more preferably from about 2 to about 6 times Gmf. Gmf is used in the accepted form as the abbreviation for the minimum mass gas flow required to achieve fluidization, C.Y. Wen and Y.H. Yu, Mechanics of Fluidization , Chemical Engineering Progress Symposium Series, Vol. 62, ! p. 100-111 (1966). It is essential that the bed always contains particles to prevent the formation of localized hot spots and to entrap and distribute the particulate catalyst throughout the reaction zone. On start up, the reaction zone is usually charged with a bed of particulate particles before gas flow is initiated. Such particles may be identical in nature to the polymer to be formed or different therefrom. When different, they are withdrawn with the desired formed polymer particles as the first product. Eventually, a fluidized bed of the desired polymer particles supplants the start-up bed. The partially or completely activated precursor compound (the catalyst) used in the fluidized bed is preferably stored for service in a reservoir 32 under a blanket of a gas which is inert to the stored material, such as nitrogen and argon. Fluidization is achieved by a nlgn rate ol gas'recgclev to and through the bed, typically in the order of about 50 times the rate of feed of make-up gas. The fluidized bed has the general appearance of a dense mass of viable particles created by the percolation of gas through the bed. The pressure drop through the bed is equal to or slightly greater than the mass of the bed divided by the cross-sectional area. tt is thus dependent on the geometry of the reactor. Make-up gas is fed to the bed at a rate at least equal to the rate at which particulate polymer product is withdrawn. The composition of the make-up gas is determined by a gas analyzer 16 positioned above the bed. The gas analyzer determines the composition of the gas being recycled and the composition of the make-up gas is adjusted accordingly to maintain an essentially steady state gaseous composition within the reaction zone. To insure complete fluidization, the recycle gas and, where desired, part of the make-up gas are returned to the reactor at point 18 below the bed. There exists a gas distribution plate 20 above the point of return to aid fluidizing the bed. The portion of the gas stream which does not react in the bed constitutes the recycle gas which is removed from' the polymerization zone through a transport disengaging section 14 above the bed where entrained particles are given an opportunity to drop back into the bed. The recycle gas is then compressed in a compressor 25 and then returned to the reactor. The reactor 10 contains) an internal cooler which consists of tubing 50 located within the fluidized bed through which the heat of reaction is removed to a coolant. Although bare tubes are shown as the internal cooler in Figure 1, several types of coolers could be used such as finned tubes or plate coils. The temperature of the resin in the bed is controlled by adjusting the temperature and/or the flowrate of the coolant flowing into the internal cooler as required to maintain the bed at an essentially constant temperature. By constantly removing heat of reaction, no noticeable temperature gradient appears to exist within the bed. Since the recycle gas is not cooled, the temperature of the gas entering the fluid bed 12 through the distribution plate 20 is at essentially the same temperature as the recycle gas leaving the bed through the transport disengagement section 14. The distribution plate 20 plays an important role in the operation of the reactor. The fluidized bed contains ì growing and formed particulate polymer particles as well as catalyst particles. As the polymer particles are hot and possibly active, they must be prevented from settling for if a quiescent mass is allowed to exist, any active catalyst contained therein may continue to react and cause fusion. Recycle gas flow through the bed at a rate sufficient to maintain fluidization within the bed is, therefore, important. The distribution plate 20 serves this purpose and may be a screen, slotted: plate, perforated plate, a plate of the bubble cap type, and the like. The elements of the plate may all be stationary, or the plate may be of the mobile type disclosed in U.S. Patent 3,298,792, Whatever its design, it must distribute the recycle gas through the particles at the base of the bed to keep them in a fluidized condition, and also serve to support a quiescent bed of resin particles when the reactor is not in operation. Hydrogen may be used to control molecular weight in the polymerization reaction of the present invention. The ratio of hydrogen/ethylene employed will vary between about 0 to about 2.0 moles of hydrogen per mole of the monomer in the gas stream. Any gas inert to the catalyst and reactants can also be present in the gas stream. The activator compound is preferably added to the reaction system in the recycle line. Thus, the activator may be fed into the gas recycle system from dispenser 27 thru line 27A. It is essential to operate the fluid bed reactor at a temperature below the fusing temperature of the polymer particles. To insure that fusion will not occur, operating temperatures below the fusing temperature are desired For the production of ethylene copolymers in the process of the present invention an operating temperature of about 30 to 1250C is preferred, and a temperature of about 75 to 1150C is most preferred. The fluid bed reactor is operated. at pressures of up to about 1000 psi, and is preferably operated at a pressure of from about 50 to 350 psi. The partially or completely activated precursor composition (catalyst) is inSected into the bed at a rate equal to its consumption at a point 30 which is above the distribution plate 20. Preferably, the catalyst,! is injected at a point located about 1/4 to 3/4 up the side of the bed. Injecting the catalyst at a point above the distribution plate is an important feature of this invention. Since the catalysts which may be used herein are highly active, injection of the fully activated catalyst into the area below the distribution plate may cause polymerization to begin there and eventually cause plugging osf the distribution plate. Injection into the viable bed, instead, aids in distributing the catalyst throughout the bed and tends to preclude the formation of localized spots of high catalyst concentration which may result in the formation of hot spots . A gas which is inert to the catalyst such as nitrogen or argon is used to carry the partially or completely reduced precursor composition, and any additional activator compound or non-gaseous modifier that is needed, into the bed. The production rate of the bed is controlled by the rate of catalyst injection. The production rate may be increased by simply increasing the rate of catalyst injection and decreased by reducing the rate of catalyst injection. Since any change in the rate of catalyst injection will change the rate of generation of the heat of reaction, the temperature and/or flow rate of the coolant in the internal cooler is adjusted upwards or downwards to accomodate the change in rate of heat generation. This insures the maintenance of an essentially constant temperature in the bed. Complete instrumentation of both the fluidized bed and the internal cooling system, is, of course, necessary to detect any temperature change in the bed so as to enable the operator to make a suitable adjustment in the temperature and/or flowrate of the coolant. Under a given set of operating conditions, the fluidized bed is maintained at essentially a constant height by withdrawing a portion of the bed as product at a rate equal to the rate of formation of the particulate polymer product. Since the rate of heat generation is directly related to product formation, a measurement of the temperature rise of the coolant across the reactor (the difference between inlet coolant temperature and exit coolant temperature) is determinative of the rate of particulate polymer formation at a constant coolant velocity. The particulate polymer product is conveniently and preferably withdrawn through the sequential operation of a pair of timed valves 36 and 38 defining a segregation zone 40. While valve 38 is closed, the gas is vented through line 51. Valve 38 is then opened to deliver the product to an external recovery zone. Vale 38 is then closed to await the next product recovery operation. Finally, the fluidized bed reactor is equipped with an adequate venting system to allow venting the bed during start up and shut down. The reactor does not require the use of stirring means and/or wall scraping means. The highly active supported catalyst system described herein yields a fluid bed product having an average particle size between about 100 to about 1500 microns and preferably about 500 to about 1000 microns. For good operation, the cooling means must be immersed in the fluidized bed portion of the reactor 10. If the cooling means extends above or below the fluidized bed, particles will settle on nonvertical surfaces and, since the particles contain active catalyst, will tend to grow and produce chunks of solid polymer which will hamper or prevent operation of the reactor. The cooling means used in the reactor may be a cooler or heat exchanger. The design of the cooling means is such that the cross-sectional area of the cooling means does not reduce the free cross-sectional area of the bed so as to cause the local superficial velocity to exceed 10 times the minimum fluidization velocity. The crosssectional area available for flow cf the point where the cross-sectional area of the internal cooler is the greatest is the minimum free cross-sectional area. The reactor described in Figure 1 can be operated over a range of diameter to height ratios from about 1:1 to 1:10. The minimum fluidized bed depth is dependent on distributor plate design and bubble size and not on reactor diameter while the transport disengaging height is a complex function of particle size distribution, gas velocity, particle density, gas density and others. The transport disengagement section height is calculated as described in F.A. Zenz and D.F. Othmer, Fluidization t and Fluid Particle Systems , Reinhold Publishing Corp., 1960, pp. 374-387, which is incorporated herein by reference. EXAMPLES The properties of the polymers produced in the Examples were determined by the following test methods: Density For materials having a density < 0.940, ASTM-1505 procedure is used and plaque is conditioned for one hour at 1000C to approach equilibrium crystallinity. For materials having a density of > 0.940, a modified procedure is used wherein the test plaque is conditioned for one hour at 120 C to approach equilibrium crystallinity and is tìlen quickly cooled to room temperature. All density values are reported as rams/cm3. All density measure ments are made in a density gradient column. Melt Index (MI) ASTM D-1238 - Condition E Measured at 1900 C - reported as grams per 10 minutes. Flow Rate (HLMI) ASTM D-1238 - Condition F Measured at 10 times the weight used in the melt index test above. Melt Flow Ratio (MFR) = Flow Rate Melt Index Bulk Density The resin is poured via a funnel into a 100 ml graduated cylinder to 100 ml line without shaking the cylinder, and weighed by difference. Space Time Yield Pounds of resin produced per hour per cubic foot of bed volume. Catalyst Preparation Catalyst A To a solution of the desired amount of CrO3 in three liters of distilled water there was added 500 grams of a porous silica support having an average particle size of about 70 microns and a surface area of about 300 square meters per gram. The mixture of the support, water was stirred and allowed to stand for about 15 minutes. It was then filtered to remove about 2200-2300 ml of solution. The CrO3 loaded silica was then dried under a stream of nitrogen for about 4 hours at 2000C. About 400 grams of the supported CrO3 was then slurried in about 2000 ml of dry isopentane, and then a desired amount of tetraisopropyl titanate was added to the slurry. The system was then mixed thoroughly and then the isopentane was dried by heating the reaction vessel. The dried material was then transferred to an activator (heating vessel) and a desired quantity of (NH4)2SiF6 was added and admixed. The composition was then heated under N2 at 5O0C for about 1 hour and then at 1500C. for about 1 hour to insure that all the isopentane was removed and to slowly remove organic residues from the tetraisopropyl titanate so as to avoid any danger of a fire. The N2 stream was then replaced with a stream of dry air and the catalyst composition was activated at 300 C for about 2 hours and then at 8250C for about 8 hours. The activated catalyst was then cooled with dry air (at ambient temperatures) to about 1500C and further cooled from 1500C to room temperature with N2 (at ambient temperature). The amounts of the chromium, titanium, and fluorine compounds which were added to provide the desired levels of these elements in the activated catalyst are as follows: weight % of compound weight 96 of element added to support in activated catalyst CrO3 0.6 Cr 0.3 Ti(isopropyl)4 26 Ti 4.2 tNH4)2SiF6 1.2 F 0.6 Catalyst B About 2000 grams of a porous silica support having an average particle size of about 70 microns and a surface area of about 300 meters per gram were dehydrated in an activator (heating vessel). The silica was heated to 400C for about two hours and then heated to 600C for about 8 hours. The dehydrated silica was then cooled to room temperature by passing dry N2 through it and stored under N2. A portion of the dehydrated silica 462 g was then slurried in about 4000 ml of dry isopentane at 700C and about 350 ml of about 15 wt percent bis-(cyclopentadienyl) chromium (If), i.e., chromocene in toluene was added and stirred for one hour in a closed vessel so the isopentane did not boil off The catalyst was then dried at 900C for 30 hours under a N2 purge and stored under N2. The final catalyst contained about 6 wt percent chromocene. Catalyst C Catalyst C was prepared by adding one thousand grams of dehydrated silica as described for Catalyst B to 5500 ml of dry isopentane at 450C. The slurry was stirred for 30 minutes, then 30 g of bis-triphenylsilylchromate was added to the slurry and stirring continued for 10 hours. Then 200 ml of a 20 wt percent solution of di-ethyl aluminum ethoxide in hexane was added over a 30 minute period. Stirring was continued for an additional 4 hours at which time the stirring was stopped and the liquid was I decanted from the catalyst. Agitation was then restarted and the catalyst was dried for 24 hours at 700C under a slight N2 purge and stored under N2. The final catalyst contained about 3 wt percent bis-triphenylsilylchromate and had an Al/Cr molar ratio of about 6 to 1. Catalyst D I. Preparation of Impreanated Precursor In a 12 1 flask equipped-with a mechanical stirrer are placed 41.8 g (0.439 mole) anhydrous MgC12 and 2.5 1 tetra hydrofuran (THF). To this mixture, 27.7 g (0.184 mol) TiC14 is added dropwise over 1/2 hour. It may be necessary to heat the mixture to 60 C for about 1/2 hour in order to completely dissolve the material. 500 g of porous silica is added and the mixture stirred for 1/4 hour. The mixture is dried with a N2 purge at 600C. for about 3-5 hours to provide a dry free flowing powder having the particle size of the silica. The absorbed precursor composition has the formula TiMg3.0cl1o(THF)6.7 II. Activation Procedure The desired weights of impregnated precursor composition and activator compound are added to a mixing tank with sufficient amounts of anhydrous aliphatic hydrocarbon diluent such as isopentane to provide a slurry system. The activator compound and precursor compound are used in such amounts as to provide a partially activated precursor compositiori which has an Al/Ti ratio of O to 10 and preferably of 4 to 8. The contents of the alurry system are then thoroughly mixed at room temperature and at atmospheric pressure for about 1/4 to 1/2 hour. The resulting slurry is then dried under a purge of dry inert gas such as nitrogen or argon at atmospheric pressure and at a temperature of 65 + 10 C to remove the hydrocarbon diluent. This process usually requires about 3 to 5 hours. The resulting catalyst is in the form of a partially activated precursor composition which is impregnated within the pores of the silica. The material is a free flowing particulate material having the size and shape of the silica. It is not pyrophoric unless the aluminum alkyl content exceeds a loading of 10 weight percent. It is stored under a dry inert gas such as nitrogen or argon prior to future use. It is now ready for use by being injected into, and fully activated within, the polymerization reactor. When additional activator compound is fed to the polymerization reactor for the purpose of completing the activation of the precursor composition, it is fed into the reactor as a dilute solution in a hydrocarbon solvent such as isopentane. These dilute solutions contain 5 to 30 percent by volume of the activator compound. The activator compound is added to the polymerization reactor so as to maintain the Al/Ti ratio in the reactor at a level of about 10 to 400 and preferably of 15 to 60:1) The following Examples are intended to illustrate the process of the present invention and are not intended as a limitation upon the scope thereof. Examples 1 - 6 For these Examples a reactor similar to that depicted in the Figure with a diameter (inner) of 13 1/2 inches and a height of 26 1/2 feet was used. Examples 1-6 were run under a gas velocity of 4-6 times Gmf and a pressure of 300 psig. The internal cooler consisted of four vertical loops about four feet long of 1 inch diameter stainless steel tubing through which tempered water was passed as the coolant. A portion of the line between the compressor i and the reactor was jacketed to remove the heat added by the recycle compressor. For Example 1 only, the internal cooler was replaced by an external, single pass heat exchanger of vertical shell and tube design with the recycle gas flowing downward through the tubes and tempered water on the shell side. Example 1 The reactor described above with an external heat exchange was used to copolymerize ethylene with butene-1 or propylene for two years. During the first year of operation it was necessary to shut down the reactor 15 times to clean the external heat exchanger of polymer build-up from entrained resin particles while during the second year 17 shut downs were required. During the two year period of operation, catalysts A through C described above were used in the reactor. Example 2 The reactor used in Example 1 was converted to the configuration depicted in Figure 1 through the removal of the external heat exchanger and installation of an internal cooler as described above. The reactor was used to co-polymerize ethylene with butene-1 or propylene and was operated for 11 months in this configuration during which time no shut downs were caused by the internal cooler. Catalysts A through D were used in the reactor during this eleven month period. Examples 3 - 6 These Examples describe specific operation of the reactor described in Example 2 while operating with each of catalysts A through D. Example 3 Catalyst A prepared as disclosed above was run in the reactor described in Example 2 under a gas velocity of 4-6 times Gmf and a pressure of 300 psig. The catalyst contained 0.3 wt percent Cr, 4.2 wt percent Ti and 0.6 wt percent F. The other reaction conditions and the properties of the resin produced are listed below: : Reaction Conditions Resin Properties Temp., C 87.5 Melt Index 0.20 CH /CH4 mlrtio 1 ratio 0.10 Flow Rate 21.8 Melt Flow Ratio 109 Bed level, ft 8 Density 0.919 Space Time Yield Average Particle lb/hr/ft3 5.4 Size,microns 965 Size,microns 965 Bulk Density lb/ft3 26.0 Example 4 Catalyst B prepared as disclosed above was used in the fluidized bed reactor of uniform diameter and internal cooling as described in Example 2 under a gas velocity of 4-6 times Gmf and a pressure of 300 psig to copolymerize ethylene and propylene. The catalyst contained about 1.7 wt percent Cr. The other reaction conditions and the properties of the resin produced are listed below: Reaction Conditions Resin Properties Temp., OC 95 Melt Index 1.7 C3H6/C2H4 mole ratio 0.15 Flow Rate ' 83.4 H2/C2H4 mole ratio 0.04 Melt Flow Ratio 48.0 Bed level, ft 5 Density 0.953 Space Time Yield ' Average particle lb/hr/ft3 3.8 size, microns 810 Bulk Density lb/ft) 26.0 The reactor was operated with Catalyst B at these conditions for 26 hours and gave trouble-free operation. Example 5 Catalyst C prepared as disclosed above was used in the fluidized bed reactor of uniform diameter with internal cooling as described in Example 2 under a gas velocity of 4-6 times Gmf and at a pressure of 300 psig to copolymerize ethylene and butene-1. The catalyst contained 0.3 wt percent Cr and 0.9 wt percent Al. The other react conditions and the properties of the resin produced are listed below: Reaction Conditions A Resin ProPerties Temp., 0C 103 Melt Index 0.6 C4H8/C2H4 mole ratio 0.009 Flow Rate 41.4 H2/C2H4 mole ratio 0.073 Melt Flow Ratio 72.7 Bed level, ft 5 Density 0.958 Space Time Yield, Average Particle lb/hr/ft3 4.4 Size, microns 660 Bulk Density lb/ft3 28.0 The reactor was operated using Catalyst C at these conditions for 24 hours and gave trouble-free operation. Example 6 Catalyst D prepared as disclosed above was used in the fluidized bed reactor of uniform diameter with internal cooling as described in Example 2 under a gas velocity of 4-6 times Gmf and at a pressure of 300 psig to copolymerize ethylene and butene-1. The catalyst contained 1.0 wt percent Ti, 3.4 wt percent Al, 3.4 wt percent Mg and about 9 wt percent THF..The other reaction conditions and the properties of the resin produced are listed below: : Reaction Conditions Resin Properties Temp.,.0C 85 Melt Index 1.87 C4H8/C2H4 mole ratio 0.42 Flow Rate 47.4 H2/C2H4 mole ratio 0,'26 Melt flow ratio 24.8 Bed level, ft 5 Density 0.927 Space Time Yield Average Particle lb/hr/ft3 3.4 Size, microns 965 Bulk Density, lb/ft3 16.8 The reactor was operated using Catalyst D at these conditions for 16 hours and gave trouble-free operation.
WHAT IS CLAIMED IS: 1. A continuous low pressure gas phase process for the production of solid particulate polymers during an exothermic polymerization reaction in a vertical uniform diameter fluidized bed reactor which comprises feeding a polymerization catalyst and a gaseous stream containing at least one polymerizable monomer to a fluidized bed of polymer particles in said reactor at a pressure of 50 to 1000 psi, removing the exothermic heat of reaction by indirect cooling means in said reactor and removing particulate polymer from said reactor, and wherein the mass gas flow rate through the fluidized bed is in the range of from about 1.5 to < 10 Gmf based on the minimum free cross-sectional area of the bed. 2. A process as in Claim 1 wherein the temperature of the reaction is 30 to 1250C. 3. A process as in Claim 2 wherein the temperature is 75 to 115 C. ! 4. A process as in Claim 1 wherein the pressure is 50 to 350 psi. 5. A process as in Claim 1 wherein the catalyst is a high activity chromium and/or titanium containing catalyst. 6. A process as in Claim 1 wherein the polymer is an olefin polymer. 7. A fluid bed reactor system in which one or more polymerizable monomers may be catalytically polymerized continuously in a fluid bed under gas medium fluidized conditions to produce said polymers, and comprising (a) a vertical reactor having a uniform internal diameter containing a polymerization zone in the lower section; V of said reactor in which the catalyzed polymerization reaction may be conducted under gas fluidized bed conditions; (b) indirect cooling means within the reactor adapted to remove heat of reaction from the reactor and not interfere in the gas flow; (c) fluidizing medium permeable distribution plate means within and towards the base of said lower section, said distribution plate means being adapted to distribute fluidizing medium up through the fluidized bed in said lower section; ; (d) fluidizing medium supply line means in gas communication with and adapted to supply fluidizing medium and make up gas to the lower section of said reactor and below said distribution plate means; (e) catalyst injection means to supply high activity transition metal containing catalyst to the fluidized bed in the polymerization zone in said lower section; (f) polymer product recovery means in polymer product recovery communication with and adapted to recover polymer product from the polymerization zone and above said distribution plate means; and (g) fluidizing medium recycle line means in gas communication with said reactor and adapted to recover fluidizing medium from the upper section of said reactor and to recycle the thus recovered fluidizing medium to the lower section of said reactor at a point below distribution plate means.
UNION CARBIDE CORPORATION
BROWN, GARY LEIGH; BYON, JAE HWANG; WARNER, DAVID FRANKLIN
EP-0004969-B1
4,969
EP
B1
DE
19,820,728
1,979
20,100,220
new
G01R31
G01R31, G08G1
H04Q7, G08G1, H04B7, G08B21, G01R31, G01S1
G08G 1/123, G01R 31/36M3V2
DEVICE FOR AUTOMATICALLY MONITORING THE STATE OF CHARGE OF LINE-INDEPENDENT CURRENT SOURCES
1. Device for automatically monitoring the load state of the mains-independent current supply of the stationary response apparatus of a system of the position finding of traffic devices, which response apparatus is in contact with and mutually exchanges data telegrams with an interrogation apparatus which is installed in the traffic device, characterised in that the current supply unit consisting of primary batteries or accumulators with charging from solar cells is assigned a monitoring sensor (Ts, Z, R1, R2, R3) which has a response threshold (UB alarm) which serves to emit an alarm signal and lies, by a defined adjustable value, above the minimum voltage (UB min) which is required for undisturbed operation, and that the result of the measurement of the voltage (UB ) which is carried out in each interrogation process of the interrogation apparatus is fed to a telegram register (TR) as a monitoring signal and added to the telegram, which contains the link data and has been transmitted to the interrogation apparatus by the response apparatus, in a coded form.
Einrichtung zur automatischen Überwachung des Ladezu- standes nezunabhängigher Stromversorgungen Die Erfindung bezieht sich auf eine Einrichtung zur automatischen ttberwachung des Ladezustandes der netzunabhän- gigen Stromversorgung des Antwortgerätes einer Anlage zur Standorbestimmung von Verkehrseinrichtungen, das mit einem in der Verkehrseinrichtung installierten Abfragege rät in Funkkontakt steht. Punktförmige Ortungssysteme, die z.B. zur Standortbestimmung von Verkehrseinrichtungen eingesetzt sind, beste- hen im wesentlichen aus zwei Einheiten, nämlich einem t'D- fragegerät und einem Antwortgerät. Die Abfragegeräte werden im allgemeinen mit Strom aus dem Bordnetz der Verkehrseinrichtung betrieben. Die Energieversorgung der Antwortgeräte aus einem Stromnetz ist mit einem hohen Aufwand für die Installation verbunden. Es ist daher vorgesehen, diese aus Prim2rbatterien oder aus Akkumulato- ren mit Ladung über Solarzellen zu betreiben. Störungen in der Stromversorgung, beispielsweise entladene Batte- rien, werden durch fehlende Datensendung des jeweiligen Antwortgeräts erkannt und können nur über eine Plausibilitätskontrolle der Reihenfolge der Antwortgerätedaten an der Strecke in einer Zentrale festgestellt werden. Der Übergangszustand der Batterieladung von voll nach leer wird dabei nicht erkannt. Entsprechend der jeweiligen Verkehrsdichte wird die Batteriebelastung der Anrtgeräte längs einer Strecke unterschiedlich sein. Antwortgeräte z.B. an Kreuzungen und Plätzen werden häufiger abgefragt als solche, die s.B. an einbahnigen Strassen montiert sind. Der Erfindung liegt die Aufgabe zugrunde, für eine derartige Anlage zur Standortbestimmung von Verkehrseinrichtungen eine Einrichtung zur automatischen Überwa- chung des Ladezustandes der netzunabhänglgen Stromversorgung des Antwortgerätes zu schaffen. Diese Aufgabe wird gemäss der Erfindung mit einer Einrichtung der eingangs beschriebenen Art in der Weise gelöst, dass der Stromversorgung, bestehend aus Primrbatte- rien oder Akkumulatoren mit Ladung über Solarzellen, ein Überwachungssensor mit einer Ansprechschwelle zur Abgabe eines Alarmsignals zugeordnet ist, die um efe definiert eInstellbaren Wert über der für den ungestörten Betrieb erforderlichen Nindestspannung liegt, und dass das Ergebnis der bei jedem Abfragevorgang des Abfragegerätes durchgeführten Messung der Spannung als Über- wachungssignal einem Telegrammregister zugeführt wird. Das Überwachungssignal wird dabei in vorteilhafter Weise in codierter Form dem vom Antwortgerät an das Abfragegerät übermittelten, die Streckendaten enthaltenden Telegramm beigefügt oder mit einem besonderen Abfragesignal von einem Servicewagen vom Antwortgerät abgefragt. Nachstehend wird die Erfindung anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen: Fig. 1 in einer grafischen Darstellung den Verlauf der Batteriespannung über der Zeit, Fig. 2 eine Uberwachungsschaltung im Antwatgerät und Fig. 3 ein Telegramm des Antwxtgerätes. In dem Diagramm nach Fig. 1 ist die Batteriespannung U3 in Abhängigkeit von der Betriebsdauer, d.h. von der Zeit t dargestellt. Es ist dabei angenommen, dass die Batterie während einer Betriebszeit t3etr von wenigstens 5 Jahres eine annähernd konstante Spannung liefert. Danach setzt ein stärkerer Abfall der Spannung ein. In dem abfallenden Ast der Spannungskurve sind zwei Punkte eingezeichnet für eine Batteriespannung U Alarm und UB min Beide Punkte liegen, bezogen auf die Zeitachse, um eine Zeit #t > 1 Monat auseinander. Dieser Wert wird angenommen bei Langzeitbatterien mit Niedrigstrombelastung. Der Wert UB Alarm ist dabei derjenige Spannungswert, bei dessen Erreichen ein Alarmsignal gegeben wird. Dieser Wert kann entsprechend eingestellt werden und wird so gewählt, dass ein genügend langer Zeitraum verbleibt, bis die Spannung auf den Wert UB min abgesunken ist, nach dessen Unterschreitung ein ungestörter Betrieb der Anlage nicht mehr gegeben ist. Innerhalb des Zeitraumes flt wird die Batterie im Antworgerät ausgewechselt. Dadurch ist also eine optimale Batterienutzung und eine Vereinfachung der Wartung gewährleistet. Ferner wird die Betriebszuverlässigkeit und die Verfügbarkeit des Gesamtsystems erheblich gesteigert. Fig. 2 zeigt die Batterie-Uberwachungsschaltung des Antwortgerätes. Dabei ist parallel zur Batterie mit den Klemmen +UB und 0 ein Transistor Ts geschaltet mit einem Spannungsteiler aus den Widerständen R2 und R3 im Basiskreis, einer in Reihe mit dem einen Widerstand R2 liegenden Zenerdiode Z und einem Widerstand R1 im Kollektorkreis. Vom Kollektor des Transistors Ts führt eine Leitung L zu einem Telegrammregister TR. Über diese Leitung L gelangt ein Überwachungssignal zum Telegrammregister. Die Bemessung der Uberwachungsschaltung ist dabei so gewählt, dass bei Erreichen der Spannung UP Alarm der Transistor sperrt. Somit wird also aus dem Vorhandensein bzw. Nichtvorhandensein eines Stromes durch den Transistor ein Signal über die Höhe der Batteriespannung abgeleitet. In dem Telegrammregister TR wird das Überwachungszeichen dem Telegramm des Antwortgerätes hizugefügt. In Fig. 3 ist ein solches Telegramm dargestellt, das aus mehreren aneinander gefügten Blöcken besteht, nämlich dem Synchronisationszeichen SynZ, des Antwortgerätedaten AGD, dem Überwachungszeichen ÜZ und einem Kontrollzeichen KZ. Auf jeae Anfrage des Abfragegerätes wird diesem ein solches Telegramm vom Antwortgerät übermittelt. Das Ergebnis der bei Jedem Abfragevorgang durchgeführten Messung der Batte respannung ist also in jede Telegramm des Antwortgerätee enthalten. Die Zentrale ist somit ständig über mög liche Störungen der Batterie spannung informiert. In einer teilweisen Abwandlung hierzu kann das Überwa- chungssignal auch mit einem besonderen Abfragesignal von einem Ser'rlcewagen vom Antwortgerät abgefragt werden. P*e erfindungsgemässe Batterieüberwachung ist nicht auf einen Einsatz beschränkt, bei dem das Antwortgerät ortsfest ist und Streckendaten aussendet, sondern kann auch bei Systemen vorgesehen werden, die Fahrzeugdaten zu stationären Abfragegeräten übertragen. Patentansprüche 3 Figuren
Patentansnrüche 1. Einrichtung zur automatischen Überwachung des Ladezustandes der netzunabhängigen Stromversorgung des Ant tortgerätes einer Anlage zur Standortbestimmung von Verkehrseinrichtungen, das mit einem in der Verkehrseinrichtung installierten Abfragegerät in Funkkontakt steht, d a d u r c h g e k e n n z e i c h n e t dass der Stromversorgung, bestehend aus Primärbatterien oder Akkumulatoren mit Ladung über Solarzellen, ein Über wachungssensor zugeordnet ist mit einer Ansprechschwelle zur Abgabe eines Alarmsignales, die um einen definiert einstellbaren Wert über der für den ungestörten Betrieb erforderlichen Nindestspannung liegt, und dass das Ergebnis der bei jedem Abfragevorgang des Abfragegerätes durchgeführten Messung der Spannung als überwachungs- signal einem Telegrammregister zugeführt ist. 2. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Überwachungssignal in codierter Form dem vom Antwortgerät an das Abfragegerät übermittelten, die Streckendaten enthaltenden Telegramm beigefügt ist. 3. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Überwachungssignal mit einem besonderen Abfragesignal von einem Servicewagen vom Antwortgerät abgefragt wird.
SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUNCHEN
HILDEBRANDT, BERNHARD
EP-0004971-B1
4,971
EP
B1
EN
19,831,005
1,979
20,100,220
new
B29C24
B29D23
B29C65, B29C53, B65H5, B29C57, B29C59, B65H35, B29D22, B29C67, B29C69
L29C305:02, B29C 69/00+IDT, B65H 5/34, B29C 65/18+F4B2, B29C 57/12, B65H 35/04, B29C 53/50
EQUIPMENT AND METHOD FOR FORMING CYLINDRICAL BLANKS
The present invention is directed to an apparatus and method wherein preprinted rectangular blanks (10A) of longitudinally stretch-oriented foam sheet material are continuously formed into cylinders by a tubular forming mandrel(M) on which the blanks are folded, seamed and thereafter transferred onto final forming mandrels (FM). Subsequently, the blanks and the final mandrels are heated to shrink the blanks so that they assume the shape of the final forming mandrels. In forming containers, means are provided to place bottom blanks on the product mandrels prior to the loading of the cylinders thereon so as to shrink the cylinders to sidewall shapes overlying the bottom blanks. The top curl on containers such as drinking cups and food tubs is formed after shrink forming. Further, the bottom seam of the container may be reinforced by ironing after shrink forming. The bottom blanks are synchronously-fed to the product mandrels at a compatible spacing and velocity after being initially blanked from a web at a different spacing and velocity achieving a minimum amount of scrap in the web.
DESCRIPTION OF THE INVENTION Title: METHOD AND APPARATUS FOR MANUFACTURING FOAM PLASTIC CONTAINERS BY USE OF A TUBULAR FORMING MANDREL Field Of The Invention This invention relates to' a method and apparatus for - forming containers by use of a tubular forming mandrel and more particularly, tib a method and apparatus for forming containers from heat-shrinkable material such as foamed plastic sheets and the like. Background Of The Invention It is known in the art to shrink form containers such as drinking cups from preformed tabular lengths of circum terentially oriented thermoplastic material such as fo-amed polystyrene. One particularly desirable method of initially forming a tubular length of such circumferentially oriented material is to provide rectangular-preprinted blanks and wrap these blanks around a mandrel whereon a heat-sealed seam is effected longitudinally along the circumference of the - formed tubular length. The use of rectangular blanks facilitates preprinting of patterns, designs, logos, etc., of the blanks such that the ultimate tubular lengths and containers formed therefrom will bear tiie ultimately desired indicia. A further advantage of the rectangular blank is that it may be cut from an extruded sheet of or thermoplastic moplastic foam which is stretched long:ituínally, i.e:., in the most logical, na-tural and facile direction of stretch after extrusion, namely, the machine direction, to achieve 4 the necessary circumferential orientation in a tubular length or cylinder formed from the rectangular blank. Previous efforts to handle these rectangular blanks and form them into cylinders,, however, have required relatively elaborate systems of transfer rollers, turrets with multiple mandrels thereon and vacuum systems to properly index leading and/or trailing edges of the rectangular blanks. on the transfer rollers or mandrels. It is extremely important in the manufacturing of disposable containers to maximize use of the container material. The bottom of a container is usually severed from a continuous web, thus incurring waste in the area of the continuo#,# web between the severed blanks. To maximize the use of the container material it is extremely essential that the bottom blanks be severed iX close proximity to each other along the length of the eon- tinuous bottom blank web. Further, the cylindrical blanks which define the sidewalls of the container must also be severed from a second supply of material in such a mao per to maximize use (#f -the container material. Apparatus for cutting and transferring bottom blanks from -a continuous web should continuously transfer the severed bottom blank to the final forming mandrel or other work station at which the blank is to be utilized and at the same time minimize the waste of the bottom blank material web. Final forming mandrels utilized in the constructicn of disposable cups, for example, may be positioned along an endless Glain and spaced from each other by a substantiml distance. To minimize the waste of the bottom blank material web it is essential that the bottom blanks be severed in close proximity to each other. This gives rise to incompatible parametcrs, naillely, a minimum spacing at the cutting station 'and a maximum spacing at the work station. Asa consequence, -there is l-elocity disparity as well in a continuous feeding and forming process between web velocity at the cutter and the velocity of the transitory mandrels or other bottom blank receiving means at the work station at, the point of transfer. Summary Of-- The Invention A convolute roll of elongated preprinted stock of longitudinally oriented#heat-shrinkable material such as polystyrene foam is unwound to feed the stock to a rotary cutter which severs the feed stock into rectangular' blanks of substantially identical dimensions. The cut blanks are fed by feed belts on their longitudinal axes and subsequently fed on their transverse axes by means of pusher dogs through a preogressive series of forming rails adjacent a single elongated tubular forming mandrel until a tubular length or cylind¯'r¯having an lapped side seam is formed about the -tubular forming mandrel of each blank. In a first embodiment, a heated pressure belt may effect a heat-sealed side seam and discharges the cylinder from the tubular forming mandrel onto a final forming mandrel indexed to dwell in coaxial registry with the tubular forming mandrel and formed cylinder during the discharge of each cylinder from the tubular forming mandrel. The final forming mandrels have bottom and sidewall defining portions and are shaped in cross-section like a desired ultimate container such as a cylindrical food can with a rounded bottom edge or a frustoconical drinking cup. A bottom blank may be placed on the final forming mandrels and held there by vacuum while the sidewall of the ultimate container, namely, the tubular length or cylinder is transfurred from the initial forming mandrel onto the final forming mandrel. Once both componeJl¯s of the basic container or cup are on a given--final forming n3el, each sucll final forming mandrel is constrained dut out of registry with the tubular forming mandrel and traiislated throug31 a heat tunnel to shrink the cylinder or tubular length into conformity with the sidewall slope of the final forming mandrel to provide the desired container shape. In all cases iTl the preferred embodiments of the present invention, the cylinders exceed the axial length of the final forming mandrels such that the bottom edge of the sidewall shrinks around the outer edges of bottom blank to provide a heat-sealable bottom seam. The final heat sealing is effected by any suitable heating means such as a conformally shaped contact heater. Where a cup-shaped (frustoconical) container is-desired, a final step in the process is the forming of a top curl or bead to increase the lateral stiffness of the container and ensure drinking comfort.^ -In the case of a food container of a more conventional substantially cylindrical shape the steps--of filling and closing by the application of a suitable lid or closure represent the final steps. The present invention further involves an apparatus and method for providing bottom blanks severed from a web feed roll in a compatible interface with the continuous container manufacturing process with a minimum amount of waste. The web feed roll is fed between a cutter drum and a first transfer turret so as to effect the severing of the bottom blanks from the web feed roll at a first velocity and apacing on said first turret. Thereafter, the first transfer turret transports the severed bottom -'blanks to a point where they are tangentially transferred to a second transfer turret at which point they are constrained to assume a second velocity and spacing compatible with the velocity and spacing of final container forming mandrels translating past the second transfer turret in the said continuous process. The bottom blanks are then tangentially transferred to final forming mandrels. The d#ilii=tc# of the cutter dru-,n is ap-p-roximately one-lialf the diameter of the first transfer turret and approximately on#--fourth the diameter of the second transfer turret, respectively, in a preferred embodiment of the invention. Therefore, the bottom blanks whic1,# are cut from the web feed roll are severed at a relatively high speed and in close proximity to each other because of the small diameter of the cutter drum and the close positioning of the cutter dies positioned around the circumference of the cutter drum while the blanks are delivered at a lower speed and wider spacing from the second transfer to the final forming mandrels. Brief Description Of The Dralfings Figure 1 is a top-plan view of a blank handling, cylinder forming and cylinder transferring mechanism of the present invention; Figure 2 is a side elevation of the feed roll, rotary cutter and right angle transfer belts of the present invention; Figure 2A is a top-plan schematic illustrating the stretch orientation of cut rectangular blanks-as they undergo the right angle transfer from the rotary cutter to the cylinder forming means of the present invention, Figure 3 is an exploded schematic illustrating in correlated cross-section the various forming stages of the present invention in converting a rectangular blank into a cylinder by continuous movement of the blank along a fixed mandrel; ; Figure 4 is a schematic side' elevation of a forming mandrel drive, transfer station and forming oven of the present invention; Figure SA is a detail of a forming mandrel, mount and drive chain in side elevation; Figure 5B is a top-- r-'I#vation of the detail of Figure SA with an 'alternate form oE forming '-i-#andiel shown in dotted lines therein; Figure 6A is a cross-section of a Erustoconical mandrel illustrating internal vacuum ports therein and a container formed thereon; ; Figure 6B is a cross-s#ection of a sub,stantially# cylin- drical mandrel illustrating internal vacuum ports therein and a container formed thereon; Figure 7 is a schematic of a cup-making system of the present invention; Figure 8A is a top view of a vacuum distributor of the present invention; Figure 8B is a side elevation in cross-section of the vacuum distributor of Figure 8A taken along line 8B-8B of Figure 8A, Figure 9 is a top-plan view of bottom finishing,' top curl forming and container ejection stations for cup-making equipment of the present invention together with a bottom blank'feeding station; Figure 10 is a cross-sectional view of the top curl forming station taken along line 10-10 of Figure 9; Figure 10A is an enlarged view of the top curl tool; ; Figure 11 is a cross-section of the bottom finishing station taken along line 11-11 of Figure 9; Figure 11A is'an enlarged cross-sectional illustration of a bottom iron engaging a container bottom on a mandrel of the present invention during bottom sealing; Figure llB is a top-plan view of the bottom-iron of Figures 9, 10, 11 and llA; Figure 12 is a cross-section taken along line 12-12 of Figure 9; Figure 13 is a schematic of a container filling station; Figure 14 is a schematic of a filled container cappin J station; Figure 15 is schematic of a filled container capping station illustrating a different cap or lid from that illustrated in Figure 14; ; Figure 16A is a top-plan view of a blank handling and cylinder forming mechanism of an embodiment of the present invention; Figure 16B is a continuation of the top-plan view of a blank handling and cylinder forming mechanism as illustrated in Figure -16A; Figure 16C is a continuation of a blank handling and cylinder forming mechanism as il ] uf#tr#ed in Fi-gures 16A and 16B and further illustrating the cylinder seating mechamism; Figure 17A is-a side elevation of the blank handling and cylinder forming mechanism as illustrated in Figure 16A; ; Figure 17B is a side elevation of the blank handling and cylinder forming mechanism as illustrated in Figure 16B and further illustrating the cylinder heater; Figure 17C is-a a side elevation of the blank handling and cylinder forming mechanism as illustrated in Figure 16C and further illustrating the seamer assembly; - Figure 18 is a cross-sectional view of the }:#ank handling and cylinder forming mechanism shown in Figures 16A through l6C and illustrating in broken and solid lines the various positions of a- blan# as it is initially formed into a U-shape; Fissure 19 is a cross-sectional view of a blank handling and cylinder forming mechanism shown in Figures 16A through 16C illustrating the position of a blank prior to being engated by the seamer assembly as viewed from the outfeed end of the tubular forming mandrel; Figure 20A is a top-plan view of a bottom blank handling apparatus according to the present invention; ; Figure 20B is a continuation of the top-plan view of bottom blank handling apparatus as illustratet in Figure 16A; Figure 20C is a continuation of a bottom blank handling apparatus as illustrated in Figures 16A and 16B and further illustrating the bottom lank web feed mecfianism; Figure 21A is a side elevation of the bottom blank handling apparatus as illustrated in Figure 16A;. Figure 21B is a side elevation of the#bottom blank handling apparatus as illustrated in Figure 16B; Figure 21C is a side elevation of the bottom blank handling apparatus as illustrated in Figure 16C; and Figure 22 is a side view of the rotably die and illustrating a partial cross-section view of the framework. Detailed Description Of The Drawings Referring to Figures 1 and 2, the material 10 from which the intermediate cylinders and ultimate containers' are to be made is shown as an elongated strip convolutely wound in the form of a la#rge supply roll 12 rotatably mounted on a suitaM able stanchion or support 14. The feed material 10 is unwound from the supply loll 12 and passed beneath a tension roller 16 (Fig. 2) and a guide roller 18 into contact with a vacuum feed drum 20 which cooperates with a synchronized rotary cutter means 22 to sever the end of the feed material 10 into uniform rectangular blanks 10A. The feed material 10 is stretch oriented for enhanced heat-shrink characteristics in the direction 10B which is parallel to the long dimension of the ultimate rectangular blanks 10A. As the blanks lOA are released from the downstream side of the vacuum drum 20, the latter being flanged at 20A, 20B to contain the narrower width of the feed material 10 between the flanges 20A, 20B as shown in Figs. 1 and 2, an upper pi#h roll 24 and blank bottom engaging pair of drive belts DBlA and DB1B entrain the leading edge of each successive blank 10A. Each blank 10A is fed on its longi- tudinal axis by the drive belts DB1A, DB1B beneath a biased retaining guide 26 to a right angle transfer point TP2. At the transfer point TP2a set of cross-feed belts CFB are located adjacent to limit stop means LS which abuts with and positions each rectangular blank 10A for lateral trans fer by the said cross-feed belts C. The drive belts DB1A and DB1B pass at an angle through suitable slots in the surface of a transfer table TT such that prior to engaging the limit-stop LS the blanks 10A have been accelerated by and broken contact with the drive belts DB1A and DB1B. As shown in Fig. 3, the cross-feed belts CFB are mounted to pivot toward and away.from the upper surface of the transfer table TT in synchronism with the forming of the rectangular blanks 10A and their delivery to the transfer point TP2. Thus, each said blank lOA will be transferred laterally of its longitudinal axis substantially instantan eously upon engaging the limit stop LS at the transfer point TP2. The pivotal motion of the cross-feed belt assembly CFB is effected by means of a drag link 28 and crank arm 30 acting about a pivot point 32 as illustrated in Fig. 3. The cross-feed belts CFR drive the blanks 10A off the transfer table TT onto a carrier chain 34 having pushers or dogs 36 thereon which engage the trailing edges of the blanks 10A and propel them along in a direction transverse to their longitudinal stretch orientation direction lOB. Longitudinally disposed along the upper reach of the carrier chains 34 is a hollow tubular forming mandrel M hitch is fixed against rotation' in a suitable holding -bracket 40. Loading into the bracket 40 and progressively varying in shape along substantially the entire extent of the forming mandrel M are opposed forming rails FR1, the extent of which can best be understood it reference to Figs. 1 and 3. As the carrier chain 34 progresses clockwise around the chain drive sprockets 38A 38B 'the pusher dogs 36 move time blanks 10A through the forming rails FRl to bend the blanks 10A in stages l0A@ into a U-shape lOA3 about the mandrel M with the legs of the U shaped blank 10A3 being adjacent to elongated external and internal surface heaters H1 and H2, respectively, the external surface being the outer surface of the innermost lap L'l of a side seam and tulle internal surface being the inner surface of the outer lap L2 of the side seam as shown in the substantially'cylindrical fold 10A4 of the blank 10n effected by means of folding rails FR2 downstream from the heaters H1, H2. A heater H3, schematically shown in Fig. 3, can be utilized to provide additional heat such as radiation or forced hot air between the nearly juxtaposed laps Ll and L2. When the cylindrical fold is completed the rectangular blank lOA has been converted into a cylinder lOC which exits the folding rails FR2 and passes under a pressure belt assembly PB which applies sufficient downward pressure on the laps L1-L2 to form a heat-sealed lapped side seam SS in the-cylinder lOC while at the same time translating the cylinder lOC off the mandrel M and onto a finishing mandrel FM. Referring to Figs 3, SA and SB, the finishing mandrels FM are shown in solid lines as having a frustoconical (drinking-cup) shape and in dotted lines as having a substantially cylindrical shape FMl similar to that of pressurized aluminum beverage cans. The finishing mandrels FM are mounted on one end of support arms 44 which are mounted at their other ends on a drive chain 46 which passes about a main transfer sprocket 48 adjacent the finish end of the elongated forming mandrel M. As shown in Figs. 1 and 3, the finished cylinders lOC are stripped from the forming mandrel M onto one of the finishing mandrels PM which is in substantially coaxial registry with the forming mandrel M. This registry is achieved by proportioning the trans for sprocket 48 such that the arms 44 are radii thereof and place the finishing mandrels FM one-by-one at the dead center position 48A of the transfer sprocket 4S at the point of coaxial registry with the forming mandrel M. As a result, a time delay during which the finishing mandrel FM retains in such registry is effected, thereby permitting transfer of the cylinder lOC from the forming mandrel M onto the finishing mandrel FM. In another embodiment the registry of the finishing mandrel may be effected by synchronization of the discharge of the cylinder 10C from the forming mandrel M onto the finishing mandrel FM. Once the cylinders are transferred onto the finishing mandrels Fbi they are conveyed on those mandrels through a suitable heat tunnel HT, THE length of the latter and its te1nperature being correlated with the speed of tile carrier chain 46 to shrink the cylinders to a frustoconical co4O figuration or a cylindrical configuration depending upon the shape of the finishing mandrel FM or FM1 The shrinkable sleeves SS are longer than the mandrels FM, FM1 so as to shitink beneath the bottom defining ends of the mandrels (provide the inturned bottom- or curl) of a finished container. For example, as shown' in Fig. 6A, a frustoconical sidewall SW1 is produced by shrinking the sleeves SS on a frustoconical mandrel FM. A bottom blank BD is provided such that the inturned edges SW1A of the sidewall SWI will' overlap the bottom blank BD after forming the sidewall from the sleeve 55. The mandrel FAí is shown as including internal vacuum ports VP which extend to a vacuum connection VC on the mounting arm 44 of the mandrels as will be more fully described with reference to Fig. 7. I'or a coIltaiJj'#r of a eore conventional' cylindi4,cal shape such as the cross-section of an aluminum beverage can or the like, reference is made to Fig. QT in which a more cylindrical mandrel FMI having vacuum ports VPl is-shown with a sidewall SlY2 shrink fon'jed thereon with inturned edges SW2A overlapping the periphery of a bottom blank BD1, the latter being initially held on t#-e, mandrel via the vacuum ports VP1. Referring now to Fig. 7, the finishing mandrels FM- (provided with a bottom blank BD as sha3.Tn in Fig 6A and to be more fully described with reference to Figs 9-11) are loaded with the shrinkable cylinders at a loading station LS1 in the manner previously defined in Figs. 1 - 6, and the mandrels FM bearing the sidewall blanks (SW1) are progressively transported through the heat tunnel HT from the entrance HT1 thereof to the exit HT2 off the carrier chain 46 over the drive sprockets 48. -# When the mandrels FM leave the exit HT2 of the heat tunnel HT they are carrying formed cups or containers of-the configuration shown in Figure 6A. These cups or-c-ontainers are then subjected to bottom sealing and a top curl fo #'ming operation as will be described with reference to#Figs. 9 11. The bottom blanks BD (BD1) of Fig. 6A (6B) are held on the mandrels FM (FMl) by means of vacuum applied through vacuum hoses VH. The vacuum hoses VH are in communication with ports VP (VP1) through the support arms 44 and said mandrels. A vacuum distributor VD is provided centrally of the arcuatedly disposed heat tunnel HT. All of the vacuum hoses VH are manifolded into the vacuum distributor VD. As further shown in Figs. 8A and 8B, the vacuum distributor VD includes a top rotor plate-VXl having a pAural- ity of radially disposed vacuum ports VPR. Each of the vacuum hoses VH is connected to a-vacuum port VPR which in turn is in communication with a circular locus in the rotor disc VD1 which corresponds in siz to the radius of an arcuate vacuum supply port VSP in a fixed bottom#'plate VD2¯ through which an input coupling VIC is provided to connect the supply port VSP to a vacuum source VS. As the mandrels FM travel through the heat tunnel HT, the rotor disc VD1 rotates on a bearing VB on a support shaft VSS and is held in sufficient sealed engagement thërewi-th. The vacuum ports VPR in the rotary disc VD1 thus come into and out of registry with the vacuum supply port V5P in the support disc VD2 causing vacuum to be applied,through the hoses VH to the vacuum ports VP (VPl)''in the mandrels FM (FW to provide the suction required to hold the bottom blanks BD (BD1) in place on the said#mandrels pending the shrink forming of the sidewall blanks 5W1 (SW2) to overlap the bottom blanks BD (BD1) at the inturned portions SIA (SW2A) of the said sidewall blanks. The arcuate length and position of the vacuum supply port VSP are thus correlated with heat shrink' process and extent' of travel of the mandrels FM (FMl) in the heat tunnel HT from the time the bottom blanks BD (BD1) are loaded on the said mandrels until sufficient shrinkage¯ofthe side- walls 5W1 (SW2)-has been achieved to hold the said bottom blanks in place. Also provided in the fixed bottom disc VD2 is an ejection pressure port EPP fed from an ejection pressure supply source EPS. The ejection pressure port EPP is positioned to time the application of positive pressure through vacuum ports VPR, vacuum hoses VH and vacuum ports VP (VP1) in the mandrels FM (FMl) to eject finished containers therefrom at the ejection portion of the work station WS as will be more fully described with reference to Figs. 9 and 10. Referring to Figs. 7 and 9, a bank of work stations W5 is shown including bottom blank loading, top curl forming, bottom sealing and ejection functions. .As specifically shown ill Figs 9 and=l-l, the chain carried mandrels FM are passed along a juxtaposed guide rail GR as they exit the heat tunnel HT at HT2.° The guide rail GR provides a thrust backing to cooperate with a bottom ironing'turret BIT having bottom- irons BI in a radial array with peripheral spacing therebetween- on the said turret corresponding to the spacing between adjacent finishing mandrels FM on the chain 46 The bottom ironing turret BIT includes a rotating toroidal mounting BIM for the bottom irons BI in which the latter are radially reciprocable. A central cam BIC is provided which constrains the bottom irons BI to engage with the bottom of formed cups or containers 100 on the finishing mandrels FM by m'eans of cam follower wheels BIF and return springs BIS (Fig. 11). Bottom sealing pressure is regulated by a compression spring BIP mounted in a telescoping section of the bottom iron BI in opposition to the return spring BIS to prevent the bottom irons BI from engaging the bottoms of the containers 100 on the mandrels FM with more than a prede- termined maximum sealing force. As shown in Figs. llA and llB, the bottom iron BI is configured with a raised annular boss BIA dimensioned to press into the inturned edges 5,WlA of the sidewalls ,5W1 of the finished cups or containers 100 on the mandrel -FM at point at which the bottom blank BD is overlapped to enhance the seal therebetween and ensure a liquid tight container bottom structure. Depending on the properties of the shrinkable foam material and bottom blank material the heat of the shrinking process may provide sufficient heat to form an annular heat seal on the bottom of the containers 100 or the bottorn irons BI can be heated to supply additional sealing he. As known in the art other heating means, adhesives, solvents or the like may also be used to enhance the ultimate bond between the inturned po#rtions 5WlA (5W2A) of the sidewalls 5W1 (SW2) of the containers 100 and tile bottom blanks BD (BD1). A pure heat scaled bond is the preferred embodiment, however. Referring to Fig. 10 in addition to Fig. 9, a top curl forming turret TCT is shown adjacent t'o the bottom ironing turret BIT for receiving finished cups or containers 100 ejected -from the finishing mandrels FM and forming a top curl thereon, i.e., rolling the top rim outward on itself as is a well-knon-practice in the cup and container art. The top curl turret TCT is shown as including a centrally located barrel cam TBC having a cam track TSC1 in which a plurality of follower rollers TFR ride to constrain vertical movement to respective ones of a like plurality of vertical slides TVS on which are mounted radially disposed and outwardly opening cups receiving cavities TRC The barrel cam TBC is coaxially and fixedly mounted on the upper end of a non-rotating central shaft TCS for the turret TCT, the-said shaft TCS being journaled through a hub assembly TRA which is mounted for relative rotation to the shaft TCS on-a machine base plate MBP in bearing means TRB. The hub assembly TRA provides outboard slots for the vertical slide members TVS and an annular plate TRAl beneath which a plurality of radially disposed bearing means TRB1 are provided to receive reciprocating guide bars TGB for top curl forming tools TC mounted one in registry with each cup' receiving cavity TRC on vertical bars TVB each extending u'pward from respective buide bar TGB and a cam follower roller TFRB engaging a cam track TPC1 in an annular plate cam TPC fixedly mounted on the machine base plate MBP. Between the hub assembly TRA and the barrel cam TBC on the central shaft TCS is an annular kick-out cam TKO having a single kick-out rise TKR at a desired ejection station position TES (Fig. 9) to effect ejection of the containers 100 from the cavities TCR. The kick-out cam TKO i & eiigaged in the upl,ernlost posi tions of thsrcontainer cavities TRC and vertical slides TVS by the inboard tips TEP1 of ejection pin assemblies -TEP which are spring-biased to telescopically reciprocate in and out of the base of the container receiving cavities TRC to eject finished 'cups or containers 100 therefrom by a plunger action induced by the kiek-out cam TEO. Referring additionally to Fig, 10A, the top curl tool TC is shown in the IN position as 'constrained by the plate cam TPC to cause mating top curl forming surfaces TFG1 in the periphery of the cavities TRC and TFG2 in the top curl tool TC to force the top of each container 100 into the curled configuration 102 shown in Fig. 10A and at the IN position of the top curl tool TC in Fig. 10. Thus, in operation, rotation of the hub assembly TRA on the central shaft TCS causes coordinated vertical movement of the slides TVS and the receiving cavities. TCR and radial movement bf the curling tools TC to maximum height and radially outward positions, respectively, at the OUT position in Fig. 10 and minimum height and innermost radial positions, respectively, at the IN position of Fig. 10. This is effected by the coordinated shapes of-the cam tracks TBC1 and TPC1 on the barrel cam TBC and plate cam TPC, respectively. In the OUT position of the top curl tool TC, the receiving chamber TCR is shown in Figs. 9 and 10 as being indexed to-receiv-e a cup or container 100. from the finishing mandrel FM as ejected therefrom by positive pressure in the vacuum hose VH. The hub assembly TRA rotates in Synchronism with the travel of the mandrels FM on the chain 46 and the receiving chambers TRC bearing a container 100 progress toward the IN position of Figs. 9 and 10 in which the curling tool TC has been brought into juxtaposed registry with the receiving cavity TRC to form the top curl 132-on¯the container 100 (see Fig. 100). Subsequently, the t,ool#TC and . 'ceiving cavity TRC separate rapidly and the latter, rapidly rises under control of the barrel cam TBC to engage the weboal-d end TEPl of the ejection plunger TP with the kick-out cam TKO and the ejection rise TKR thereon at the ejection station TES Gsee Fig. '9). This ejects the containers 100 into engagement with an inverting detent 104 in a magazine chut MAG such that the finished containers are magazined in an upright position. Prior to the placing of the cylinders lOC onto the finishing mandrels FM (FMl) a bottom blank or disc BD must be placed on the outboard end of the said mandrels to be held thereon by vacuum in the vacuum lines YH from the vacuum distributor VD as previously shown in Figs. 6A, 6B, 8A and 8B. To accomplish this function, a supply of bottom blanks BD and a means for transferring them from the 'supply to the finishing mandrels FM (FM1) must be provided. To this end, referring jointly to Figs. < 9 and 12, bottom strip stock BSS is fed to a rotary die roller BRD and anvil roll BAR to cause the die roller to cut discs BD from the strip stock BSS and present it to a bottom transfer plate BTP on a bottom transfer turret BTT adjacent to the anvil roll (BAR and indexed therewith to pick up each bottom disc BD as it is cut. The bottom transfer plate BTP bearing the bottom disc BD is eventually indexed into registry with a passing finishing mandrel FM (FMl) and transferred thereto. The initial pick up of the bottom disc BD by the. transfer plate BTP is made by vacuum applied via a vacuum port BTV through vacuum distributors BVDi and%VD2. Fhe distributor BVD1 rotates with the bottom transfer plates BTP on the turret BTT while the distributor l.VD2 remains stationary. Vacuum is suppliedtthrough a vacuum hose BVH from a vacuum supply: source BVS in the base of the turret BTT. The fitting of the hose BVH to the fixed-%istributor,BVD2 acts as a valve to provide vacuum to tlie ports BTV at all locations via the di'stributors BVD1, BVD2 except at the & right-hand position' shown in Fig. 12 for the bottom transfer plates BTP. In this position, there is no vacuum in the there is no vacuumm in the line BTV and the vacuum from the hose VH in the finishing mandrel FM, now coaxially indexed with the bottom transfer plate BTP will act to strip the bottom disc BD from the plate BTP and onto the base of the mandrel FM. In-Line Filling Of Containers As They Are Made As the finished containers 100 enter the magazine MAG at the ejection station TES of the top curl turret TCT, the containers can be fed, one-by-one, as knoaçn-in the art to dial-like feeder discs 104 which are indexed by a shaft 106 to feed the containers 100, one-by-one, to a container filling station 110 where food product 112 in a treasured amount is discharged into. the container 100. The-.container 100 is elevated by a pedestal 108 to the filling station 110, which pedestal withdraws to return the container to rest in the dial 104 oil its top curl 102. The container 100 with food 112 es then transferred to another station where a lid 114 is pressed onto the top#'air1 102 of the container 100 by a seating# jig 116 as will now be described with reference to Fig. 14. The jig 116 is provided with an ejection plunger 118 to eject the lid and container from the jig 116 after seating is completed. An air gap 120 is maintained between the plunger 118 and the lid 114 in the event that vacuum is needed to initially retain the lid 114 in the jig 116. A plurality of shaped press@@@ rollers 122 such as schematically illustrated are spaced around the top cu¯ 102 and produce a curved seam 114R between the top curl 102 and. the lid 114. A pedestal 10SA is utilized to transfer the filled container 100 from the dial 104 to the lid seating jig 116. In an alternate embodiment for seating a lid 114A on a container l00A, having an uncurled top edge l02A, a top edge overlap 114RA on the lid 114A is clinched in place by segmented jaws 124 in cooperation with a seating jig 116A. This embodiment is shown schematically in Fig. 15. Rotary transfer dials 104 and pedestals 108 and filling stations 110 such as those shwon in Fig. 13 are known in the art. For example, U.S. Patent 3,225,899 for Machine For Packaging Food Products of J. B. West, issued December 28, 1965, and U.S. Patent 3,345,801 for Auxiliary Unit For packaging Machine to J. B. West, issued October 10, 1967, illustrate container filling, capping ahd handling machines tf the type generally described with reference to Figs. 13, 11 and 15. With the present invention, cans and containers can be mcie as needed and no storage of completed containers is ne:essary in conjunction with a given canning or packaging rui Only rolls of sidewall and bottom blank material need be lolled to effect a supply of containers for holding a givti volume,of food product. lhis also permits the use of non-nestable container shape which heretofore have been un'desirable because of their ulk in an unfilled condition. Once filed, of course, even n@stable containers assume such bulk in storage. Th s, with the continuous container manufacturing method cld means of Figs. 1 - 12, feeding the continuous filling Ind capping equipment typified by Figs. 13 - 15, an extremely efficient operation is provided which requires only a miz um of warehouse space for the containers required. Summary Of Container Making Operation As illustrtated in Figs 1 - 3, foam plastic strip stock, stretch oriented on its length lOB, is cut into rectangular blanks 10A and transferred transversely of its, length 10B through continuous folding means M, H1, H2, FR1, FR2 and a heat seaming means. PB to form seamed cylinders 10C circum ferentially stretch oriented; The cylinders 10C are placed over finishing mandrels FM (FM1) having bottom blanks BD already in place from a bottom transfer turret BTT (Figs. 9, 12). A chain drive 46 (Figs. 1, 3, 7, 9) carries the mandrels FM (FM1) through a heat shrink tunnel causing the cylinders 10C to shrink and assume the shape of the mandrels FM (FM1) as shown in Fig. 6A/6B. The sidewalls-SIYl (SW2) shrink beneath the mandrels FM (FM1) to place- annular overlapping portions SLYLY (SW2A) over the outer edges of the bottom disc BD (BD1) as further shown in Fig. 6A (6B). 'As the mandrels FM (FMl) bearing shrink formed con tainers 100 leave the heat tunnel HT (Figs. 7, 9, 10, 11) bottom seams are formed in the overlap by bottom irons BI on a bottom ironing turret BIT in a manner most specifically illustrated in Figs. 11A, llB. The top curl 102 is then formed on the containers 100 by discharging them from the mandrels FM (FMl) into the receiving chambers TRC of the top curl forming turret TCT which, as shown in Fig. 10A, places a top curl 102 in each container4#00 with top curl tool TC. Subsequent to the forming of the top curl 102, the container 100 is ejected from the top curl turret TCT at an ejection station TES, inverted to proceed bottom first into a magazine MAG and thus placed in readiness for either packaging or for processing in filling equipment. Further Embodiment Of The Invention Figures 16A through 19 illustrate a further embodiment for handling a stretch oriented rectangular blank and forming the blank into a cylinder. This further'or alternate embodi ment of the'present invention may be readily utilized in combinationwith the blank handling, cylinder forming and cylinder transferring mechanism illustrated in Figures 1 through 15. Figures 16A through 16C illustrate a top-plan view of the alternate embodiment blank handling and cylinder forming mechanism of the present invention. ¯Figure 16A illustrates a top-plan view of the left-hand portion of the alternate embodiment. The rectangular blank 10A is fed on its longi tudinal axis by the drive belt DB2 to a right angle transfer point TP2. The blank 10A is properly positioned at the transfer point TP2 by means of the limit stop LS2. After the blank 10A is properly positioned, it is ready to be laterally transferred in a direction 900 to its original path. As illustrated in Figures 16A through 16C, a tubular forming mandrel A12 extends from the transfer point TP2 to the point where the -formed cylinders 10C are transferred to a final forming mandrel FM. As shown in Figure 16A, when the blank 10A is positioned beneath the tubular forming mandrel M2 it is engaged by the outboard chain pusher d-ógs 201D and 202D and by the blank pusher dog 210D. The out boat: chain pusher dog 201D is connected to the outboard chain 201. Similarly, the outboard chain pusher dog 202D is connected to the outboard chain 20-2. The two outboard chains are guiding and stabilizing means which engage the blank 10A at the transfer point TP2 and remain in contact therewith until te blank has reached the prefold rails 220. The blank pusher cnain 210 extends the entire length of the tubular forming mandrel M2#. The blank pusher dog 210D projects upwardly into a clearance slot which is formed on the underside of the tubular forming mandrel M2. As the blank 10A is positioned at the transfer point TP2, three pusher dogs 201D, 202D and 210D engage the blank and transfer it at an angle of 90 1from its original path.- Referring to Figures 17A- through 17C the blank pusher chain 210 includes groups of four blank support dogs 210S together with one blank pusher dog 210D. At the transfer point TP2, the four blank support dogs 210S are positioned beneath the blank 10A. Therefore, the blank 10A is permitted to pass over the four blank support dogs 210S. This positioning if effected by the relationship between the blank pusher chain rollers 210R and the support bar 212. The combination of the three chain pusher dogs 210D, 202D adn 210D together with the long rubber covered roll R, the transfer plate TP, the four blank support dogs 210S and a plexiglass cover sheet PS prevent the blank lOA--from skewing as it moves from the transfer point TP2 towards the pre-fold rails 220. The plexiglass cover sheet PS covers tend area adjacent the initial pusher dog contact and blank movement. The plexiglass cover sheet includes a V shaped notch which is machined in the outfeed end of the plate. With reference to Figure 16A, as a blank 10A moves beneath the plexiglass sheet PS, the past portion of the blank to be released will be the two trailing tips. Referring to Figure 17A, as the two trailing tips of the blank 10A are released by the plexiglass sheet PS, the blank pusher chain rollers 120R travel'up an incline 212t on the support bar 212. Correspondingly, this increases the elevation of the four blank support dogs 210S which in turn push the blank 10A into contact with the tubular forming mandrel M2. In addition, the increase in elevation causes the blank pusher dog 210D to further project upwardly into the clearance sin@ C3 on the underside'of the tubular forming mandrel M2 Therefore, the blank 10R is clamped to the tubular forming mandrel M2 a-s it travels towards the outfeed end of thc tubut-ir forming mandrel. After the blank 10A is clamped by the blank pusher dog 210D, the blank engages the stationary pre-fold rails'220 and lose contact with the outboard chain pusher dozes 2OlD and 202D. The stationary pre-fold rails 220 include a lifting portion 220A and a substantially horizontal guiding portion 220B; As the blank 10A engages the lifting portion of the-pre-fold rails, the blink is folded against the bottom half of the forming mandrel Iiito a vertical U shaped configuration. As illustrated in Figures 16A and 17A, as the blank 10A is folded into a vertical TI shaped configuration 10A3 the back side edges of the blank are contacted by two side guide pusher dogs 230D. The side guide pusher dogs Z30D are connected to side- guide chains 230. Further, the side guide chains 230 include blank support dogs 23OS. The two side guide chains provide stability to maintain the top edges of the blank 10A3 parallel during transportati6# -in the 50% folded position to the side am heaters. As seen as the side guide chain dogs 230D engage the blank 10A3, the blank pusher chain rollers 210R travel@down an incline 212B. Thus, the clamping effect of the four blank support dogs 210S against the tubular forming mandrel M2 is released permitting the side guide chain dogs 230D to square up the blank l0A3 prior to the heat sealing operation. Figures 16B and 17B illustrate the position of the side seam heaters. The blank handling and cylinder forming mechanism of the alternate embodiment of the present invention includes two side seam heaters 232 and 234. Each side seam heater comprises a long metal block and includes at lest one cartridge heater positioned the'rein. Referring to Figure 17B, the side seam heater '232 includes two cartridge heaters Clil and' CH2. A compressed air supply 232AS is in. communication iiii; a plurality of small holes 232A positioned along the side of the' 'side seam heater 232. As the cartridge heaters CH1 and CH2 increase the temperature of the side seam heater, the compressed air supplied thereto is heated. The side seam heater 234 is similar in construction to thte side seam heater 232-and is connected to a c-ompressed air supply by means of the conduit 234AS. Both side seam heaters 232 and 234 are mounted to the blank handling and cylinder forming mechanism so as to be readily removable therefrom. Each side seam eater can be adjusted both vertically and horizontally. The vertical adjustment would be effected loosening the bolts 232V, adjusting the vertical height of the side seam heater 232 and then tightening the bolt 232V to affix the side sea# heater to the framework F2. Similarly, the side seam heater 234 may be adjusted vertically by means of the bolts 234V. It is extremely important that, the side seam heaters be adjustably mounted adjacent the blank handling and cylinder forming mechanism. If a blank jams as-it passes along the tubular forming mandrel, it may be necessary toremove them side seam heaters to gain access to the Jammed blank. The 50%, folded blank 10A3 is transported along the tubular forming mandrel M2 by means of the blank pusher dog 210D and the two side guide chain dogs 230D. The upwardly projecting sides of the blank 10A3 are vertical and do not contact the side seam heaters 232 and 234. As previously discussed, comp-re;,sed air is heated and blown through a series of small diameter holes in the side seam heaters 232 and 234. With reference to Figure 18, the heated compressed air strikes the left-hand outside portion and the right-hand inside edge of the blank 10A3. Individ- -ual tempera.ture control of the two side seam heaters is desirable since different temperatures may be required for each side for proper softening prior to seaming. As upwardly projecting sides of-the blank 10A3 are heated by the compressed air, the natural reaction is for both sides of the blank to move away from their previously parallel condition. Since the right-hand side of the blank moves away from the side seam heater 232, it may be necessary that the temperature 'of the side seam heater 232 be greater than the temperature of the side seam heater 234. Correspondingly, since the left-hand side of the blank has a tendency to move coster to the side seam heater 234, the temperature of the side seam heater 234 may be less than the temperature of the side seam heater 232. Temperature re quirements of the side seam heaters 232 and 234 will Vary depending on the quality of the foam of the blank. Further, -depending on the quality of the foam of the blank it say be necessary to evenly apply heat to both the right-hand side and left-hand side of the blank. After the 50t folded blank 10A3 is heated by means of the side seam heaters 232 and 234, it is transported towards the, outfeed end of the tubular forming mandrel M2 by means of the blank;pusher dog 210D and the two side guide pusher dogs 230D. The upwardly projecting heated left-hand side of the blank initially contacts the intermediate folding guide 244. Subsequently, the upwardly projecting heated right-hand side of the blank engages the intermediate folding guide 242. The intermediate guides 244 and 242 shape the substantially U-shaped blank into a substantially cylindrical form. Subsequently, the substantially cylin drical blank engages the final folding guides 254 and 252. The final folding guiees position 'the right-hand side- of the blank on top of the left-hand side of the blank in an overlapping arrangement. Note, with reference to Figure#l9, which is a cross-sectional view from the outfeed end-of the tubular forming mandrel M2 the right and left-hand sides of the blank are interposed. Referring to Figures 16B and 17B, the final folding guides 254 and 252 are shown to be adjustably mounted relative to the tubular forming mandrel M2. The final folding guides include two adjustable, spring-loaded bars GBl and GB2 positioned on each side of the lower portion of the tubular forming mandrel M2. The two lower guide bars GB1 and G132 are positioned at 450- from the vertical center line of the tubular forming mandrel and are normal to the mandrel diameter.' The two lower guide bars hold the blank against the mandrel to ensure a tight final fold. The two lower guide bars GBl and GB2 including springs GBS1 and GBS2 are shown schematiaily in Figure 19. The final folding guides include two adjustabl e, spring-loaded bars which are positioned on each side of the upper portion of the tubular forming mandrel. The upper guides, or intermediate guide rails 242 and 244, initiate the final fold which is completed by two adjustable, spring-loaded guides 252 and 254. The two final#fo1ding guides are positioned on each side and near the top center of the tubular forming mandrel M2. As shown in Figure 16B, the intermediate forming guides 242 and 244 are adjustably mounted adjacent the upper portion of the tubular forming mandrel. Further, the springs 252S and 254S adjustably position the final forming guides 252 and 254, respectively, adjacent the top center of the tubular forming mandrel. The final forming guides may be 'formed of steel or Teflon or may be intermixed so that one is formed of-steel and the other of Teflon. Further, tµ final forming guides 252 and 254 are supported by housings 252H and 254H, respectively. -The housings 252H and 254H are connected to the framework F2 and further belted to-the undercarriage 206. As shown in Figure 17B, the housing 252H is bolted to the undercarriage 206 by means of bolts 252B.- As previously discussed, the blank 10A is' trans'ported almost the entire length of the tubular forming mandrel 312 by means of the blank pusher dog 210D. The blank pusher dog chain 210 is rota#tably supported by a plurality of pulleys 210P1, 210P2, and 210P3. Additional pulleys to guide the blank pusher chain 210 may be provided, but are not shown in the drawings. The pulley 210P1 is supported by a frame -member 210F which is connected to the under carriage 206. Correspondingly, the outboard chain 20@ is support'ed by the pulleys 201P1 and 201P2 to rotatably support the outboard chain 201 in the vicinity of the transfer point TP2. Further, the outboard chain'20; is supported by the-pulleys 202P1 and 202P2 to rotatably support-the chain 202 in the vicinity of -the transfer point TP2. After the blank is folded into a U shape-, thesblank pusher doge210D continues to transport the blank along the tubular-forming mandrel M2 and is supplemented by the side guide cahin dogs 230D. The right-hand side guide chain 230 is rotatably supported by a plurality of pulleys 231P, 233P and' 235P. Correspondingly, the left-hand guide chain 230 is rotatably supported by a plurality of pulleys 236P, 23#8P and 239P. All of the side guide chain pulleys.-a,r,e fixed to the framework F2 which is secured to the undercarriage 206. The The side guide pulley 233P is rotatably mounted on an axle 233A. The axle 233A is mounted axle 233A.. The axle 233A is mounted on a frame member 2a3F which is bolted to the framework F2 by means of the bolt 233B. Correspondimgly, the side guide chain pulley 238P is mounted-on an axle 238A. The axle 238,A is supported 'by a frame member 238F. The frame member is-bolted to the framework by means of a bolt 238B¯ framework by means of a bolt 238B. The side guide chain pulley 235P is mounted on an aisle 235A. The axle 235A is geared to a shaft 235S which is rotatably driven by a pulley drive system 26 lotion imparted to the pulley drive system 260 is transmitted to the axle 235A and correspondingly rotates the right-hand side guide chain 230. Similarly, the left-hand side guide chain 230 is geared to the pulley drive system 260. Figure 19 illustrates a cross-sectional view of the blank handling and cylinder forming mechanism of the alternate embodiment of 'the present invention prior to tha blank 10A4 engaging the seamer. assembly 270. Figure 19 represents a cross-sectional View taken from the outfeed end of the blank handling and cylinder forming mechanism. Therefore, elements which were previously referred to as the left-hand and right-hand members are interposed. Thus, the left-hand side guide chain 230, as shown in Figure 19,. was previously described as the right-hand side guide chain 230. Correspdndingly, the right-hand side guide chain 230, as shown in Figure 19, was previously described as the left-hand side guide chain 230. As discussed above, the drive pulley 260 is connected to a shaft 235S which includes two gear members 235G2 and 239G2. The gear members 235G2 and 239G2 are meshed with gear members 235G1 and 239G1, respectively. In addition, the axes 235A and 239A are supported within the frame member b# means of bearings 235B and 239B, respectively. The framework supporting the pulley drive system is secured to the undercarriage 206. The substanti'a'#lly cylindrical blank 10A4 is transferred along the tubular forming mandrel MZ and is engaged by the seamer assembly 270. The seamer assembly 270 includes an endless belt 271 which is rotatably supported by a plurality of plieys 271P, 271P1, and 271P2 and a plurality df springloaded rollers 271R1 through 27lRll. As shown in Figure 17C, as the substantially cylindrical- 'b'lank is transported towards the outfeed end of the tubular forming mandrel N2 the blank exits from the final folding assembly and is engaged by the endless seaming belt 271. The blank passes beneath the first spring-loaded roller 271R1 and is engaged by the ten subsequent spring-loaded rollers 271R2 through 271Rll Once the entire,cylindrical blank length, has been engaged by the second spring-loaded roller 271R2, the left-hand edge and the right-hand edge of the cylinder blank will be seamed together. After the seam is accomplished, the side guide chain,, dogs 230D will disengage from'the cylinder blank. Further, at this point, the inside,diameter of thethe cylinder is equal to the outside diameter of the tubular-forming mandrel A12. The velocity of the belt 271 is approximatefy 20t faster than the velocity of the blank pusher chain 210. Therefore, the cylindrical blank is accelelated ahead of the blank pusher dog 210D. At this point, the cylinder blank is propelled solely by the seamer belt 271. In order to facilitate the movement of the cylinder blank, the outside diameter of the forming mandrel F2 may be reduced. Further, the velocity of the seamer belt 271 produces enought momentum to place the cylinder blank. on the final forming mandrel FM. As shown in Figure 17C, as the cylinder blank moves from the forming mandrel to the final formin#c',, mandrel FA1, the trailing edge of the cylinder blank is supported by tSM four blank support dogs 210S. Tension is applied to tile seaning-belt 271 by nicans-of the pulley 271Pl which is, biased about the axle. 271A. As shown in Figure 17C, pressure is supply to the pin Pl which is in engagement with a lever 271L. As the pressure applied to the pin P1 is increased, the level 271L is ' biased downwardly ¯thereby applying tension'to the seamer belt 271. It is important to adjust the tension of the seamer belt 271 to control the slit age and the driving force imparted to the cylinder blank. Air pressure maybe supplied to the pin P1 through the pressure regulator PR. Each of the spring-loaded rollers 271R1 through 271R11 are mounted on a shaft which is supported in the housing 275. The first roller, 271Rl,'is spaced upwardly by means of a spacer 273. The spacing of the first spring-loaded roller above the plane of the remaining ten spring-loaded rollers ensures accurate contact of the seamer belt 271 with the cylinder blank. All of the spring-ioaded rollers includes biasing spring S. As illustrated in Figure 16C, adjacent thefoutfeed end of the tubular forming mandrel M2 is positioned cylinder seating mechanism 280. The cylinder seating mechanism 280 includes à cylinder seating belt 281 which is rotatably. supported on a plurality of pulleys 28lPl and 281P2. The path of the cylinder seating belt 281 is guided by a-- plurality of upward1y projecting pins 282, 283, and 284. As discussed above, the velocity of the-seamer belt 271 produces the-- momentum required to position the cylinder blank 10C on the final forming mandrel FM. The cylinder seating belt 281 ensures that the cylinder blank 10C is properly mated with the final forming mandrel FM. As the cylinder blank lGC laositioned on the final forming mandrel FM is transported adjacent the cylinder seating belt 281,. the cylinder blank 10C is firmly positioned on the final forming mandrel FM. -It is preferred that the velocity of the cylinder seating belt 281 be greater than the velocity of the cylinder blank 10C positioned on the final forming mandrel FM. Further, the pirs 282 - 284 which guide the cylinder seating belts 281 may include rollers which will reduce the friction therebetween. Operation Of The Alternate Embodiment As a blank 10A is transferred from the blank cutter to the transfer point TP2 by means of the drive belt DB2, the trailing edge of the blank is engaged by the pusher dogs 201D, 202D and 210D. Subsequently, the blank 10A is transferred at an angle of 900 to its original path. The combination of the thee pusher dogs, the limit stop LS2, the long rubber covered roll R, the transfer platform TP and the plexiglass sheet PS prevent the blank l0A from skewing as it is transported towards the pre-fold rails 220. rt The plexiglass sheet PS is machined to include a V shaped notch in the outfeed end thereof As a blank 10A is transferred along the tubular forming mandrel M2, the notch in the plexiglass sheet retains the two trailing tips of the blank. At the same instant the trailing tips of the blank are released by the plexiglass sheet PS, the blank pusher chain rollers 201R travel up an incline 212A on the support bar 212. The increase in elevation of the blank pusher chain rollers 210R correspondingly elevate the four blank support dogs 210S and the blank pusher dog 210D thereby clamping the blank 10A against the bottom portion of the tubular forming mandrel M2. After clamping the blank 10A adjacent the tubular forming mandrel box2, the outboard chain dogs 201D and 202D disengage from the trailing edge of the blank 10A. As the blank engages the stationary re-fol(l rails 220X, tite edges of the blank are folded against tlie bottom portion of the tubular folding mandrel #i2. As tite blank is formed into a vertical U shaped configuration, the trailing edges of the,, boank are contacted by two side guide chain do#s 2301). At the same instant that the side guide 'chain dogs 230D contact the 50% folded blank <RTI ID=32.19> l0A3, the blank pusher chain rollers 210R travel down. an incline 212B and thereby release the clamping effect on the blank. The two side chain support dogs provide stability to retain the top edges of the blank parallel as the blank is transported in its 50% folded position. Further, as the clamping effect is released from the blank, the side guide chain dogs square up the blank prior to the heat-sealing operation. As the 50t folded blank 10A3 is transported along the tubular forming mandrel M2 by means of the blank pufiler dog 210D and the side guide chain dogs 230D, the upwardly projecting edges are heated by the side seam heaters 232 and 234. Viewing the blank handling and cylinder mechanism of the alternate embodiment from the infeed end, compressed air blwon through a series of small diameter holds in the side seam heater 232 will strike the right-hand inside edge of the blank 10A3. Correspondingly, pleated compressed air blown through a series of small diameter holes in the side seam heater 234 will strike the left-hand outside edge of the blank 10A3. As the heated blank is transported along the tubular forming mandrel N2, the-left-hand edge of the blank will engage the intermediate side 244 and will be folded adjacent the upper portion of the tubular forming mandrel. Subsequently, the right-hand edge of the blank 10A3 will engage the intermediate guide 242 and be folded towards the upper portion of the tubular mandrel. As the transportation blank continues, the folded edges of the blank ill engage the final folding guides 252 and 254 to position the edges of the. biank adjacent the top center of the tubular forming mandrel. The left-hand edge of the blank will underlie the right-hand edge-of the blank-and will be ready to be engaged by the endless seamer belt 271. Once the entire cylinder 'blank lin'k has passed under the second roller of,the seamer bëit assembly, the seam is completed and the side guide chain dogs 230D disengage from the trailing edge of the blank. At this point, tlie inside diameter-of the cylinder blank is equal to the outside diameter of the forming mandrel. The seamer belt velocity is approximately 20% faster than the blank pusher chain dog 210D. Therefore, the cylindrical blank is accelerated ahead of the pusher chain dog. As this occurs, the seamer belt 271 becomes the sole means of propelling the cylinder blank. In order to facilitate movement of ihe-cylinder blank, the outside diameter of the tubular forming mandrel may be reduced. The velocity of the seamer belt 271 produces the m-o'mbn- tum required to position the cylinder blank 10C on fEe final forming mandrel FM. As the cylinder blank is -transported from the'tubular forming mandrel M2 to the final forming mandrel FM, the trailing edge'of the' cylinder blank is supported by the four blank support dogs. Subsequently, the cylinder blank 10C positioned on the final forming mandrel FM is transported adjacent the cylinder seating belt 281. The cylinder seating belt 281 is designed to ensure proper seating of the cylinder blank 10C on the final forming mandrel FM. After the cylinder blank 10C is properly piositioned, the final forming mandrel is transported through a herat tunnel and subsequently the formed container, is discharged from ¯the final forming mandrel. The discharging of the finished container from the final forming mandrel is adequately discussed with reference to Figures 1 through 15. Furt ] #er, although Figures 16C and 17C illustrate a frusto-conical final forming mandrel FM, a cylindrical final forming mandrel FMl may be utilized in the alternate embodiment of the present invention. Referring in detail to Figure 18, there is#illustrated the various Positions of the rectang#lar biank 10A as it is formed from a flat sheet into a vertical U shaped conEig- uration 10A3. The tubular forming mandrel M2 is shown tC include a clearance slot CS into which the upwardly project- ing blank pusher dog 210D is driven along the length of the tubular forming mandrel M2 by means of a drive chain 210. The tubular forming mandrel M2 is supported'above#the- undercarriage 2Q6 by the support frame 40A As shown in Figure 18, the tubular forming mandrel M2 is affixed to the frame 40A by means of a bolt 40B. Additional support may be provided along the length of toe tubular forming mandrel to ensure its relative position with respect to the under carriage 206. Further, as illustrated in Figure#8, the undercarriage 206 supports a plurality of driving gears and pulleys which are utilized to supply power to the various drive chains and other working members of the blank handling and cylinder forming mechanism of the present inv,efltion. As previously stated, Figure 19,@represents a crosssectional view of the blank handling and cylinder forming mechanism of teh present invention as viewed -from the outfeed end of the tubular forming mandrel A12. It is important to note, that the side guide chain dogs 230D project inwardly into clearance slots 230CS in the tubular forming mandrel b12. As clearly illustrated in Figure 19, the inward projection of the side guide chain dogs' and the blank pusher dog into the various clearance slots provided in the tubular forming mandrel M2 ensures the positive transportation of the rectangular blank. Each of the pusher dogs utilized to transport the rectangular blanks engage the blank with a large surface area because they project into the corresponding clearance slots in the tubular forming mandrel M2. Tile P > -ott,om Blank App:#ratiis And iletho(l Figures 20A arid 22 illustrate a more detailed preferred embodiment of a bottom blank halldling apparatus for severing bottom blanks from a web feed roll and tangentially trans- fearing the bottom blanks to final forming mandrels at a compatible velocity and spacing. Figures 20A through 20C illustrate a top-plan view of the detailed disclosure of a bottom blank handling apparatus of the present invention. Figure 20A illustrates a top-plan view of the left-hand portion of the apparatus. Figure 20B illustrates a top-plan view of the center portion of the apparatus. Figure 20C illustrates a top-plan view of the right-hand portion of the apparatus. As illustrated in Figures 20A through 20C, a bottom strip stock BSS is fed between the.pinch rollers 301 and 302, around the stationary guide 303 and is held against the outer surface of the-anvil roll BAR. Thereafter, the bottom strip stock BBS passes between the rotary die roller BRD and the anvil roll BAR where the bottom blanks BD are severed from the bottom strip stock. As illustrated in Figure 20B, after tlie bottom blanks BD are severed from the bottom strip stock BSS the remaining scrap portion of the bottom strip' stock is conveyed around the stationary guide 304 and between the pinch rollers 302 and 305 to discharge the scrap material. In a preferred embodiment of the present invention, the pinch-rollers 301, 302, and 305 are covered with a polyurethane material. The pinch rollers 301 and 302 pull the bottom strip stock from a roll of material to feed the web. Similarly, the pinch rollers 302 and 305 pull the scrap bottom strip stock from between the rotary die BRD and the anvil roll BAR to discharge the scrap material. Tiz-c rotary die-rollel- BRD is-mounted in sliding beari'Th#g blocks so that the jeck screws 330S may accurately position the rotary die adjacent the first transfer turret or aniril BAR. Referring additionally to Figures 21A, 21B, 21C and 22, the rotary dic BRD includes five cutters CD positioned around the circumference thereof. Further, the rotary die includes tlJO. bearing portions 341, 342 which are designed to engage cam followers 331, 332, respectively. The cam followers 331, -332 are mounted on a shaft 333 positioned in cam housing 334. Further, the rotary die BRD includes outwardly projecting portions 343, 344 which are mounted in bearings 345, 346, respectively. The bearings 345, 346 are mounted on the slidable bearing blocks 347, 348 which enable the rotary die to be precisely positioned adjacent the first transfer turret or anvil BAR. The sliding bearing block 347 includes an outwardly -projectincT portion 347A which is slidably received between a flange of the framework F and a plate 349 which is secured to- the framework F. As illustrated in Figure 92, the outer portion of the bearing 345 is securely positioned within an opening in the sliding bearing block 347. The inner portion of the bearing 345 mates with the outwardly projecting per- tion 343 and is precluded from axial movement by engagement with the flange 343F. Further, the bearing 345 is held in place by means of the plate 347P which is secured to the sliding bearing block 347. To ensure the positioning of the bearing 345 relative to the outwardly projecting portion 343 of the rotary die BRD a threaded nut 351 i-s positioned adjacent the lower end of the outwardly projecting portion 343. Further, as illustrated in Figures 21A and 22, a gear 352 is positioned adjacent the loermost portion of the outwardly projecting member 343 and is secured thereto by means of a key 352K and a bolt 352B. The sliding bearing blocs 348 together with tiie housing portion 3481! slidably mates with the framework F at the uppermost portion of the rotary die BRD. Tile outermost portion of bearing 34G is securely positioned within the sliding bearing block 348. The innermost portion of the bearing 346 mates with the outwardly projection portion 344 of the rotary die BRD. To ensure the positioning of the bearing 346 relative to the rotary die BRD, a plate 348P is secured to the sliding bearing block 348. The plate 348P prevents axial movement of the bearing 346. Referring to Figures 21B and 22, in one embodiment of the present invention a compressed air supply 340CA may be supplied to the upper portion of the housing 34811 of the sliding bearing block to facilitate the transfer of a severed bottom blank BD from the bottom strip stock BSS and cutter CD to the peripheral surface of the first transfer turret or anvil--BAR. The compressed air supply 340CA is securely threaded into the upper surface of a compressed air housing 340H. The upper surface of the comrpesscd air housing is firmly secured to the lower portion of the housing. In this embodiment of the present invention, the lower portion of the housing is constructed of nylatron. As illustrated in Figure 21B, the compressed air housing is prevented from rotation by means of a pin 340P. Further, the compressed air housing is spring-biased down- warily by means of the spring 340S positioned within the upper portion of the housing 348H. The compressed air hosing 340H includes an opening 340B disposed in the lowermost portion thereof which communicates compressed air from the compressed air supply 340CA to a conduit 344C of the rotary die BDR. It should be noted, that the out warily projecting portion 344 includes five conduits 344C disposed longitudinally therein which communicate compressed air to each of the cutting dies disposed around the circum fer@nce of the rotary die BRD. Since the compressed air hosing 340H includes only one opening 340S disposed in the bottom portion thereof, compre#sed air, is transmitted to one of the longitudinally disposed conduits 344C only when the die positioned on tile circumference of the rotary die BRD is in the process of severing a bottom blank BD from tine bottom strip stock BSS. In other words, the compressed air Jis supplied to the rotary die to facilitate the discharge of a bottom blank BD to the anvil BAR only after the bottom blank has been severed from the bottom strip stock BSS. Since the compressed air housing 340H is keyed to the sliding bearing housing 348S by means of a pin 340P, ,rotation of the compressed air housing is prohibited. Therefore, compressed air is only supplied when the opening 340B and the longi tudinally disposed conduit 344C are aligned as illustrated in Figure 21B. Although in one embodiment of the present invention compressed air may be supplied to a compressed air housing 340H to facilitate the discharge of a bottom blank BD to the anvil BAR, it should be understood that the present inven tion- is not limited to this particular means'of aiding the discharge of the severed bottom blanks BD. For example, in the preferred embodiment of tile present invention, illustrated in Figure 20B,- as the bottom strip stock BSS wraps around the rotary die BDR after the bottom blanks BD are severed therefrom, the resiliency of the bottom strip stock BSS actually pops the bottom blanks BD from the bottom strip stock to the anvil BAR. Accurate positioning of the rotary die B'RD adjacent the hardened anvil BAR is achieved by the cam followers 331, 332 mounted on the shaft 333 within the cam housing 334. The cam housing 334 is slidably mounted adjacent the rotary die BRD. As previously discussed, the jack screws 330S are threaded within openings in the framework F and engage the cam followers housing 334. By rotating the jack screws 330S the cam follosfers housing 334 is displaced towards the rotary die BRD. The cam followers 331, 332 are likewise displaced against the bearings 341', 342 to press :¸he rotary dic against the anvil BAR. Therefore, adjusting the jack screws 330S regulates the relat-ive contact -of the rotary die BRD'a-gainst the anvil BAR to ensure',pr'oper'die p & etra- tion of the bottom strip stock BSS-:-:#; Referring to Figures 20B and 21B the first transfer -turret or anvil BAR is illustrated as being mounted on- an axle 360 being keyed thereto by the member 360K. The upper portion of the axle 360 Is mounted in a bearing 261 which is positioned in-.the framework F. The outermost end of the axle 360 is secured to the bearing 361 by means of a screw nut 362. The first transfer turret or anvil BAR has ten bottom blank stations positioned around the circumference#--thereaf. As illustrated in Figure 21B, each station for receiving a bottom blank BD includes an 0 ring OR positioned adjacent to the circumferential portion of the anvil BAR+to effect a better seal and permit a more accurate transfer. The O rings are positioned adjacent to and concentric with the ends of the vacuum conduits 363C which are supplied with a source of vacuum by means of a manifold 366 from-a point' prior to the severing of the bottom Flanks BD from the bottom strip stock BSS by the rotary die BRD to a point# immediately prior to the tangential transfer -to- the second transfer turret BTT. The 0 rings OR are preferably.positioned in grooves by means of cement or the like and' project slightly outwardly from the peripheral circumferential surface of the anvil BAR. As illustrated in Figure #20B, the vacuum conduits 363C are supplied with a source of vacuum from a point prior to the severing of the bottom blanks BD by the rotary die BRD through an arc of approxi- mately l80 until just prior to the transfer of the bottom blanks BD to the second transfer turret BTT. In a preferred embodifljent of tile present invc.ntion, the anvil BAR includes an upper portion 364 which may be.#con- structed from steel. Further, the anvil includes a lower portion 365 which may be constructed of nalatron. The i upper portion of the anvil 364 is keyed to rotate with the axle 360,. The lower portion of the anvil 265 is prevented from rotating by means of the pin 367 wh,ich is inserted in the framework F. The lower portion of anvil 365 includes a manifold 366 positioned in the upper surface-thereof so as to communicate the supply of vacuum to the 'conduits 363C between the pick-up point---;of the severed bottom blank BD adjacent the rotary die BRD to the tangential transfer of the bottom blank BD to the second transfer turret BTT. The lower portion of the anvil-365 includes ,a through opening 365A for venting the conduit 363C to atmosphere at the time of tangential transfer of the bottom blank BD from the anvil turret BAR to the second transfer turret BTT. A bearing 368 is secured to the framework F and mounted on the axle 360 in a position beneath the anvil turret BAR. The bearing 368 is prevented from axial movement alone the axle 360 because of the flange 360F. Further, a plate 360P is secured to the framework F and'locks the bearing 368 in place relative to the axle 360 and the framework F. Further, a screw nut 3 & is mounted on the axle 360 alld ensures the proper positioning of the bearing 368 and the first transfer turret or anvil BAR. A gear 370 is positioned on the axle 360 and keyed thereto by member 370K. Further, a pulley. t---ke-off 371 is positioned on the axle 360 and keyed thereto by member 371K. The gear 370 is spaced by element 372 from th pulley 3-7,1,. Further, the pulley 371 is accurately positioned relative to the gsar 370 by means of a threaded nut 373. It should be understood that the pulley 371 is connected to the gear drive for the pinch rollers 301, 302 and 305. A gear 374 is counted on the axle 360 and is keyed thereto by the element 374K. Tlte gear is further secured to the axle 360 by the locking screw 375; Referring to Figures 20A and 21A, the second transfer turret BTT is shown as including ten bottom blank holding stations positioned around the circumfelence thereof and further includes an upper portion 380 and a lower portion 381. The lower portion 381 is spring biased by element 381S into engagement with -the upper portion 380. In a preferred embodiment of the present invention the upper portion 380 may be constructed of nylatron and the lower portion 381 may be constructed of steel. The upper portion 380 of the second transfer turret BTT includes a plurality of conduits 380C which project upwardly and radially outwardly. An O ring OR1-is positioned adjacent to and concentric with the ends of each conduit 380C tò-effect a bette#r seal and permit a more accurate- transfer. As illustrated in Figure 20A, the conduits 380C are in communication with a manifold or distributor 382 from the. initial tangential pick-up of a bottom blank BD from the anvil BAR to a point just prior to the tangential discharge of the bottom blank. The manifold or distributor 382 is connected to a vacuum line 383 which supplies a source of vacuum to hold the bottom blank Bp adjacent the second transfer turret BTT during a portion of its rotation As illustrated in Figure 20A, the upper portion 380 of the second transfer turret BTT includes a substantially flat peripheral area 380A on which a bottom blank BD may be positioned. The 0 rings OR1 are positioned one at each of the areas 3SOA located around the circumference of the second transfer turret BTT adjacent to and concentrically with the ends of the conduits 380C to provide positive seals for enhancing the transfer of tile blanks between turrets and ultimately to the mandrels Fbl. The 0 rings OR arc positioned b celnentialg or the like in annular surface grooves formed in the surface of tile peri-pheral areas 380A and project slightly outwardly therefrom. The peril eral areas 3801\ and the 0 rings OR1 comprise the llólding stations for the bottom blanks BD Oil tile, turret BTT. The lower portion 381 of the second transfer turret includes a manifold or distributor 382 positioned on a portion of the upper surface thereof. Further, the lower portion 381 includes a second manifold or distributor 384 which is in communication with the conduits 380C at the tangential discharge point of the bottom blanks BD. The manifold 384 is thus vented to atmosphere at the time of transfer to assure the transfer of the bottom blank BD from the second transfer turret to the final forming mandrel FM the latter being provided with a similar vacuum holding means as illustrated in Figure Z0A. The lower portion 381 is prevented from rotation relative to the gramework F by means of a pin 385. Therefore, since the lower portion 381 is held stationary and the upper portion 380 rotates about the axle, the manifold or distributor 382 is accurately positioned to communicate the source of vacuum to the blank BD from the anvil BAR to a point adjacent to the discharge of the bottom blanks. Further, holding the lower portion 381 stationary relative to the upper portion 380 ensures the accurate alignment of the manifold or distributor 384 to vent the conduits 380C to atmosphere at the discharge point of the bottom blank BD from the second transfer turret BTT. As illustrated in Figure 21A, the upper portion of the manifold 380 is mounted on an axle 387 and is held stationary thereto by means of a washer 387S and a threaded nut 387N. Further, the upper portion 380 of tile second transfer turret BTT is positioned on a flange 387F which accurately positions the upper portion 380 relative to anvil BAR and the final forming mandrels FM. T'he lower portion 38l of the second transfer turret BTT is mounted adjacent the axle 3S7 but is held sta'tionary with respect thereto by means of the pin 385 which is positioned in a portion of tlie framework F. In addition, the axle 387 is mounted in bearing units A8 8 and 389 which are securely positioned in the framework housing F1. - The fra'me- work housing F1 is secured to the framework F by a plurality of bolts B1 and B2 which prevent rotation of t'he framework housing -F1. A threaded nut 390 is positioned on the axle 387 and accurately positions the axial displacement of the second transfer turret BTT relative to the framework F. Positioned adjacent the lowermost portion. of the axle 387 is a gear 391 which is keyed to the axle by member 392. It should be noted that the gear 391 is constructed to be the same size as the gear,374 and is, in meshing engagement therewith. Further, the lowermost end of the axle 38t is coupled to a gear reducer which in turn may be coupled to a common drive element 'which may supply power to the entire container forming machine. Operation Of The Preferred Embodiment In the preferred embodiment of the apparatus and method for severing and transferring bottom blanks from a web- feed roll to aork station the bottom strip stock BSS is fed between the pinch rollers 301, 302, which may be covered with polyurethane, and tend to pull the bottom strip stock BSS (web) from the web roll. The bottom strip stock BSS is fed around a stationary guide --;3 and thereafter passes between an anvil turret BAR and a rotary die BRD where the cutter die CD severs a bottom blank BD from the bottom strip stock. The stationary guide 303 is positioned so thata-#,the bottom strip stock BSS engages the peripheral surface of the anvil BAR substantially be-fore a bottom blank BD is severed therefrom. The manifold 366 is positioned so that the conduits 363C are supplied with vacuum prior to the severing of the bottom blanks BD by the rotary die BRD. As the bottom strip stock BSS passes between the anvil BAR and the rotary die BRD, and begins to wrap around the rotary die BRD-a'fter the bottom blanks BD are severed therefrom,' the resiliency of the bottom strip stock BSS actually pops them bottom blanks BD from tlie bottom strip stock to the anvil BAR, in conjunction with the vacuum in the latter. Thereafter, the scrap material is fed around the' stationary guid 304 and between the pinch rollers 302, 305 which tend to pull the scrap material fro#m the bottom blank severing apparatus. The rotary die BRD includes five cutters CD positioned around the circumference thereof. Positioned adjacent the rotary die are two bearings 341, 342 which are engaged by cam followers 331, 332. ,,The cam followers are positloned.a,;O in a cam follower housing 334 which is engaged by j-ack screws 330S. The jack screws are threaded in the framework F of the bottom blank cutting apparatus and may be tight- ened to axially displace the cam follower housing 334 ¯f6 thereby exerting a force through the cam followers 331, 332 to the bearings 341, 342 to ensure proper die penetra- tion of the bottom strip stock, As discussed hereinabove, the rotary die BRD and the cam follower housing 334 are slidably mounted on the framework F. Therefore, tightening or loosening the jack screws 330S actually displaces the cam follower housing 334 and the rotary die BRD with respect to the fixed anvil BAR. The bottom-blank BD#is severed from the b,ottomXstrip stock BSS and transferred from the rotary die BRD to the. anvil turret BAR. Vacuum is supplied to the anvil turret BAR to aid in the positioning of the bottom strip stock BSS on the anvil BAR and to aid in the transfer of the bottom blank BD and to retain the bottom blank on the circumferential surface of the anvil turret BAR through an are ai approximately l80#.,- An'¯O right OR is posi- tioneci adjacent to and concentric will the ends, of each conduit 363C to effect a better seal and permit a more accurate transfer. The bottom blanks BD are tangentiÅally 'transferred from the anvil turret#BAR to the second transfer turret BTT. At the point and time of tangential transfer the vacuum supplied to the conduits 363 is vented to the atmosphere by means of the opening 365A. The venting of the conduits 363C permits the transfer of,.the bottom blanks BD from the anvil to the second transfer turret where the bottom blanks are retained on substantially flat peripheral areas 380A by means of a vacuum supplied through conduits 380C. The bottom blanks BD are held on the circumferential surface of the second transfer turret BTT through an ar-c of approximately 1800 by means of the vacuum supplied through athe vacuum line 383, the manifold or distributor 382 and the conduits 380C. The vacuum supplied to the c#onduits 380C is terminated just prior to the tangential transfer of the bottom blanks BD from the second transfer turret#TT. to the final forming mandrels FM. At the point and time of transfer of the bottom blank BD to the final forming' mandrels FM the conduits, 380C are vented to atmosphere to ensure t-#he, tangential transfer of the bottom blanks BD to the final forming mandrels FM by means of the vacuum present in the latter which thereafter retains the bottom blanks on the said mandrels. Rotational power is supplied to the bottom blan#k severing'apparatus through a gear reducer which is coupled to the axle 387. The gear 391 is keyed to the axle 387 and rotates therewith. Further, the gear 374 is keyed to the axle 360 and is in meshing engagement with the gear 391. Since the gear 374 is equal in size to the gear 391, the rotational speed of the anvil BAR is equal to the rotational speed of the second transfer turret BTT. However, Since the anvil BAR is approximately one-half the size of the second transfer turret B'1'T, the peripheral specd of anvil turret BAR is less than the peripheral speed of the second transfer turret' BTT. This 'permits thc-narrozX spacing requirements between' the bottom blanks BD occasioned by the low scrap configuration of the ro't'#'##y cutter BRD to be amplified to a compatible 'spacing with the'bottom blank holding stations on the circumferential surface of the second transfer turret BTT. This ultimate, spacing between the blanks BD and the peripheral velocity thereof on the circumferential surface of the second transfer turret BTT is selected to be completely compatible with the-spacing between and transitory velocity of the final forming mandrels FM. Thus, the cut blanks BD are fed continuously and accurately from a closely spaced, low scrap condition at a first velocity to an increased spacing and sec'ond a velocity compatible with the spacing and velocity of the transitory finishing mandrels., The gear 370 is keyed to the axle 360 and is in-,meshina engagement with the gear 352. The size of the gear 352 > and is designed so that the rotational speed of the rotary die BRD is approximately twice the rotational speed of the anvil turret BAR and the second transfer turret BTT. As pre.vious-- ly discussed, the rotary die BRD includes five cutter dies CD positioned around the circumferenc-e thereof Nthile the anvil turret BAR has ten blank holding positions about its circumference. The diameter of the rotary die is approximately one-half the diameter of the anvil and approximately one-fourth the diameter of the second transfer turret respectively. Therefore, since the rotational speed of the rotary die BRD is approximately twice the rotational speey¯d' of the anvil BAR the cutter dies CD align with the greater number of bottom blank positions spaced around the circumference of the anvil turret B.AR and accurately and tangentially transfer a bottom blank from the rotary die to the anvil. in summary, the bottom blank severing apparatus and method disclosed in the present invention continuously supplies a bottom strip stock to a rotary cutting die and effects a tangential transfer to a rotary anvil. There after,-the bottom blanks are tangentially transferred fro the anvil to a second transfer turret. Subsequently, the bottom blanks are continuously tangentially transferred from the second transfer turret to a final forming mandrel FM which is supplied with vacuum to retain the bottom blanks thereon. The peripheral speed of the second transfer turret BTT and spacing of the holding positions thereon are correlated with the transitory speed and spacing, respectively, of the final forming mandrels FM which are positioned on a chain and are continuously moved past the transfer point for bottom blanks BD carried on the transfer turret BTT. The mandrels subsequently and continuously translate through a cylindrical blank transfer point, a bottom banger assembly, a shrink oven, and a bottom iron. Thereafter, the finished containers on the mandrels FPI are removed from the mandrels and may be processed through a top curl assembly and thence out through a discharge chute to complete the container-making process. It should be understood that the apparatus and method for providing bottom blanks for containers in a manufacturing process of the present invention may be modifies as four occur to one of ordinary skill in the art without departing from the spirit and scope of the present invention.
¯ * Tl,T CLAIMS 1. Means for forming a cylindrical blank frown a rccl tangular blank of foam plastic sheet pmaterial comprising: conveyor means feeding said rectangular blank along a predetermined path transversely of its length at a predetermined continuoui-rate; -. cylindrical mandrel means positioned parallel with said predetermined path adjacent said conveyor means; folding means adjacent said mandrel means over a portion of the length of the latter engaging and progressively folding said blank about said mandrel means while feeding said blank along said path to overlap the ends thereof on said mandrel means in the provision of a lapped seam; heating means adjacent said path for progressively applying heat at a selected temperature to each of the ends of said blank to prepare said blank for heat sealing of said lapped seam; and sealing means adjacent said mandrel means doo stream of said folding means for pressing said heated ends of said blank together-to seal said lapped seam and for accelerating the resulting cylindrical blanks ahead of said conveyor means at a second faster predetermined rate and ejecting said cylindrical blank from said mandrel means. 2,. An apparatus for forming a cylindlvical blank from a rectangular blank of foam sheet material and positioning said blank on a final forming mandrel comprising: a delivery means for supplying a rectangular blank including two transverse edges and two parallel edges to a rectangular blank infeed station; a transfer means for receiving and positioning said rectangular blank at said infeed station; a mandrel means for forming a cylindrical blank positioned adjacent said transfer station means and extending from said rectangular blank infeed station to a cylindrical blank discharge point; final forming m3ndrel-he2ns. adjacent said discharge point for receiving a saidr'#ylindrical blank therein; ; a conveyor means for transporting said rectangular blank along said mandrel means in a direction parallel to said parallel edges of said rectangular blank; -a fo,lding means for shaping said rectangular blank positioned adjacent said mandrel means,, -said folding# means progressively folding said rectangular, blank around said mandrel means from said infeed station to said discharge point to overlap said parallel edges of said rectangular blank on said mandrel means to form a cylindrica-l blank; a a heating means for applying heat to said parallel edges of said rectangular blank; ; a seaming means for applying pressFre.to,said heated parallel, e,,dges of said cylindrical blank tQa affix said parallel kedges of said cylindrical blank together and transporting said cylindrical blank along said mandrel means, out of engagement with said conveyor means and imparting to said cylindrical blank the momentum necessary to eject the said blank from said mandrel means and position said cylindrical blank on a said final forming mandrel means; and a seating means for engaging said cylindrical blank subsequent to receipt thereof on said finaF forming mandrel means to ensure proper positioning thereof on said final-forming mandrel means. 3. The invention according to claim 2, wherein said final forming mandrel 'means is transported along a path disposed adjacent said discharge point and said seating means includes an endless belt means positioned 'adjacent said path for engaging said cylindrical-blank an a said final forming mandrel means and constraining said blank to a fully seated position. 4. An apparatus for forming a cyi4ndrica'l 'blank from a rectangular blank of foam sheet materf ##l comprising: a delivery means for supply-in(T a rectangular blink including, two longituclinal edges and two parallel side 'ed#es to a rectangular blank infeed station a transfer means for receiving and releasably retaining said rectangular blank at said infeed station and positioning said parallel side edges of said blank-in a predetermined direction; ; a mandrel means for forming a cylindrical blank positioned adjacent the transfer receiving means, and extending in said predetermined direction from sa'id rectangular blank infeed station to a cylindrical blank discharge point; a conveyor means for stripping the said releasably retained blank from said transfer means and transporting said rectangular blank along said mandrel means in said , predetermined direction which is parallel to said parallel side edges of said rectangular blank; ; a folding means for shaping said rectangulat blank positioned adjacent said mandrel means, said folding means progressively folding said rectangular blank around said mandrel means from said infeed station to said dis- charge point to overlap said parallel side edges of said rectangular blank on said mandrel means to form a cylindrical blanks a heating means for applying heat to said parallel side edges of said rectangular blank; and a seaming means for applying press,ure to, said heated parallel side edges of said cylindrical blank tay affix said parallel-side edges of said cylindrical,blank together, 5. The inventiofr according to claim 3, z.herciIz said delivery means supplies said rectangular blank to said transfer means lvit ] l one of said- parallel side edges'- leading; and wherein said' transfer means comprises: a transfer plate for supportably receiving said blank; a limit stop for engaging the leading side edge of said blank; a guide roller for drivably engaging said blank and positively causing said leading side edge to engage said limit stop to thereby constrain said parallel side edges to assume said predetermined direction; and an upper guide sheet overlying said, transfer plate and precluding vertical distortion of said blank. 6. The invention according to any one of claims 1 - 5, wherein said rectangular'blank is stretch oriented in its longitudinal direction in the provision of a heat shrinkable foam blank; and wherein sa-id orientation in said cylindrical blank is circumferentially disposed. 7. The invention according to any one of claims 1 - 5, wherein said rectangular blank is printed on one side there' of with a desired pattern; and wherein the other side thereof is placed adjacent the cylindrical mandrel means when said blank is engaged by said conveyor means. 8. The invention according to any one of claims 1 - 5, wherein: said rectangular blank is stretch oriented in its longitudinal direction in the provision of a heat shrinkable foam blank; said orientation in said cylindrical blank, is circumferentially disposed; and said rectangular blank is printed on one side thereof with a desired.pattern and the other side thereof cylindrical adjacent the c,-llndrical mandrel means wiien said blank is engaged by said conveyor means. 9. Means-- forming two-piece containers from rectangular sidewall blanks and discshaped bottom blanks of thermoplastic sheet material comprising: conveyor means feeding a plurality of longi tudinally stretch oriented rectangular blanks along a pre determined path transversely- of the longitudinal dimension thereof and at a first predetermined rate; cylindrical mandrel means positioned parallel with said predetermined path adjacent said conveyor means; ; folding means adjacent said mandrel means over a portion of the length of the latter engaging and progres sively folding said blank about said mandrel means while feeding said blank along said.patfi to overlap the ends thereof on said mandrel means in the provision of a lapped seam; heating means adjacent -said path for progres sively applying heat at a'selected-temperature to each of the ends of said blank to prepare 'said blank for heat sealing of said lapped seam; and sealing means adjacent said mandrel means down stream of said folding means for pressing said heated ends of sa;d blank together to seal said lapped seam to provide a cylindrical blank on said mandrel means; a a plurality of final forming mandrels; second conveyor means sequentially indexing said final forming mandrels into coaxial position with one end of said cylindrical mandrel means; ejection means accelerating said cylindrical blanks to a second predetermined rate.faster than said first said mandrel means onto said final forming mandrels in syn- chronism with said indexing of the latter with the former; ; seating means downstrea!ll of said ejection means and adjacent said one end of said cylindrical mandrel means for constraining said cylindrical blanks, to a fully seated position on a respective said final forming mandrel; supply means providing a plurality of disc-shaped bottom blanks for said--containers sequentially indexed with said final forming mandrels to supply bottom blanks thereto; said final forming mandrels- each comprising at least a sidewall and bottom portion for receiving said cylindrical and bottom blanks, respectively; means retaining said bottom blanks on said bottom portion of said final forming mandrels; ; a heat tunnel means heated to a temperature sufficient to shrink said cylindrical blanks into conformal engagement with said sidewall portion and over the peripheries of said bottom blanks to form said two-piece containers; said second conveyor means carrying said final forming mandrels bearing said cylindrical blanks and rsaid bottom blanks through said heat tunnel means; bottom ironing means downstream of said heat tunnel means compressing said overlapped portions of said sidewall and bottom blank to seal the bottom of said twopiece container; and discharge means ejecting said container from said final forming mandrels dolfnstreÅam of said bottom ironing means. 10. The invention defined in claim 9, wherein said forming means further includes: top curl forming means receiving said ejected containers from said discharge means, forming a top curl configuration thereon and ejecting said finished containers therefrom. ll.,Thc Jnvention defined in claim 9, wherein said forming means further co:!'PI is es: filling means for said containers; capping means for said containers; and third-conveyor means receiving said ejected concontainers from said discharge means and conveying same through said filling and capping means; all of said means being cdordinated to provide continuous in-line forming, filling and closing of containers to preclude storage of the latter. 12. The invention defined in claim 9, wherein said supply means comprises: a roll of strip stock; rotary die means sequentially cutting bottom blanks from said roll of'strip stock; and rotary--transfer means comprising turret means having peripherally spaced disc-retaining means mutually indexed with said final forming mandrels to transfer ,. said bottom blanks from the former to the said bottom portion of the latter. 13. The invention defined in claim 9, wherein said means retaining said bottom blanks on said bottom portion of said final forming mandrels comprises: ,,,# vacuum ports formed in said mandrels extending through the surface of said bottom portion; hose means connected with said vacuum ports; a vacuum manifold means connected with said hose means; a source of vacuum; and porting means in said manifold means selectively interconnecting said source to said hase means to retain said bottom blanks on said final forming mandrels for a predetermined period of time. 14. lithe invention.define'd.-in claim 13, wherein said discharge means comprises: a source of positive pressure; and second porting means in said manifold means selectively interconnecting said source of positive pressure to -said hose means to t-tansmit pressure ,through said vacuum ports in said'final¯ forming mandrel,s -to eject finished containers therefrom. 15. The invention defined,.in in claim 9, wherein said bottom ironing means comprises rotary turret means adjacent said second conveyor means; ironing plate means peripherally mounted on said turret means for radial displacement thereon; .means indexing said ironing plates one with each of said final forming ,mandrels; and cam means driving said plate means into colapres- sive engagement with said overlapped portions of said- bottom sidewall and bottom blank. 16. The invention defined in claim 9, wherein said supply means comprises: a roll of strip stock; rotary die means sequentially cutting bottom blanks from said roll of strip stock; rotary transfer means comprising turret means having peripherally spaced disc-retaining means mutually indexed with said final forming mandrels, to transfer, said bottom blanks from the former to the said b-ottom portion of the latter; and wherein said means retaining said bottom blanks on said bottom portion of said final forming mandrels comprises: vacuum ports formed in-#-said ma#ndrels 'extending through the surface of said bottom portions; hose means connected-with sa.id vacuum ports; a vacuum manifold means connected with saiQ#hos'e means; a source of vacuum; and porting means in-.said manifold means selectively interconnecting said source to said hose means to'#reta'in said bottom blanks on said final forming mandrels for a predetermined period of time. 17. The invention defined in claim 6, wherein, said discharge means comprises: a source of positive pressure, and second porting means in said manifold means selec- tively interconnecting said source of positive pressur##,to said hose means to transmit pressure through said vacuum ports in said final formi-ng mandre-ls to eject finished containers therefrom. 18. The-invention defined in claim 9, wherein, said bottom ironing means comprises rotary turret means adjacent said second conveyor means; ironing plate means peripherally mounted on said turret means for radial displacement thereon; means indexing said ironing plates one with each said final forming mandrels; cam means driving said plate means into compressave engagement with said overlapped portions of, said bottom sidewall and bottom blank; and wherein said means retaining said bottom blanks on sai,#bottom portion of said final forming mandrels comprises: vacuum ports formed in said mandrels extending through Ble surface of said bottom portions; hose means connected with said vacuum ports; a vacuum manifold means connected with said hose means; a source of vacuum; and porting means in said manifold me¯ans'selectEwely interconnecting said source to said hose means to retain said bottom blanks on aid final forming mandrels for a predetermined period of time. 19. The invention defined in claim 18, wherein said discharge means comprises: a source of positive pressure;. and second porting means in said manifold means selectively interconnecting said source of positive pressure to said hose means to stransmit pressure through said vacuum ports in said final forming mandrels to eject finished containers therefrom. 20. The -invention#in any one of claims 9 - 19, wherein said rectangular blanks have a pair of parallel edges transversely disposed to said longitudinal dimension and said means for forming two-piece containers further includes: delivery means for supplying said rectangular blanks 'to a blank infeed station; and ''' transfer means for receiving and releasably retaining said rectangular blank at said infeed station and positioning said parallel edges of said blank parallel to said predetermined path pending engagement of said blank by said conveyor means. 21. The invention of any -o-ne- of claims 1 - 5 and 9 -19., wherein said conveyor means comprises: main chain means extending beneath said mandrel means and substantially coextensive therewith; said main chain means having an upstanding pusher dog means thereon'engageable with a trailing longitudinal edge of said blank and transporting said blank along, said mandrel means and horizontal support dog means adjacent said pusher dog means engageable with the lower surface of said blank to maintain said blank closely proximate to said mandrel means to ensure accurate folding by said folding means. 22. The invention of any one of claims 1 - 5 and 9 -18, wherein said conveyor means comprises: main chain means extending beneath said mandrel means and substantially coextensive therewith; said main chain means having an upstanding pusher dog means thereon engageable with a trailing longiinal edge of said blank and transporting said blank along said mandrel means and horizontal, support dog means adjacent said pusher dog means engageable withvthe lower surface of said blank to maintain said blank closely proximate to said mandrel means to ensure accurate folding by said folding means; and said chain means including pushing and supporting dog meats engaging -said blanks subsequent to engagement of the latter with said folding means to assist said main chain means in conveying said blanks through and beyond said folding and heating means. 23. The invention in any one of claims 1 - 5 and 9 - 19, wherein said heating means comprise: at least two heaters located one adjacent each end of said blank; and means individually controlling the respective temperatures generated by said heaters. 24. The, invention in any one of claims 1 - 5 and 9 - 19, wherein said' folding means further inclrl,des spring-loaded guide means positioned adjacent said mandrel means'for engaging the outermost surface of said blank intermediate the ends being folded and biasing said blank into juxtaposition with said mandrel means. '-w- 25. Apparatus for forming and transferring a series of bottom blanks from a severing station to individual' tran- sitory work stations at a velocity and spacing compatible with that of--said work stations comprising: means for severing and translating bottom blanks from a web at.a first spacing and velocity minimizing scrap remaining in the web; transfer means for receiving severed bottom blanks from said severing and translating' mea-ns at an increased velocity#- and spacing compatible with that of said work stations; and means coordinated with said work stations and.said transfer means for transferring said severed bottom blanks from said, transfer means onto respective ones o-f said work stations. 26. Apparatus for forming and transferring a series of bottom blanks from a severing station to individual transitory work stations at a velocity and spacing compatible with that of said work stations comprising: rotary die means cooperating with a rotary anvil turret means for continuously severing and translating bottom blanks from a web continuously fed therebetween at a first spacing and velocity minimizing scrap remaining in said web; -# rotary transfer turret means for receiving severed bottom blanks from said rotary anvil turret means at an increased velocity and spacing compatible with that of said work stations; and mails coordinated with said stations and said rotary turret means for transferring said severed bottom blanks from said rotary transfer-means onto respective ones of said work stations. 27. An apparatus according to claim,.?6, therein said rotary anvil turret means and said rotary transfer turr' & means are driven at substantially a one-to-one ratio ajid being of different diameters such that the velocity and spacing of said-botto-m blanks.respectively increase at the time of transfer from said rotary turret means to said rotary transfer turret means--to a velocity and spacing compatible with said work stations. 28. An apparatus according to claim 26, wherein said rotary die means further includes a cutting, die positioned on the periphery thereof and a compressed air supply means to eject said bottom blanks from said cutting die. 29. An apparatus according to claim 26, wherein said - '-- rotary anvil turret means is cylindrical and includes a plurality of bottom blank positions spaced around the - circumference thereof and vacuum supply means for applying vacuum to said bottom blank positions to hold said bottom blanks thereon. 30. An apparatus according to claim 29, wherein said vacuum supply means is connected to said bottom blank positions throughout a portion of the rotation of said rotary anvil turret means to hold said web adjacent to' said rotary anvil turret means to ensure accurate severing of said bottom blanks and to effect a transfer to said rotary transfer turret means. 31. An apparatus according to cl-aim 29, wherein said vacuum supply means of said rotary a,nvil turret means is vented to atmosphere at the point of transfer of said bottom blanks from said rotary anvil turret means to said rotary transfer turret means. 32. An apparatus according to'claim 26, wherein said rotary transfer turret means iS cylindrical and includes a plurality of¯bottom blank positions spaced around the circumference- thereof and vacuum supplymmeans for applying vacuum to said bottom blank positions'to hold said bottom blanks thereon. 33. An apparatus according to claim 32, wherein said vacuum supply means is connected to said bottom blank positions throughout a portion of the rotation of said rotary transfer turret means to effect a timed picr of bottom blanks from said rotary anvil turret means and subsequent release thereof onto respective ones of said, work stations. t 34. An apparatus according to claim 32, wherein said vacuum supply means of said 'rotary' transfer turret means is vented to atmosphere at the point of transfer -of saftd bottom blanks oDto respective ones of said work stations. 35. An apparatus according to claim 29, 30, 31, 32, 33 or 34 wherein said rotary die menas further includes a cutting' die po.sitioned on the periphery thereof and a compressed air supply means to eject said bottom blanks from said cutting die. 36. An apparatus according to claim 29, 30 or'31, wherein said rotary transfer turret means is cylindrical and includes a plurality of bottom blank positions spaced around the circumference thereof and vacuum supply means for applying vacuum to said bottom blank positions to hold said bottom blanks thereon. 37. All app'a'#atus according to claim '29,, 30 or 317 wherein said vacuum supply means is connected to said bottom blank positions throughout a portion of the rotation of said rotary transfer turret means to effect a timed pick-up of. 4 bottom blanks from said rotary anvil turret..means and subsequent release thereof onto respec;tive '#' ones of said work stations. 38. An apparatus according to claim 29, 30 or 31 here- in said vacuum supply means of said rotary transfer turret means is vented to atmosphere at the point of transfer of said bottom blanks onto respective ones of said ork stations. 39. An apparatus for supply and transferring a serie's of work pieces from a first station to individual transitory work stations at a velocity and spacing compatible with that of said work stations comprising: means for supplying work pieces at a fi-rst--spating and velocity; transfer means for receiving said work pieces from said supply means at an increased velocity and spacing compatible with that of said work stations; and means coordinated with said work stations and said transfer means for transferring said work pieces from said transfer means onto respective ones of said work stations. 40. The invention in any one of claims 9,, 10, 11, 13, 14, 15, 18 and 19 wherein said supply means comprises: means for severing and translating bottom blanks from a will at a first spacing and velocity minimizing scrap remaining in the web; trallsLer means for receiving severed bottom blanks fro#:i the said severing and translating means at an increased velocity and spacing compatible with that of said final forming mandrels on said second conveyor means; and means coordinated with said final forming mandrels and said transfer means for transferring said severed bottom blanks from said transfer means onto respective ones of. said final forming mandrels. 41. Means forming two-piece containers from rectangular sidewall blanks and disc-shaped bottom blanks of thermo- plastic sheet material comprising: first conveyor means feeding a plurality of longitudinally stretch oriented rectangular blanks along a predetermined path transversely of the longitudinal dimension thereof; cylindrical mandrel means positioned parallel with said predeGerinined : :path adjacent saicl conveyor means; folding means adjacent said mandrel means, over a portion of the length of the latter engaging and progressively folding said blank about said mandrel means while feeding said blank along said path to overlap the ends thereof on said mandrel means in the provision of a lapped seam; heating means adjacent said path for progressively applying heat to the ends of said blank to prepare said blank for heat sealing of said lapped seam; and sealing means adjacent said mandrel means down- stream of said folding means for pressing said heated ends of said blank together to heat-seal said lapped seam to provide a cylindrical blank on said mandrel means; a plurality of finishing mandrels; second conveyor means sequentially indexing said finishing mandrels into coaxial position with one end of said cylindrical mandrel means; ejection means, ejecting said cylindrical blanks from said cyl-indrical mandrel means onto said finishing mandrels in synchronism with the said indexing of the latter with the former; ; supply means providing a plurality of disc-shaped bottom blanks for said containers sequentially indexed with said finishing mandrels to supply bottom blanks thereto; said finishing mandrels each comprising at least a sidewall and bottom portion for receiving. said cylindrical and bottom blanks, respectively; means retaining said bottom blanks on said bottom portion of said finishing mandrels; a heat tunnel means heated to a temperature sufficient to shrink said cylindrical blanks into conformal engagement with said sidewall portion and over the peripheries of said bottom blanks to form said 'two-piece containers; ; said conveyor means carrying said finishing mandrels bearing said cylindrical blanks and said bottom blanks through said heat t tunnel means; bottom ironing means downstream of said heat tunnel means compressing said overlapped portions of said sidewall and bottom blank to seal the bottom of said two- - piece container; and discharge-means ejecting said container from said, finishing mandrels downstream of said bottom ironing means; means for severing and translating' bottom blanks from a web at a first spacing and velocity minimizing scrap remaining in the web; transfer means for receiving severed bottom blanks from the said severing and translating means at an increased velocity and spacing compatible with that of said final forming mandrels on said second conveyor means; and means coordinated' ith said final forming Jfland,rel,# and said transfer means for transferring said severed bottom blanks -from said transfer nicans onto respective ones of said final forming mandrels. 42. The method of forming containers from heat shrinkable longitudinally oriented rolled lengths of foam plastic sheet material comprising: feeding said lengths from a roll and cutting same into like rectangular blanks having said orientation in the longitudinal direction thereof; conveying said blanks at a first predetermined rate transversely of said longitudinal direction while progressively folding and advancing said blanks about and along an elongated cylindrical mandrel until the ends of said blanks overl.ap on said mandrel to form cflindr;al blank's each having a longitudinal side seam defined by said overlap and with said# orientation directed circumferentially of each said blank; ; applying heat at a selected temperaturt to each of said ends of said blanks during the advancement thereof along said mandrel; applying pressure along said heat overlap,ped ends to seal-..said side seam and complete each said cylindrical blank on said mandrel while conveying said blanks at a second faster predetermined rate; and ejecting each said finished cylindrical blank from said mandrel at said second predetermined rate subsequent to'sealing said side seam. 43. The method of forming containers from heat shrinkable longitudinally oriented rolled lengths of feam plastic sheet material comprising: feeding said lengths from a rolq and cutting same into like rectangular blanks having said or-lentation in the longitudinal direction thereof; ; conveying said blanks at -a first predetermined rate transversely of-said longitudinal direction while progressively folding and advancing said blanks about and along an elongated cylindrical mandrel until the end of said blanks overlap- on said mandrel to form cylindric'al blanks each having a longitudinal side seam defined by said overlap and with said orientation direct #d circumferentially of each said blank; applying heat at a selected temperature to each of said ends of said blanks during the advancement thereof along said mandrel; ; applying pressure along said heated overlapped ends to seal said side seam and compl'ete ,each said cylin- drical blank on said mandrel while conveying said blanks at a second faster predetermined rate; ejecting each said finished cylindrical blank from said mandrel at said second predetermined rate subse- quent to sealing said side seam; ; transferring said cylindrical blanks from the end of said mandrel' synchronously onto individual final forming, mandrels having a shape corresponding to that of the side- wall of a desired container configuration; placing a bottom portion of plastic sheet material on said final forming mandrels prior to shrinking said cylindrical 'blanks; shrinking said blanks onto said final forming mandrels and over at least the peripheral portion--of said bottom #portiOn; sealing the overlapped areas of said blank and said bottom portion to provide a closed bottom seam; and ejecting said container from said final forming, mandrel. 44. The method defined in claim, , including the further step of forming annular rim configurations at tiie ends of said sidewalls to define mouths, for said containers - 45. The method of forming a cylindrical blank from a rectangular blank of foam plastic sheet Ikaterinl 1 comprising providing a rectangular blank of a width substall- tially equal to the desired length of a cylindrical blank and a length substantially equal to the desired circum ference; ; conveying said rectangular blank in a direction parallel to its width dimension along the length of a fixed cylindrical mandrel and continuously and progressively applying heat to the edges of said blank along the width at indivudually selected temperatures peculia to each of said edges and folding said edges of said rectallX,gular blank upon themselves on, said mandrel while conveying said blank to form a cylindrical blank with a lapped side seam; and progressively compressing said side seam on said mandrel to heat-seal said lapped ends together. 46. The method of forming heat-shrinkable cylindrical blanks from longitudinally oriented rolled ¯lengths of foam plastic sheet material and heat shrinking said blanks to a predetermined cross-sectional configuration comprising: : feeding said lengths from a roll and cutting same into like rectangular blanks having said orientation in the longitudinal direction thereof; conveying said blanks at a first predetermined rate transversely of said longitudinal direction while progressively folding and advancing said blanks about and along an elongated cylindrical mandrel until the ends of said blanks overlap on said mandrel, to form cyliiidrical blanks each having a longitudinal sid#e seam defined by said overlap and with said#orientation directed circum ferentially of each said blank; ap,,qlyin-g heat at a selected temperature to each of said ends of said blank during the advancement thereof along .said mandrel; ; applying pressure along said heated overlapped ends to seal said side seam and complete each said cylindrical blank on said mandrel while conveying said blanks at a second faster predetermined rate; ejecting said finished cylindrical blank from said mandrel at said second Thredetermined rate subsequent to sealing said side seam; transferring said cylindrical'blank from the end of said mandrel synchronously onto individual final forming mandrels having the desired cross-sectional configuration; and shrinking said cylindrical blanks to the shape of said final forming mandrels. 47. The method of claim 41, wherein said shinking of said cylindrical blank comprises continuously transporting said final forming mandrels through a zone Of elevated temperature sufficient to shrink said blanks to theconfiguration of said final forming mandrels during the time of transport through said zone. 48. The method defined in any one of claims 42 - 47, wherein said blank includes printed graphics on one face thereof including the step of orienting said blank such that said graphics appear on the outer circumferences of said cylindrical blank.
MARYLAND CUP CORPORATION
BUSSE, CHARLES E.; CRESS, ALLAN K.
EP-0004984-B1
4,984
EP
B1
DE
19,821,222
1,979
20,100,220
new
H02P9
G05D13, G01R23
G01R23, H02P9
H02P 9/04, G01R 23/10
FREQUENCY CONTROL CIRCUIT FOR ELECTRIC POWER DISTRIBUTION NETWORKS
1. A circuit for automatic frequency control, particularly in power distributing systems, comprising digital frequency-measuring means, set point-generating means, comparators and frequency-changing final control means connected to the output terminal of the comparators, characterized in that the frequency-measuring means comprise in known manner at least two measuring branches (20, 21), which effect a frequency measurement in intervals of time which directly follow each other or overlap each other, the measuring branches contains also in a manner known per se respective counters, which are supplied with pulses at a synthesized frequency, which has been derived by multiplication from the frequency to be measured, and which are supplied from a counter control clock (22) with counting clock switching pulses for determining the counting steps, and the comparators (26) are connected (25) to the measuring branches in alternation or cyclically.
Die Erfindung bezieht sich auf eine Schaltung zur Frequenzregelung, insbesondere in elektrischen Energieverteilungsnetzen, mit digitalen Frequenzmesseinrichtungen, Sollwerterzeugungseinrichtungen, Vergleichseinrichtungen und mit deren Ausgang verbundenen Stelimitteln zur Frequenzänderung. Bekannte Schaltungen dieser Art haben den Nachteil, dass unerwartet rasch auftretende Regelabweichungen erst mit beträchtlicher Verzögerung eine Betätigung des Stelltriebs hervorrufen, so dass bis zum Ansprechen des Reglers sich bereits eine Regelabweichung aufgebaut haben kann, welche nicht zulässig ist. Dies gilt insbesondere für elektrische Energieverteilungsnetze, bei welchen bekanntlich im Falle grosser plötzlicher Frequenzabweichungen die Gefahr eines Netzzusammenbruches besteht. Bedingung für eine frühzeitige Meldung einer Frequenzabweichung durch die Messeinrichtungen ist eine sehr genaue Messung, welche vorzugsweise digital durchgeführt wird. Hierbei stellt sich aber das Problem, dass das Messergebnis innerhalb eines bestimmten Zeitraumes gebildet und dann innerhalb eines weiteren Zeitraumes ausgewertet wird. Tritt während des Auswertzeitraumes eine rasche Frequenzänderung ein, so kann diese nicht sogleich im Messergebnis erfasst und vom Stelltrieb berücksichtigt werden, so dass wiederum eine Verzögerung des Ansprechens des Stelltriebes möglicherweise zu unzulässigen Frequenzabweichungen vom Sollwert führt. Durch die vorliegende Erfindung soll die Aufgabe gelöst werden, eine Frequenzregelschaltung der eingangs angegebenen Art so auszugestalten, dass eine sehr genaue Frequenzmessung ermöglicht und ein weitgehend verzögerungsfreies Ansprechen der Regelung bei rasch auftretenden Frequenzänderungen erzielt wird. Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Frequenzmesseinrichtungen mindestens zwei Messzweige enthalten, welche in zeitlich aneinander anschliessenden oder einander überlappenden Zeiträumen eine Frequenzmes sung vornehmen und dass die Vergleichseinrichtungen mit den Messzweigen alternierend bzw. zyklisch verbunden werden. Man erkennt, dass bei dieser Ausbildung der Frequenz gelschaltung die Regelgrösse praktisch zu keinem Zeitpunkt unbeobachtet bleibt, da während der Auswertung des Messergebnisses eines Messzzeiges in den Vergleichseinrichtungen bereits ein anderer bzw. der andere Messzweig ein neues Messergebnis bildet, welches unmittelbar anschliessend in den Vergleichseinrichtungen ausgewertet wird. Gemäss einer bevorzugten Ausführungsform der angegebenen Frequenzregelschaltung werden die Messzweige von einer synthetischen, mit der zu messenden Frequenz synchronisierten Frequenz gespeist, welche ein Vielfaches der zu messenden Frequenz beträgt. Die hierzu notwendige Frequenzmultiplikation geschieht in vorteilhafter Weise dergestalt, dass die Frequenzmesseinrichtungen einen mit dem Ausgang eines Phasenvergleichers verbundenen spannungsgesteuerten Oszillator enthalten, welcher die genannten Messzweige speist und welcher ausgangsseitig ausserdem an einen Frequenzteiler angeschlossen ist, dessen Ausgangsfrequenz in dem Phasenvergleicher mit der zu messenden Frequenz verglichen wird. Die Messzweige können je einen Zähler enthalten, wobei die Zählperioden dieser Zähler von einem gemeinsamen Zählraktgenerator gesteuert sind. Die Frequenzmessung mittels einer derartigen Schaltung besitzt gegenüber der bekannten Frequenzmessung durch Bestimmung des zeitlichen Abstandes der Nulldurchgänge der zu untersuchenden Spannung den wesentlichen Vorteil, dass vorübergehende Instabilitäten beim Nulldurchgang dieser Spannung nicht das Messergebnis verfälschen und möglicherweise den Regler zum Ansprechen bringen. Vielmehr werden solche vorübergehenden Instabilitäten des Verlaufes der zu untersuchenden Spannung durch die zuvor erwähnte Bildung einer synthetischen Frequenz durch Frequenzmultiplikation ausgeschieden oder ausgesiebt, ohne dass die Genauigkeit der Messung über die praktisch interessierenden Zeiträume von einer halben Periode der zu untersuchenden Frequenz hinweg leidet. Die von dem Zähltaktgenerator vorgegebenen Zähltakte und die jeweils zugehörige Zählerlaufgeschwindigkeit kann einstellbar sein, so dass die Anzahl der Messungen je Zeiteinheit gewählt werden kann, wobei wegen der entsprechenden Umschaltung der Zählerlaufgeschwindigkeit, etwa durch Umschaltung der Ansteuerung bestimmter Zählerstufen, jeweils grössenordnungsmässig gleiche Zählerstände erreicht werden und infolgedessen in der übrigen Schaltung, beispielsweise in den Sollwerterzeugniseinrichtungen, keine Umstellungen bei einem Wechsel des Zähltaktes vorgenommen werden müssen. Jedenfalls aber wird die Umschaltgeschwindigkeit einer an die Zähler der Messzweige angeschlossenen Multiplexeinrichtung, von deren Ausgang die Vergleichseinrichtungen gespeist werden, entsprechend dem jeweils gewählten Zähltakt eingestellt. Eine bevorzugte praktische Ausführungsform der hier angegebenen Frequenzregelschaltung für elektrische Energieverteilungsnetze, welche als Störfallregler eingesetzt werden kann, um bei plötzlichen Frequenzeinbrüchen Leistungsreserven des Netzes rasch einzusetzen oder das Netz rasch durch Flächenabschaltung von Teilnetzen zu entlasten, sieht vor, dass die Vergleichseinrichtungen einen Proportionalzweig und einen mit diesem zu Stelltriebseinschaltung verknüpften Differentialzweig enthalten und dass an die Messzweigausgänge eine Differenziereinrichtung angeschlossen ist, welche mit dem Differentialzweig der Vergleichseinrichtungen Verbindung hat. Die Verknüpfung des Proportionalzweiges und des Differentialzweiges der Vergleichseinrichtungen ist vorzugsweise eine UND-Verknüpfung, derart, dass der Stelltrieb im Sinne einer Frequenzerhöhung eingeschaltet wird, wenn der Istwert der Frequenz einen bestimmten Frequenzsollwert unterschreitet und gleichzeitig der Differentialquotient des Istwertes der Frequenz nach der Zeit einen negativen Sollwert oder Grenzwert dieses Differentialquotienten überschreitet. Die Rückschaltung des Stelltriebs kann mittels eines Signals erfolgen, welches die Rückkehr der gemessenen Frequenz in einen Sollbereich signalisiert, wobei die Abschaltung oder Rückschaltung des Stelltriebs abhängig vom Auftreten dieses Signals zeitverzögert sein kann. Hierdurch wird vermieden, dass ein kurzzeitiger Frequenz anstieg nach der durch aiedie Frequenzregelschaltung ver anlassten Zufuhr der Leistungsreserven zur Wiederabschaltung des Stelltriebs führt, bevor sich der Betriebszustand des betreffenden Energieverteilungsnetzes so weit beruhigt hat, dass danach die Frequenz durch die normalen, vergleichsweise langsam arbeitenden Kraftwerksregler gehalten werden kann. Nachfolgend werden Ausführungsbeispiele unter Bezugnahme auf die Zeichnung näher erläutert. Es stellen dar: Fig. 1 ein schematisches Blockschaltbild einer Frequenzregelschaltung für elektrische Energieverteilungsnetze und Fig. 2 ein Blockschaltbild eines Teils einer gegenüber Fig. 1 abgewandelten Schal tung. In Figur 1 ist ein elektrisches Energieverteilungsnetz mit 1 bezeichnet. Auf dieses Netz arbeitet ein Turbogenerator 2, welcher von einer Turbine 3 angetrieben wird. Die Leistung der Turbine 3 ist mittels eines Ventils 4 steuerbar, welches durch einen Stelltrieb 5 eingestellt werden kann. Der Stelltrieb 5 ist ein- und ausschaltbar und erzeugt zur Durchführung einer Zweipunktregelung eine Ventilstellung grösserer bzw. kleinerer Öffnung. Die Einschaltung des Stelltriebs 5 erfolgt über einen Eingang 6, während die Wiederausschaltung über einen Eingang 7 vorgenommen werden kann. Die Frequenz auf dem Netz 1 wird an einer Messstelle 8 untersucht, wobei die Messeinrichtungen vom Netz durch einen Transformator 9 isoliert sind. Die Sekundärspannung des Transformators 9 wird durch einen Filter 10 geführt, um Störungen ausserhalb des Bereiches zu erwartender Frequenzänderungen auszusieben, wonach die im wesentlichen sinusförmige Ausgangsspannung des Filters 10 in einem Umformer 11 in eine Rechteckwelle entsprechender Frequenz umgeformt wird. An den Umformer 11 schliesst sich eine Frequenzmultiplikationseinrichtung 12 an, welche die Aufgabe hat, aus der die zu untersuchende Frequenz aufweisenden Rechteckwellenschwingung eine Signalschwingung mit einer synthetischen Frequenz zu bil den, welche ein Vielfaches der zu untersuchenden Frequenz beträgt, wobei aber die Signalschwingung mit der synthetischen Frequenz zu der Rechteckwellenschwingung synchronisiert gehalten wird und eine bestimmte Phasenbeziehung stets beibehält. Eine Multiplikationseinrichtung, welche diese Aufgabe erfüllt, enthält einen spannungsgesteuerten Oszillator 13, welcher auf einer Leitung 14 die gewünschte Signalschwingung mit der synthetischen Frequ#enz abgibt. Die Synchronisation der Ausgangsschwingung des spannungsgesteuerten Oszillators 13 mit der Rechteckwellenschwingung am Ausgang des Umformers 11 wird durch eine einen Frequenzteiler 15, einen Phasendetektor 16 und einen Filter 17 enthaltende Phasenregelschleife erreicht, welche in Fig. 1 allgemein mit 18 bezeichnet ist. Das Teilerverhältnis des Frequenzteilers 15 entspricht dem durch die Multiplikationseinrichtung 12 einzuführenden Frequenzmultiplikationsfaktor. Ist dieser Faktor beispielsweise 10.000 und liegt die zu untersuchende Frequenz des Energieverteilungsnetzes 1 bei 50 Hz, so wird auf der Leitung 14 eine Signalschwingung von etwa 500.000 Hz abgegeben. Das Teilerverhältnis des Frequenzteilers 15 beträgt in diesem Falle 1/10.000, derart, dass über die Leitung 19, welche den Ausgang des Frequenzteilers 15 mit einem Eingang des Phasendetektors 16 verbindet, eine Schwingung von etwa wiederum 50 Hz zum Vergleich mit der Ausgangsschwingung des Umformers 11 in den Phasendetektor 16 eingespeist wird. Der Phasendetektor 16 liefert eine mit einer bestimmten Welligkeit behaftete Gleichspannung einer Grösse, welche vom Phasenunterschied der in den Phasendetektor eingespeisten Wechselspannung abhängig ist. Nach Ausfiltern der Wechselspan nungskomponente dieser Phasendetektorausgangsspannung in dem Filter 17 wird die Spannung zur Ansteuerung des spannungsgesteuerten Oszillators 13 verwendet. Die zuvor beschriebene Einrichtung zur Frequenzmulti plikation zur Erzeugung der Signalschwingung mit der synthetischen Frequenz ist an sich bekannt, wobei aber im vorliegenden Anwendungsfalle in einer Frequenzregelschaltung sich der wesentliche Vorteil einstellt, dass sämtliche Änderungen der zu untersuchenden Frequenz am Messort 8 mit grosser Präzision in der synthetischen Frequenz auf der Leitung 14 wiederkehren und sich das Auflösungsvermögen der Messeinrichtungen entsprechend dem Multiplikationsfaktor der Multiplikationseinrichtungen 12 vergrössert. Die Signalschwingung mit der synthetischen Frequenz, welche auf der Leitung 14 ansteht, dient zur Ansteuerung zweier parallel geschalteter Zähler 20 und 21. Die Zähltakte der Zähler 20 und 21 werden durch einen Zähltaktgenerator 22 erzeugt und vorgegeben und den Zählern in Gestalt von Schaltimpulsen über die Leitungen 23 und 24 zugeführt. Die Schaltimpulse der Leitungen 23 und 24 befinden sich in Gegenphase, so dass jeweils in einem der Zähler 20 oder 21 jeweils ein bestimmter Zählerstand während eines Zähltaktes aufgebaut wird, während der andere Zähler innerhalb dieses Zähltaktes seinen Zählerstand zur Auswertung anbietet. Während des darauffolgenden Zähltaktes sind dann die Verhältnisse umgekehrt. Die Auswahl desjenigen Zählers, dessen Zählerstand jeweils ausgewertet werden soll, erfolgt durch einen an die Zählerausgänge angeschlossenen Multiplexer 25, welcher die Zählerausgänge alternierend zur Verbindung mit einem Eingang eines Vergleichers 26 anwählt. Der Zähltaktgenerator 22 liefert über eine Leitung 27 an den Multiplexer 25 entsprechende Steuerimpulse, welche mit den Schaltimpulsen der Leitungen 23 und 24 synchronisiert sind. Der jeweils andere Eingang des Vergleichers 26 wird mit einem Sollwert beaufschlagt, der in Gestalt einer mit dem Zählerstand der Zähler 20 bzw. 21 vergleichbaren Digitalzahl von Sollwerterzeugungseinrichtungen 28 dargeboten wird. Das Ausgangssignal des Vergleichers 26 ist somit ein digitales Fehlersignal, das nach einer Digital-/Analogumformung in dem Umsetzer 29 zur Einschaltung des Stelltriebs 5 über den Eingang 6 verwendbar ist. Der Iaktimpulsgenerator 22 enthält bei dem Ausführungs beispiel nach Fig. 1 einen hochstabilen, quarzgesteuerten Oszillator 30, dessen Frequenz mittels des Frequenzteilers 31 auf einen mit der Frequenz des Netzes 1 vergleichbaren Wert herabgesetzt wird. Besitzt der quarzgesteuerte Oszillator 30 beispielsweise eine Frequenz von 409.600 Hz, so kann diese Frequenz durch einen 13 duale Teilerstufen aufweisenden Frequenzteiler auf die Basis frequenz von 50 Hz herabgesetzt werden. Ein dem Frequenzteiler 31 nachgeschalteter Wählerabschnitt 32 des Zähltaktgenerators 22 enthält weitere Frequenzteiler 33 und 34, welche ein Teilerverhältnis von 1/10 bzw. 1/100 einführen, so dass mittels eines Wählerschalters 35 entweder die 50 Hz-Ausgangsschwingung des Frequenzteilers 31 oder die 5 Ht-Ausgangsschvingung des Frequenzteilers 33 oder die 0,5 Hz-Ausgangsschwingung des Frequenzteilers 34 zur Speisung eines Schaltimpulsgenerators 36 ausgewählt werden kann. Der Schaltimpulsgenerator 36 liefert die bereits erwähnten Schaltimpulse der Leitungen 23 und 24, ferner die Steuerimpul se der Leitung 27 für den Multiplexer 25 und weitere, den Zählern 20 und 21 zugeführte Steuersignale, welche auf den Leitungen 37 und 38 auftreten und bewirken, dass die Zählgeschwindigkeit der Zähler 20 und 21 auf die jeweilige Stellung des Wählerschalters 35 abgestimmt ist, um im Ergebnis unabhängig von der Stellung des Wählschalters etwa gleichgrosse Zählerstände zu erreichen, was in der Weise geschehen kann, dass durch die Leitungen 37 und 38 eine Auswahl der jeweils durch die Signalschwingung der Leitung 14 beaufschlagten Zählerstufe in Abhängigkeit von der Stellung des Wählerschalters 35 gesteuert wird. Befindet sich also der Wählerschalter in der in Fig. 1 gezeigten Stellung, so baut sich in den Zählern 20 und 21 der zur Auswertung gelangende Zählerstand 100 mal in der Sekunde auf, was 100 Messungen je Sekunde entspricht. Verbindet der Wählerschalter 35 den Frequenzteiler 31 mit dem Frequenzteiler 33, so werden 10 Messungen je Sekunde durchgeführt und verbindet der Wählerschalter 35 den Frequenzteiler 31 mit dem Frequenzteiler 34, so wird eine Messung je Sekunde durchgeführt. Bei der grössten Messgeschvindigkeit wird also jede einzelne Halbwelle der Frequenz des Netzes 1 auf etwaige Frequenzänderungen untersucht. Die Messeinrich- tung ist ganzzeitig tätig, nachdem die Zähler 20 und 21 alternierend arbeiten. Die Ausführungsform nach Fig. 2 hat mit der Frequenzregelschaltung nach Fig. 1 die an den Multiplexer 25 angeschlossenen Messeinrichtungen und Steuereinrichtungen gemeinsam. Nachdem aber bei der Ausführungsform nach Fig. 2 die Sollwerte als analoge Grössen bereitgestellt werden, wird der Ausgang des Multiplexers 25 bei der vorliegenden Ausführungsform in einem Digital-/Analog Umsetzer 39 noch vor Einspeisung in die Vergleichseinrichtungen 26 in analoge Form umgesetzt. Das der Grösse der zu untersuchenden Frequenz entsprechende analoge Ausgangssignal des Umsetzers 39 gelangt einmal zu einem Proportionalzweig 40 der Vergleichseinrichtungen und wird dort mit einem analogen Frequenzsollwert eines Abschnittes 41 der Sollwerterzeugungsein richtungen 28 verglichen. Zum anderen gelangt das Umsetzerausgangssignal zu einem Differentiator 42, welcher aus dem eingegebenen Analogsignal ein Signal entsprechend dem Differentialquotienten nach der Zeit bildet und dieses in einen Differentialzweig 43 der Vergleichseinrichtungen 26 eingibt. In diesem Differentialzweig erfolgt ein Vergleich des genannten Signales mit einem Sollwert des Differentialquotienten der Frequenz nach der Zeit, welcher vom Ausgang eines Abschnittes 44 der Sollwerterzeugungseinrichtungen 28 abgenommen wird. Die vom Ausgang der Zweige 40 und 43 der Vergleichereinrichtungen 26 abnehmbaren Fehlersignale oder Vergleichsergebnisse werden einer UND-Verknüpfung in einem UND-Schaltglied 45 unterzogen. Das Ausgangssignal des UND-Schaltelementes 45 dient zur Einschaltung eines den Stelltrieb 5 steuernden Flip-Flops 46, das von einer Ausschaltimpulsquelle 47 rückgestellt wird. Die Ausschaltimpulsquelle 47 empfängt einerseits über eine Leitung 48 das der zu untersuchenden Frequenz entsprechende Analogsignal vom Ausgang des Digital-/Analogumsetzers 39 und andererseits ein Frequenzsollwertsignal einer Sollwertquelle 49. Es versteht sich, dass der Sollwert des Abschnittes 41 der Sollwerterzeugungseinrichtungen 28 unter demjenigen der Sollwertquelle 49 liegt, um einen bestimmten Abstand der Schaltpunkte der Zweipunktregelung vorzugeben. Ein Zeitverzögerungselement 50 bewirkt eine verzögerte Weiterleitung der Ausschaltbedingung an das Flip-Flop 46, damit nach einem Einschalten des Stelltriebs 5 dieser ausreichend lange in Einschaltstellung verbleibt, um die Leistungsreserven dem Netz 1 zu dessen Stabilisierung ausreichend lange zuführen zu können. Durch geeignete Ausbildung der Schaltungsbauteile 47 und 50, ggf. durch eine nochmalige UND-Verknüpfung der Ausgangssignale dieser Bauteile, ist dafür Sorge getragen, dass bei einem neuerlichen Frequenzabfall unter den Sollwert der Einrichtung 49 während der Verzögerungszeit des Elementes 50 das Reglerausschaltsignal zurückgehalten wird, so dass der Regler jedenfalls erst dann ausgeschaltet wird, wenn während der gesamten Verzögerungszeit die Frequenz über dem Sollwert gelegen ist.
Patentansprüche 1. Schaltung zur Frequenzregelung, insbesondere in elektrischen Energieverteilungsnetzen, mit digitalen Fre quenzmesseinri chtungen, Sollwerterzeugungseinrichtungen, Vergleichseinrichtungen und mit deren Ausgang verbundenen Stellmitteln zur Frequenzänderung, dadurch gekennzeichnet, dass die Frequenzmesseinrichtungen mindestens zwei Messzweige (20, 21) enthalten, welche in zeitlich aneinander anschliessenden oder einander überlappenden Zeiträumen eine Frequenzmessung vornehmen und dass die Vergleichseinrichtungen (26) mit den Messzweigen alternierend bzw. zyklisch verbunden werden (25). 2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, dass die Messzweige (20, 21) von einer synthetischen, mit der zu messenden Frequenz synchronisierten Frequenz gespeist (12) werden, welche ein Vielfaches der zu messenden Frequenz beträgt. 3. Schaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Frequenzmesseinrichtungen einen mit dem Ausgang eines Phasenvergleichers (16) verbundenen, spannungsgesteuerten Oszillator (13) enthalten, welcher die genannten Messzweige (20, 21) speist und welcher ausgangsseitig ausserdem an einen Frequenzteiler (15) angeschlossen ist, dessen Ausgangsfrequenz in dem Phasenvergleicher mit der zu messenden Frequenz verglichen wird. 4. Schaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messzweige je einen Zähler (20, 21) enthalten und dass die Zähltakte dieser Zähler von einem gemeinsamen Zähltaktgenerator (22) gesteuert sind. 5. Schaltung nach Anspruch 4, dadurch gekennzeichnet, dass der Zähltakt des Zähltaktgenerators (22) wählbar (35) ist. 6. Schaltung nach Anspruch 5, dadurch gekennzeichnet, dass die Zählerlaufgeschwindigkeit mittels des Zähltaktgenerators (22) entsprechend dem gewählten Zähltakt, insbesondere durch Auswahl einer jeweils zu speisenden Zählerstufe, einstellbar (37, 38) ist. 7. Schaltung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass an die Zähler (20, 21) eine mit dem Zähltakt synchronisierte (27) Multiplixeinrichtung (25) angeschlossen ist, welche mit einem Eingang der Vergleichseinrichtungen (26) verbunden ist. 8. Schaltung nach den Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Schaltgeschwindigkeit der Multiplexeinrichtung (25) entsprechend dem gewählten Zähltakt einstellbar (27) ist. 9. Schaltung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Vergleichseinrichtungen (26) einen Proportionalzweig (40) und einen mit diesem zur Stelltriebeinschaltung verknüpften (45) Differentialzweig (43) enthalten und dass an die Messzweigausgänge eine Differenziereinrichtung (42) angeschlossen ist, welche mit dem Differentialzweig der Vergleichseinrichtungen Verbindung hat. 10. Schaltung nach Anspruch 9, dadurch gekennzeichnet, dass die Stelltriebrückschaltung mittels eines Signals erfolgt, welches die Rückkehr der zu messenden Frequenz in einen bestimmten Sollbereich signalisiert (47) und dass die Abschaltung des Stelltriebs abhängig vom Auftreten dieses Signales zeitverzögert (50) ist. 11. Schaltung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Proportionalzweig (40) und der Differentialzweig (43) der Vergleichseinrichtungen nach einer UND-Funktion verknüpft (45) sind.
GRIMM, GERMAN, DIPL.-ING.
GRIMM, GERMAN, DIPL.-ING.
EP-0004987-B1
4,987
EP
B1
DE
19,810,902
1,979
20,100,220
new
A47J43
A47J43
A47J43
A47J 43/06, A47J 43/07S4C, A47J 43/046
ELECTRICALLY OPERATED MIXING AND PULVERISING HOUSEHOLD-DEVICE
1. Electrical domestic mixer-chopper with a fittable device (1) in which rotate cutting tools driven by a motor and a motor base (4) with an electrical switch, characterized in that the device (1) ist supported by a support (2) with locking bolt abutments (12) which can be mounted on the motor base (4) and can be locked thereto by pins or studs (8) via a locking ring (9), for which purpose locking ring (9) rotatable about the longitudinal axis of base (4) and movable by a safety bolt (11) cooperates with a locking bar (26) longitudinally displaceable in base (4) and in turn, as a function of the position of locking ring (9), the locking bar releases or secures the control knob (27) for switching the motor on and off.
Die Erfindung betrifft einen elektrischen Haushalts-Mischzerkleinerer mit einer aufsetzbaren Vorrichtung, in der sich von einem Motor angetriebene Schneidwerkzeuge drehen, und einem Motorsockel mit einem elektrischen Schalter. Bei bekannten Geräten dieser Art kommt es oft vor, besonders wenn das in der Schale befindliche, zu bearbeitende Material eine geringe Dichte aufweist, dass der Rotor des Motors sich nach dem Abschalten mehrere Sekunden lang weiterdreht. Wenn der Benutzer nicht darauf achtet, läuft er also Gefahr, seine Hand vorzeitig, vor dem vollständigen Stillstand der Messer, in die Schale zu stecken und sich dadurch schwer zu verletzen. Um den Benutzer eines Haushalts-Mischzerkleinerers dieser Art vor Verletzungen durch die noch rotierenden Messer zu bewahren, hat man bereits vorgeschlagen (DAS 2 228 189), den Steuerstromkreis einer Bremsvorrichtung des Motors zu schliessen, sobald der Deckel von der Schale mit dem zu bearbeitenden Gut entfernt wird. Zu diesem Zwecke enthält der Stromkreis des Antriebsmotors in Reihe geschaltet einen oder mehrere Schalter, deren bewegliches Schalterstück entweder eine Arbeitsstellung, in der der Stromkreis geschlossen ist, oder eine Ruhestellung, in der dieser Stromkreis offen ist, annehmen kann, wobei das bewegliche Schalterstück mindestens eines Schalters mindestens einen Kontakt aufweist, der in der Ruhestellung den Steuerstromkreis der Brell3s- vorrichtung des Motors schliesst. Die Betätigung des Schalters von der Bremsstellung zur Einschaltung wird dabei durch Andrücken des Deckels gegen die Schale bewirkt. Dieser bekannte Haushal ts-Mi schzerkl ei nerer hat den Nachteil, dass der Benutzer während des Betriebs ständig den Deckel des Geräts herunterdrücken muss; sich also-während des Bearbeitungsvorgangs nicht vom Gerät entfernen kann. Darüber hinaus kann der bekannte Haushal ts-Mi schzerkl einerer nicht mit Zusatzgeräten, wie beispielsweise Mixaufsatz, Zitruspresse oder Fleischvolf, kombiniert werden, da diese Zusatzgeräte eine feste Verankerung mit dem l,otorsocliel verlangen. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen elektrischen Haushalts-Mischzerkleinerer zu schaffen, bei dem nach dem Abschalten des Motors jede Gefahr von Verletzungen durch die noch rotierenden Werkzeuge ausgeschlossen ist und der die Ausstattung mit Zusatzgeräten ermöglicht. Das Gerät soll so beschaffen sein, dass der Benutzer des Mischzerkleinerers sich nicht während des Bearbeitungsvorgangs unmittelbar am Gerät aufhalten muss. Schliesslich soll d Art der Verriegelungseinrichtung für die aufsetzbare Vorrichtung so beschaffen sein, dass die aufsetzbare Vorrichtung einen anderen freie Durchmesser aufeisen kann als der Motorsockel. Diese Aufgabe wird gemäss der Erfindung dadurch gelöst, dass die Schale von einem auf den Motorsockel aufsetzbaren und über einen Sperring mit Sperrbolzen an diesem arretierbaren Schalenhalter mit Sperrbolzenwiderlager gehalten ist, wozu der im Motorsockel gehalten und geführte, um die Längsachse des Motorsockels drehbare, von eine Sperriegel bewegbare Sperring mit einer im Motorsockel längsverschie baren Sperrstange zusammenwirkt, die ihrerseits, je nach Stellung de Sperrings, den Bedienknopf für das An- und Abschalten des Motors freigibt oder festsetzt. Vorzugsweise sind Motorsockel und Schalenhalter mit Führungsflächen versehen, wobei der Schalenhalter im Bereich der Führungsflächen als Sperrbol zenwi derl ager Verri egel ungsöffnungen oder Schlitze aufweist in die Sperrbolzen oder Warzen eingreifen, die am bewegbaren Sperrring angeordnet sind und in Ausnehmungen im Gehäuse des Motorsockels. abgestützt und geführt sind. Der Schalenhalter ist mit Vorteil mit Führungsflächen versehen, von denen mindestens zwei auf seiner Umfangfläche verteilt angeordnet sind, wobei jede Verriegelungstasche mit je einer Verriegelungsnut; oder Verriegelungsschlitz versehen ist und die Verriegelungstaschen in entsprechende, mit Führungsflächen ausgestattete Mulden einfassen die am Motorsockel vorgesehen sind. Bei einer Ausführunssuorm, bei der die aufsetzbare Vorrichtung einen wesentlich grösseren Durchmesser aufweist, also beispielsweise wenn die aufsetzbare Vorrichtung als Schnitzelwerk ausgebildet ist, sind erfindungsgemäss die Sperrbolzenwiderlager nach oben und aussen zu abgekröpfte am Gehäuse der Vorrichtung, beispielsweise des Schnitzelwerkes, gehalten und geführte, gegen Federkraft lotrecht verschiebbare Riegel, die mit im Gehäuse der Vorrichtung kippbar gelagerten Hebeln zusammenwirken, deren freie Enden beim Verschieben der Riegel nach unten zu in Uffnungen eintreten, die in der Seitenwandung des Deckels für die Vorrichtung vorgesehen sind. Bevorzugte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen 4 bis 7 und 9 bis 12. Durch die Vorrichtung nach der Erfindung wird sichergestellt, dass das Gerät nur eingeschaltet werden kann, wenn die Schale für das zu zerkleinernde Gut oder ein Zusatzgerät auf den Motorsockel aufgesetzt sind und mit diesem fest verriegelt sind. Der Entriegelungsvorgang und das anschliessende Abnehmen der Schalenhalterung nimmt eine solche Zeit in Anspruch, dass der Motor mit Sicherheit zum Stillstand gelangt ist, bevor eine Berührung des Werkzeuges bzw. der Messer möglich ist. Die Erfindung lässt die verschiedensten Ausführungsmöglichkeiten zu. Zwei davon sind in den anhängenden Zeichnungen schematisch dargestellt, und zwar zeigen: Figuren 1 und 2 einen elektrischen Haushalts-Mischzerkleinerer in perspektivischer Ansicht, wobei die Schalenhal terung für die Schale zur Aufnahme des zu verkleinern den Guts vom Motorsockel getrennt dargestellt ist. Figur 3 einen Teilschnitt durch den Mischzerkleinerer, wo bei die Vorrichtung zur Verriegelung der Schalen halterung, die Schalenhalterung teilweise und die von der Schalenhalterung arretierte Schale abschnitts eise dargestellt sind. Motor und Flügelmesser sind der besseren Obersichtlichkeit wegen nicht abgebildet. Figur 4 eine perspektivische Teildarstellung der Schalen halterung mit Verriegelungstasche. Figur 5 eine perspektivische Teildarstellung des Motorsockel Figuren 6 und 7 eine schematische und perspektivische Darstellung de wesentlichen Teile der Vorrichtung zur Verriegelung der Schalenhalterung am Motorsockel. Figur 8 den Motorsockel der Küchenmaschine gemäss Figur 1 in der Frontansicht, Figur 9 den Motorsockel nach Figur 8 in der Rückansicht, Figur 10 den Teilschnitt durch den Motorsockel mit aufgesetzt tem Schnitzelwerk in vergrösserter Darstellung, Figur 11 -den Deckel des Schnitzelwerks gemäss Figur 10 im Längsschnitt, Figuren 12, 13 und 14 den Sperriegel zum Halten des Schnitzelwerks auf dem Motorsockel in verschiedenen Ansichten und Figuren 15 und 16 den Sperrhebel zur Arretierung des Deckels des Schnitzel werkes in verschiedenen Ansichten. Die Schale 1 wird zusammen mit dem Schalendeckel 10 von einer Schale halterung 2 zwischen dem Rand 20 der Schalenhalterung 2 einerseits und dem Motorsockel 4 andererseits gehalten. Um die Schale 1 mit Schalendeckel 10 am Motorsockel 4 arretieren zu können, weist diese drei auf ihrer Umfangsfläche gleichmässig verteilt angeordnete Ver- riegelungstaschen 5 mit Führungsflächen 35, 36, 37 auf, die jeweils (Figur 4) mit einem lotrecht angeordneten Stift 7 und eineni Sperrbolzenwiderlager 12 ausgestattet sind. Beim Aufsetzen der Schaleii- halterung 2 auf den Motorsockel 4 bewegen sich die Stifte 7 In Pfei richtung A (Figur 4) und drUcken gegen die Sperrbolzen 8, von denen drei auf dem Umfang eines im Inneren des Motorsockels 4 angeordneten Sperrings 9 verteilt angeordnet sind und bewirken so, dass der (in den Figuren 6 und 7 dargestellte) Verriegelungsmechanismus betätigbar wird. Nach dem Aufsetzen der Schalenhalterung 2 und seiner Bewegung in Pfeilrichtung A wird der im Motorsockel 4 bewegbar gelagerte Sperring 9 (Figur 6) in Pfeilrichtung A von den Stiften 7 gegen die Kraft von Federn 16 verschoben. Wird nun der Sperring 9 über den Sperriegel 11 in Pfeilrichtung C gedreht, so fassen die Sperrbolzen 8 in die Sperr bolzenwiderlager 12 ein (Figur 7). Die waagerecht angeordneten Sperrbolzen 8 werden dazu in L-förmig ausgebildeten, in die Gehäusewand des Motorsockels 4, eingeschnittenen Langlöchern 13 gehalten und geführt. Der Sperring 9 weist ausserdem drei auf seinem Umfang verteilt angeordnete Langlöcher 17 auf, wobei durch jedes dieser Langlöcher 17 je eine Schraube 14 mit Feder 16 hindurchgreift, die bei 15 am Motorsockel 4 befestigt sind. Die Federn 16 drücken den Sperring 9 entgegen Pfeilrichtung A nach oben. Damit die Stifte 7 der Verriegelungstaschen 5 beim Aufsetzen der Schalenhalterung 2 auf den Motorsockel 4 genau auf die Sperrbolzen 8 des Sperrrings 9 treffen, sind an der Aussenwand des Motorsockels 4 im Bereich der L-förmigen Langlöcher 17 nach unten zu offene Führungsnasen 30 (Figur 5) mit Bohrungen 28 für die Stifte 7 vorgesehen. Wie die Figuren 6 und 7 zeigen, kann der Sperring 9 mit Hilfe des Sperrriegels 11, der in einem nicht näher dargestellten, in der Gehäusewandung des Motorsockels 4, vorhandenen Langloch geführt ist, in Pfeilrichtung C bzw. D bewegt werden. Der Sperriegel 11 weist ausser einer Nase 24, mit der er in eine Ausnehmung 43 des Sperrings 9 einfasst, noch eine Sperrgabel 25 auf, die mit der im lsOtorsockel 4 lotrecht bewegbaren Sperrstange 26 zusammenwirkt, in die ihrerseits wieder der Bedienknopf 27 mit der Nase 38 einfasst. Befindet sich der Sperring 9 in der in Figur 7 dargestellten Position, ist also die Schalenhalterung 2 über die Bolzen 8 und die Sperblzen- widerlager 12 nach Verschieben des Sperriegels 11 in Pfeilrichtung C verriegelt, dann kann die Sperrstange 26 in Pfeilrichtung E durch Drehen des Bedienknopfes 27 im Drehsinne G lotrecht nach oben zu bewegt werden, so dass die Sperrstange 26 in die Aussparung 29 der Sperrgabel 25 eintritt. Nur in dieser Position (Figur 7) kann der Bedienknopf 27 gedreht und der Motor zum Antrieb der Flügelmesser eingeschaltet werden. Wird der Bedienknopf 27 entgegen der Pfeilrichtung G gedreht, fällt die Sperrstange 26 entgegen der Pfeilrichtung E lotrecht nach unten, so dass der Sperriegel 11 in Pfeilrichtung D bewegbar ist. Nach Verschieben des Sperriegels 11 in Pfeilrichtung D (Figur 5i ist die Sperrstange 26 arretiert, da sie mit ihrem einen Ende an der Schulter 23 anliegt, weshalb der Bedienungsknopf 27 wieder festgestellt (unverdrehbar) ist. Die in Figur 3 dargestellte Ausführungsform der Schalenhalterung 2 ist nicht nur eignet, einen Deckel 10 auf einer Schale zu halten und beide Teile (10 und 1) am Motorsockel 4 zu arretieren, vielmehr können Schale 1 mit Deckel 10 gegen einen Mixaufsatz, einen Fleischwolf oder eine Zitruspresse ausgetauscht werden. Derartige Zusatzgeräte beim'gen lediglich ein Fussteil, welches in Durchmesser d und Höhe h figur 3) der dargestellten Schale 1 mit Deckel 10 entspricht. Da d Schalenhalterung 2 an ihrer Oberseite mit einer Uffnung ö ver sefssen ist, können Teile der Zusatzgeräte so gestaltet sein, dass sie weit über die Schalenhalterung 2 hinausragen. Schliesslich können Schalenhalterungen vorgesehen sein, deren Masse h und ö so bemessen sind - beispielsweise bei einem Mixaufsatz -, dass es für den Benutzer unmöglich ist, von oben her durch die Uffnung die rotierenden Messer mit der Hand bzw. den Fingern zu erreichen. Die Innenflächen der Sc; lenhalterung sind zweckmässigerweise mit Rippen, Nocken oder dergl. (nicht dargestellt) versehen, die zuverlässig verhindern, dass Schale oder das Zusatzgerät bei eingeschaltetem Motor um die Messerachse in Drehung gelangen. Das elektrische Steuerteil im Motorsockel ist im übrigen mit einer an sich bekannten Bremsvorrichtung versehen; wird also der Motor abgeschaltet, dann wird der Steuerstromkreis einer Br < vorrichtung geschlossen, so dass der Motor augenblicklich zum Stillst kommt. Anstelle einer elektrisch arbeitenden Bremsvorrichtung kann at der Sperriegel 26 mit einer mechanisch arbeitenden Motorbremse gekuppelt sein. Sobald sich der Sperriegel entgegen der Pfeilrichtung E bewegt - also bei abgeschaltetem Motor - presst dieser einen Bremsschuh gegen die Motorwelle. Bei dem Haushaltsmischzerkleinerer nach Figur 3 ist auf den Motorsockel eine Schale aufgesetzt. Anstelle dieser Schale ist nun bei dem Gerät nach Figur 10 der Motorsockel mit einem Schnitzelwerk kombiniert. Durch die L-förmigen Schlitze 17 a, 17b, 17c des Motorsockels ragen radial nach aussen zu Sperrbolzen 8, die der Verriegelung des auf dem Motorsockel 4 aufsetzbaren Aggregats, in diesem Falle des Schnitzelwerks 50, dienen. Die Sperrbolzen 8 sind über das weiter oben näher beschriebene Gestänge mit einem Stellglied 24 verbunden, das durch Verschieben in Pfeilrichtung D die. Sperrbolzen 8 in Pfeilrichtung C (Figur 1) bewegt. Damit die Sperrbolzen in Pfeilrichtung C bewegbar sind, müssen diese vorher nach unten zu (in Pfeilrichtung A) verschoben werden, was beim Aufsetzen (Figur 10) des Schnitzelwerks 50 mit Hilfe von drei am Schnitzelwerk 50 gelagerten Sperriegeln 51 geschieht. Jeder Sperriegel 51 hat dazu Finger 52 (Figur 6), die in Führungsschlitze- 53a, 53b und 53c, die in Führungsnasen 70, 71, 72 am Metorsockel 4 vorgesehen sind, eintauchen und die Sperrbolzen 8 in Pfeilrichtung A verscie- ben, so dass die Sperrbolzen 8 über das nicht näher dargestellte Gestänge in Pfeilrichtung C (Figur 8 ) verschoben werden können. Jeder der drei Sperriegel 51 ist im Gehäuse des Schnitzelwerks in Pfeilrichtung E gegen die Kraft einer Feder 54 verschiebbar gehalten und geführt. Wie Figurenlo und 15 zeigen, weist jeder Sperriegel 51 ein abgekröpftes Ende 55 auf, wobei jedes Ende 55 ausserdem mit je einer Uffnung 56 ausgestattet ist, in die jeweils das freie Ende 57 eines Sperrhebels 58 eingreift, dessen anderes Ende 59 im Schnitzelwerksgehäuse 50 kippbar um die Rippe 60 gelagert ist. Wird nun das Schnitzelwerk 50 mit dem dazugehörigen Deckel 71 auf den Motorsockel 4 aufgesetzt und nach dem Aufsetzen des ganzen Schnitzelwerks 50/71 auf den Deckel Druck in Pfeilrichtung G ausgeübt, so schwenken die drei mit den Sperriegeln 51 in Verbindung stehenden Sperrhebel 58 von den Rippen 77 des Deckels 71 bewegt um die Rippen 60 in Pfeilrichtung H, wobei die freien Enden 57 der Sperrhebel 58 in die Uffnungen 62 unterhalb der Rippen 77 eintreten derart, dass eine formschlüssige Verbindung des Deckels 71 über die Sperrhebel 58 mit dem Schnitzel werk 50 entsteht. Gleichzeitig mit dem Verschwenken der Sperrhebel 58 in Pfeilrichtung H verschieben die Sperrhebel 58 die Sperriegel 51 in Pfeilrichtung E gegen die Kraft der Federn 54, und zwar solange (Weg sl), bis der untere Rand 63 des Deckels 71 am Bund 64 des Schnitzelwerks 50 anliegt. Um nahezu den gleichen Weg s2 verschieben sich dabei die drei Sperrriegel 51 und greifen mit ihren Fingern 52 in Uffnungen 53a, 53b und 53c in den Führungsnasen 70, 71, 72, am Motorsockel 4 ein und drücken die Sperrbolzen 8 in Pfeilrichtung A nach unten. Jetzt können die drei Sperrbolzen 8 durch Verschieben des Stellglieds 24 in Pfeilrichtung D gemeinsam und gleichzeitig in Pfeilrichtung C (= Umfangsrichtung) über den Sperring 9, der im Motorsockel 4 gelagert ist, verschoben werden, wobei die Sperrbolzen 8 in die vertikalen Schlitze 17a, 17b und 17c hineingleiten und gleichzeitig in die Haken 65 an den unteren Enden dei Sperriegel 51 einfassen derart, dass die Sperriegel 51 und damit das gesamte Schnitzelwerk einschliesslich Deckel 73 fest am Motorsockel 4 gE halten sind. Die im Motorsockel 4 untergebrachte Verriegelungseinrichtung ist - wie beschrieben - derart ausgebildet, dass sich der Schaltknopf 27 zum Einund Ausschalten des Motors nur dann drehen (betätigen) lässt, wenn das Stellglied 24 in Pfeilrichtung D und damit gleichzeitig auch die Sperrbolzen 8 in Pfeilrichtung C verschoben sind. Eine vollständige Sicherhe gegen unbeabsichtigtes Berühren des Schneidwerkzeugs 79 der Reibscheibe 78 ist dadurch gegeben, dass alle Sperrbolzen 8 nur dann vom Stellglied 24 verschoben werden können, wenn vorher die Vorrichtung 50 mit Deckel auf den Motorsockel 4 aufgesetzt und gegen Federkraft abwärts gedrückt wurde. Der Motor kann auch nicht eingeschaltet werden, wenn nur das Teil 50 (also nicht der Deckel 71) aufgesetzt ist, da dann die Sperrhebel 58 nicht aus ihrer Ausgangsstellung verschwenkt werden. 1 Vorrichtung (Schale) 2 Halter (Schalenhalter) otorsockel 5 Verriegelungstasche 7 Stift 8 Sperrbolzen 9 Sperring (Verriegelungsring) 10 Schalendeckel l1 Sperriegel .12 Sperrbolzenwiderlager (Schi itz) 1:3 Ausnehmung (Schlitz) 14 Schraube 16 Feder 17 Langloch (L-förmiger Schlitz) 20 Rand 23 Schulter 24 Nase (Stellglied) 25 Sperriegel (Sperrgabel) 26 Sperrstange ) 27 Bedienknopf 28 öffnung 29 Ausnehmung 30 Führungsnase 32 Führungsfläche 33 11 34 35 II 36 II 37 II 38 Nase 42 Mulde 43 Ausnehmung 44 Schulter 50 Gehäuse des Schnitzelwerks 51 Sperriegel 52 Finger 53 Schlitz 54 Feder 55 Sperriegelende 56 <RTI ID=9.12> öffnung 57- freies Ende 58 Sperrhebel 59 Sperrhebelende 60 Rippe 62 öffnung 63 Rand 64 Bund 65 Sperrbolzenwiderlager (Haken) 70 Nase 71 72 73 Deckel 75 Gehäusevorsprune 77 Rippe 78 Reibscheibe 79 Schneidwerkzeug
Patentansprüche 1. Elektrischer Haushalts-Mischzerkleinerer mit einer aufsetzbaren Vorrichtung, in der sich von einem Motor angetriebene Schneidwerk zeuge drehen, und einem Motorsockel mit einem ele!:trischen Schalter, dadurch h g e k e n n z e i c h ne t , dass die Vorrichtung (l von einem auf den Motorsockel (4) aufsetzbaren und über einen Sperring (9) mit Sperrbolzen (8) an diesem arretierbaren Halter (2) mit Sperrbolzenwiderlager (12) gehalten ist, wozu der im Motorsockel (4) gehalten und geführte, um die Längsachse des Motorsockels (4) drehbare, von einem Sperriegel (11) bewegbare Sperring (9) mit einer im Motorsockel (4) längsverschiebbaren Sperrstange (26) -zusammen- wirkt, die ihrerseits, je nach Stellung des Sperrings (9), den Be dienknopf (27) für das An- und Ausschalten des Motors freigibt oder festsetzt. 2. Elektrischer Haushalts-ralischzerkleinerer nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass Motorsockel (4) und Halter (2) einander zugeordnete Führungsflächen (32, 33, 34 bzw. 35, 36, 37) aufweisen, wobei der Halter (2) im Bereich der FUh- rungsflächen (35, 36, 37) als Sperrbolzenwiderlager Verriegelungs öffnungen oder Schlitze (12) aufweist, in die Sperrbolzen (8) oder Warzen eingreifen, die am bewegbaren Sperring (9) angeordnet sind und in Ausnehmungen (13) im Gehäuse des Motorsockels (4) abgestützt und geführt sind. 3. Elektrischer Haushats-I'sIischzerkleinerer nach den Ansprüchen 1 und 2, d a d u r c h g e k e n n z e i c h n e t , dass der Hal ter (2) gleichmässig auf seiner Umfangsfläche verteilt, mindestens zwei mit Führungsflächen (35, 36, 37) versehene Verriegelungs taschen (5) aufeist, wobei jede Verriegelungstasche (5) mit je einer Verriegelungsnut oder Verriegelungsschlitz (12) versehen ist und die Verriegelungstaschen (5) in entsprechende, mit Führungs- flächen (32, 33, 34) ausgestattete Mulden (42) einfassen, die an tiotorsockel (N,; vorgesehen sind. 4. Elektrischer Haushalts-Mischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der im Motorsockel (4) drehbar und zur Drehebene lot recht verschiebbare Verriegelungsring (9) mindestens drei, sich horizontal erstreckende Warzen oder Bolzen (8) aufweist, die mit am Halter (2) an den Verriegelungstaschen (5) im Bereich der Sperr bolzenwiderlager (12) angeordneten Stiften (7) beim Aufsetzen des Halters (2) auf den Motorsockel (4) in Berührung mit den Sperrbol zen (8) gelangen und diese zusammen mit dem Sperring (9) in eine Position vor den Sperrbolzenwiderlagern (12) belegen. 5. Elektrischer Haushalts-Mischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass Uffnungen oder Schlitze (13) für die Bolzen (8), des Verriegelungsrings (9) im Gehäuse des Motorsockels (4), L-förmig ausgebildet sind und die Verriegelungsbolzen (8) in ihrer unver riegelten Position an am Schalenhalter (2) angeordneten Warzen, Nocken oder Stiften (7) anliegen, die ihrerseits durch tffnungen (28) hindurchtreten, die in Führungsnasen (30) am Motorsockel (4) vorgesehen sind. 6. Elektrischer Haushalts-ischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Sperring (9) eine Ausnehmung (43) aufweist, in die die Nase (24) eines am Gehäuse des Motorsockels (4) bewegbar ge lagerten Sperriegels (11) einfasst, über den der Sperring (9) zum Zwecke des Verriegelungs- oder Entriegelungsvorgangs drehbar ist. 7. Elektrischer Haushalts-Mischzerkleinerer mit einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c II- n e t , dass der Sperriegel (25)eine Ausnehmung (29) aufweist, in die das Ende der im Motorsockel (4) lotrecht verschiebbar gela gerten Sperrstange (26) eintritt, wenn sich der Sperring (9) in der Verriegelungsposition befindet, wobei an der Sperrstange (26) eine Schulter (44) vorgesehen ist, die mit einer Nase (38) am Be dienknopf (27) zusammenwirkt und die die Sperrstange (26) beim Drehen des Bedienknopfes (27) bewegt. 8.. Elektrischer Haushalts-tíischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i zu n e t, dass die Sperrbolzenwiderlager (65) nach oben und aussen zu abgekröpfte am Gehäuse (50) der Vorrichtung gehalten und geführte gegen die Kraft von Federn (54) lotrecht verschiehbare Sperriegel (51) sind, wobei die Sperriegel (51) mit im Gehäuse (50) der Vorrichtung kippbar gelagerten Sperhebeln (58) zusammenwirken, di horizontale Achsen (60) kippbar gelagert sind und beim schwenken mit ihren freien Enden (57) in öffnungen (62) eintreten, die im Deckel (71) der Vorrichtung vorgeseht sind. 9. Elektrischer Haushalts-Mischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c n e t, dass die freien Enden (57) der um horizontale Achsen schwen baren an der Vorrichtung (50) gelagerten Sperrhebeln (58) mit Rip pen, Nuten oder Nocken (77) zusammenwirken, die Teile des Deckels (71) der Vorrichtung sind und beim Niederdrücken des Deckels (71) den Sperrhebel (58) zusammen mit den in Wirkverbindung mit diesen stehenden Sperriegeln(51) im Schliesssinne verschieben. 10. Elektrischer Haushalts-Mischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c n e t, dass die lotrecht gelagerten und verschiebbaren Sperriegel in1 Bereich ihrer oberen nach aussen hin abgekröpften Enden (55) ,fnungen (56) aufweisen, in die die freien Enden (57) der Sperr hebel eingreifen. II. Elektrischer Haushalts-Mischzerkleinerer nach einem oder mehrerer dei: vorhergehenden Ansprüche, d a d u r c h g e k e-n n z e i c n e t, dass die Sperriegel (51) an ihren unteren Enden Finger (52 weisen, die zum Zwecke der Verriegelung in Schlitze (53) eingreif die im Motorsockel vorgesehen sind, wobei den Fingern (52) benacl 6art Haken (Sperrbolzenwiderlager (65)) vorgesehen sind. 12. Elektrischer Haushalts-Mischzerkleinerer nach einem oder mehreren der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h net, dass die Sperrhebel (58) mit ihren Enden (59) an Rippen (60) abgesttutzt sind, die Teile der Vorrichtung (50) sind, wobei die Sperrhebel (58) gegen seitliche Verschiebungen an uehäusevor sprüngen (75) anliegen.
BRAUN AKTIENGESELLSCHAFT
FALKENBACH, GUNTHER; GRANDEL, JOHANNES; Falkenbach, Günther
EP-0004996-B1
4,996
EP
B1
EN
19,811,111
1,979
20,100,220
new
A47G27
A47G33, G01C17
A47G33, A47C16, G01C17
A47G 33/00, G01C 17/04
RECTANGULAR PRAYER RUG
The prayer rug (1) on which the Moslem has to say his daily prayers whereby kneeling in the direction toward Mecca is made from an antistatic material. In order to indicate the direction toward Mecca, it is provided with an instrument (2) secured to the rug. By means of this instrument the prayer rug will be adjusted in relation to any given place of prayer in such a way that the longitudinal axis of the rug lies in the direction toward Mecca.
Rectangular prayer rug Moslems who say their prayers five times a day kneel when praying on a rectangular prayer rug the longitudinal axis of which should lie in the direction toward Mecca. However, it is not always quite possible for the faithful to precisely ascertain such a direction from a place of prayer which can be far away from Mecca. In order to facilitate the implementation of this religious requirement of Islam, the person praying should get the possibility to adjust his prayer rug quickly and as far as possible precisely in the direction toward Mecca. This object of invention is achieved by a rectangular prayer rug having means secured to the same for indicating in relation to any given place of prayer the direction in which Mecca is geographically situated. The instrument is advantageously a magnetic compass having a card and a needle freely rotating over the card, further comprising a tr nsparent case filled with fluid having a lid disposed flush with the upper surface of the rug, said compass being accommodated within said case. This invention will now be described by. way of example referring to the accompanying drawing in which Fig. 1 shows a schematical top view of the prayer rug according to the invention, Fig. 2 shows a top view of the instrument for indicating the direction toward Mecca and rig. 3 shows a top view of the instrument according to Figure 1 having another embodiment of the compass-card. Figure 1 shows a rectangular prayer rug 1 which is made from an antistatic material and which is approximately 130 cm long, 50 cm wide and approximately 5 - 10 mm thick. Usually, its lower surface is provided with an anti-skid layer 10. The upper surface 11 of the rug 1 on which the praying Moslem kneels has preferentially a green colour. The part of the rug 1 which is to be pointed in the direction toward Mecca is provided with a picture 8 showing the Moslem holy shrine of Kaaba in Mecca. There is provided in the longitudinal axis of the prayer rug 1 an instrument 2 for indicating the direction toward Mecca, in which direction the prayer rug 1 has to be put. The instrument 2 can, however, be positioned also on another place of the rug 1. The instrument is secured to the rug 1 and becomes an integral part thereof. The instrument 2 for indicating the direction toward Mecca is a magnetic compass having a card 3 and a needle 4 freely rotating over the card and pointing to the magnetic north pole of the earth (see Figures 2 and 3). The compass-card 3 and the compass-needle 4 are encapsulated in a case 5 made of a transparent plastic material, which case is filled with a transparent fluid. The lid of the case 5 is flush with the upper surface 11 of the prayer rug 1. There are provided several symbols 6 on the circumference of the compass card 3 representing different prayer places which are preferentially geographically located in one state. The symbols 6 can show e.g. Cairo, Alexandria, Assuan, Matru etc. To enable the analphebets to identify such prayer places, they can be marked with different colours or other signs. There is further provided a symbol 7 on the circumference of the compass-card 3 for indicating the direction toward Mecca. This symbol can have e.g. the form of a minaret. Accordingly, there is --besides the symbols 6 representing the places of prayer also one single symbol 7 on the compass-card 3 for indicating the direction toward Mecca. This symbol lies in the longitudinal axis of the prayer rug 1 or it can be positioned coaxially with the same which depends on the place where the instrument 2 for indicating the direction toward Mecca is positioned on the rug 1. A pocket 9 made of plastic material to contain a list of places of prayer is fixed to the lower surface of the prayer rug 1. When the prayer rug 1 is to be adjusted in the direction toward Mecca, the following procedure has to be adapted: The prayer rug 1 with the direction indicating instrument 2 secured thereto is to be rotated in the horizontal plane so long till the symbol 6 of the place of prayer where or in the vicinity of which the Moslem intends to say his prayer is aligned with the compass-needle 4 pointing to the magnetic north pole, i.e., till this symbol 6 of the place of prayer is covered by the compass-needle 4. Then, the symbol 7 for indicating the direction toward Mecca which lies in the longitudinal axis of the prayer rug 1 or is coaxially positioned to the same shows in direction toward Mecca. In this way it is no more necessary for the Moslem to look after the right direction in which Mecca is geographically situated. He can be sure that the longitudinal axis of the so adjusted prayer rug 1 lies from his place of prayer in the direction toward Mecca.
WHAT IS CLAIMED IS: 1. A rectangular prayer rug on which the Moslem has to say his daily prayers whereby kneeling in the direction toward Mecca, comprising means secured to the rug for indicating in relation to any given place of prayer the direction in which Mecca is geographically situated. 2. A prayer rug according to claim 1, wherein said means comprise a magnetic compass having a card and a needle freely rotating over the card, further comprising a transparent case filled with fluid having a lid disposed flush with the upper surface of the rug, said compass being accommodated within said case. 3. A prayer rug according to claim 2, wherein the card is provided with symbols on its circumference representing different, geographically localized places of prayer, the respective symbol representing a place of prayer being to be aligned with the needle pointing to the magnetic north pole by rotating the rug in a horizontal plane. 4. A prayer rug according to claim 2, wherein the card is provided on its circumference with a symbol the longitudinal axis of which coincides with or is coaxial with the longitudinal axis of the rug, said symbol pointing in the direction toward Mecca when the respective symbol representing the place of prayer has been aligned with said needle. 5. A rug according to one of the preceding claims, made from an anitstatic material.
KAMOO, JOSEPH N.
KAMOO, JOSEPH N.
EP-0004998-B1
4,998
EP
B1
FR
19,840,516
1,979
20,100,220
new
E04B1
null
E04B1
E04B 1/21
CONSTRUCTION FRAME
1. Building skeleton composed of prefabricated parts, comprising a plurality of elements (21) in the form of slabs of reinforced concrete like floor or roof elements, said elements being disposed one above the other, said elements being joined by support columns (33, 34) which are provided with a steel cover plate (31, 35) at their ends, bars (32a, b and 36a, b) being anchored in the columns and projecting axially outwardly at each end of the support columns (33, 34) and being received into tubular sections (20, 24) which are provided at the corners of the elements (21), the ratio of the smallest interior distance of the tubular sections (20, 24) to the diameter of the bars (32a, b and 36a, b) being comprised between 3:2 and 5:2, while the projecting bars (32a, b and 36a, b) are placed in such manner that in the mounted state a corner of an element (21) covers about a quadrant of the head of a column (33, 34), while the tubular sections (20, 24) extend at least as far as the upper and lower faces of the elements (21), characterized in that the tubular sections (20, 24) provided at the corners of the elements (21) are positioned between the cover plates (31, 35) which present holes for the passage of the projecting bars (32a, b and 36a, b) while the said tubular sections (20, 24) transmit the vertical forces, the said tubular sections (20, 24) being constituted by a first angle iron (20), which forms the corner and does not pass beyond the extensions of the edges (22, 23) of the element (21) and by a second angle iron (24) which is welded to the first angle iron at the interior thereof so as to form a tubular opening, whilst pretensioned bars (27, 28) which reinforce the edges (22, 23) of the elements (21) are fixed to the flanges of the first angle iron (20) by the aid of fixation elements with nuts (29) and the hollow spaces formed between and in the tubular sections (20, 24) are filled at least partially with a hardenable mass (50).
Ossature de construction et pièces en acier Pour celle-ci La présente invention est relative à une ossature de construction, dont le squelette composé de parties ou pièces préfabriquées est constitué d'un certain nombre d'éléments en forme de plaques(élémentsde plancher ou de toit) se trouvant l'un au-dessus de l'autre et reliés entre eux par des colonnes de support ou d'appui aux angles des éléments dans des profilés tubulaires qui transmettent aussi bien le poids des éléments aux colonnes que les forces des colonnes s'étendant dans le prolongement l'une de l'autre. Les éléments de plancher ou de toit en forme de plaque ou plaques de plancher ou de toit sont désignés, dans la suite du présent mémoire, par le terme élément . Le profilé tubulaire peut titre de section ronde ou rectangulaire, L'invention a également trait à une construction en acier à utiliser pour les besoins de l'ossature de construction précitée. Le principe d'une ossature de construction du type préci-t-é-est décrit dans la demande de brevet néerlandais nO 7209390. Un inconvénient de 11 ossature décrite dans cette demande réside dans le fait que toutes les forces sont transmises par l'intermédiaire de profilés de fixation montés à ltextérieur des éléments. Pour obtenir une ossature porteuse acceptable, les angles sont reliés entre eux par un chAssis-support constitué d'une plaque d'acier profilée en U. Dien que la réalisation montrée puisse présenter de bonnes particularités en ce qui concerne la constance de ses dimensions, elle ne convient pas pour être exécutée totalement en béton. Un autre inconvénient réside dans le fait que l'ossature décrite convient peu pour entre utilisée en combinaison avec des colonnes plus résistantes au feu que des colonnes en acier. Au surplus, ltossature décrite a l'inconvénient aune, à l'endroit où plusieurs éléments sont contigus, il est nécessaire de disposer de colonnes plus ou moins compliquées et, en tout cas, composées (voir en particulier les figures 3: 8 inclusivement de la demande de brevet précitée). Une ossature de bâtiment, dans laquelle ce dernier inconvénient est évité et dans laquelle 4 angles de 4 éléments en forme de plaque concourants prennent chaque foi appui sur une seule colonne est décrite dans la demande de brevet néerlandais nO 6903098. Les éléments (surfaces de plancher) sont formés d'une plaque (20) qui, tout comme dans l'ossature prédécrite, est formée de poutres (22) qui forment, dans les parties angulaires de la plaque en question, des étançons faisant saillie deux à deux (23). Ces étançons assurent ainsi la pose des éléments sur les colonnes. Les étançons sont pourvus d'alésages (24) dans lesquels peuvent s'étendre des extrémités de fils (17) qui sont montés à une extrémité de tête, pendant la préfabrication des colonnes et qui sont engagés dans des cavités correspondantes (18) à la partie inférieure de la colonne suivante. Il est clair que le poids des éléments est transmis selon un contact béton sur béton aux colonnes et que les forces de la colonne suivante sont transmises par l'intermédiaire de cette liaison. Lorsque la constructior de pose représentée est utilisée pour poser des éléments relativement grands (par exemple de 2,40 x 7,20 mètres) sur des colonnes relativement minces (par exemple de 20 x 20 cm de section), ce montage staffasse sous l'effet d'un certain nombre de forces. Ces forces ne peuvent, pour le moins, pas être dépassées avec un facteur de sécurité suffisamment grand. Les forces qui se manifestent sont : a) une force transversale dfle au poids propre, à la contrainte permanente, à la contrainte variable et à la réaction de pose, par suite des tolérances se présentant aux niveaux de pose ; ce dernier élément se manifeste surtout de manière défavorable dans 1 'ossature selon la demande néerlandaise 6903098 b) la force de traction horizontale à prévoir, qui est due à la contrainte du vent, la position oblique et des déplacements de second ordre c) l'influence de la grandeur du moment d'encastrement par suite des contraintes verticales appliquées aux colonnes qui portent les étages inférieurs. L'institut TNO pour matériaux de construction et construction de bâtiments indique que la construction de pose ne sera satisfaisante que si les forces qui viennent d'être décrites peuvent être dépassées d'un facteur de 1,7, avant que la liaison cède. Enfin, la constance des dimensions de la construction représentée ne sera pas considérable, du fait de la cumulation des variations de dimensions de la longueur des colonnes et de l'épaisseur des planchers. Le brevet des Etats-Unis d'Amérique n0 2.587.724 décrit une ossature comportant deux poutres en béton montées sur la tête d'une colonne en béton. L'armature de la colonne fait saillie à l'extrémité de tête de celle-ci et est entourée de tubes montés d'équerres dans les extrémités des poutres et ancrés dans celles-ci. De cette manière, il est possible de reprendre les forces de traction horizontales entre les poutures, par l'intermédiaire des tubes ancrés et des barres d'armature saillantes. Le brevet français 1.311.931 montre que des armatures peuvent entre reprises dans des tubes et peuvent y être fixées par introduction dans ceux-ci d'une masse pouvant se solidifier. De manière générale, la présente invention a pour objet une ossature de construction formée de parties en béton dans laquelle : 1) les parties conviennent pour entre préfabriquées et rapidement montées,en contribuant à l'humanisation du travail par une édification rapide d'une construction étanché à l'eau et au vent 2) les parties présentent néanmoins un niveau élevé sur le plan qualitatif et convenant ainsi pour être appliquées dans des travaux de construction de grande envergure; ; 3)l'ossature fait usage de colonnes en béton, dont la section transversale n'est pas supérieure à celle qui est nécessaire pour satisfaire aux normes de sécurité en matière d'incendie 4)elle présente une constance de dimension correspondant à celle d'une construction en acier ; 5)elle permet l'édification d'un grand nombre de travaux de construction à l'aide de pièces en béton normalisées et 6)elle est de surcroit démontable et remontable. Plus particulièrement, l'invention a pour obJet une ossature de construction du type mentionné plus haut, dans laquelle sont prévus, aux coins des éléments et aux extrémités des colonnes, des moyens simples pour pouvoir reprendre ou absorber, de manière sûre, les forces qui se manifestent, et ce de manière que le but général puisse entre rencontré. La présente invention est donc relative à une ossature de construction, dont le squelette composé de pièces ou parties préfabriquées est constitué d'un certain nombre d'éléments en forme de plaques se trouvant l'un audessus de l'autre, qui sont reliés par des colonnes de support fixées atix coins des éléments dans des profilés tubulaires reprenant,d'une part,le poids des élé- ments sur les colonnes et transmettant, d'autre part, les forces des colonnes s'étendant dans le- prolongement l'unede l'autre. Par rapport à cet état de la tecque, tel qu'il est décrit dans la demande de brevet néerlandais n0 7209390, conformément à la présente invention : a) les colonnes de support sont des colonnes en béton qui sont munies à leurs extrémités de tette d'une plaque de tette ou de revoetement et d'au moins une barre qui fait axialement saillie à l'extérieur de l'extrémité correspondante b) les profilés tubulaires sont chaque fois insérés aux coins des éléments et les barres saillante sont placées sur l'extrémité des colonnes de façon que, à l'état monté, un coin d'un élément recouvre environ un quadrant de la tête d'une colonne, tandis que les profilés tubulaires s'étendent au moins 3usqu'aux surfaces supérieures et inférieures des éléments c) le rapport du diamètre intérieur du ou des tubes au diamètre de la ou des barres est compris entre 3:2 et 5:2. Plus particulièrement : a) les colonnes en béton sont pourvues à chacune de leurs extrémités de plaques de tette en acier présentant des trous qui enserrent les barres saillantes enfoncées dans la colonne b) les profilés tubulaires prévus aux coins des éléments sont constitués de (i) une première cornière qui forme le coin et ne s'étend pas au-delà du prolongement imaginaire du bord de Irélément (ii) une seconde cornière qui est soudée à l'intérieur de la première, de façon à obtenir une ouverture tubulaire, dont le diamètre du cercle inscrit est dans un rapport avec le diamètre de la barre correspondante, compris entre 3:2 et 5:2 c) les bords des éléments armés à l'aide de barres précontraintes sont fixés au moyen d'une liaison à écrou aux brides ou branches de la première cornière. Pour reprendre les forces transversales à la suite des contraintes verticales, on prévoit, au surplus, que a) le profilé tubulaire ou les deux cornières qui forment, sur le c8té, le bord inférieur de l'élément est ou sont pourvus d'une plaque de base soudée, qui présente des dimensions au moins égales aux brides ou branches de la première cornière et qui présente une ouverture correspondant à l'ouverture entre la première cornière et la seconde cornière b) la hauteur totale du profilé tubulaire ou des cornières avec plaque de base est égale à l' épaisseur des éléments aux coins correspondants. Une motivation plus précise de l'ossature selon l'invention est la suivante. La Commission Européenne FIP/CEB a fait des recommandations au sujet de prescriptions internationales uniformes pour du béton armé et précontraint dans les Guides to good practice de juin 1975. Pour un temps d'ignifugation de 60 minutes des dimensions de colonnes d'au moins 20 fois 20 cm sont conseillées et pour les plaques formant plancher une épaisseur de table de 8 cm. On prévoit que ces recommandations seront imposées dans quelques années aux Pays-3as et dans d'autres pays européens; comme conditions à respecter pour les ouvrages en béton. Les dimensions précitées sont, par conséquent, choisies comme minimum possible pour les dimensions des éléments. Le montage de quatre coins contigus d'éléments doit être réalisé sur une seule colonne en béton ayant seu liement 20 x 20 cm, pour que,dans le cas de colonnes distinctes, on ait, par coin, des colonnes composées ayant de préférence seulement 42 x 42 cm. Lors du montage d'une colonne en béton on ne dispose, par coin d'élément, que d'une surface de pose de 10 x 10 cm seulement, en sorte que des moyens auxiliaires en acier sont nécessaires pour la transmission des forces de pose. Etant donné que des moyens auxiliaires en acier sont tout de même nécessaires, on s'efforce obtenir, avec la même quantité d'acier, plusieurs avantages, ce qui a conduit à ltossature décrite plus haut. De plus, il est à présent possible de fixer déjà au cours du montage les éléments en béton sur la colonne en béton, en munissant les moyens auxiliaires en acier de goujons et de trous de goujons, en manière telle qu'il reste entre le goujon et le trou pour le goujon un espace sufff- sant pour absorber la tolérance des éléments en béton en direction longitudinale et en largeur, en sorte que l'on obtient finalement une constance de dimension analogue à celle de constructions ou ossatures en acier. Lors du montage de plaques en béton aux coins il est nécessaire de renforcer les bords à l'aide de profilés continus en acier, comme cela est égalenn'% ae'cit dans le brevet néerlandais 7209390. La combinaison de barres précontraintes de grande valeur dans un élément avec des profilés en acier doux conduit à une. utilisation d'une quantité économiquement inacceptable d'acier, en sorte que l'on recherche une solution constructive, dans laquelle les barres précontraintes conteuses servent en mtme temps de renforcement des bords. Une condition pour atteindre ce but réside dans une liaison complète de ces barres précontraintes à la structure de pose en acier aux coins des éléments. Grssce précisément à l'utilisation de cornières, il est devenu possible de faire passer les barres précontraintes à travers les brides de la cornière et d'assurer ces dernières après l'application de la contrainte par le vissage d'écrous sur les extrémités filetées des barres précontraintes. La construction à cornières et l'armature des bords forment ainsi un tout fonctionnel. Etant donné que la force de traction dans les barres précontraintes est excentrée par rapport à la force horizontale extérieure s'exerçant à travers le milieu de l'espace creux entre les cornières, il est nécessaire de compenser cette excentricité à l'aide de deux barres dt armature sensiblement circulaires qui sont chacune soudées à une bride de la première cornière. Ces deux barres peuvent former une boucle. Les colonnes en béton sont pourvues, lors de la pose, de quatre coins présentant des plaques de t8te en acier- ayant, par exemple, 160 x 160 x 10 mm avec quatre trous d'un diamètre de 20 mm. Dans ces trous sont enfoncées des barres d'un diamètre de 20 mm et dune longueur de 300 mm. Ces barres sont effilées à leurs extrémités pour rendre la mise en place des éléments plus facile. Lors de la contraction de la colonne en béton en direction longitudinale, les plaques de taste en acier glissent le long des barres et restent ainsi appuyées sur la surface supérieure de la colonne en béton. Grâce à la présence des barres, les plaques de tête se trouvant d'équerre sur celles-ci peuvent titre insérées, de manière à présenter des dimen sions invariables, à l'usine, par insertion des extrémités saillantes des barres dans le coffrage. De cette manière, on peut obtenir des colonnes en béton ayant des dimensions très stables avec unetolérance en longueur de plus ou moins 2 mm. La pression de pose de la plaque en béton est reportée sur la colonne en béton, en raison du fait que les plaques inférieures mises en place et fixées aux cor nières prennent directement appui sur les plaques de tete en acier. Bien que la construction soit constituée d'éléments en béton, on obtient ainsi des poses du type acier sur acier avec la constance de dimension qui leur est propre. L'épaisseur de plancher entre les plaques de tete des colonnes- est déterminée uniquement et de manière précise par la longueur invariable des coins en acier, en sorte que la tolérance forme au niveau des étages reste limitée à plus ou moins 2 mm, ce qui est comparable aux tolérances des constructions en acier. Selon un examen des variations de dimensions d'éléments en béton préfabriqué (Cement, 28 (1976), pages 9 à 12 inclusivement), les tolérances sont normalement, pour.un domaine de probabilité de 90%, de 20 mm en hauteur, de 40 mm dans le plan horizontal et de 10 mm en ce qui concerne l'épaisseur des plaques formant plancher. La structure suivant l'invention peut spacia lement-rester dans ces tolérances ; les déviations en hauteur ne dépasseront pas plus de 2 mm, tandis que les déviations dans le sens de l'épaisseur des plaques de plancher ne sont pas notables dans la structure suivant l'invention. Une accumulation de variations de dimensions ne se produit pas. Ainsi, les réactions de pose aux quatre coins d'un élément sont sensiblement les mêmes, ce qui constitue un grand avantage de l'ossature suivant l'invention par rapport à une autre ossature en béton. Pour fixer les axes sur plusieurs niveaffx' té u construction, on fait glisser avantageusement encore, après le montage des plaques de plancher, des tubes en acier sur les chevilles saillantes des colonnes sousjacentes, une tolérance suffisÅante dans le sens de la longueur et de la largeur de, par exemple, plus ou moins 5 mm, étant permise. Dans le cas d'une épaisseur de barre de 20 mm et d'une ouverture du profil de fixation de 36 mm, le tube a, par exemple, un diamètre intérieur de 21 mm et un diamètre extérieur de 25 mm. Ces tubes sont momentanément fermés et fixés l'un à l'autre à l'aide de bouchons de fermeture pendant le montage. Après la mise en place d'un mortier de ciment et de sable dans les joints entre les plaques de plancher et dans l'espace creux entre les cornières et le tube précité et après solidification de ce morutier, les colonnes de 1' étage suivant peuvent être mises en place, de manière à présenter des dimensions constantes, en faisant glisser les chevilles faisant saillie vers le bas dans les tubes précités. Les tubes auront donc environ une longueur égale au maximum à celle des tubes des cornières. Lors de la pose des éléments sur les colonnes, des contraintes ponctuelles s'appliquent sur la fondation et des contraintes linéaires ne se produisent pas. Ainsi, il n'est pas nécessaire de prévoir des poutres de fondation et le premier plancher peut être directement placé sur des têtes de pieux ou analogues. Dans ce cas, on peut utiliser sur les fondations de pieux ou analogues une pièce auxiliaire pourvue d'un nombre voulu de barres saillantes avec plaques, qui sont fixées à une plaque inférieure réglable. En fait, la partie supérieure d'une pièce auxiliaire montée et fixée correspond à une extrémité de colonne. Grâce a' la pose des éléments sur des colonnes et à l'utilisation d' éléments rigides, on peut se passer de poutres de fondation étant donné que les éléments sont uniquement supportés à leurs coins. Pour pouvoir supporter notamment les forces dues au vent , il est nécessaire de pourvoir au moins deux colonnes d'un contreventement. A cette fin, au moins deux colonnes sont, de préférence, agencées pour former une paroi stabilisante dans deux directions, en remplissant l'intervalle entre les deux colonnes. Des barres avec-des plaques aux c8tés supérieur et inférieur (futurs) feront saillie aux distances requises correspondant aux distances entre -colonnes. Une telle plaque peut ainsi servir de paroi (intermédiaire). Bien que les colonnes puissent porter en principe quatre éléments, ceci ne sera pas le cas notamment le long des façades extérieurès et aux coins. Les barres ou chevilles et parties de plaques de soutènement libres peuvent avantageusement être utilisées pour y suspendre des parties de façade. Bien que diverses réalisations de détails soient possibles, le principe réside dans le fait que les parties de façade sont pourvues au c8té supérieur (futur) de parties saillantes latérales dans lesquelles sont ménagées des ouvertures de fixation, dont la distance d'axe en axe correspond à la distance entre les profilés de fixation correspondants dans les éléments en forme de plaque jointifs. En d'autres termes, lorsque les colonnes et les plaques prenant appui sur elles sont montées, les parties de façade peuvent simplement être suspendues, en respectant la constance des dimensions. Les éléments en béton (éléments de plancher ainsi qu'éléments de toit) peuvent être exécutés de toute manière appropriée en ce qui concerne leurs détails. De préférence, le plancher est, de manière connue, un plancher à nervure ou cassette présentant à sa partie inférieure des nervures avec une armature précontrainte. Une isolation acoustique peut être prévue en dessous du plancher entre les nervures. L'invention est illustrée en référence aux dessins ci-annexés, dans lesquels : - la figure 1 est une coupe de deux colonnes se trouvant dans le prolongement l'une de l'autre et de deux éléments en béton adjacents:; - la figure 2 est une coupe suivant la ligne A-A de la figure 1, à l'endroit où quatre éléments sont adJacents - la figure 3 est une vue en plan de détails de la réalisation tubulaire de coins selon une forme de réalisation préférée - la figure 4 est une vue de détails semblable en élévation latérale - la figure 5 est une coupe de deux colonnes et de deux éléments adjacents selon une forme de réalisation préférée - la figure 6 est une coupe suivant la ligne B-D de la figure 5 - la figure 7 est une coupe du plancher inférieur et de la fondation - la figure 8 montre en élévation le mode de suspension d'éléments de façade et - la figure 9 est une vue de détail de la figure 8 en plan. Selon la forme d'exécution de l'invention montrée aux figures 1 et 2, la colonne en béton Il est pourvue à une extrémité d'une plaque de tête 12 portant des broches 13a et 13b. La figure 2 montre également les broches 13c et. 13d. Au voisinage des coins des éléments 14a, 14b et 14c, 14d, sont insérés des profilés de fixation tubulaires 15a, 15b et 15c, 15d. Ces profilés sont ancrés à l'aide de barres soudées 16a, 16b et 17a , 17b. Les profilés de fixation tubulaires 15a 15d ne dépassent que de quelques millimètres la surface des éléments. Lorsque les éléments 14a, 14b et 14c, 14d sont placés sur la tête de la colonne Il, les extrémités des profilés 15a à 15d prennent donc appui sur 12 plaque 12. De même, une colonne suivante 18 qui porte un élément suivant (non représenté) prend appui par la plaque 19 sur 11 autre extrémité des profilés 15a à 15d, qui transmettent les contraintes. Lorsque les colonnes et les éléments sont en place, le creux ménagé dans les profilés de fixation est rempli d'un mortier de ciment et de sable ou d'une autre matière analogue. Ce mortier présente une signification constructive telle que les parties montées de manière fixe l'une par rapport à 1' autre ne peuvent pas glisser l'une par rapport à l'autre. Dans cette forme de réalisation, on peut également ajouter les tubes de centrage décrits en référence aux figures suivantes. Les figures 3 et 4 montrent, respectivement en coupe et en élévation, des détails supplémentaires de la forme de réalisation préférée de l'invention. Les profilés tubulaires 15 selon la figure 1 sont, dans ce cas, constitués d'une cornière lourde 20 qui forme un des coins de 1' élément 21 et s'étend à l'intérieur des prolongements ima- ginaires des bords 22 et 23. Une deuxième cornière 24 un peu plus légère est soudée à la première cornière 20 à 1' intérieur de celle-ci. Les deux cornières 20 et 24 sont soudées sur une plaque de base carrée 25, dont la grandeur correspond sensiblement à celle de la bride de la cornière 20. Un trou 26 ménagé dans la plaque de base 25 correspond avec le cercle inscrit dans l'intervalle entre les deux cornières 20 et 24. Des barres d'armature latérale précontraintes 27a, 27b, 27c,'27d et 28a, 28b, et 28c sont fixées à l'aide d'écrous 29, à ltétat précontraint, aux brides de la cornière 20. Les barres d'armature courbées 30 et 30a, qui sont soudées aux brides de la cornière 20 reprennent avec les barres 27 et 28 les forces extérieures horizontales. Ces deux barres peuvent former ensemble un arc. La figure 5 est une coupe correspondant à la figure 1. La plaque de tête 31 est traversée par les chevilles insérées 32a et 32b qui sont partiellement insérées dans la colonne 33. On retrouve la même disposition pour la colonne suivante 34 munie d'une plaque 35 et de chevilles 36a et 36b. Les notations de référence 20, 21 et 24 correspondent auxéments montrés aux figures 3 et 4. A la figure 5 sont également représentés les tubes 37a et 37b qui sont utilisés pour bien centrer la colonne 34 par rapport à la colonne 35, lesquels tubes sont enfilés sur les extrémités des barres 32a, 32b et 36a, 36b. T |intervalle entre les tubes 37 et les cornières, de même que tous les intervalles entre les éléments 21, sont remplis d'un mortier de sable et de ciment 50 ou d'un autre matériau durcissable. Les têtes des tubes 37 sont recouvertes pendant ce traitement et les tubes sont en même temps fixés l'un par rapport à l'autre. La figure 6 est une coupe horizontale de la forme de réalisation préférée de l'invention suivant la ligne B-B de la figure 5. Les parties correspondantes sont désignées par les mimes notations de référence. La figure 7 représente la liaison à un pieu ou bloc de fondation 51. Dans une tête ou chapeau 40 et une semelle 41 à appliquer ultérieurement sont noyés des ancrages 42. Sur cet ensemble est montée une plaque réglable 43 avec dessus la plaque 31, les barres 32 les traversant. Les éléments 21 et la colonne 44 sont montés de la manière habituelle (représenté seulement de manière schématique). Les profilés tubulaires peuvent présenter à leur c8té libre (ctest-à-dire non recouvert de béton), un trou de levage. Des trous de levage supplémentaires ne doivent donc pas être prévus. Les figures 8 et 9 montre finalement, à titre d'exemple, que l'ossature de construction suivant l'invpn- tion convient bien pour y suspendre des éléments de façade. Les colonnes 33 et 34 sont, dans ce cas, reliées de la manière montrée à la figure 5, pour former un ensemble rigide, à deux éléments 21a et 21b (ces éléments ne sont montrés qu' à la figure 9). Les parties libres des barres 32a, 92b et 35a, 35b, sont à présent utilisées pour porter, par l'inter- médiaire de tubes enfilés, reliés l'un à l'autre 45a et 45b auxquels sont soudées des barrettes 46a et 46b, les éléments de façade 47a et 47b par l'entremise de barrettes 48a et 48b prévues latéralement au voisinage de leur c8té supérieur. Les barrettes correspondantes sont fixées l'une à l'autre à l' aide de boulons. Les éléments 47a et 47b embrassent, de préférence, les colonnes ; le joint 49 peut être fermé à l'aide d'un moyen approprié. Une forme de réalisation a été soumise à des essais. Les éléments étaient constitués de plaques de béton de 2,40 x 7,20 m, d'une épaisseur de 8 cm avec des nervures d'une hauteur de 12 cm, à distance,d'axe en axe,de 60 cm, ces éléments étant pourvus d'armatures précontraintes. Les plateaux étaient constitués de plaques de 160 x 160 x 10 mm comportant quatre barres d'une section de 20 mm y insérées. Les coins des éléments comportaient une première cornière de 80 x 80 x 10 mm et une seconde cornière de 40 x 40 x 4 mm, La plaque de base soudée mesurait 85 x 85 x 10 mm ; le trou formé par le cercle inscrit entre les cornières avait un diamètre de 36 min. Le tube de centrage avait xn diamètre intérieur de 21 mm et s'adaptait donc sur les barres, son diamètre extérieur étant de 25 mm, en sorte qu'il restait un jeu de (36 - 25) / 2 = 5,Stnrnpour pouvoir corriger les variations de dimensions. Le côté court de l'élément était pourvu de trois barres pré contraintes ancrées à la cornière 20, tandis que le ctté long de l'élément était pourvu de quatre barres de ce type. Cette ossature , telle que représentée aux figures 3 à 6 inclusivement, a été soumise aux forces ét contraintes caractéristiques intervenant dans la pratique, par 11 institut TNO pour matériaux de construction et constructions. Les résultats des essais selon le procès verbal nO B-78-426/62.6.0101 du Il décembre 1978 ont permis de conclure que 1 ?ossature satisfaisait aux normes imposées. il est évident que lors de l'édification d'un bâtiment, des variations de détails sont nécessaires. Dans la mesure où des variations interviennent dans ces détails de construction sans sortir du cadre de l'invention, ils doivent être considérés comme appartenant au domaine de celle-ci. L'invention est également relative à une construc- tion en acier destinée à être utilisée dans une construction suivant l'invention. Cette construction en acier se compose de a) une première cornière (20) et une seconde cornière (24) soudée sur le ctté intérieur des brides de la première cornière b) une plaque supérieure en acier (31) avec au moins une barre (32) fixée d'équerre sur celle-ci, de façon que, lors du placement des cornières (20 et 24) reliées entre elles sur la barre (32), la première cornière (20) occupe au maximum un quadrankde la plaque supérieure (31). Plus particulièrement, la construction en acier est composée de a) une première cornière (20) et une seconde cornière (24) soudée sur la face intérieure des brides de la première cornière b) une plaque de base (25) sur laquelle sont fixées d'équerre les cornières (20 et 24), laquelle plaque de base présente une ouverture qui correspond au cercle (26) inscrit entre les cornières (20 et 24) c) une plaque supérieure en acier (31) avec au moins une barre (32) montée d'équerre sur elle, de façon que lorsque la plaque de base (25) est posée à plat sur la plaque supérieure (31), la plaque de base (25) occupe au maximum un quadrant de la plaque supérieure (31). Pour l'ancrage de l'armature précontrainte à la cônstruction en acier,la première cornière (20) présente > à l'extrémité des brides s'étendant en dehors de la seconde cornière (24) des trous pour laisser passer des barres d'armature (27, 28). Au surplus,àla première cornière (20) est reliée rigidement à ses deux brides une barre d'armature formant uneboucle (30, 30a). Enfin, les barres (32) sont insérées dans une ouverture des plaques supérieures (31). Dans laconstructionenacier, l'épaisseur des brides de la première cornière (20) et des plaques (12, 31, 25), est d'au moins 6 mm.
REVENDICATIONS 1. Ossature de construction, dont le squelette composé de parties préfabriquées est constitué d'un certain nombre d'éléments en forme de plaques (éléments de plancher ou de toit) s'étendant l'un au-dessus de l'autre, qui sont reliés par des colonnes de support fixées aux coins des éléments dans des profilés tubulaires qui reprennent le poids des éléments sur les colonnes et transmettent aussi les forces des colonnes s'étendant dans le prolongement 1' une de l'autre, caractérisée en ce que : : a) les colonnes de support sont des colonnes en béton qui présentent à leurs extrémités supérieures une plaque de revêtement (12, 19) et qui sont munies d'au moins une barre faisant axialement saillie vers l'extérieur à ladite extrémité b) les profilés tubulaires sont insérés aux coins des éléments et les barres insérées sont placées à 1' extrémité des colonnes de façon qu'à ltétat monte, un coin d'un élément recouvre environ un quadrant de la tête d'une colonne, tandis que les profilés tubulaires s'étendent au moins jusqu'aux faces supérieure et inférieure des éléments; c) le rapport du diamètre intérieur du ou des tubes au diamètre de la ou des barres est compris entre 3:2 et 5:2. 2. Ossature de construction suivant 12 revendication 1, caractérisée en ce que : a) les plaques en acier (31, 35) prévues aux extrémités de tette des colonnes en béton présentent des trous qui enserrent les barres saillantes (32, 36), lesquelles barres (32, 36) sont insérées dans les colonnes (33, 34) b) les profilés tubulaires prévus aux coins des éléments (21) sont constitués de : : (i) une première cornière (20) qui forme le coin et ne s'détend pas en dehors des prolongements ima- ginaires des bords (22, 23) de l'élément.(21) ; (ii) une seconde cornière (24) qui est soudée à la première cornière à l'intérieur de celle-ci, de façon à former une ouverture tubulaire, dont le cercle inscrit (26) a un diamètre dont le rapport au diamètre de la barre correspondante (32, 36) est compris entre 3:2 et 5:2 c) les bords des éléments armés à l'aide de barres précontraintes (27, 28) sont fixés à l'aide d'éléments de fixation à écrous (29) aux brides de la première cornière (20). 3. Ossature de construction suivant la revendication 1 ou 2, caractérisée en ce que a) le profilé tubulaire (15) ou les deux cornières (20, 24) sont pourvues, du c8té formant le bord inférieur de l'élément, d'une plaque de base rectangulaire soudée (25) qui présente des dimensions au moins égales aux brides de la première cornière (20), ainsi qu'une ouverture qui correspond au cercle inscrit (26) entre la première cornière et la seconde cornière b) la hauteur totale du profilé tubulaire (i5) des cornières (20 et 24) et de la plaque de base (25) est au moins égale à l'épaisseur des éléments (14 ou 21) aux coins correspondants. 4. Ossature de construction selon la revendicatinn 2 ou 3, caractérisée en ce que les premières cornières (20) sont reliées l'une à l'autre par des barres précontrain- tes (27 et 28) assujetties à ces cornières (20). 5. Ossature de construction suivant l'une ou 1' autre des revendications 1 à 4, caractérisée en ce que les premières cornières (20) coopèrent avec des barres d'armature cintrées (30 et 30a) qui y sont reliées. 6. Ossature: de construction suivant la revendication 5, caractérisée en ce que les barres d'armature (30 et 30a) forment une boucle. 7. Ossature de construction suivant l'une ou 1' autre des revendications 1 à 6, caractérisée en ce que un tube (37) est monté dans le profilé tubulaire (75 ou 20 et 24) avec un certain jeu par rapport à ce profilé, ce tube (37) entourant les barres (13 ou 32 et 36). 8. Ossature de construction suivant l'une ou 1' autre des revendications 1 à 7, caractérisée en ce que l' élément inférieur (21) ou les éléments inférieurs sont posés sur des tubes de pieux ou blocs de fondation, sur lesquels est prévue une pièce auxiliaire régl-able pourvue d'un nombre voulu de barres saillantes (32) avec plaque (31), qui sont fixées sur une plaque de réglage (43). 9. Ossature de construction suivant l'une ou 1' autre des revendications I à 8, caractérisée en ce que au moins deux colonnes sont remplacées par une plaque, auquel cas des barres ou chevilles avec des plaques d'appui pour les parties supérieure et inférieure, (futures) font saillie sur les distances requises correspondant aux distances entre colonnes. 10. Ossature de construction suivant l'une des revendications précédentes, caractérisée en ce que les espaces creux ménagés dans les profilés de fixation et les espaces ménagés entre les éléments contigus sont remplis après leur montage, d'une masse capable de durcir (50). 11. Ossature de construction suivant la revendication 10, caractérisée en ce que les profilés tubulaires présentent, à leur c8té libre, un trou de levage. 12. Ossature de construction suivant l'une ou l'autre des revendications I à 11, caractérisée en ce que des éléments de façade (47) sont suspendus, gracie à l'utilisation de barres (32) libres des colonnes de façade - et de la partie correspondante de la plaque supérieure (31). 13. Ossature de construction suivant la revendication 12, caractérisée en ce que les barres -libres (32a, 32b et 35a et 35b) portent les éléments de façade (47a et 47b) par l'interméwiaire de tubes (45a et 45b) enfilés dessus, reliés l'un à l'autre et portant des barrettes soudées (46a et 46b), par 1 t intermédiaire de barrettes (48a et 48b) montées latéralement à leur bord supérieur ou au voisinage de leur bord supérieur (futur), lesquelles barrettes correspondantes étant reliées rigidement. 14. Ossature de construction suivant l'une ou l'autre des revendications 2 à 13, caractérisée en ce que les colonnes de support en béton ont une section d'au moins environ 20 x 20 cm. 15. Construction en acier destinée à être utilisée dans l'ossature de construction suivant l'une ou l'autre des revendications 2 à 14, caractérisée en ce qu'elle se compose de a) une première cornière (20) et une seconde cornière (24) soudée sur le c8té intérieur des brides de la première cornière b) une plaque supérieure en acier (31) avec au moins une barre (32) fixée d'équerre sur celle-ci, de façon que, lors du placement des cornières (20 et 24) reliées entre elles sur la barre (32), la première cornière (20) occupe au maximum un quadrant de la plaque supérieure (31). 16. Construction en acier destinée à être utilisée dans une ossature de construction suivant l'une ou l'autre des revendications 2 à 14, caractérisée en ce qu'elle est constituée de a) une première cornière (20) et une seconde cornière (24) soudée sur la face intérieure des brides de la première cornière b) une plaque de base (25) sur laquelle sont fixées d'équerre les cornières (20 et 24), laquelle plaque de base présente une ouverture qui correspond au cercle inscrit (26) entre les cornières (20 et 24) c) une plaque supérieure en acier (31) avec au moins une barre (32) montée d'équerre sur elle, de façon que lorsque la plaque de base (25) est posée à plat sur la plaque supérieure (31), la plaque de base (25) occupe au maximum un quadrant de la plaque supérieure (31). 17. Construction en acier suivant la revendication 15 ou 16, caractérisée en ce que la première cornière (20) présente,aux extrémités des brides s'étendant en-dehors de la seconde cornière (24),des trous pour livrer passage à des barres d'armature (27,28) e 18. Construction d'acier suturant l'une ou l'autre des revendications 15 à 17, caractérisée en ce que la première cornière (20) est fixée à ses deux brides à une barre d'armature en forme de boucle (30, 30a). 19. Construction en acier suivant l'une ou l'autre des revendications 15 à 18, caractérisée en ce qu'au moins une barre (32) s'étend, en y étant serrée, dans des ouvertures ménagées dans les plaques supérieures (31). 20. Construction en acier suivant l'une ou l'autre des revendications 14 à 18, caractérisée en ce que l'épaisseur des brides de la première cornière (20) et des plaques (12, 31, 25) est d'au moins 6 mm.
COPREAL S.A.
BONINK, JOHANNES ANTONIUS
EP-0004999-B1
4,999
EP
B1
DE
19,820,512
1,979
20,100,220
new
B29J5
D21J3
D21J5, B27N3, C08L61, B27N5, C08L97
C08L 97/02+B4B, C08L 61/06+B6, B27N 5/00, B27N 3/00B, M08L97:02, B27N 3/10, M08L61:06, D21J 5/00
METHOD OF PRODUCING HIGHLY PROFILED MOULDINGS
1. Multiple-stage process for the preparation of large-profiled moulded parts wherein in a first stage there are prefabricated largely drained, mouldable and low-compressed fiber mats, preferably wood fiber mats, which have been prepared in a wet process using aqueous solutions or dispersions of phenol formaldehyde resin, whereby the resins are precipitated on the fibres by means of acids or acidic compounds and wherein in a second stage said fiber mats are treated by means of heat and moisture, moulded and finally cured by heat-pressurizing, characterized in that in the first stage the fiber mats are prepared by use of aqueous solutions or dispersions of novolaks and are dried to a water content of less than 5% and that in the second stage said mats are subjected to spraying with an aqueous solution of a curing agent, and deep-drawn.
Verfahren zur Herstellung von stark nrofilierten Formteilen Verformte Platten aus gebundenen Fasern,. insbesondere Holzfasern, werden in grossem Umfang für verschiedene Zwecke als Dekorplavten, zur Verkleidung von Bauteilen sowie im Automobill.au für Formteile für Verkleidungen und ähnliches verwendet. Die Fasern werden hierzu mit Kunstharzen gebunden und zu Vortabrikaten in Form von planförmigen Matten verarbeitet, die dann in einer zweiten Stufe zu den gewünschten Teilen verformt werden. Für den Einsatz bei der Verformung unterscheidet man einmal Vorfabrikate, die sich zu stärker verformten Elementen verarbeiten lassen, d.h. tiefziehfähige Platten, die, bezogen auf die ursprüngliche Materialebene, auf einem Abschnitt von beispielsweise 20 mm oder weniger bis zu 50 mm oder mehr punktuell verformt werden können und zum anderen solche, die keinen starken Verformungen unterworfen'werden dürfen, da dabei zu starke Verdünnungen, die im Fertigteil zu mechanischer Instabilität führen, oder auch Risse im Material eintreten würden. Die Vorfabrikate werden im allgemeinen nach zwei verschiedenen Verfahren, das heisst auf trockenem oder nassem Weg hergestellt, während für ihre anschliessende Verformung nur ein einziges, gemeinsames Verfahren zur Verfügung steht. Wenr die Herstellung der Vorfabrikate auf trockenem Wege erfolgt, werden die Fasern mit feingepulverten, härtbaren Phenolharzen (Novolaken) und geeigneten Härtern wie Hexamethylentetramin bestäubt. Zur Verbilligung kann ein Teil des Phenolharz-Härtergemisches auch durch preiswerte Naturzharze wie Kolophonium, Wurzelharze oder ähnliches ersetzt werden. Das so vorbehandelte Material wird in beheizbare Pressen gegeben oder zwischen Siebbändern mit Warz.luftbeheizung bei Temperaturen und Aushärtungszeiten, die noch nicht zu einer vollständigen Härtung des Phenolharzes führen, zu Matten von bis zu mehreren cm Stärke als Vorfabrikat geformt. Auf diese Weise werden tiefziehfähige Matten erhalten. Ein Nachteil der nach dem Trocken-Verfahren erhaltenen Vorfabrikate ist die schlechte Lackierbarkeit daraus hergestellter Formteile. Aus diesem Grund ist es erforderlich. die Oberfläche der Formteile bei dem gleichzeitig verlaufenden Formpress- und Härtungsprozess durch ein gleichzeitig aufgepresstes Spezialpapier zu vergütern, um eine gute Haftung sowie einen einwandfreien Verlauf von Lacken insbesondere den dafür gewöhnlich eingesetzten Nitrolacken zu erhalten. Das verwendete Spezialpapier besteht aus einem resolharzimpräg¯nierten Papier. Im allgemeinen werden jedoch zur Herstellung verpressbarer Fasermatten wässrige, hitzehärtbare Phenol-Formaldehydharze sogenannte Resole eingesetzt, die durch alkalische Kondensation von Phenol mit Formaldehyd in Molverhältnissen von 1:1.0 bis 1:1,2 erhalten werden. Diese Harze werden im sauren Medium z. B. durch Schwefelsäure oder Aluminiumsulfat auf die Holzfasern gefällt; das so erhaltene Material wird in Langsiebmaschinen grob entwässert und in Heizpressen bei 2000C vorverdichtet und weitgehend entwässert. Bei der Hitzebehandlung tritt eine teilweise bis weitgehende Härtung des Phenolharzes ein, wodurch die vorfabrizierten Matten eine für die Handhabung ausreichenden Stabilität und Festigkeit erhalten. Ein Nachteil bei diesem Verfahren ist, dass die Vorbabrikate nur schwach getrocknet werden können, weil andernfalls das Phenolharzbindemittel zumindest teilweise während der Trocknung härtet und dadurch die Verformbarkeit verloren geht. Der verbleibende unerwünschte Wassergehalt begünstigt aber bei der Lagerung einen mikrobiellen Befall und damit eine Fäulnis der Matten. Es kann daher keine längere Lagerung von auf Vorrat hergestellten Matten erfolgen. Ein weiterer, entscheidender Nachteil besteht darin, dass bei der folgenden Weiterverarbeitung, die in einer Behandlung mit Dampf, Verformen und anschliessendem Härten durch Heisspressen besteht, die Teile nicht tiefgezogen werden können. Es ist lediglich möglich, Teile mit Verformungen von höchstens 5 mm, bezogen auf die ur sprüngliche Ebene, auf einer Länge von 20 mm herzustellen, d. h. diese Matten sind nicht tiefziehfähig. Allerdings sind die daraus erhaltenen, nur gering profilierten Formteile aufgrund ihrer geschlossenen Oberfläche gut lackierbar. Es war daher wünschenswert, vorfabrizierte Matten im Nassverfahren herzustellen, die neben einer hohen Tiefziefähigkeit auch ein einwandtreies Verhalten bei der Lagerung besitzen und aus denen zudem Formteile hergestellt werden können, die einwandfrei lackierbar sind. Gegenstand der Erfindung ist ein mehrstufiges Verfahren zur Herstellung von stark profilierten Formteilen aus vorfabrizierten, tieezie tRhien und schwach verdichteten Fasermatten, gemäss den Patentanscrüchen Bei diesem Verfahren werden die Phenol-Formaldehyd-Harze > die in Form ihrer wässrigen, alkalischen Lösungen mit einem pH-Wert über 8 eingesetzt werden,mit Hilfe von Säuren oder sauer wirkenden Verbindungen auf den Fasern gefällt, die Masse, vorzugsweise in Langsiebmaschinen, zu Matten verarbeitet und nach einer Vorverdichtung, z. B. in einer Heizpresse , z. B. bis auf einen Wassergehalt von 15 bis 20 % getrocknet. Die Trocknung wird anschliessend, z. B. in einer Kammer mit Warmluftstrom, der im allgemeinen eine Temperatur von 40 bis 1500C, vorzugsweise 50 bis 900C besitzt, bis auf einen Wassergehalt von unter 5 % vervollständigt. In dieser Stufe erfolgt keine nennenswerte Härtung des Phenol-Formaldehyd-Harzes, da kein Härter für den Novolak zugegen ist. Durch die Verhinderung der Härtung erhält die Fasermatte die Tiefzieheigenschaften, die eine starke Verformung möglich machen. Als Säuren, vorzugsweise in verdünnter Form, oder sauer wirkenden Verbindungen, die zur Fällung der Harze auf die Fasern eingesetzt werden, eignen sich beispielsweise Salzsäure, Phosphorsäure, organische Säuren wie p-Toluolsulfonsäure, Aluminiumchlorid, vorzugsweise jedoch Schwefelsäure oder Aluminiumsulfat. Die Herstellung der für das erfindungsgemässe Verfahren geeigneten Novolake erfolgt nach üblichen Methoden z. B. ohne Katalysator unter Anwendung von Druck, in Gegenwart von sauer wirkenden Verbindungen als Katalysatoren oder zweistufig unter Einsatz von alkalisch wirkenden Verbindungen in erster Stufe, gefolgt von der Umsetzung der erhaltenen Resole mit phenolischen Komponenten in Gegenwart saurer Verbindungen. Als Phenolkomponenten für die Herstellung der Phenol Formaldehyd-Harze d. h. der Novolake, kommen die verschiedenen Kresole, Resorcin, aber insbesondere Phenol, (C6H5OH), oder Gemische dieser Verbindungen infrage. Formaldehyd wird z. B. in Form wässriger Lösungen oder als Paraformaldehyd eingesetzt. Das Molverhältnis der Phenole zu Formaldehyd beträgt im allgemeinen 1:0,5 bis 1:0,95, vorzugsweise 1:0,7 bis 1:0,9. Die Temperatur bei der Vorverdichtung in der Heizpresse beträgt im allgemeinen 160 bis 2000C, kann aber auch auf 3000C angehoben werden. Die für die Härtung der Novolake erforderlichen Härter sind z.B. wässrige Lösungen von Formaldehyd und insbesondere Formaldehyd abspalterde Verbindungen wie Trioxan, Paraformaldehyd, Hexamethylentetramin oder Hexamethylolmelamin. Nach dem Auftrag des Härters auf die Vorfabrikate wird eine Behand aung mit Wärme und Feuchtigkeit durchgeführt. Hierzu eignet sich Dampf oder Heissluft, in die Wasser eingesprUht wird. Die Verdichtung der tiefgezogenen Formstücke in die Endform und deren Härtung geschieht mit Hilfe von heizbaren Presswerkzeugen, im allgemeinen bei Temperaturen von 150 bis 220, vorzugsweise 170 bis 2000C. Dabei wird der Ubliche Druck angewandt, wcbei der optimale Druck auch von der eingesetzten Faserart abhängig ist. Bei Einsatz von Holzfaser wird im allgemeinen ein Druck von 2-5 N/nm2, vorzugsweise 2,5-3,5 N/mm2 empfchlen. Die Verweilzeit der Formen in den Presswerkzeugen richtet sich nach dem eingesetzten Harz und der angewandten Temperatur, Es muss eine für die Härtung ausreichende Zeitspanne gewbrleistet sein. Diese beträgt vorzugsweise 20 bis 30 Sekunden. Als Ausgangsmaterial für die Herstellung der Fasermatten dienen nur türliche oder snythetische Fasermaterialien wie Stroh, Schilf, Cocosfasern, Sisal, Baumwolle, Polyester- und Polyamidfasern oder deren Gemische, insbesondere aber Holzfasern, die nach dem üblichen Prozess (Schnitzeln, Kochen, Zerfasern) als Paser-Suspension eingesetzt werden. Durch die erfindungsgemäss vorgesehene Entwässerung, die vorzugsweise in mehreren Stufen erfolgt, wird erreicht, dass die erhaltenen Vorfabrikate ohre eine Gefahr der Schimmel- und Fäulnisbildung auch längere Zeit gelagert werden können. Dies gilt vor allem für die besonders schimmel- und fäulnisanfälligen Produkte aus natürlichen Fasermaterialien . Auch die Gefahr der Selbstentzündung besteht nicht. Ihre La gerfähigkeit beträgt bei Temperaturen unterhalb 500C im allgemeinen mindestens 1 Jahr. Ausserdem haben die nach dem erfindungsgemässen Verfahren hergestellten Matten den Vorteil, dass wegen der nicht eingetretenen Härtung des Harzes beim nachfolgenden Tiefziehen eine starke Verformung des Mat- terials von beispielsweise' 50 ttrn Tiefe auf einer Länge von 20 mm oder weniger möglich ist, ohne dass starke Verdünnungen oder auch Risse im Material auftreten. Die Oberfläche der profilierten Formteile ist einwandfrei lackierbar. Die Haftung und der Verlauf der eingesetzten Lacke, insbesondere der Nitrolacke, ist einwandfrei. Daher ist es möglich, Formteile mit dekorativer Oberfläche zu erhalten. Die nach dem erfindungsgemässen Verfahren hergestellten Formteile lassen sich für die bekannten Verwendungszwecke als Dekorpiatten, Verkleidung von Bauteilen scwie im Automobilbau einsetzen. Im Folgenden bedeutet T stets Gewichtsteile und % stets Gewichsprozent. Herstellung der Phenol-Formaldehyd-Harze : Harz A: 1040 T Phenol werden bei 50 C geschmolzen, unter Rühren mit 24 T Natronlauge (25%ig) vermischt und auf 70 C erwärmt, Im Verlauf von 2 Stunden werden 941 T wässrigen Formaldehyd (40%ig) eingetragen. Der Ansatz wird unter Rückflusskühlung weitere 2 Stunden bei 70 C ge- halten. Anschliessend werden 652 T Phenol und 16 T wäRrige Schwefelsäure (50%ig) langsam zugesetzt. Es wird auf 10000 geheizt und 40 Minuten bei dieser Temperatur gerührt. Hierauf wird auf 700C abgekühlt, wässrige Natronlauge (2632 T, 11%ig) zugegeben und/weiter auf Normaltemperatur abgekhhlt. Es werden 5345 T einer unbegrenzt mit Wasser verdünnbaren wässrigen Harzlösung mit einem Festkörpergehalt von 40X, einem Gehalt an mit Säure fällbarem Harz von 33% und einer Viskosität von 400 mPa.s (20 C) erhalten. Harz B: 1170 T Phenol werden bei 60 C geschmolzen, unter Rühren mit ST Oxalsäure versetzt und auf go c erwärmt. Im Verlauf von 90 Minuten werden dann 12 T Paraformaldehyd (91%ig) zugegeben. Die Temperatur wird durch Steuerung der Zugabegeschwindigkeit, Kühlwasserfluss und Heizung im Bereich von 95 bis 100 C gehalten. 30 Minuten nach Beendigung der Paraformaldehyd-Zugabe werden 200T wässrige Natronlauge (40%ig) und 880 T Wasser langsam zugesetzt und der Ansatz auf Noraal- temperatur abgekühlt. Es werden 1675 T einer wässrigen Harzlösung mit -einer Vis- kosität von 340 mPa.s (20 , einem Festkörpergehalt von 36 %, einem Gehalt an säurefällbarem Harz von 30 % und unbegrenzter Wasserlöslichkeit erhalten. Harz C (Vergleich): 1200 T Phenol werden bei 500C geschmolzen, unter Rühren mit 700 T Natronlauge (40%ig) gemischt und auf 60 C erwärmt. Anschliessend werden 1900 T wässriger Formaldehyd t30%ig) im Verlauf von 3 Stunden eingetragen, wobei die Temperatur auf 700C ansteigt. Nach einer Verweilzeit von einer Stunde bei 700C beträgt die Viskosität des Ansatzes 350 mPa.s/20 C, der Festkörpergehalt 4,0 % und der Gehalt an mit Säure fällbare Harz 31 %. Harz D (Vergleich): 1000 T Phenol werden bei 500C aufgeschmolzen, mit-5 T Schwefelsäure (15%ig) gemischt und auf etwa 80 C erhitzt. Anschliessend werden unter Rückflusskühlung im Verlauf von 1,5 Stunden 850 T wässriger Formaldehyd t30%ig) eingetragen, wobei die Temperatur auf etwa 950C ansteigt. Der Ansatz wird bei dieser Temperatur gehalten, bis der Form aldehydanteil unter 3 % liegt. Hierauf wird das Wasser abdestilliert, wobei die Temperatur von 1000C im Verlauf von etwa 1 Stunde auf 1300C ansteigt. Die Destillation wird abgebrochen, wenn die Viskosität des Novolakes bei 200C, in,Xthylenglykolmonoäthyläther 1:1 gelöst, 900 mPa.s überschreitet. Schmelzpunkt des Lackes 670C. 450 T des erhaltenen Novolakes werden mit 40 T Hexamethlyentetramin und 600 T Wurzelharz (Schmelzpunkt 740C) zu einem Pulver mit einer Hauptkornfraktion von 40 bis 60 Um vermahlen. Die Harzlösungen A und B werden zur Herstellung der Faser matten'gemäss der Erfindung eingesetzt, und die Harze C (Phenolresol) und D (pulverförmige Novolak) als Vergleich herangezogen. Beispiel 1 Zu 100 T einer in üblicher Weise durch Schnitzeln, Kochen und Zerfasern hergestellten Holzfaser-Suspension mit einem Trockenfasergehalt von 0,7 %,bezogen auf das Gewicht des Gesamtsystems, werden 18 T einer Harzlösung aus 10 T Phenolharz A) und 1350 T Wasser gegeben. Nach gründlichem Vermischen wird der pH-Wert der Suspension mit Schwefelsäure auf 3,5 gesenkt, so dass das Phenolharz nahezu vollständig auf der Holzfaser gefällt wird. Der Faserbrei wird anschliessend auf einem Langsiebband grob entwässert und dabei zu vliesartigen Matten von 2 bis 3 cm Stärke verarbeitet, die in entsprechenden Stücken in einer auf 2000C beheizten Presse auf eine Stärke von 8 bis 10 mm verdichtet und gleichzeitig auf einen Wassergehalt von 15 bis 20 1, bezogen auf das Gewicht der Matte, getrocknet werden. Die Trocknung wird anschliessend in einer Warmluft strom-gammer bei 85 C bis auf einen Wassergehalt unter 5 % vervollständigt. Die hergestellten Vorfabrikate lassen sich-ohne Gefahr der Selbstentzündung sofort stapeln; ebenso ist die Gefahr mikrobieller Zerstörung ausgeschlossen. Ihre Lagerstabilität beträgt bei Temperaturen unterhalb 50 C mindestens 1 Jahr. Die Vor fabrikate werden dann auf die den gewünschten Formteilen entsprechende Grössen zugeschnitten und mit einer wässrigen Lösung von Hexamethylentetramin (30%ig) bei einer Dosierung von 50 g/m2 besprüht. Hierauf werden sie 30 Sekunden-mit Nassdampf behandelt und unmittelbar danach ohne nennenswerte Verdichtung bei 140 C mechanisch tiefgezogen, d.h. der vorgesehenen räumlichen Endform angenähert. Der Tiefziehprozess verläuft bei den mit Phenolharz A) hergestellten Matten ohne Ausdünnung oder Risse in den expcnierten Zonen. Die VerdichtunS in die/ Endformen erfolgt im Anschluss mit Hilfe von Presswerkzeuzen bei 170 bis 2000C und einem Druck von 3 N/mm in 25 Sekunden. Beispiel 2: 100 T einer wässrigen Holzfaserpülpe - wie in Beispiel 1 beschrieben - werden mit 20 T einer Harzlösung intensiv gemischt, die aus 1000 T Wasser und 5,9 T des Phenolharzes B) hergestellt wird. Durch Einstellung der Suspension auf einen pH-Wert von 3 mit Aluminiumsulfat-Lösung wird das Harz auf die Faser gefällt. Anschliessend folgt die Bildung der Vliesmatten auf der Langsieb Maschine, ihre Vorverdichtung in der Heizpresse und die Endtrocknung in der Kammer wie in Beispiel 1. Nach dem Zuschnitt werden die vorfabrizierten Matten mit 30 g/m2 einer eigen Formaldehyd-Lösung besprüht, mit Dampf behandelt und unmittelbar danach in der Formpresse bei 1200C tiefgezogen. Danach erfolgt die Här tung unter Pressen entsprechend der Behandlung in Beispiel 1. Vergleichsbeispiel 1 (Einsatz eines Phenolresols) 100 T einer wässrigen Holzfasersuspension, wie in Beispiel 1 beschrieben, werden mit 20 T einer Harzlösung gemischt, die aus 1000 T Wasser und 6,3 T Phenolharz C hergestellt wird. Durch Zusatz von Aluminiumsulfatlösung wird die Aufschlämmung auf einen pH-Wert von 3 einge stellt wobei das Harz auf die Faser gefällt wird. Anschliessend erfolgt die Bildung der Vliesmatten wie im Beispiel 1 beschrieben, wobei die Endtrocknung auf einen Wassergehalt von 25 % im Interesse der Tiefziebarkeit nicht unterschritten werden darf; die zugeschnittenen Matten werden 30 Sekunden mit Nassdampf behandelt und wie in Beispiel 1 tiefgezogen und gehärtet. Yergleichsbeispiel 2 (Einsatz von pulverförmigem Novo- lak; Trockenverfahren): 100 T Holzfaserstoff in Form des zerfaserten Materials mit einem Wassergehalt von 35 % werden unmittelbar nach Verlassen des Defibrators im Vliesbildner mit 4,6 T Pulverharz D, das neben dem No lak auch Hexamethylentetramin und Wurzelharz enthält, gemischt,zwischen Siebbändern auf einen Wassergehalt von 5 % getrocknet und zu 10 mm starken Matten mit einer Dichte von 0,2 g/cm3 vorverdichtet. Die Matten werden zugeschnitten, 30 Sekunden mit Nassdampf behandelt und sofort anschliessend bei 140 C tiefgezogen. Die Vorformlinge werden dann, wie im Beispiel 1 beschrieben in der Heisspresse gehärtet. Vergleichsbeispiel 3: Das Vergleichsbeispiel 2 wird mit dem Unterschied wiederholt, dass die Pulvermenge D auf 9 T erhöht wird. Vergleichsbeispiel 4: Das Vergleichsbeispiel 3 wird wiederholt; jedoch wird auf die Dekorseite des Formkörpers ein Papier, das schwach mit Phenolresolharz imprägniert wurde, während des Härtungsprozesses aufgepresst. In der nachfolgenden Tabelle wird der Vorteil der er findungsgemässen Formteile gegenüber den Vergleichsbeispielen herausgestellt. Bei der Tiefziehbarkeit werden die Werte angegeben, bis zu denen eine einwandfreie Verformung erzielt werden kann, ohne dass Ausdünnungen oder Risse in den exponierten Zonen auftreten. Aus der Tabelle geht hervor, dass Formkörper, die unter Einsatz von Phenolresolharz mit etwa gleichem Bindemittelgehalt in der Gesamttrockenmasse hergestellt worden sind, nur eine sehr geringe Tiefziehbarkeit aufweisend darüber hinaus ist die Lagerfähigkeit bei 230C der Vorfabrikate ungenügend. Der Einsatz von pulverförmigen Novolakharzmischungen ergibt bei gleich grossem Bindemittelgehalt der Gesamttrockenmasse eine Tiefziehbarkeit der Formkörper; ausserdem zeigt sich, dass die aufgebrachte Lackschicht auf dem Formkörper nicht haftet, ihr Verlauf mangelhaft ist und Kraterbildung auf tritt.- Eine Verdoppelung des Bindemittelgehalts der Gesamttrockenmasse erhöht zwar die Tiefziehbarkeit derartiger Formkörper, jedoch ist die Lackierbarkeit nach wie vor ungenUgend. Eine Kaschierung der Formkrper, die mit einem erhalten Bindemittelgehalt an pulverförmigen Novolak hergestellt worden sind, mit einem Papier, das mit Phenolresolharz imprägniert ist, verbessert zwar die Lackierbarkeit der ForskOrper auf einen bisher in der Praxis tolerierbaren Wert, jedoch stehen die Werte für Haftung und Verlauf gegenüber denen bei erfindungsgemässen Formkörpern deutlich zurück. Tabelle EMI12.1 Vergleich <SEP> Vergleich <SEP> Vergleich <SEP> Vergleich <tb> Beispiel <SEP> 1 <SEP> 2 <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4 <tb> Harz <SEP> A <SEP> B <SEP> C <SEP> D <SEP> D <SEP> D <tb> Tielfziehbarkeit <tb> 60 <SEP> 50 <SEP> 9 <SEP> 20 <SEP> 50 <SEP> 50 <tb> [mm/20 <SEP> mm <SEP> Strecke] <tb> Lagerfähigkeit <SEP> > 1Jahr <SEP> > Jahr <SEP> 1 <SEP> Woche <SEP> > 1 <SEP> Jahr <SEP> > 1 <SEP> Jahr <SEP> > 1 <SEP> Jahr <tb> bei <SEP> 23 C <tb> Lackierbardeit <SEP> mit <tb> Nitrolack <tb> Haftung <SEP> gut <SEP> gut <SEP> gut <SEP> keine <SEP> keine <SEP> ausreichend <tb> Verlauf <SEP> störungs- <SEP> störungs- <SEP> störungs- <SEP> mangelhaf <SEP> mangelhaft <SEP> befriedigen@ <tb> frei <SEP> frei <SEP> frei <SEP> Kraterbil- <SEP> Kraterbildung <SEP> dung <tb> Bindemittelgehalt <SEP> der <tb> 6,3 <SEP> 5,0 <SEP> 5,6 <SEP> 6,6 <SEP> 12,2 <SEP> 12,2 <tb> Gesamttrockenmasse <SEP> [%] <tb>
Patentansprüche 1. Mehrstufiges Verfahren zur Herstellung von stark profilierten Formteilen aus vorfabrizierten, tiefziehfähigen und schwach verdichteten, nach einem Nassverfahren mit Hilfe von wässrigen Phenol-Formaldehyd-Harz-Ldsungen oder -Dispersionen hergestellten Fasermatten, insbesondere Holzfaser Holzfasermatten, wobei die Harze durch Säuren oder sauer wirkende Verbindungen auf den Fasern abgeschieden werden, dadurch gekennzeichnet, dass in 1. Stufe Fasermatten unter Verwendung von wässrigen Novolak-Ldsungen oder -DisPer- sionen hergestellt und bis auf einen Wassergehalt von weniger als 51 getrocknet werden, diese Matten in 2.Stufe mit einer wässrigen Lösung eines Härtungsmittels besprüht, mit Wasser und Feuchtigkeit behandelt, tiefgezogen und abschliessend durch Heisspressen gehErtetSwerdenw 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Novolake mit Molverhältnissen der Phenole zu Formaldehyd von 1:0,5 bis 1:0,95, vorzugsweise 1:0,7 bis 1:0,9 eingesetzt werden. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich net, dass die Novolake in Form ihrer wässrigen, alkalischen Lösungen mit einem pH-Wert Uber 8 eingesetzt werden. 4. Verfahren nach einem oder mehreren der Ansprüche 1 bis bis 3, dadurch gekennzeichnet, dass die Trocknung der vorfabrizierten Fasermatten in mehreren Stufen durchgeführt wird. 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Temperatur bei der Vorverdichtung in der Heizpresse 160 bis 2000C beträgt. 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5 > dadurch gekennzeichnet, dass die Trocknung in letzter Stufe mit einem Warmluftstrom, der eine Temperatur von 50 bis 900C besitzt, durchgeführt wird. 7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Schwefelsäure oder Aluminiumsulfat zur Fällung der Harze auf die Fasern eingesetzt werden. 8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7 > dadurch gekennzeichnet, dass als Härtungsmittel Hexamethylentetramin eingesetzt wird. 9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Verdichtung und Härtung der tiefgezogenen Matten bei 50 bis 220, vorzugsweise 170 bis 2000C erfolgt. 10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Verdichtung und Härtung von Holzfasermatten bei einem Druck von 2-5, vorzugsweise 2,5-5,5 N/mm2 erfolgt.
HOECHST AKTIENGESELLSCHAFT
SATTELMEYER, RICHARD, DR.; TESCHNER, ECKART; VELDE-SCHWARZ, HARTWIG
EP-0005007-B1
5,007
EP
B1
EN
19,810,225
1,979
20,100,220
new
C25C1
C25C7
C25C7, C25C1
C25C 1/00, C25C 7/00
ELECTROLYTIC PROCESS AND APPARATUS FOR THE RECOVERY OF METAL VALUES
An electrolytic process and an electrolytic cell for recovering metal values from low grade concentrates. The said concentrate is introduced into the cell containing an aqueous electrolyte so that it is retained in proximity to an anode or anodes (8) and kept out of contact from the or each cathode (9). The cell is energised so that electrolysis takes place and acid is released at the anode(s) (8) which dissolves the metal values which form cations which migrate to and are discharged at the cathode(s) (9). The impurities in the concentrate form fine particles which are separated from the concentrate by screening, e.g. by means of a grid or grids (10) separating the anodes (8) from the cathodes (9).
ELECTROLYTIC PROCESS AND APPARATUS FOR THE RECOVERY OF METAL VALUES The present invention relates to a process and also to an electrolytic cell for electrolytically recovering metal values from a solid concentrate. The metal finishing industry produces liquid effluents containing nickel, cobalt, zinc, copper and iron cations which are conventionally precipitated as hydroxides or carbonates which are converted to low value filter cake which up to now has been discarded. This filter cake typically contains, in the case of nickel effluent, 7 to 12% of nickel by weight, the remainder consisting mainly of ferric hydroxide, water and foreign bodies. The metal treatment industry also produce other solid wastes such as cobalt and nickel-containing sludges from the machining and grinding of castings and the drawing of wire. It is theoretically possible to recover the metal values from these filter cakes or sludges by dissolving in an appropriate acid and then subjecting the resultant concentrated metal-containing solution to electrolysis, as is currently practised in electro-winning. However, as the electrolysis progresses the concentration of cations falls and the acidity of the solution rises so'that the efficiency of the process decreases until after a relatively short time metal deposition stops and although electrolysis continues, only oxygen and hydrogen are produced. Although it is possible to overcome these problems by the removal of the highly acid electrolyte from the cell, dissolving therein further metalcontaining residues, evaporating off excess water, and removing insoluble impurities by filtration, such a process is costly and complicated in that it involves bulky and expensive chemical plant (e.g. reaction vessels, filters, stirrers and evaporators), thus rendering the process uneconomic. We have now developed a process and an electrolytic cell which enable metals such as nickel to be recovered from, for example, hydroxidecontaining wastes without recourse to auch bulky and expensive plant. According to one aspect of this invention we provide a process for electrolytically recovering metal values from a solid concentrate, characterised in that the concentrate is introduced into an electrolytic cell containing an aqueous electrolyte so that the concentrate is retained in proximity to the or each anode and kept out of contact with the or each cathode, and energising the cell so that electrolysis takes place and acid is released at the or each anode, which acid dissolves the said metal values to form cations which are discharged at the or each cathode, and insoluble impurities in the concentrate are released at the or each anode as fine particles which are separated by screening from the unreacted concentrate and accumulate in the bottom of the cell. The concentrate can be in any form (e.g. course particulate, lump, aggregate, paste or sludge), provided that it can be separated from the insoluble impurities by screening. If the concentrate is not already in a suitable form it can be converted to pellets or briquettes before being subjected to the process. The metal to be recovered must be a metal which wiil electroplate from solution and must be such that plating conditions in the cell can be maintained by dissolving metal from a solid concentrate maintained in the vicinity of the anode(s) below solution level, e.g. by gravity or by an indexing pusher mechanism. Examples of suitable metals are Ni, Cu, Co, Sn and Zn. Examples of suitable electrolytes are sulphuric, hydrochloric and sulphamic acids; solutions of ammonia and its salts and derivitives (e.g. ammines and amines). The electrolysis is preferably started by utilising an electrolyte containing cations of the metal to be recovered. It is not normally necessary to add further electrolyte solution. The insoluble impurities released at the anode(s) are separated from the concentrate by screening through a grid, mesh or woven fabric, dependant on particle size, and suspended between the anode(s) and cathode(s). Alternatively the or each anode itself may be in the form of a grid, mesh or woven fabric. In either case the size of the apertures in the grid is so chosen that the concentrate is retained until it has been almost totally reacted but so that the resulting fine particles of insoluble impurity can pass through without clogging. In one case the concentrate is the above mentioned-nickel hydroxide from the nickel plating industry, in the form of a filter cake. The nickel values are recov'ered by the process of the invention and ferric oxide constitutes the finely-divided insoluble particles of impurity. In this case the following main electrochemical reactions are thought to take place within the cell. Anode (Insoluble) 2H Oi4H+ + 0 + 4 2 2 e Cathode EMI4.1 Thus, at the anode1 H ions are produced which immediately react with solid 2+ Ni(OH)2 resulting in the formation of Ni cations, which migrate towards, and 2 are deposited on, the cathode. Water is released at the anode The process w is preferably carried out under such conditions (e.g. electrolyte temperature; heat input; swept air velocity across the surface of the electrolyte and rate of air agitation) that water evaporates from the electrolyte at substantially the same rate as it is introduced by addition of the concentrate. Thus the electrolyte does not become increasingly dilute as the recovery process proceeds. The temperature and heat input may be controlled by regulating the resistance of the cell by varying the anode to cathode distance or by installing immersion heaters or- heat exchangers. As the acid (H ions) released at the -anode immediately react with furthor concentrate the acidity of the electrolyte does not rise and the concentration of ions of the metal to be recovered is maintained at a sufficiently high level. The concentrate in the vicinity of the anode(s) is preferably agitated periodically or continuously, especially by the introduction of high pressure air, to ensure that the acid released comes into contact with fresh concentrate. However, mechanical agitation, or agitation by pumped circulation of the electrolyte, is also possible. Also, if necessary to ensure adequate circulation of electrolyte within both abode and cathode compartments, e.g. to prevent stratification and local overheating effects, a continuous stream of low pressure air may be introduced at points throughout the body of electrolyte. This air also serves to improve the rate of water evaporation. In these ways the disadvantages mentioned above, i.e. a gradual decrease in concentration of the metal values to be recovered, a gradual increase in acidity and a volumetric increase of electrolyte due to the introduction of water to the system, are avoided. The current densities which may be employed may, for example, be within the range I to l0A/dm2 and more preferably within the range I to 5A/dm in order to build up a massive cathode deposit with minimal internal stress. 2 In particular 3A/dm of cathode has been found to be suitable for plating nickel from a sulphate solution. According to another aspect of this invention we provide an electrolytic cell for recovering metal values from a solid concentrate so that the metal values are deposited on the or each cathode and insoluble impurities in the concentrate form fine particles, characterised in that the cell incorporates at least one grid having apertures too small to allow passage of the concentrate for isolating the concentrate from the or each cathode, but large enough to permit passage of the impurities so that they may accumulate in the bottom of the cell. The grid or grids may form the anode or anodes in which case they are formed from a conducting material not significantly eroded during the electrolytic process, e.g. platinum-plated titanium, lead or graphite. Preferably, though, a separate grid is used. This may be of any suitable insoluble material such as perforated polypropylene sheet, woven polypropylene filter cloth, Terylene or other polyester net or plastics coated metal mesh. In this case the anodes are preferably conventional insoluble anodes , e.g. of platinum-coated titanium, lead or graphite depending upon the nature of the electrolyte. The grid or grids divide the interior of the cell into one or more anode and cathode compartments. Provision for periodically or continuously agitating the concentrate mass by means of injection of pressurised air is preferably provided, and also means f6r ensuring continuous electrolyte circulation within the anode and cathode compartments, e.g. inlets for low pressure air or mechanical stirrers. A pH probe, located in an external circulating loop, maybe arranged to actuate a high pressure air blower for agitating the concentrate when the pH falls below a pre-set value. Altrnatively, such a blower may be actuated on a time basis by a cam controller. The pH of the electrolyte is preferably regulated to maintain an optimum value in the anode compartments, e.g. within the range of 0 to 10, and 1.0 to 10 in the cathode.compartment depending on the metal to be recovered and the electrolyte used. In construction the cell is preferably tapering, e.g. triangular in crosssection, and may for example be constructed from ebonite-lined mild steel plate. It may have two lateral rows of anodes with a central low of cathodes, each row of anodes being separated from the cathodes by a substantially vertical grid. inus, it has a central cathode compartment and two lateral anode compartments. in use the cell is initially filled with electrolyte and a quantity 9f cvncentrate placed in each of the two anode compartments so that it ontac:s the anodes and is retained by the grids. Electrolysis- is started and hydrocEn ins are released which cause the metal values to dissolve and the resulting cations then migrate to the cathodes. Preferably, the starting electrolyte contains cations of the metal to be deposited. If not, no deposition of the metal to be recovered takes place until the concentration of those metal cations in the electrolyte has reached the minimum level for plating. The fine impurities released in the anode compartments pass through the grid or grids and sink to the bottom of the cell for removal, e.g. by a sludge ,, pump which may deliver to a settlement cone, from which the supernatant - electrolyte is returned by gravity to the cell in the vicinity of the anode or anodes. One cell embodying the invention for recovering nickel values is shown by way of example in the accompanying schematic diagram. This cell comprises an elongated hollow tapering cell body 1 which serves as a container for the electrolyte having two lateral sides 2 which converge towards the bottom 3. Two outlets 4 are provided in the bottom connecting to a sludge transfer pump 5 which in turn delivers to a settlement cone 6 of known type. Above the container are supported three spaced and parallel bus bars which are connected to a rectified source of electrical energy 7 in such a way that the central bar is negatively charged and the lateral bus bars are each positively charged. From each lateral bar is suspended a row of graphite anodes 8 and from the central bus bar is suspended a row of etched nickel cathodes 9. Between each row of anodes and the central row of cathodes is interposed a vertical grid 10 c'onstructed from 10 mm thick injection moulded perforated polypropylene panels. The perforations are square in section and taper from 4 mm diagonal on the anode side to 8mm diagonal on the cathode side. The grids extend vertically to meet the sides of the container near the bottom and the grids divide the container into two lateral anode comparments II and one central cathode compartment 12. In each of the compartments II and in the compartment 12 is located a high pressure air agitation manifold 13 supplied periodically by compressed air from a blower actuated by a cam controller (not shown). Compartments-li and 12 are also -prov;rded with low pressure air agitation pipes 16 for continuous electrolyte circulation. Pratision is made for periodically dosing the central compartment with a flocculating agent by metering pump 17. An extraction fan 18 causes air to be drawn across the surface of the electrolyte in container I to remove the water vapour generated by the hot electrolyte which is maintained at a temperature of 40 - 600C by means of immersion heaters 19 and the heating effect of the current passing between anodes and cathodes. -efore-venting to-atmosphere - the extracted air passes through a fume scrubber 20. The invention is further illustrated by the following non-limiting example: The cell is first partly filled with an electrolyte containing NiSO4, H3BO3 and the pH adjusted to a value of 4.0. Compartments II are half filled with nid < el-containing concentrate in the form of nickel hydroxide filter cake and freshly etched nickel cathode starter plates are suspended from the central 0 anode bar. The temperature of the electrolyte is increased to 25 C by means of the immersion heaters and electrolysis is started. The concentrate, which takes the form of a clay-like solid containing 7 to 13% nickel by weight, is retained in compartments II by the vertical grids 10. Due to the converging configuration of the side walls 2 It is held, by gravity, in contact with anodes 8 thus becoming anodic itself and dissolving continually in the electrolyte, the nickel being deposited on the cathodes for subsequent recovery. Fe(OH)3, which is present as an impurity in the nickel concentrate, passes through the apertures in the grids and settles out at the bottom of the cell for periodic removal by the 'transfer pump 5. The passage of the insoluble impuritties through the vertical grids is assisted by the hydraulic gradient existing between the compartments II and 12 brought about by the periodic operation of transfer pump 5.
CLAIMS I. A process for electrolytically recovering metal values from a solid concentrate, characterised in that the concentrate is introduced into an electrolytic cell (I) containing an aqueous electrolyte so that the concentrate is retained in proximity to the or each anode (8) and kept out of contact with the or each cathode (9), and energising the cell so that electrolysis takes place and acid is released at the or each anode (8), which acid dissolves the said metal values to form cations which are discharged at the or each cathode (9), and insoluble impurities in the concentrate are released at the or each anode (8) as fine particles which are separated by screening from the unreacted coucentrate and accumulate in the bottom (3) of the cell. 2. A process according. to Claim I, -characterised in-that -the process js--- continuous, further concentrate being periodically or continuously added to the cell in the vicinity of the or each anode, the solid impurities are periodically or continuously removed from the cell bottom, and the water produced in the electrolytic reaction is removed by evaporation. 3. A process according to Claim I or Claim 2, characterised in that the concentrate in the cell is periodically or continuously agitated. 4. A process according to Claim 3, characterised in that the agitation is effected by introduction into the cell of air under pressure. 5. An electrolytic cell for recovering metal values from a solid concentrate so that the metal values are deposited on at least one cathode (9) and the insoluble impurities in the concentrate form insoluble fine particles, characterised in that the cell incorporates at least one grid (10) having apertures too small to allow passage of the unreacted concentrate, for isolating the concentrate from the or each cathode (9), but large enough to permit passage of the impurities so that they may accumulate in the bottom (3) of the cell. 6. An electrolytic cell according to Claim 5, characterised in that the or each grid forms an anode and is of a conductive material resistant to erosion under the conditions prevailing during electrolysis. 7. An electrolytic cell according to Claim 5, characterised in that the or each grid (10) is located between at least one anode (8) and at least one cathode (9). 8. An electrolytic cell according to any of Claims 5 to 7 characterised in that it tapers towards the cell bottom (3). 9. An electrolytic cell according to any of Claims 5 to 8 characterised in that it incorporates means (13) for injecting pressurised air into the cell in the vicinity of the anode or anodes(8) for agitating the concentrate. 10. An electrolytic cell according to aaim 5, characterised in that it includes an elongated cell body (I) which tapers towards the bottom (3) and is triangular in cross-section, a central row of vertical cathodes (9) within the body (1) and parallel to the longitudinal axis thereof, two rows of vertical anodes (8) within the body (I) parallel to the r.ow of cathodes1 and disposed in either side thereof, each row of cathodes (9) being separated from the rows of anodes (8) by a vertical grid (10) extending downwards from the top of the cell to meet the converging lateral walls (2) of the cell body near the cell bottom (3), which grids (10) divide the cell into a central cathode compartment (12) and two lateral anode compartments (II), inlets (13) being provided in the lateral walls (2) of the cell body (I) for introducing pressurised air into the anode compartments (I I).
RECYCLAMATION LIMITED
CANNELL, JOHN FREDERICK
EP-0005013-B1
5,013
EP
B1
EN
19,820,512
1,979
20,100,220
new
A61K6
A61C13, C22C19
C22C19, A61K6, A61C13
A61K 6/04
DENTAL RESTORATIVE CONSTRUCTIONS AND METHOD OF PREPARING SAME
The invention relates to dental constructions such as bridges, crowns and the like which utilize a novel dental alloy as a metal core and porcelain or other tooth simulating material bonded thereto. The dental alloys are composed primarily of nickel, and chromium and contain on a weight percent basis, about 65 to 80 per cent nickel, about 12.0 to 20.0 per cent chromium, and in addition about 3.5 to 5.0 per cent silicon, about 3.0 to 6.0 per cent molybdenum, and about 0.2 to 0.6 per cent boron. More preferably the alloys consist essentially of 71 to 74.3 per cent nickel, 17.5 to 19.5 per cent chromium, 3.9 to 4.5 per cent silicon, about 3.9 to 4.5 per cent molybdenum and 0.3 to 0.5 per cent boron. The alloys have excellent physical properties for dental applications having a fusion temperature with the range of about 2300 to 2450°F (1260°C to 1343°C), a coefficient of expansion of from about 13.6 x 10⁻⁶ in/in/°C (13.6 x 10⁻⁶ °C⁻¹ to about 14.5 x 10⁻⁶ in/in/°C (14.5 x 10⁻⁶ °C⁻¹), good corrosion resistance when compared with similarly cast gold or other commercial non-precious metal dental alloys and good oxidation resistance. They also have as cast, a tensile strength of at least 80,000 p.s.i., an elongation of about 2.0 to 5.0 per cent, a Rockwell B hardness within the range of about 90 to 100, and good bonding to porcelain.
DENTAL CONSTRUCTIONS Atin DENTAL ALLOYS The invention relates to dental constructions such as bridges, crowns and the like comprising a metal core and porcelain or other tooth simulating material bonded thereto, and to dental alloys having good physical strength, corrosion resistance, workability and ability to bond to porcelain. The dental alloys have a base cost of substantially less than gold but are equal to or better than gold for many dental applications. The alloys are also useful in dental applications not requiring bonding to porcelain or plastics material in the preparation of metal inlays or oniays. The metal cores of the dental construction are alloys composed primarily of nickel and chromium and containing cn a weight percent basis, about 65 to 80 per cent nickel, about 12.0 to 20.0 per cent chromium, and, in addition, about 3.5 to 5.0 per cent silicons about 3.0 to 6.0 per cent molybdenum, and about 0.2 to 0.6 per cent boron. The alloys have excellent physical properties for dental applications having a fusion temperature with the range of about 2300 to 2450 F, (12600C to 13430C), a coefficient to expansion of from about 13.6 x 10 6 in/in/ C (13.6 x 10 1) to about 14.5 x 10 6 in/in/0C (14.5 x 10 60C 1) good corrosion resistance when compared with similarly cast gold or other commercial non-precious metal dental alloys and good oxidation resistance. They also have as cast, a tensile strength of at least B0,000 p.s.i. (552 MN/m2), gn elongation of about 2.0 to 5.0 per cent, a Rockwell hardness within the range of about 90 to 10D, and good bonding to porcelain. The alloy of the invention has improved polishability as compared to the prior art non-precious metal alloys containing the same elements in different amounts. That is, the alloys polish almost as easily as gold alloys, yet the known advantages of non-precious metal alloys are retained. Dental restorations such as bridges, crowns, dentures, partial'dentures, inlays, onlays and the like have employed gold alloys for many years. Because of its high cost, many attempts have been made to make and employ non-precious metal alloys in place of the gold. Such non-precious metal alloy compositions are illustrated, for example by the U.S. Patents Nos. 1,736,053; 2,089,587; 2,156,757; 2,134,423; 2,162,252; 2,631,095; 3,121,629; 3,464,817 and 3,544,315. Gold alloys, however, have many advantageous properties as a dental alloy and many of the previously prepared non-precious metal alloys have been found to be unsatisfactory in various respects when compared to the conventional gold alloy. A dental alloy is disclosed in U.S. Patent No. 4,038,752 which is similar to the alloys of the invention. There is a difference in that the U.S. patent claims the use of copper, iron and manganese all of which could contribute to discoloration of the porcelain. Furthermore, at the upper limits of silicon claimed therein an alloy is provided which is too brittle and which would not have the improved polishability of the instant novel alloys. In fact, there is no teaching in this patent that would lead the skilled artisan to prepare an alloy having polishability which is similar to yold. One of the problems encountered in attempts to use non-precious metal alloys for dental work in place of gold is that many of these alloys have been hard to cast because of a too high melting range. The alloy of the invention has, unlike some of the prior art alloys, a melting range which is suitable for use by the dental laboratory technician. For example, it will melt within the range of 2300 to 24500F (12600C to 13430C). This melting range is desirable since many dental laboratories use torches of the gas oxygen type which will not heat too much above 25-000F (13700C) so that if higher melting alloys are used then special heating equipment such as oxygen-acetylene torches must be obtained for working the metal. Although attempts have been made to adapt these alloys by modifying casting techniques such as by changing shape, dimensions, number and point of attachment of sprues, by using special investment materials, or by using special aftercasting treatments, the advantages of the heretofore available non-precious metal alloys have not been sufficient to serve toward general acceptance of these alloys as a preferred substitute for gold alloy in dental constructions. Another problem with many of the heretofore known non-precious metal dental alloys is one of porcelain discoloration. In the firing process used to fuse the porce¯as, o ne natal, cr-t- - c :;flg ions can diffuse into the porcelain, producing undesired colors in the porcelain. Thus, for eample, the presence of copper or iron in the metal alloy in an appreciable amount tends to discolor the porcelain bonded thereto. It is also expected that cobalt,present in a dental alloy, would be expected to discolor. Also since non-precious metal dental alloy materials heretofore designed for use as structural metals are frequently substantially harder than gold, there is the added disadvantage of greater time and effort which must be spent on grinding the metal core for precise fit after casting. In addition to the problems relative to the properties of the prior non-precious metal alloy as a general dental alloy, certain additional requirements exist in connection with the use of the dental alloy as a material which is to be faced with tooth enamel simulating material such as porcelain. Thus, the coefficient of expansion must be compatible with that of porcelain. Where there is not the desired compatibility in the coefficient of expansion between the metal and porcelain, fractures may develop in the porcelain during the firing and subsequent cooling. The preferred relationship of porcelain to metal is such that at room temperature there is compression in the porcelain or glass layer and tension in the metal. The alloys of the invention when used as a core for dental prostheses, have been found to have higher thermal expansion coefficients and therefore will provide higher compression in the porcelain than dental alloys which are very similar in both the elements and the amounts which make up such alloys. Further, the fusion temperature of the alloy, while it should not be so high as to be diffi cult to cast, must be sufficiently above the firing temperature of the porcelain so that there is no deformation of the metallic core during firing. Moreover, metal alloys must bond adequately to -porcelain so that when subjected to mechanical stress, there does not occur a separation at the interface in whole or in part. Thus, one object of this invention is to have an alloy iSith polishability comparable to gold and substantially better than the prior non-precious metal alloys. It is also an object of the present invention to provide for dental constructions such as bridges, crowns, etc., having a metal core of a non-precious metal alloy and a tooth enamel simulating outer covering bonded thereto wherein said non-precious metal alloy is free from the objections enumerated above and moreover the relationship of the physical properties between the metal core and outer covering are such that the foregoing problems are met. The preparation of a non-precious metal dental alloy which is particularly suitable in dental constructions but which may be employed in other dental applications is another object of the present invention. Another object is to provide for a dental construction which employs a non-precious metal alloy which is not only less costly than gold but has advantages over gold as a dental structural material. A further object is the provision of a dental alloy which may be employed without appreciably changing present techniques or equipment. It has now been discovered that a dental construction comprising an appropriately contoured metal core of a non-precious metal alloy with a porcelain covering bonded thereto may be prepared which accomplishes the objects hereinbefore enumerated by employing for the metal core, a metal alloy having a fusion temperature within the range of from 23O0O - 24500F (12SO-C t or 1! coefficient of expansion of from about 13.t x 40 in/in/oC (13.6 x 10 6 C 1) to about 14.5 x 10 in/in/oC (14.5 x 10 DC1) and a Rockwell B hardness within the range of about 90 to 100. The expression dental construction as herein cmployed is meant a metal core of a non-precious metal alloy contoured in a desired form and at least one layer of porcelain bonded thereto. Porcelain as herein employed is meant dental porcelain as is known in the art and which is subsequently more fully desribed and illustrated. Normally in dental restorations porcelain is applied in several coatings and firings. In all coatings subsequent to the first coating, porcelain is bonded to porcelain. In the first coating, porcelain is bonded to metal and the problems to be solved are concerned particularly with the porcelain to metal relationship. Under present practice the porcelain which is bonded to metal is that understood in the art as opaque porcelain, as subsequently illustrated, but the present invention is not limited thereto. The expression core as herein employed is the metal framework or base, at least a portion of which is to be covered with porcelain. It may have any shape depending on the dental restoration intended; it is necessary only that a portion thereof is to have porcelain bonded thereto. The coefficient of expansion for the metal alloy as herein employed is the linear thermal expansion coefficient determined in the usual manner from values obtained on heating from room temperature up to 6000C at a rate of 7.5 C/minute. The metal alloys in such core and which of themselves constitute a part of the invention, are prepared from nickel, chromium, silicon, molybdenum, and boron and contain on a weight percent basis, about 65 to 80 per cent nickel, about 12.0 to 20.0 per cent chromium, about 3.5 to 5.0 per cent silicon, about 3.0 to 6.0 per cent molybdenum, and about 0.2 to 0.6 per cent boron. Preferably, the alloys of the present invention contain about 71 to 74.3 per cent nickel, about 17.5 to 19.5 per cent chromium, about 3.9 to 4.5 per cent silicon, about 9.9 to 4.5 per cent molybdenum, and about 0.3 to 0.5 per cent boron. The properties of the alloys, in addition to the fusion temperature, coefficient of expansion above recited, are good corrosion resistance, good oxidation resistance, a tensile strength of at least 80,000 p.s.i. (552 MN/m2), and a percent elongation of about 2.0 to 5.0. The alloys bond well to porcelain and tensile strengths at the interface designated as porcelain bonding strength may be obtained which are greated than 5000 p.s.i. (34.5 MN/m2) Finally, the alloys of the invention show improved polishability over the non-precious alloys of the prior art. in fact, a lustre equivalent to gold is achieved with only slightly more effort than required to polish gold. The alloys of the invention polish with substantially less effort than required to polish prior art non-precious metal alloys such as disclosed in U.S. Patent o. 4,129,944. These properties are particularly advantageous for the preparation of the dental constructions and further in imparting desirable properties to the dental constructions made therefrom as hereinafter more fully described. The improved polishability is especially important to the dental technician since the time required to firish the dental prosthesis is directly proportional to how difficult it is to polish. The dental technician prefers something that polishes with as little effort as possible. Also the dental technician would like to have polishability equivalent to gold because it is a metal he is used to. DETAILED DESCRIPTION OF THE INVENTION The dental construction of the present invention comprises an appropriately contoured core of a novel non-precious metal alloy with a porcelain covering bonded thereto. The metal alloys which are an aspect of the present invention have a fusion temperature within the range of 2300 to 24500F (12600C to 13430C) and a coefficient of expansion in the range of from about 13.6 x 10 6 in/in/0C (13.6 x 10 60C 1) to about 14.5 x 10-6 in/in/ OC (14.5 x 10 6 OC 1 ) and consists essentially of nickel, chromium and silicon, molybdenum and boron i.e. apart from impurities and non-essential ingredients. The composition of the novel alloys are preferably from about 71 to 74.3 per cent nickel, about 17.5 to 19.5 per cent chromium, about 3.9 to 4.5 per cent silicon, about 3.9 to 4.5 per cent molybdenum and about 0.3 to 0.5 per cent boron. Throughout the specification and claims, the percentages are on a weight basis. These alloys have properties suitable for use as a structural metal in dental constructions, where they are to be faced with a tooth enamel simulating material and a dental construction of the alloy of the invention faced with a tooth enamel simulating material, especially when such material is a porcelain, constitutes a part of the present invention. They may also be faced with plastics material such as acrylics and further are useful as a dental metal without a facing. The alloys of the invention are especially useful for inlays, onlays and partial dentures. In addition to the above cited fusion temperatures and coefficient of expansion, other properties exhibited by the alloy include good corrosion resistance, good oxidation resistance, an ultimate tensile strength in the range of 80,300 to 120,000 p.s.i. (552 to 827 MN/m2), a percent elongation of about 2.0 to 5.0, a Rockwell B hardness within the range of about 90 to 100. The fusion temperature range of 2300 to 24500F (1260DC to 13430C) of the alloys are within the range in which the dental laboratories are usually accustomed to work so that the alloy may be cast for the preparation of metal cores and other structural materials without change in equipment and technique. However, the fusion temperature is sufficiently high so that when the metal core is to be faced with porcelain it can resist deformation during the firing steps in porcelainization. Thus, the fusion properties of the alloys are ideally suited for dental construction to be faced with a tooth-simulating porcelain covering. The coefficient of expansion in the range of 13.6 x -6 intin/ C (13.6 x 10-6 C 1) to about 14.5 x 10 in/in/0C (14.5 x 1 -6 ,C'1) is suited to be employed with many dental porcelains. When suitable porcelains as subsequently more fully described are applied to the surfaces of the alloys of the invention, they are resistant to checking and other fractures which have tended to occur during the process of heating to the firing temperature followed by slow cooling to room temperature. Further, when employed with porcelain with expansion and contraction characteristics such that after cooling, the porcelain is under compression at room temperature, especially good results are obtained. Because the coefficient of expansion is slightly higher than the closely related prior art alloy of U.S. Patent No. 4,129,944, it is expected that the porcelain would be in slightly more compression at room temperature. This is desirable in adental prosthesis. Moreover, when bonded to porcelain, a good porcelain to met ; bond is stormed. 7he zenslls stT- -gttes ac)o interface designated as the porcelain bonding strength may be obtained which are greater than 5000 p.s.i. (34.5 MN/m2) In addition to the foregoing, another property important in its function as a metal core which is to be faced with porcelain is the absence of metals which form colored metal ions. Many metal alloys which may be desirable from strength and o-ther properties frequently contain copper or iron and are therefore unsuitable for metal structure which is to be faced with porcelain. Cobalt is another metal which would be expected by those skilled in the art to cause discoloration when used in a dental alloy. The present alloys possess desirable properties without inclusion of such metals and a metal core of the present alloys may be faced with porcelain or plastics material without staining. In addition to the foregoing, other properties of the alloys render them superior as dental structural materials whether or not they are to be faced with porcelain. The alloys gave good strength, hardness and corrosion resistance while being light, stronger and harder than gold. It is recognized that the term good is relative, but as used herein it means good for the purposes of use in dentistry for which the material is specified. Thus, good strength and hardness as herein employed would be tensile strength and hardness above that of the gold alloys available at present. Good corrosion resistance would be resistance to etching by acid chloride solutions comparable to that shown by conventionally used dental alloys. The ultimate tensile strength of about 80,000 to 120,000 p.s.i. (552 to 827 MN/m2) compares favourably with that of aDuut 65,000 p.s.i to 90,000 p.s.i (448 to 620 MN/m2) for gold. The hardness of 90 to 100 compares favourably with the 86 Rockwell B hardness for gold. Thus, the alloys have strength and hardness superior to gold while having polishability similar thereto. The good corrosion resistance of the alloys of the invention has been demonstrated by placing a sample of such alloy and a sample of the alloy disclosed in U.S. Patent No. 4,129,944 in a ferric chloride solution held at room temperature for three days. It was found that the corrosion resistance of the two alloys were similar. In addition to the foregoing, the alloys can be remelted and cast without loss of their excellent physical properties, may be used with the dental solders presently employed when working with gold or with non-precious metal alloy solders, and may be faced with dental plastics materials such as the acrylics. In the alloy compositions of the present invention, not only is the actual amount of the metal component important but also the relationship of certain components to each other. One important relationship is that of chromium to nickel. When the chromium content with respect to the nickel is permitted to become too high, the thermal expansion of the alloy is found to be too low to obtain good matching with porcelain. Where the chromium content becomes too low, the alloy is generally found to have substantially poorer oxidation and corrosion resistance than desirable. A chromium to nickel ratio of about 0.15 to 0.27 has been found to impart desirable properties to the alloy. A preferred ratio range is from 0.24 to 0.27. These ratios are to be considered together with the total nickel in the alloys. As previously indicated, the silicon is preferably present in the range of about 3.9 to 4.5 per cent by weight. When the silicon content is increased too much above 4.5 per cent the alloy tends to become brittle and lose some of its mechanical strength. When the silicon content is decreased too much below 3.9 per cent, the melting point and thermal expansion coefficient become too high. The addition of molybdenum to the nickel, chromium and silicon stabilizes the thermal expansion property of the alloy against change which tends to occur during the repeated firing which are necessary procedures when porcelain is fused to the structural metal during the preparation of jackets, crowns, bridges and the like. Further, molybdenum has the property of improving corrosion resistance. Finally, molybdenum is necessary to improve the ductility of the alloys of the invention. This property is important because the polishability is related to ductility, and more importantly the dentist must be able to bend and otherwise make small adjustments to the material when he is placing a bridge in a patients mouth. Inclusion of boron improves the bonding strength between the alloy and porcelain. Hence, the preferred alloy compositions contemplate the use of boron. However, it is critical and essential that boron shall not be employed in excess of about 0.5 per cent by weight since boron tends to increase hardness, and thereby decrease the polishability of the alloys of the invention. The dental alloy composition intended for use as structural metal may contain minor amounts of other .materials which may be present as impurities in the metals employed & prepare the alloy. None of theseV I essential in thv dental alloy compositions of the present invention. Accordingly, the alloy compositions of the present invention consist essentially of nickel, chromium and silicon with molybdenum and boron. The alloy may be prepared in a conventional manner such as by placing the components in a fused alumina crucible and fusing the ingredients with appropriate mixing. While in the molten state, the alloy may be poured into moulds for ingot formation. The dental alloys of the present invention intended for use as structural metals may be employed in the replacement of the heavier and more expensive gold which has been the conventional structural metal used for dental purposes. The alloys are ideally suited for use where bonding of the alloy to porcelain is required, as in the preparation of artificial teeth, crowns, bridges and the like. The alloy may also be used in the preparation of veneers, both plastics as well as porcelain. Their physical properties also make the alloys highly useful for the preparation of metal crowns where the metal acts to completely cover the prepared tooth and for the preparation of inlays and onlays. In such usage the dental alloys of the present invention are found to be not only as good as the gold which has heretofore been used but in many respects superior to such gold. The dental constructions of the present invention may be obtained by first preparing an appropriately contoured metal core made of the alloy of tha present invention by casting according to conventional procedures and thereafter painting the metal core with porcelain and firing to secure the porcelain on the metal by bonding. Thereafter, additional layers of porcelain are applied with firing after each step to obtalr an artificial tooth or other dental restoration. By porcelain is meant dental porcelain as is known in the art and embraces dental glasses. They generally contain silicon oxide, aluminium oxide, sodium oxide, potassium oxides and minor amounts of other oxides. Normally, the porcelain covering which is first applied to the metal is an opaque porcelain. An opaque porcelain reduces the tendency of the metal to be seen through the final coating. Opaque porcelains are available commercially and include in the oxide composition either zirconium oxide, tin oxide, zinc oxide, titanium oxide, or zirconium silicate as an opacifying agent The opaque porcelain is normally coated with additional layers of body porcelain followed by a layer of incisal porcelain under conventional procedures. The body porcelain is available commercially as gingival porcelain and may have a small amount of opacifying agent and incisal porcelain has no opacifying agent. The exact composition of the porcelains is not critical although generally speaking, the porcelains are to be selected from those employing orthoclase feldspar as raw material. It is essential however, that certain properties be observed in the selection of an appropriate porcelain. Thus, the porcelains should have a fusion temperature maximum of about 185DOC (10100C) and a coefficiwnt of thermal expansion in teh range of about 10 x 10 6 in/in/ C (10 5or ) to about 21 x 10 6 in/in/oC (21 x 10 0C ). It is recognized that a meaningful single coefficient of expansion is not obtainable for porcelain as it is for metal over the broad temperature range of from about room temperature up to 6000C and that coefficients of expansion values are valid only for a narrower range of temperatures. Porcelains which may be employed with the metal alloy of the present invention will be those whose several coefficients of expansion are within the above ranges when determined at several temperature ranges up to about 5750 - 6000C. Typical porcelain compositions are found in standard references such as Skinner and Phillips, The Science of Dental Materials , p 518, W.B.Saunders Company, Philadelphia and London 1967; the compositions of several commercial porcelains are listed on page 60 of Jean-Marc Meyer, Contributions a l'Etude de la Loaison Ceramometallique des Porcelaines cuites sur Alliages en Prosthese Dentaire , Thesis, University of Geneva, 1971. Suitable porcelains include those havingcompositions described in U.S. Patent No. 3,052,982 of the following oxide content: 61 - 67.8 per cent Si02; 11.7 - 17.1 per cent Al203; 0.1 - 2.6 per cent CaO; 0.1 - 1.8 per cent MgO; 2.37 - 9.6 per cent Na2O and 6.7 - 19.3 per cent K20. The foregoing composition may be modified to include lithium oxide in amounts: up to 5 per cent and the other oxides reduced or modified. In addition, the porcelain may be modified to add from about 0.05 to about 25 per cent of an opacifying agent and the other oxides reduced or modified as desired limited by the need to keep the temperature and expansion properties within the desired limits. Suitable opaque porcelains may have the oxides in the following approximate ranges: Si02 47 to 63 per cent; Al203 10 to 14 per cent; CaO 0.6 to 1.3 per cent; K20 8.5 to 11 per cent; Na20 1.5 to 5 per cent; MgO 0.4 to 0.8 per cent; and SnO2 9 to 25 per cent. The present invention is not directed to the chemical composition of the porcelain, thus, any commercially available dental porcelain or porcelain compositions prepared by a skilled artisan may be employed in the dental construction provided the foregoing properties are met. From the porcelains of the type described above, particular porcelains may be selected for bonding to the alloys of the present invention to obtain good bonding properties by empirical tests. One such test employs rods of alloy and porcelain of the same dimensions, preferably thin rods about 2 inches in length. The rods are heated from room temperature up to about 6000C and the lengths measured at 5750C. Those porcelain rods whose lengths are within about 6 per cent of the length of the alloy rods are considered to be a good match for purposes of providing a covering for the alloy with good bonding properties. In carrying out the preparation of the dental construction of the present invention from the alloy of the present invention, the metal core is formed by casting into casting investments which have previously been prepared by conventional procedures. Pellets or slugs of the metal alloy of the present invention are placed in a crticible, heated in a conventional manner until the alloy melts. The alloy melt is cast employing conventional procedures and apparatus such as a centrifugal casting machine to obtain a casting contoured roughly to the shape desired for the core. The casting is recovered employing conventional procedures and then ground to the desired final shape, and dried. After the grinding step, the areas of the metal core which is to receive porcelain is sandblasted with a quartz abrasive and the shoulders which are not to receive the porcelain are polished. The cores then are rinsed in distilled water, and dried. The core units are then ready to receive the porcelain. Porcelain, preferably opaque porcelain such as of vke composition previously described, is applied to the sand-blasted area of the metal core. The thus painted core or core units are (a) air dried, (b) placed into a furnace preheated to 12000F (6490C) and (c) fired first under vacuum (26 - 29 inches of mercury or 880 to 982 mbar) by raising the temperature up to about 17000F (92ion) at a rate of about 90 - 100 F/minute (50 - 56DC/ min) and then in air by breaking the vacuum and continsing the heating to about 1840 - 18500F (1004 - 10100C) to obtain a dental construction comprising an appropriately contoured metal core having porcelain covering bonded thereto which is then removed from the furnace and cooled at ambient temperature. Although good bonding is obtained between the metal alloy of the instant invention and porcelain having a coefficient of expansion hereinbefore specified, a superior chemical bond which imparts to the dental construction an even greater resistance to separation on stress may be provided by employing a bonding agent. The exact nature of the bonding agent is not critical. Any suitable bonding agent may be employed. One of the preferred bonding agents is an aluminium-boron bonding agent in an organic carrier. One composition is a 30 per cent composition of aluminium and boron in a 2 : 1 ratio in petrolatum. When a bonding agent is employed, the procedural steps after the grinding of the casting is modified and may be carried out as described hereinafter and more fully in the above-identified application. The ground core is cleaned ultrasonically with distilled water and dried. The bonding agent is then applied to that portion of the metal core which is to be coated with porcelain. The bonding agent is allowed to dry and fired on the core by placing the treated metal core in a furnace preheated to 12000F (6490C) and thereafter raising the temperature of the furnace to 18500F (1010 C) in vacuum. The core is then removed from the furnace and allowed to cool to ambient temperature. After cooling, the excess bonding agent is mechanically removed1 and the core thereafter cleaned and dried. Other suitable methods appropriate for the bonding agent chosen may also be employed. Generally, additional layers of porcelains are fired onto the foregoing dental construction to obtain dental construction which is an aesthetically pleasing artificial tooth or other dental restoration. The additional layers of porcelains are provided by a gingival porcelain which forms the principal bulk of the body of the artificial tooth and an incisal porcelain which provides translucency to the outer tips. In carrying out the preparation of a dental construction which is an aesthetically pleasing dental restoration, several layers of gingival porcelain and thereafter layers of incisal porcelain are applied on the dental construction having a covering of opaque porcelain bonded thereto and fired by heating from 12000F to 17000F (649DC to 9430C) under vacuum (26 - 29 HG or 880 - 982 mbar) and further to 18000F (9820C) in air, and then cooling at room temperature, in separate sequential operations. More then one firing may be necessary. The dental construction thus obtained is useful in dental prosthesis. The following examples illustrate the invention but are not to be construed as limiting. EXAMPLE 1: The following alloys were prepared and used for polishability tests. TABLE I * A B Nickel 72.6 72.65 Chromium 19.0 18.6 Molybdenum 4.0 4.25 Silicon 4.0 3.90 Boron 0.4 0.35 These melts were prepared by air induction melting a 4.5 Kg charge consisting of Nickel pellets (99.8 per cent carbonyl nickel), Chromium flake (99.1 per cent Cr), Molybdenum pellets (99.7 percent Mo), Molybdenum powder (99.8 per cent Mo), Silicon lumps 98.0 per cent Si) and ordinary nickel-boron alloy lumps (i5 - 18 per cent B). This was heated to 27000F (14820C) until molten. The temperature was reduced to 26000F(14270C) and rods approximately .300 inches (7.62 mm) in diameter were aspiration cast with VYCOR* glass or fused silica glass tubing. Cut up rods were remelted with a gas-oxygen torch and cast in to investment moulds using dental laboratory techniques. They were easily melted and cast. The surfaces of the castings made in the above step were ground with conventional dental laboratory stones and rubber wheels. They were polished with felt wheels and diamond polishing paste. Rouge was also used to polish these samples. Both Alloy A and B were judged Easy to dental laboratory technicians. The polishability of these alloys should be compared to the alloys disclosed and polished in Example 4 of U.S. Patent 4,129,944 which were judged to be iloderate to Hard to polish in the same test. The other properties of the above alloys are listed below compared with a white gold dental crown and bridge alloy. TABLE II ALLOY A B WHITE GOLD Melting 2360 2350 2300 - 2345 temp (OF) Melting 1293 1288 1260 - 1285 temp (0C) Yield strength 59,800 71,800 65,000 (psi) Yield strength 412 495 448 (MN/m2) ?Iltimate strength (psi) 96,200 96.750 88,300 Ultimate stren gth (MN/m2) 663 667 609 Percentage 4.0 2.5 10 elongation Brinell Hardness 190 200 200 Castability 67 microns 62 microns 73 microns Thermal Expan- -6 -1 -6 -1 -6 -1 sion Coeffic- 13.9x10- OC 4.0x10 0C 13.8x10 0C ient From these data, it can be concluded that these alloys will perform satisfactorily in dental restoration. Specific Examples of Deviation from Preferred Compositions: Cther alloys similar to the above alloys were tested and it was found that less than 0.6 weight percent boron was necessary for a polishability property of Easy. Alloys with 0.8 percent boron were Moderate. Examination of the physical properties indicated that at least 0.2 Weight percent boron is necessary to maintain high ultimate strength, low melting temperature and thermal expansion coefficient. Similarly, it was found that the silicon must be kept above 3.0 percent to maintain the alloy yield strength above 60,000 psi (414 MN/m2). Alloys having more than 4.5 per cent silicon would have higher hardness values and be more difficult to polish. Because molybdenum has a strong effect on ductility and is believed to impart corrosion resistance, its preferred range has been set at 3.9 to 4.5 per cent. tower values tend to exhibit reduced elongation. Alloys high in molybdenum have higher melting temperature. EXAMPLE 2: Comparative Polishability of Alloy A, an Alloy disclosed in U.S. Patent 4,129,944 and a Gold-Base Dental Alloy. Experimental Procedure: Alloy A and the Alloy of U.S. Patent No. 4,129,944 (consisting essentially of 72 per cent Ni, 4 per cent Si, 19 per cent Cr and 1.3 per cent B by weight) were investment cast, ground and finished to 16mum x 16ms x 1.8, 240 grit surface finish. The gold-base dental alloy was BAK-ON WHITE GOLD (available from Ceramco, Inc., 31-16 Hunters Point Avenue, Long Island City, New York) and was used in the following test as received. The dimensions were # x 16 r, x 1.0vm.. One 16nm x 16 .m face, of each alloy, was finished to 240 grit surface finish. Hardness Testing: The hardness of Alloy A and BAK-ON WHITE GOLD was measured with a Clark Hardness Tester using a Rockwell B indenter at 100 kg load. The hardness of the other alloy was reassured with the same hardness tester, using a Rockwell C indenter at 150kg load. Rockwell B and C values were converted to Brinell Hardness using a conversion table. Polishing: Alloy samples were attached to a bearing plate and polished with a Buehler riinimet Table Top Polisher. The polishing pad of the Minimet was impregnated with diamond polishing paste and the sample placed beneath the polishing arm. The polishing load:was set to maximum and the polishing speed was set to 5. The polisher was started, allowed to run for the desired time and then stopped. The samples were polished for total times of 1, 2, 5, 10, and 15 minutes. Reflectivity Measurement: A Photovolt Reflection Density Unit 53A was used to make neasurements of surface reflectivity. The diffuse reflectivity or density (D) was measured and the density data were converted to reflectivity (R) by the relation: R = 1 - 100(10 D) The density of the 240 grit surface was measured at five different locations. The readings were averaged and recorded. The sample was polished for one minute and remeasured. This procedure was repeated until fifteen minutes total polishing time were achieved. The results, in'the form of reflectivity versus polishing time are tabulated in Table 3. Table 3 shows that after five minutes polishing time, the reflectivity of Alloy A and BAK-ON WHITE GOLD reached 0.98 and increased only slightly with increased polishing time. Table 3 also shows that the Alloy of Specification 1,528,093 achieved a reflectivity of only 0.95 after five minutes polishing time and 0.98 after ten minutes. The Brinell Hardness of this Alloy was 326 compared with 255 and 182 for BAK-ON WHITE GOLD and Alloy A respectively. These results imply that there is a strong correlation between hardness and polishability. TABLE III Reflectivity versus Polishing Time for the Alloy of U.S. Patent 4,129,944 BAK-ON WHITE EOLD and Alloy A POLISHING TIME REFLECTIVITY (Minutes) The Alloy of BAK-ON WHITE ALLOY A U.S. Patent GOLD 4,129,944 0 .308 .224 .206 1 .653 .781 .822 2 .818 .935 .907 5 .952 .981 .980 10 . .980 .992 .990 15 .985 .991 .991
CLAIT1S: 1. A dental restorative construction comprising a metal core of a non-precious metal alloy contoured in a desired form and a porcelain covering bonded thereto, said metal core being of an alloy having a fusion temperature within the range of 2300 F to 24500F (12600C to 13430C), a toefficient of thermal expansion in the range of from about 13.6 x 10-6 in/in/ C (13.6 x 10-6 C-1) to about 14.5 x 10 -6 in/in/DC (14.5 x 10 60C 1), and wherein said alloy consists apart from impurities essentially of, on a weight basis, about 65 to 80 percent nickel, about 12 to 20 per cent chromium, about 3.5 to 5.0 per cent silicon, about 3.0 to 6.o per cent molybdenum, and about 0.2 to 0.6 per cent boron. 2. A dental restorative construction according to Claim 1 wherein said alloy consists essentially of 71 to 74.3 per cent nickel, about 17.5 to 19.5 per cent chromium, about 3.9 to 4.5 per cent silicon, about 3.9 to 4.5 per cent molybdenum and about 0.3 to 0.5 per cent boron. 3. A dental restorative construction according to Claim 2 wherein the porcelain has coefficients of expansion in the range of about 10.33 x 10 6 in/in/OC (10.33 x 1O6 0C1) to about 20.25 x 10'6 in/in/ C (20.25 x 10 60C 1). 4. A method of preparing a dental construction which comprises: (a) preparing a metal core by casting a non-precious metal alloy having a fusion temperature within the range of 2300 to 24500F (12600C to 13430C), a coefficient of expansion in the range of from about 13.6 x 10-6 in/in/ C (13.6 x 10-6 C-1) to about 14.5 x 10-6 in/in/ C (14.5 x 10 60C 1), and which consists apart from impurities essentially of, on a weight basis, about 65 to 80 per cent nickel, about 12 to 20 per cent chromium, about 3.5 to 5.0 per cent silicon, about 3.0 to 6.0 molybdenum, and about 0.2 to 0.6 per cent boron; (b) applying to the surfaces of said metal core a porcelain having coefficients of expansion in the range of from about 10 x 10-6 in/in/ C (10-5 C-1) to about 21 x 10 6 in/in/0C (21 x 10-6 C-1); ; Y (c) firing the porcelain onto said metal core. 5. A method according to Claim 4 wherein said alloy consists essentially of 71 to 74.3 per cent nickel, about 17.5 to 19.5 per cent chromium, about 3.9 to 4.5 per cent silicon, about 3.9 to 4.5 per cent molybdenum and about 0.3 to 0.5 per cent boron. 6. An alloy adapted for use in dental application consisting essentially of, on a weight percent basis, about 75 to 80 per cent nickel, about 12 to 20 per cent chromium, about 3.5 to 5.0 per cent silicon, about 3.0 to 6.0 per cent molybdenum, and about 0.2 to 0.6 per cent boron, said alloy having a fusion temperature within the range of 23000F to 24500F (1260'C to 13430C), a tensile strength of at least 80,000 p.s.i. (552 MN/m2)., and a coefficient of expansion in the range of from about 13.6 x 10 6 in/in/ C to 14.5 x 10 6 in/in/ C, (13.6 x 10-6 C-1 to 14.5 x 10-6 C-1). 7. A dental restorative construction according to Claim 6 wherein said alloy consists essentially of 71 to 74.3 per cent nickel, about 17.5 to 19.5 per cent chromium, about 3.9 to 4.5 per cent silicon, about 3.9 to 4.5 per cent molybdenum and about 0.3 to 0.5 per cent boron.
JOHNSON & JOHNSON
DE LUCA, ROBERT
EP-0005015-B1
5,015
EP
B1
EN
19,861,029
1,979
20,100,220
new
A61K31
null
A61K31, A61P9, C07D473
A61K 31/52, C07D 473/06, M07D473:06
USE OF A XANTHINE DERIVATE IN THE MANUFACTURE OF A MEDICAMENT
It has been found that 1,3-di-n-butyl-7-(2-oxo-propyl) xanthine is a particularly effective agent for increasing oxygen partial pressure and contractility in ischaemic and skeletal muscle. Pharmaceutical compositions containing 1 to 30 mg of this agent are described.
Pharmaceutical Compositions Containing a Xanthine Derivative The present invention relates to pharmaceutical compositions containing 1, 3-di-n-butyl-7- ( 2-oxopropyl) - xanthine. British Patent Specification No. 1441562 referred to the compounds of the formula (I): EMI1.1 wherein R1 and R2 which may be the same or different, each represents a straight-chain or branched-chain alkl radical of 2 to 6 carbon atoms, or a cyclohexyl, alkoxyalkyl or hydroxyalkyl radical, and A represents a hydrocarbon radical having up to 4 carbon atoms which may be substituted by a methyl group. The compounds of the formula (I) were described as effective in increasing the blood flow through skeletal muscles while at the same time showing low toxicity. The compound of the formula (I) said to be preferred was that wherein R1 is an n-butyl group, R2 is an n-butyl group and A is a CH2CH2 group. That compound was shown to be highly effective. German Patent Application No. 2462367 indicates that the compouncs of the formula (I) may in general be employed as unit doses of about 200-600 mgs so that they would be expected to be used at a similar dose to known agents such as pentoxyphylline. The published low qral toxicity of xanthin such as pentoxyphylline and the compound of the formula (I) where R1 and R2 are n-butyl groups and A is a CH2CH2 group means that such high doses are acceptable. It has now been discovered that one compound within formula (I) is extremely potent in increasing oxygen tension and contractility in ischaemic and skeletal muscle. These properties reflect an improvement in the metabolic status of the tissue which in turn makes the compound of great potential use as an agent for the treatment of peripheral vascular disease such as intermittent claudicatic This compound has a low acute toxicity so that the conventional high doses would have been expected to be used in the clinic. However the extremely high potency of this compound allows its use in surprisingly low dose. Accordingly, the present invention provides a pharmaceutical composition which comprises 1 to 30 mg of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine and a pharmaceuticall acceptable carrier therefor. More suitably the composition of this invention will contain from 2 to 25 mgs of 1,3-di-n-butyl-7 (2-oxopropyl)xanthine and preferably from 2.5 to 20 mgs of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine, for example from 5 to 15 mgs. Thus suitable compositions of this invention may contain about, for example, 2.5, 5, 7.5, 10, 12.5, 15 17.5 or 20 mgs of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine. The compositions of this invention may be administerec one or more times a day so that the daily dose is in the region of 2.5 - 90 mgs, and more usually 5 - 50 mgs, for example about 10 - 40 mgs. The composition is often administered twice or three times a day. Generally the compositions of this invention will be adapted for administration by injection or for oral administration. Although 1,3-di-n-butyl-7-(2-oxopropyl)xanthine is only sparingly soluble in aqueous media the enhanced potency of the compound renders it suitable for use in injectable solutions, for example in aqueous solution. Thus one favoured aspect of this invention provides sterile, pyrogen free 1,3-di-n-butyl-7-(2-oxopropyl)xanthine. The injectable compositions of this invention may consist essentially of said sterile, pyrogen free 1,3-di-n-butyl-7-(2-oxopropyl)xanthine, for example sealed into a vial or ampoule or the like. Other suitable injectable compositions of this invention may comprise said sterile material in admixture with suspending agents, preserving agents or the like. Such compositions may be made up for injection on admixture with sterile water or saline or the like. In general the volume to be injected will be from 0.5 to 2 mls, for example 1 ml. Suitably the injectable composition of this invention will contain slightly less than the maximum orally administrable composition, for example from 1 to 25 mg of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine. More suitably the injectable composition will contain 2 to 20 mg and preferably 2.5 to 15 mg of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine; for example about 5, 7.5, 10 or 12.5 mgs of said agent. Particularly favoured compositions of this invention are those adapted for oral administration since they are more convenient for general use. Such dosage forms include tablets and capsules and the like. The dosage units may contain such conventional agents as fillers (diluents), lubricants, binders, disintegrants, colourants, flavourings, surface active agents, preservatives, buffering agents and the like. Suitable fillers for use include cellulose, manitol, lactose and other similar agents. Suitable disintegrants include starch, polyvinylpolypyrrolidone and starch derivatives such as sodium starch glycollate and the like. Suitable lubricants include stearic acid, magnesium stearate, magnesium lauryl sulphate and the like. Since 1,3-di-n-butyl-7-(2-oxopropyl)xanthine is a medicament of high potency the solid orally administrable unit dosage form according to this invention may be small, for example under 80 mgs in weight, but for patient convenience it is usual to formulate the composition in such a manner that it weighs about 80 - 600 mgs, in total, for example about 100 - 400 mgs. This means that frequently relatively large proportions of a filler is employed. Thus formation of unit dosage forms will be simple since the skilled worker may select fillers or other agents of known physical properties to prepare the composition in conventional manner as the actual effect of the small quantity of l,3-di-n-butyl-7-(2-oxopropyl) xanthine is slight. The oral compositions may be prepared by conventional methods of blending, filling, tabletting or the like. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art. The following Examples illustrate the invention: Example 1 1, 3-Di-n-butyl-7- (2-oxopropyl) xanthine, magnesium stearate and microcrystalline cellulose were blended together and passed through a 40 mesh sieve (UK). The mixture was tabletted on a conventional rotary machine to produce a batch of 5000 tablets of the following composition. 1,3-Di-n-butyl-7-(2-oxopropyl)xanthine: 10 mg magnesium stearate: 0.2 mg microcrystalline cellulose: 189.8 mg Example 2 1,3-Di-n-butyl-7-(2-oxopropyl)xanthine, sodium lauryl sulphate, lactose and sodium starch glycollate were blended together and passed through a 40 mesh sieve (UK). The mixture was tabletted on a conventional rotary machine to produce a batch of 5000 tablets of the following composition: 1,3-Di-n-butyl-7-(2-oxopropyl)xanthine: 5-mg magnesium lauryl sulphate: 0.1 mg lactose: 103 mg sodium starch glycollate: 1.9 mg Example 3 a) 5.0 g of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine were mixed with 51.04 g microcrystalline cellulose, passed through a 0.8 mm sieve with 91.35 g lactose and 2.61 g -¯hydrogenated castor oil and mixed in a cubic mixer. The mixture was pressed into tablets of 150 mg with a single punch of diameter 7 mm, each tablet containing 5 mg of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine. b) The mixture prepared as above was filled into capsules size 3, so that each capsule contained 150 mg of the mixture. Example 4 a) 10.0 g of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine were mixed with 189.8 g microcrystalline cellulose, passed through a 0.8 mm sieve with 0.2 g magnesium stearate and mixed in a cubic mixer. The mixture was pressed into tablets of 200 mg with a single punch of diameter 8 mm, each tablet containing 10 mg of l,3-di-n-butyl-7-(2-oxopropyl) xanthine. b) The mixture prepared as above was filled into capsules size 0, so that each capsule contained 200 mg of the mixture. Illustration of Pharmacological Effectiveness of Xanthine Derivatives In the following illustrations 1,3-di-n-butyl-7 (2-oxopropyl)xanthine will be referred to as Compound A , pentoxyphylline will be referred to as Compound B and 1,3-di-n-butyl-7-(3-oxobutyl)xanthine will be referred to as Compound C . Investigation of the effects of Compounds A,B and C upon oxygen tension and contractility of ischaemic skeletal muscle of cats Methodology: Anaesthesia arid administration of compounds: Cats of zither sex were anaesthetized with urethane/ chloralose (1.20/60 mg/kg i.p.). In the course of the experiments, pentobarbital was injected intravenously (V. antebrachji ceph.) via a plastic tube. The intraduodenal (.d, ) application of compound was conducted by means of a plastic catheter, which was inserted into the duodenum. a) PO2-measurements: P 2 was measured polarographically using Pt need?ie electro des (modified according to Bäumgartl and Lülobers, 1973) . The reference electrode, an Ag/AgCl system was sputtered on the glass mantle of the cathode, or it was a se?arate electrode. The cathode was coated with a polystyrol and a collodium membrane. A constant voltage supply provided a polarizing voltage between 600 and 800 mV.. The reducing current was measured by a nano-ampere amplifying meter. The cathode was inserted in the tissue t:)y means of a motor-driven micromanipulator. Characteristics of p02-electrodes EMI11.1 <tb> <SEP> P02 <SEP> needle <SEP> electrode <SEP> pO <SEP> catheter <SEP> electrodes <tb> <SEP> characteristics <SEP> for <SEP> measurement <SEP> in <SEP> for <SEP> measurement <SEP> in <tb> <SEP> tissues <SEP> blood <SEP> vessels <tb> overall <SEP> length <SEP> 90 <SEP> mm <SEP> 15 <SEP> mm <tb> tip <SEP> length <SEP> 5 <SEP> - <SEP> 8 <SEP> mn <SEP> <tb> tip <SEP> diameter <SEP> 2 <SEP> - <SEP> 4 <SEP> m <SEP> 0.7 <SEP> - <SEP> 1.2 <SEP> irm <SEP> <tb> diameter <SEP> of <SEP> the <tb> measurement <SEP> surface <SEP> 0.5 <SEP> m <SEP> 15 <SEP> m <tb> membrane <SEP> collodium, <SEP> 12 <SEP> m <SEP> teflon, <tb> <SEP> polystyrol <SEP> or <SEP> collodium, <tb> <SEP> polystyrol <tb> <SEP> -12 <tb> sensitivity <SEP> 2 <SEP> x <SEP> 10 <SEP> A/Torr <SEP> 1 <SEP> x <SEP> 10-11 <SEP> A/Torr <tb> drift <SEP> 2 <SEP> - <SEP> 5 <SEP> % <SEP> 1 <SEP> - <SEP> 3 <SEP> % <SEP> <tb> response <SEP> time <SEP> 0.8 <SEP> - <SEP> 1.2 <SEP> sec <SEP> 2 <SEP> - <SEP> 3 <SEP> sec <tb> (T90) <tb> diffusion <SEP> error <SEP> 1 <SEP> - <SEP> 5 <SEP> % <SEP> 3 <SEP> - <SEP> 6 <SEP> % <tb> Experimental procedure: A P02 - electrode was inserted in the muscle tissue (m. gastrocnemius) of both hindlegs of an anaesthetized cat. After recording the p02 of the normal perfused muscle, the blood flow to one measuring site was restricted by ligating the femoral artery. The p02 dropped steeply and the tissue became isiaemic. After a few minutes, the P02 increased and then decreased again. The values were constant after 30 to 60 min. After having reached a constant level of P02, the vehicle was given, followed by the test substance. The recordings (Compound A i.v. vs. Compound B i.v.; Compound A i.d. vs. Compound B i.d., Compound C i.d.) were evaluated, taking one value every 10 sec - at least 36 readings being taken. The mean value and the standard deviation were calculated, inorder to check the significance of the effect. b) Skeletal muscle contractility: Cats of either sex were anaesthetized as for P-02 measurement. After dissection of the skin of the calf muscles, the sciatic nerve was cut about 3 cm proximal to the knee. The tendon of the calf muscles was cut and connected with an isometric force transducer (SWEMA, SG 3). In order to maintain constant differences and a resting tension of 100 p, the hind limb was fixed at the tibia by means of a clamp. Direct stimulation of the muscles consisted of square wave pulses of 4 msec duration at a frequency of 2 Hz and at a voltage of 50 V. In order to keep the muscles wet and at a normal temperature, the muscles were continuously superfused by means of a NaCl-solution (0.9%, 38 C). Fermoral blood flow was restricted by a graded occlusion of the artery leading to a reduction of contractility by ca. 30t. After having reached a constant level of the contraction force, the vehicle (NaCl and Methocel, respectively) was injected, followed by the test substance. Results: Table 1 demonstrates that Compound A leads to a distinct increase of the contractility and P02 of ischaemic skeletal muscle. Surprisingly, Compound A shows high activity in the pg-range (50 - 125 ug/kg). In contrast, the dose range of activity of Compounds B and C is 5 - 32 mg/kg, leading to changes which are less pronounced in comparison with Compound A (see tables 1 - 3) at 125 pg/kg. Table 1 ISCHAEMIC MUSCLE - CAT EMI14.1 <tb> <SEP> contractility <SEP> pO2 <SEP> (mmHg) <tb> <SEP> (% <SEP> initial <SEP> value) <SEP> (increase) <tb> <SEP> i.v. <SEP> i.d. <SEP> i.V. <SEP> i.d. <tb> Compound <SEP> A <SEP> 36 <SEP> 32 <SEP> 10 <SEP> 4 <tb> (dose/kg) <SEP> (50 <SEP> g) <SEP> (125 <SEP> g) <SEP> (125 <SEP> g) <SEP> (50 <SEP> g) <tb> Compound <SEP> B <SEP> 9 <SEP> 23 <SEP> 2 <SEP> 3 <tb> (dose/kg) <SEP> (5 <SEP> mg) <SEP> (32 <SEP> mg) <SEP> (5 <SEP> mg) <SEP> (12.5 <SEP> mg) <tb> Compound <SEP> C <SEP> NT <SEP> 22 <SEP> NT <SEP> 6 <tb> (dose/kg) <SEP> (12.5 <SEP> mg) <SEP> (32 <SEP> mg) <tb> NT = not tested because of low water solubility Table 2 Cat COMPARISON COMPOUND B - COMPOUND A 1.8 - 2.6 kg pO2 in skeletal muscle n = 6 EMI15.1 <tb> <SEP> P02 <SEP> prior <SEP> P 2 <SEP> <SEP> after <tb> <SEP> to <SEP> ligation <SEP> ligation <tb> <SEP> (Torr <SEP> # <SEP> <SEP> SEM)* <SEP> (Torr <SEP> # <SEP> <SEP> SEM)* <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> ligation <SEP> 20.1 <SEP> + <SEP> 0.04 <SEP> 15.6 <SEP> + <SEP> 0.19 <tb> <SEP> control <SEP> 11.0 <SEP> + <SEP> 0.66 <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> ligation <SEP> 26.7 <SEP> + <SEP> 0.08 <SEP> 20.6 <SEP> + <SEP> 0.52 <tb> <SEP> control <SEP> 12.0 <SEP> + <SEP> 0.02 <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> ligation <SEP> 37.4 <SEP> + <SEP> 0.1 <SEP> 24.7 <SEP> + <SEP> 0.64 <tb> <SEP> control <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> ligation <SEP> 27.9 <SEP> + <SEP> 0.99 <SEP> 16.4 <SEP> + <SEP> 1.14 <tb> <SEP> - <SEP> <tb> <SEP> control <SEP> 20.1 <SEP> # <SEP> <SEP> 0.12 <SEP> <SEP> hind <SEP> limb <SEP> art. <SEP> ligation <SEP> 30.5 <SEP> # <SEP> <SEP> 0 <SEP> 12.5 <SEP> # <SEP> 0.12 <tb> <SEP> control <SEP> 2.0 <SEP> # <SEP> 0 <SEP> <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> ligation <SEP> 8.2 <SEP> + <SEP> 0.23 <SEP> 4.9 <SEP> + <SEP> 0.23 <tb> control <SEP> 13.71+0.11 <SEP> <tb> Table 2 cont ........ Table 2 cont.. EMI16.1 <tb> <SEP> effect <SEP> of <SEP> effect <SEP> of <SEP> effect <SEP> of <tb> <SEP> Compound <SEP> B <SEP> Compound <SEP> A <SEP> Compound <SEP> B <tb> <SEP> 5mg/kg <SEP> i.v. <SEP> 125 <SEP> g/kg <SEP> i.x. <SEP> in <SEP> relation <SEP> to <tb> <SEP> #pO2 <SEP> (Torr) <SEP> <SEP> # <SEP> <SEP> pO2(Torr) <SEP> Compound <SEP> A <tb> <SEP> (%) <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> lig. <SEP> 1.6(p#0.0l) <SEP> <SEP> 6.2(p#0.01) <SEP> 26.6 <tb> <SEP> control <SEP> 0.3(n.s) <SEP> 13.2(p#0.01) <SEP> <SEP> 0 <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> lig. <SEP> -0.16(n.s.) <SEP> 7.3(p#0.01) <SEP> <SEP> 0 <tb> <SEP> control <SEP> 1.02(p#0.01) <SEP> 3.8(p#0.01) <SEP> <SEP> 27 <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> lig. <SEP> -1.5(n.s.) <SEP> 5.2(p#0.01) <tb> control <SEP> - <SEP> - <SEP> <SEP> hind <SEP> limb <SEP> art. <SEP> lig. <SEP> 4.9(#0.01) <SEP> <SEP> 27.1(p#0.01) <SEP> <SEP> 17.9 <tb> <SEP> control <SEP> -2.4(#0.01) <SEP> <SEP> 3.5(p#0.01) <SEP> <SEP> 0 <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> lig. <SEP> 7.3(#0.01) <SEP> <SEP> 11.2(p#0.01) <SEP> <SEP> 65.6 <tb> <SEP> control <SEP> 14.3(p#0.01) <SEP> 19.3(p#0.01) <SEP> <SEP> 74.3 <tb> <SEP> hind <SEP> limb <SEP> art. <SEP> lig. <SEP> 1.3(p#0.01) <SEP> <SEP> 5.4(p#0.01) <SEP> <SEP> 22.9 <tb> <SEP> control <SEP> -0.9(p#0.01) <SEP> <SEP> 3.4(p#0.01) <SEP> <SEP> 0 <tb> Mean effect of Compound 3 at 5 mg/kg compared to Compound A at 125 g/kg= 21.3% n = between 36 and 120 Table 3 SUBSTANCE: Compound A Species: Cat Formulation: aqueous solution Weight: 1.8 - 2.0 kg n: 4 #, # Suppliers: Stock/Phillips EMI17.1 <tb> <SEP> NaCl-sol. <SEP> t <SEP> dosage <SEP> t <tb> <SEP> (min) <SEP> 50 <SEP> g/kg <SEP> i.v. <SEP> (min) <tb> # <SEP> muscle <SEP> # <SEP> X <SEP> # <SEP> O <SEP> + <SEP> 36.0 <SEP> > 60 <tb> <SEP> contract. <SEP> S <SEP> + <SEP> 21.0 <tb> A <SEP> initial <SEP> phase <SEP> X <SEP> -14.0* <SEP> <tb> <SEP> BP <SEP> + <SEP> #O <SEP> <SEP> + <SEP> 8.0 <SEP> 2 <tb> <SEP> decrease <SEP> S <tb> # <SEP> second <SEP> phase <SEP> X <SEP> #O <SEP> <SEP> +17.0* <SEP> 33 <tb> <SEP> BP <SEP> # <SEP> <SEP> #9.0 <tb> <SEP> increase <SEP> S <tb> Table 3 cant ...... Table 3 cont... EMI18.1 <tb> <SEP> dosage <SEP> t <SEP> dosage <SEP> t <tb> <SEP> 125 <SEP> g/kg <SEP> i.v. <SEP> (min) <SEP> 313 <SEP> g/kg <SEP> i.v. <SEP> (min) <tb> <SEP> * <tb> A <SEP> muscle <SEP> X <SEP> + <SEP> 19.0 <SEP> > <SEP> 60 <SEP> + <SEP> 25.0 <SEP> > <SEP> 60 <tb> <SEP> contract. <SEP> + <SEP> + <SEP> 12.0 <SEP> n <SEP> = <SEP> 1 <tb> <SEP> - <SEP> S <tb> # <SEP> initial <SEP> phase <SEP> X <SEP> -23.1 <SEP> * <SEP> 3 <SEP> - <SEP> 25.0 <SEP> 2 <tb> <SEP> BP <SEP> # <SEP> <SEP> #3.3 <SEP> <SEP> n <SEP> = <SEP> 1 <tb> <SEP> decrease <SEP> S <tb> # <SEP> second <SEP> phase <SEP> X <SEP> + <SEP> 10.8 <SEP> 32 <SEP> + <SEP> 15.0 <SEP> 6 <tb> <SEP> BP <SEP> # <SEP> <SEP> # <SEP> <SEP> 8.3 <SEP> n <SEP> = <SEP> 1 <tb> <SEP> increase <SEP> S <tb> (percentage of initial values) p < 0.05 (t = tine interval to reach initial values) The average decrease of muscle contractility induced by the arterial occlusion was 26 5. - The LD50 in mice of 1,3-di-n-butyl-7-(2-oxopropyl)xanthine has been found to be greater than 1 g/kg per oral.
WHAT WE CLAIM IS: i, A pharmaceutical composition which comprises from 1 to 30 mg of 1,3-di-n-butyl-7-(2-oxopropyl)xanth.ine and a pharmaceutically acceptable carrier therefor. 2. A composition as claimed in claim 1 which comprises from 2 to 25 mg of l,3-di-n-butyl-7-(2-oxopropyl) xanthine. 3. A composition as claimed in claim 1 which comprises from 2.5 to 20 mgs of 1,3-di-n-butyl-7-(2-oxo propyl)xanthine. 4. A composition as claimed in claim 1 which comprises from 5 to 15 mgs of l,3-di-n-butyl-7-(2-oxopropyl) xanthine. 5. A composition as claimed in any of claims 1 to 4 adapted for administration by injection. 6. A composition as claimed in claim 5 which comprises an aqueous solution. 7. A composition as claim in any of claims 1 to 4 adapted for oral administration. 8. A composition as claimed in claim 7 in the form of a capsule or tablet. 9. A composition as claimed in claims 7 or 8 which weighs 80 to 600 mg. 10. A composition as claimed in claims 7 or 8 which weighs 100 to 400 mg.
BEECHAM - WUELFING GMBH & CO. KG
GORING, JOACHIM EWALD; OCHLICH, PETER PAUL
EP-0005018-B1
5,018
EP
B1
EN
19,810,909
1,979
20,100,220
new
C01G23
C22B34, C22B1
C01G23, C22B34
C22B 34/12D2, C01G 23/02B
PRODUCTION OF TITANIUM CHLORIDES
Titanium dichloride and or titanium trichloride is produced directly from a titaniferous ore such as ilmenite by means of a selective chlorination reaction. A mixture of particles of the ore and particles of carbon is contacted at a temperature greater than 1500°C with a quantity of chlorine less than that required in theory for the production of titanium tetrachloride, for example, from 0.75 to 1.75 moles of chlorine per mole of titanium dioxide. Provided a sufficient quantity of carbon is used the iron content of the ore may be converted into the metallic form and recovered as such. The titanium chlorides produced may be further chlorinated to titanium tetrachloride.
PRODUCTION OF TITANIUM CHLORIDES This invention relates to the production of titanium compounds and, in particular, to the production of titanium chlorides. There is described in US Patent No. 2 589 466 a process for the direct proauction of titanium tetrachloride from an iron-containing titaniferous ore by the selective chlorination of the iron content of the ore without allowing any iron present in the ore to be chlorinated. The process involves separately pre-heating ilmenite and chlorine tc a temperature between 0 0 1250 and 1450 C and maintaining them at such a temperature while bringing them together for reaction. British Patent No. 1 431 480 makes reference to US Patent 2 589 466 reports that attempts to repeat the process of the US patent had failed and suggests that this is consistent with the findings reported in the following papers: Suomen Kemistilehti, 29A, pages 220-225 (1956) Chemical Abstracts (1957) 4801(f) Transactions of the Metallurgical Society of AIME, 218, pages 219-225 (April 1960). British Patent o. 1 431 480 proposes an alternative prccess for the chlorination of the titanium constituent of a titaniferous material at a temperature of from 95O0C to 14000C in the presence of a carbonaceous material and a chlorinating agent comprising iron chloride. Titanium trichioride may be produced from titanium tetrachloride. Titanium dichloride may also be produced from titanium tetrachloride or, alternatively, from titanium trichloride. The present invention provides a process whereby the titanium di- and/or trichlorides, hereafter referred to collectively as lower titanium chloride, may be produced directly from a titaniferous ore. In its broadest aspect the present invention provides a process for the production of titanium lower chloride characterised forming a mixture of particles of a titaniferous ore and particles of carbon the mixture 0 having a temperature greater than 1500 C and contacting with the particles chlorine in a quantity less than that required in theory for the conversion of the titanium values in the ore to titanium tetrachloride. Preferably the mixture of particles in the form of a gaseous dispersion is contacted with the chlorine. According to a preferred aspect of the present invention the ore is an iron-containing titaniferous ore, for example ilmenite r or rutile, or a synthetic rutile and the particles are cause to react with chlorine according to one or both of the equations FeO.TiO2 + 3C + C12 = 3CO + Fe + TiC12 FeO.TiO2 + 3C + liy12 = 3CO + Fe + TiC13 and the resulting titanium lower chloride is separated from the metallic iron produced. Preferably a hot gaseous dispersion is heated according to this invention to at least 15500C, However, to avoid loss of reaction selectively to the desired products and the production of minor quantities of iron chlorides and/or titanium tetrachloride it is particularly preferred to maintain the temperature at at least l6000C. The energy input required for the reaction of the ore particles with chlorine according to the invention is higher for higher reaction temperatures quite apart from the tendency to increased heat losses from the apparatus at higher temperatures. This effect becomes very marked at temperatures above 20000C. For example, in an electrically powered reaction furnace the power input required for the reaction FeO.TiO2 + 3C + l¸C12 = 3CO + Fe + TiC13 may increase by up to about 500 kilowatt/hours per Mg of TiO2 in the ore for a reaction temperature of 22000C in comparison with a reaction temperature of 17000C. Preferably, therefore, the gaseous dispersion is heated 0 according to the invention to not more than 2000 C and, particularly preferably to not more than 19000C. The restriction of the chlorine supply to the reaction is an important parameter in the operation of this invention. An excess of chlorine leads to the formation of iron chloride and/or titanium tetrachloride whereas a deficiency leads to the incomplete reaction of the titanium values in the ore. Under the conditions above described an excellent degree of selectivity can be obtained where from 1 to 1i moles of chlorine are used per mole of titanium dioxide in the ore, titanium chloride or titanium trichloride predominating in the product depending on the actual quantity used within the above-stated range. A certain degree of process inefficiency may be acceptable in practice and, because of this, the invention is not rigidly limited to the use of a quantity of chlorine within the above-stated range. Preferably the quantity of chlorine used is not more than 0.25 moles and particularly preferably not more than 0.1 moles outside the preferred range of 1 to 1 moles per mole of titanium dioxide. Where a predominace of titanium chloride is desIred in the product less than 1.25 moles of chlorine, and where a predominance of titanium trichioride is desired in the product more than 1.25 moles of chlorine, are preferably used per mole of titanium dioxide. Because of the effect of the chlorine/titanium dioxide ratio on the selectivity of the reaction it is desirable to avoid variations in the ratio in the course of the process. It is noted that the present invention would not be possible to operate in a fluidised bed, could the desired temperature be generated in such a bed, because of the inevitable excess of chlorine at its point of entry into the bed. Titaniferous ores tend to sinter in a fluidised bed at any temperature above about 11000C. Carbon should preferably be used in excess of the quantity required to react with the oxygen released from the titanium values and the iron values, if any, in the ore. The carbon may be in the form of coke. The particles of ore and of carbon used in the practice of this invention are preferably not more than 500 microns and 3500 microns and particularly preferably are not more than 350 microns and 3000 microns in diameter respectively. It is an advantageous feature of the present invention that it allows the use of iron-containing titaniferous ores, such as ilmenite ore, without substantial contamination of the titanium chloride product with iron chlorides. Under the conditions utilised in the practice of this invention the iron values in the ore are not substantially chlorinated. It is a further advantageous feature of this invention that the iron values in an iron-containing titaniferous ore are reduced in the course of the process to metallic iron which, under the preferred temperature employed, may be in the liquid form. The liquid iron may simply be collected in a reservoir, tapped continuously or intermIttently, and cast directly into ingots if desired. The present invention may be carried out in any of a variety of electrical discharge furnaces capable of imparting temperatures in excess of 15000C to a particulate solid feed. Alternatively, the process may be conducted in an electrical induction furnace which has the advantage of not being subject to interference with a discharge by particles being treated, or products of that treatment, for example iron in liquid form, some of which may be electrically conductive. Suitably the process is conducted by allowing a mixture of particles of ore and carbon to fall through a reaction chamber in the presence of chlorine. The titanium lower chloride produced according to this invention may be further chlorinated, in the gas phase and preferably without recovery from the gaseous stream remaining after the removal of the metallic iron, to produce titanium tetrachloride. Such a use of the lower chloride product of the invention is particularly advantageous since it offers a particularly efficient method of producing titanium tetrachloride from an iron-containing titaniferous ore without the formation of iron chlorides. The further chlorination of the lower chloride is exothermic and is readily accomplished merely by mixing the gaseous stream, containing the lower chlorides, with the requisite extra quantity of chlorine. The further chlorination may be conducted at any temperature at which the lower chlorides and the titanium tetrachloride are stable and is preferably conducted at a temperature below 22000C and, particularly preferably, not above 20000C. Preferably the further chlorination is conducted at a temperature above 1000 C. Titanium tetrachloride formed may be recovered readily from the other gases present,and from any particles of carbon and ore which may not have reacted and which may have been carried through in the stream of gases, by known recovery techniques. Titanium trichloride produced according to this invention may, alternatively, be used in the manufacture of titanium metal by disproportionation at an elevated temperature to the metal and titanium tetrachloride, or as a catalyst in polymer production. Titanium dichloride produced according to this Invention may alternatively be used as a catalyst in polymer production. The present invention may give rise to the formation of phosgene. Normal precautions applicable to gases containing phosgene should therefore be applied. An Example of the operation of this invention will now be described. A coreless induction furnace Raydyne Model C95 was used. (Raydyne is a Trade Mark.) The heating chamber was of electrically conducting graphite because the charge is initially non-conductinc. This chamber was sealed at each end with a graphite screw plug and thermally insulated with ceramic wool. The chamber was 18 cms long 8 cm in external diameter and 4 cms internal diameter and arranged in a horizontal mode. There was facility to pass gas thrcugh the chamber and over the charge into a condenser for product collection. An induction coil fitted around the thermally insulated graphite chamber. Heat losses were minimised by surrounding the whole system in an asbestos box. The furnace had an output of 6 kw. 90 g of ilmenite ore (54% wt TiO2 and less than 500 micron mesh particle size) and 25 g of -SBSS mesh petroleum coke were placed in the heatinc chamber and power applied to the induction coil. When a temperature of 19500C was attained on the end of the chamber as measured by an optical pyrometer the power was switched off and a iridium/408 iridium-rhodium thermocouple lead down the gas feed facility indicated a temperature 0 f 1600 C inside the chamber. The thermocouple was v moved, the power was switched back on and chlorine gas passed over the reactants at the rate of 3 1/2 litres per minute for 5 mins. The power was switched off and the chamber purged with argon. A temperature of 1610C was measured in the chamber at the end of the run. Purple crystals mainly comprising TiC13 were condensed from the off gases. This lower chloride product weighed 31,8 g. When the furnace was cooled there was a small unreacted residue mainly of coke and some beads of solid iron weighing 13.6 grams and which analysed about 92% wt of metallic iron.
1. A process for the production of titanium lower chloride characterised by forming a mixture of particles of a titaniferous ore and particles of carbon the mixture having a temperature greater than 15000C and contacting the particles with chlorine in a quantity less than required in theory for the conversion of the titanium values in the ore to titanium tetrachlcride. 2. A process as claimed in claim 1 wherein a mixture of particles of ore and carbon in the form of a gaseous dispersion is contacted with the chlorine. 3. A process as claimed in claim 1 or 2. wherein the ore is an iron-containing titanifercus ore, 4. A process as claimed in claim 2 or 3. wherein the gaseous dispersion of particles of titaniferous ore and of particles of carbon has a temperature of from 1550 C tc 20000 5. A process as claimed in any preceding claim wherein the quantity of chlorine is from 0.75 moles to 1.75 moles per mole of titanium dioxide in the ore. 6. A process as claimed in any preceding claim wherein the particles of ore are not more than 500 microns in diameter and the particles of carbon are not more than 3500 microns in diameter. 7. A process as claimed in any preceding claim wherein-the carbon is in excess of the quantity of oxygen released from the ore. 8. A process as claimed in any preceding claim conducted in an electrical discharge furnace. 9. A process as claimed in any one of claims 1 to 7 conducted in an electrical induction furnace. 10. A process as claimed in any preceding claim wherein the titaniferous ore is an iron-containing ore and the iron content thereof is recovered as the metal. 11. A process as claimed in any preceding claim wherein the titanium lower chloride produce is further chlorinated to titanium tetrachloride. 12. A process as claimed in claim 11 conducted by contacting the titanium lower chloride in the gas phase with a further quantity of chlorine. 13. A process as claimed in claim 11 or 12 wherein the titanium lower chloride is chlorinated at a temperature of from IOQOOC to 20000C. 14. Titanium lower chloride whenever produced by a process as claimed in any one of claims 1 to 10 15. Titanium tetrachloride whenever produced by a process as claimed in any one of claims 11 tc 13.
LAPORTE INDUSTRIES LIMITED
ROBINSON, MICHAEL
EP-0005019-B1
5,019
EP
B1
EN
19,831,005
1,979
20,100,220
new
B65G13
null
B65G13
B65G 13/00
CONVEYING APPARATUS
Apparatus for conveying metal articles between work stations comprises spaced apart skids which have conveying surfaces (9) composed of rows of rotatable elements (13). The elements (13) have their rotational axes (15) inclined at a small angle which is in the range 2 - 10 degrees away from the normal to the conveying surface (9) and have work surfaces (17B) which are rotatable so that portions thereof move into and out of the conveying surface.
Conveying Apparatus This invention relates to apparatus having a conveying surface for supporting and conveying articles between work stations. According to the present invention there is provided apparatus having a conveying surface for supporting and conveying articles between work stations, comprising a plurality of elements each rotatably mounted about an axis inclined at a small angle to the normal to the conveying surface and having a surface portion which is radially spaced from said axis and which forms part of said conveying surface. Preferably, each element includes a disc portion and a-stem portion, the stem portion defining said axis about which the element is rotatably mounted and the disc portion having an annular peripheral surface inclined at said small angle to a plane perpendicular to said axis. Conveniently, the diameter of said disc portion is greater than the diameter of said stem portion. Conveniently, thrust bearing means rotatably support said stem portion on a support member. Part of the thrust bearing means may be integral with the stem portion. The thrust bearing means may include a bearing surface forming part of a sphere. The thrust bearing means may include a spherical bearing member interposed between the end of the stem portion of each element and the support member. Al'-ezatively, the thrust bearing means may include a part-splwical end face on the stem portion. Other forms nf thrust bearing means may be used around the circumfer of of the stem portion. The stem portion of the elements may each incorporate a circumferentially-extending annular recess adapted to accommodate a locating spigot releasably secured to the support member, to secure the elements to the support member while permitting rotational movement of the elements wich respect to the support member. The spigots may be in the form of grub screws with domed ends for engaging in the recesses. The support member may be orientated to provide a horizontal conveying surface or an inclined conveying surface and the rotatably mounted elements may be arranged rows or otherwise disposed over the conveying surface. embodiments of the present invention will now be eribed by way of example with reference to the accompany -ng drawings, in whibh, Fig. 1 is an end view of part of a first embodiment -cording to the present invention; Fig. 2 is a plan view of a component of Fig. 1; Fig. 3 illustrates a further component of Fig. 1 in greater detail; Fig. 4 is a cross section taken in the line 4-4 of ig. 2; Fig. 5 is a diagrammatic plan view of the embodiment and illustrating the formation of the conveying surface; Figs. 6 and 7 are plan and elevational views of a second embodiment; and Figs. 8, 9, 10 and 11 illustrate modification of cetails of the embodiments. The embodiments are primarily intended for conveying metal articles between work stations and in particular form skids which are useful in the handling of steel workpieces such as H, I, T or U sections where there is usually an attendant high level noise accompanying the conveying motion caused by vibration of the relatively thin portions of the sections. One embodiment has been tested to convey H section steel beams of various dimensions in the range 6 x 3 inches (15 x 7.5cms) to 36 x 12 inches (90 x 30cms) and a noise level in the region of 80 decibels (acoustic) has resulted. In conventional skids as used in steel mills in Great Britain (which take the form of fixed metal rails) such steel beams would be expected to produce noise levels of the order of 120 decibels (acoustic). In Figs. 1 - 5 of the drawings, the apparatus comprises a support member 10 in the form of two elongate blocks lOA, lOB each incorporating a row of blind cylindrical holes llA, llB (see Fig. 2) and arranged side-by-side so that the holes IlA are staggered with respect to the holes llB. The base of the holes is shaped as shown in Fig. 4 to form the seat for a thrust bearing 12 in the form of a spherical ball. A plurality of elements 13 (see Fig. 3) each having a cylindrical stem portion 14 are rotatably mounted on the support member 10 by means of the stem portions 14 entering the respective holes llA, llB, the end face of each stem portion 14 being shaped to form a seat on the bearing 12. Each stem portion 14 is a close fit in the hole llA, llB, and defines an axis of rotation 15 for the element. Integral with each stem portion 14 is a disc portion 16 which presents an upper surface 17 having a central portion 17A extending in a plane which is normal to the axis 15 and an annular peripheral portion 17B which is inclined at a small angle to that normal plane. The small angle may be 2 or 3 degrees but is not greater than 10 degrees. The axis 15 of the stem portion 14 is inclined to the vertical denoted by line 8 of Fig. 1 so that part of the surface portion 17B of each of the elements 13 is tangential to a horizontal plane and these tangential parts form the conveying surface of the apparatus. It will be noted that the portion (17B) forms part of a protruding conical surface, the half angle of the cone being between 80 and about 88 degrees. In Figs. 1 - 5 the inclination of the axis 15 is achieved by inclining each of the blocks lOA, lOB, and it will be noted that, when viewed from the end of the blocKs lOA, lOB the axis 15 of one row is inclined away 'ro the vertical in the opposite direction to that of ne other row. This permits the tangential parts of the surface portions 17B of one row to adjoin the t-nèntlal parts of the surface portions 17B of the otter row of elements 13 thereby providing a substan tally continuous elongate conveying surface (9) for crkpiece as depicted by the hatched portions in Fig. The diameter of the disc portions 16 of the elements 13 may be selected according to the angle of inclination of the axes 15 (or of the surface portions 17B) so that he space between adjacent disc portions 16 in each row and between rows is minimised. In operation, two support members 10, each as described, are spaced apart by a convenient distance, e.g. two yards (2 meters approximately) and in consequence a skid conveyor is formed. A workpiece, such < as a metal section is supported on and moved over the conveying surface (9) formed by the tangential parts of the surface portions 17B in order to convey the workpiece between stations. The action moving the workpiece, either by hand or by mechanical means causes the elements 13 of each member 10 supporting the workpiece to rotate in urn anc convey the workpiece substantially without sl ding motion taking place between the workpiece and the conveying surface. This substantially reduces the force required to move the workpiece and reduces the tendency to induce vibration in the workpiece thereby reducing noise. All components of the apparatus may be made of metal thereby making the apparatus robust as is required in the environment of a steel mill or steel yard and the individual components may be replaced without difficulty insofar as the elements 13 may be released from the support members 10 as may the bearing balls 12. In a modification the two blocks lOA, lOB are spaced apart by a considerable distance, for example, 2 yards (2 meters approx.) in which case the conveying surface so formed has two spaced-apart elongate parallel portions defined by the respective hatched portions of the elements of the rows. Various modifications may be made to de-tails of the embodiment described with reference to Figs. 1 - 5. For example as shown in Fig. 8 the stem portions 14 may each incorporate an annular groove 21 for reception of the head of a locating spigot 22 releasably secured to the support member 10. The disc portion 16 may include a skirt portion 23 co-operating with a raised collar portion 24 on the support member 10 in order to prevent foreign matter such as metal scale fouling the rotatable mounting of the stem portion 14 in the hole 11. The collar portion 24 may be integral with the support member 10 or may form part of a sleeve for hole 11. Replaceable seats may be incorporated for the bearing ball 12 either on the stem portion 14 or in the hole 11 (such as that shown at 25) or on both. The hole 11 may accommodate a removable liner 26. The central portion 17A of disc portion 16 may be disked or undercut so that the annular surface portion 17A has a substantially constant radial width irrespective of wear occurring due to continuous use of the apparatus. Where the workpieces to be conveyed are planar (e.g. plates) the support member may accommodate a plurality of the elements 13 appropriately inclined to provide a two-dimensional conveying surface. In this case it may be appropriate to incline the various axes 15 all in the same direction away from the vertical in which case the elements 13 would all rotate in the same direction. The spacing between adjacent elements 13 could then be quite considerable. The apparatus may take the form shown in Figs. 6 and 7 where the support 10 is a single component and the holes llA, llB are drilled or cast at a nonperpendicular angle to the lower horizontal base surface 28 of the support 10. Each hole includes a liner 28 and the lateral upper edges 30, 31 of the support 10 adjacent the holes 11 are cut away to provide ducts which permit scale and other foreign matter to be shed away from the holes 11. The support 10 includes lateral lugs 32 for securing the support 10 to a base structure (not shown). The bearing may take the form shown in Fig. 9 where the stem portion 14 has a part-spherical end face 35 and an inset 36 in the hole 11 has a correspondingly shaped upper face 37. The apparatus may tak the form shown in Fig. 10 where the stem portion 14 of the element 13 has a partspherical end face 35 and the support 10 comprises a first member 38 incorporating a plurality of through holes 11 only one of which is shown, and a second member 39 which acts as a base plate for the member 38. Thus as base for each of the holes is formed by the member 39 and as is shown a removable insert 36 acts as part of the bearing arrangement. The axis of the hole 11 is inclined to the upper surface of the member 38 in order to provide the required orientation of the disc portion 16 of the member 13. In a further modification each block lOA, lOB has an elongate guard rail 40 extending longitudinally of the block as depicted in Fig. 11. This guard rail 40 serves to protect the disc portion 16 of the elements 13 from damage due to laterally directed blows from a workpiece being fed on to the apparatus.
CLAIMS: 1. Apparatus having a conveying surface for supporting and conveying articles between work stations1 characterised by a support (10) on which a plurality of elements (13) are individually rotatably mounted, each element (13) being mounted for rotation about an axis (15) which is inclined at a small angle to the normal to the conveying surface (9) and having a surface portion (17B) which is radially spaced from said axis (15) and which forms part of said conveying surface (9). 2. Apparatus as claimed in claim 1, characterised in that each element includes a disc portion (17) and a stem portion (14), the stem portion (14) being rotatably mounted on the support (10) so as to define said axis (15) and the disc portion (17) including said surface portion (17B) in the form of an annular peripheral surface inclined at said small angle to a plane perpendicular to said axis (15). 3. Apparatus as claimed in claim 2, characterised in that the stem portion (14) of each element (13) has a circumferentially-extending annular recess (21) adapted to accommodate a locating spigot (22) releasably secured to the support (10) to secure the elements (13) to the support (10) while permitting rotational movement of the elements (13) with respect thereto. 4. Apparatus as claimed in any preceding claim, characterised in that the elements (13) are rotatably mounted on the support (10) by interengaging spigots (14) and sockets (11) and intermediate adjacent spigots (14) and sockets (11) the support (10) is shaped to cause removal of waste materials from the spigots (14) and sockets (11). 5. Apparatus as claimed in any preceding claim, characterised in that said plurality of elements (13) is arranged in at least two parallel rows of elements, the axes (15) of the elements (13) in each row being parallel ard inclined at the same small angle to the normal to the conveying surface (9). 6. Apparatus as claimed in claim 5, characterised in that said two rows are mutually spaced apart by a distance many times greater than the spacing between adjacent elements (13) in a row. 7. Apparatus having a conveying surface for supporting and conveying articles between work stations, characterised by an elongate support (10) having sockets (11) therein arranged in a row, the sockets (11) each being cylindrical and having parallel axes, spigots (14) rotatably located in said sockets (11) and supported by thrust bearings (12) each spigot (14) being integral with a substantially cylindrical disc portion (17) which has an annular work surface (17B) forming part of a protruding cone the axis of which is coincident with the axis of the pertaining spigot (14), the cone having a half angle in the range 80 - 88 degrees, the conveying surface being formed by portions of the work surfaces (17B) of adjoining disc portions (17).
LAMBERTON & COMPANY LIMITED
YOUNG, ANDREW
EP-0005020-B1
5,020
EP
B1
EN
19,820,421
1,979
20,100,220
new
H01R4
H01L23, H01R4
H01R4, H01L23, H01R43
T01R4:18K, T01R4:18, T01R4:02, H01R 43/02
A METHOD OF MAKING A CONNECTION BETWEEN A METAL MEMBER AND A METAL BRAID
A method of connecting a metal braid to a metal member including the steps of crimping a strip (15) of metal around the braid (16) so that the strip (15) is electrically connected to, and physically grips, the braid (16). The crimping operation in effect rolls the two end regions (17) of the strip (15) so that they extend towards the intermediate region of the strip (15) trapping the braid (16). The two rolled end regions of the strip (15) are then engaged with the metal member (14) and a weld between the rolled end regions (17) of the strip (15) and the metal member (14) is effected.
This invention relates to a method of connecting a metal braid to a metal member having particular but not exclusive reference to connecting a metal braid to the terminal rod or wire of a diode of the press-fit type. A press-fit diode has a semi-conductor diode chip housed in a metal cup with one terminal of the chip electrically connected to the cup and the other terminal electrically connected to a metal rod or wire which extends from the cup through a glass seal. The glass seal is fragile and so a predetermined length of the terminal wire or rod must extend beyond the seal so that mechanical forces and/or heat used in making a connection to the rod or wire are isolated to some extent from the seal by the length of the wire or rod. A known method of connecting a copper braid to the wire or rod terminal of the diode involves a tag which is crimped to the braid, the tag having a projection thereon which is projection welded to a flattened region of the wire or rod terminal. While producing an efficient electrical and physical connection this method suffers from the disadvantage that it produces a diode arrangement which is large in terms of the length of the wire or rod plus the connector tag since the crimped region of the tag and the region carrying the projection are spaced in the direction of the length of the tag and wire or rod terminal. It was proposed to overcome this length problem by dispensing with the tag and using in its place a strip of metal which is bent to define a band then crimped around the braid, the strip carrying a projection on its face, which after crimping, is opposite the two ends of the strip. This proposal proved unsat isfactory in that after crimping of the strip around the braid, the subsequent step of projection welding the crimped strip to the flattened region of the terminal of the diode caused the crimp to open thus releasing the grip of the strip on the braid. It is an object of the present invention to provide a method of connecting a metal braid to a metal member, which when utilised to connect a metal braid to the rod or wire terminal of a diode or similar semi-conductor device results in a shorter device than the known method and which does not suffer from the disadvantage mentioned in respect of the previously proposed method. According to the present invention, a method of connecting a metal braid to a metal member includes the steps of crimping a strip of metal around the braid so that the strip is electrically connected to, and physically grips, the braid, the crimping operation in effect rolling the two end regions of the strip so that they extend towards the intermediate region of the strip trapping the braid, contacting the two rolled end regions of the strip against the metal member and effecting a weld between the rolled end regions of the strip and the metal member. One example of the invention is illustrated in the accompanying drawings wherein: Figure 1 is a perspective representation of a press-fit semi-conductor diode; Figure 2 is a perspective representation of a connector member; Figure 3 is a side elevational view of a copper braid having a connector member of the kind shown in Figure 2 secured thereto; Figure 4 is a transverse sectional view of the braid and the connector member of Figure 3; and Figure 5 is a sectional view illustrating the connection of the braid to the terminal rod of the diode of Figurel. Referring to the drawings, the semi-conductor diode to which an electrical connection is to be made comprises a semiconductor diode chip housed within a cylindrical copper cup 11. One terminal of the semi-conductor chip is electrically connected to the cup 11 and the other terminal of the chip is electrically connected to a terminal wire which extends through a glass seal 12 closing an open end of the cup. Secured to the glass seal 12 is an iron-nickel alloy tube 12 within which the terminal wire extends. At its free end the tube 13 is flattended to define a spade end portion 14 the flattending of the tube serving to electrically interconnect the terminal wire and the tube, and to seal the tube. The interior of the cup 11 is thus hermetically sealed. The glass seal 12 is of a relatively fragile nature, and it is important therefore that there is a predetermined minimum length of the tube 13 intermediate the seal 12 and the spade end portion 14 to which electrical connection is to be made. In order to make an electrical connection between the spade end portion 14 of the terminal of the diode and a copper braid connector without adding significantly to the length of the rigid part of the device, that is to say the length of the terminal of the diode, there is provided a connector 15 in the form of a strip of nickel plated mild steel. The strip is bent to U-shaped form as shown in Figure 2 and the braid is placed between the limbs 17 of the U-shaped strip 15. Thereafter, using a conventional crimping tool or crimping press, the two limbs 17 of the strip 15 are crimped around the braid 16. The crimping action in effect rolls the two limbs 17 inwardly towards the portion of the strip intermediate the limbs, so that the braid is tightly gripped, and in addition the end surfaces, or parts thereof, of the limbs 17, bite into the braid so that the braid is nipped against the surface of the intermediate portion of the strip 15. The braid 16 carrying the strip 15 is then engaged with the spade end portion 14 of the terminal of the diode to which the braid is to be connected. The braid is positioned in relation to the spade end portion 14 such that the rolled limbs 17 of the strip 15 engage the spade end portion 14. Since the rolled limbs are of generally cylindrical form then they will make line contact with the spade end portion 14 rather than surface contact. The strip 15 and the spade end portion 14 are then gripped between appropriately shaped electrodes of the resistance welding machine which applies pressure of 120 lb.f to the strip 15 and spade end portion 14 while passing an electric current of 3000 amperes therethrough for a period of 4 cycles. The electric current passing through the line contact between the strip 15 and the portion 14 rapidly causes heating of the two parts, and the pressure applied to them causes flattening of the rolled limbs 17 thus increasing the area of contact. The parameters of pressure and time, and electric current, are controlled such that a weld is produced between the crimped limbs 17 of the strip 1 and the portion 14. It is found that an extremely strong connection is produced between the braid 16 and the portion 14 and it is believed that the reason for the surprising strength of this connection is firstly that the limbs 17 are caused more tightly to grip the braid, and secondly that in addition to the limbs 17 welding to the spade end portion 14 of the terminal the braid actually bonds to the strip 15. It will be recognised that provided that the width of the strip 15 is not greater than the length of the spade end portion 14 then the connection between the braid 16 and the terminal of the diode can be effected without increasing the effective length of the rigid terminal of the diode it being recognised that the braid itself is extremely flexible. Thus where necessary the braid can extend away from the terminal at right angles thereto, the braid being flexed immediately adjacent its connection with the strip 15. During development of the present invention an attempt was made to obtain the same effect by providing the strip 15 with a projection extending from its face remote from the rolled limb 17, and then welding this face to the spade end portion 14. However, it was found surprisingly that this attempt was unsatisfactory in that a very much reduced strength connection between the braid and the strip 15 occurred in many cases. It is believed that this failure resulted from a tendency of the limbs 1, to be opened relative to the braid during the application of pressure thereto by the welding electrodes. Any tendency towards opening of the limbs 17 of course releases the grip of the strip 15 of the braid. Clearly in accordance with the arrangement described above the pressure applied by the welding electrodes causes the strip 15 to tighten its grip on the braid. The term weld is used above to denote the connection between the strip 15 and the spade end portion 14, but it is to be understood that since the strip 15 is nickel plated then the plated layer of nickel on the strip may act as a brazing material so that the connection between the strip and the spade end portion night be more properly described as a braze. Similarly, it is possible, as mentioned above, that the braid also becomes brazed to the strip 15 with the nickel plating on the strip 15 again constituting the brazing material. Moreover while in the example described above the strip 15 extends trans- verse to the length of the tube 13, across the spade end portion 14 thereof, where it is necessary to provide a right angled connection between the braid and the tube 13 then the strip 15 can be orientated with respect to the spade end portion 14 so that the strip extends parallel -to the length of- the tube. In such a situation in order to ensure that there is no increase in the length of the rigid part of the device, the length dimension of the strip 15 when crimped around the braid, will be such that when the two rolled over portions of the strip engage the spade end portion 14 of the tube, then the strip does not project beyond the axial free end of the spade end portion 14. It will be recognised that although the foregoing method is of particular benefit when making a connection between a copper braid and a terminal of a press-fit diode, in that the connection can be made without any effective increase in the length of the terminal, a similar method can be employed to produce a strong connection between a metal braid and a whole range of other metal members. Generally the electrical and physical connection of a braid to a metal member is problematic in that the braid must remain readily flexible, but strong. Attempts have been made in the past to weld a braid directly to a metal member without the use of an intervening connector tag, and in such attempts i is found that the braid tends to fracture in use, very close to the point at which it is welded to the metal member. This is because the welding of the braid to the metal member renders the braid solid at the point of weld and also usually produces a reduced thickness region at the periphery of the weld with the attendant risk of fracture of the braid at this point.
CLAIMS 1. A method of connecting a metal braid to a metal member, including the steps of crimping a strip of metal around the braid so that the strip is electrically connected to, and physically grips, the braid, the crimping operation in effect rolling the two end regions of the strip so that they extend towards the intermediate region of the strip trapping the braid, contacting the two rolled end regions of the strip against the metal member and effecting a weld between the rolled end regions of the strip and the metal member. 2. A method of connecting a metal braid to a metal member, including the steps of crimping substantially as hereinbefore described with reference to and as shown in the accompanying drawings. 3. A metal braid connected to a metal member by the method claimed in claim 1 or claim 2.
LUCAS INDUSTRIES PUBLIC LIMITED COMPANY
ALLEN, DEREK EDWARD; GOODMAN, DENNIS GEORGE
EP-0005023-B1
5,023
EP
B1
EN
19,820,113
1,979
20,100,220
new
F22B37
B23B3
F22B37, B23B3, B23C3
B23B 3/26B, F22B 37/00C
STEAM GENERATOR TUBESHEET FACE MACHINING APPARATUS
Apparatus for machining the face of a tubesheet disposed in a steam generator shell from which the tubes have been removed, said apparatus being mounted on primary support means welded to the inner wall of said steam generator shell, and secondary support means removably attached to said primary support means, said primary and secondary support means (64, 70) consisting of a large diameter anti-friction bearing (60) having a non-rotatable outer bearing race (62) mounted on a support ring (63) and a rotatable inner bearing race (61) carrying a circular turntable (42) removably attached to the rotatable inner bearing race (61), and having a machining tool assembly (41) disposed on a face thereof adjacent to the tubesheet (40) for machining the corresponding face thereof during rotary movement of said turntable (42). With this arrangement remote machining of the surface of the tubesheet is facilitated.
STEAM GENERATOR TUBE SHEET FACE MACHINING APPARATUS This invention relates to apparatus for effecting retubing of a steam generator in a nuclear power plant. Nuclear reactor power plants utilize a steam generator having a tube bundle to transfer heat from a primary side reactor-heated-liquid to water on a secondary side to form steam for driving a turbine. Condenser leaks in the power plants have caused circulating water, which is often brackish, to mix with the secondary-side water in the steam generator, resulting in the build-up of undesirable chemicals in the tube bundle. Water treatment and blowdown have not completely protected the steam generator tubes from corrosion and leaks. As the number of tubes subject to such leaks increases, the desirability of replacement or repair of the steam generator increases. Since removal of a steam generator intact from a nuclear power plant requires removal of a large portion of a reinforced concrete containment vessel, replacement of such generator in such manner becomes time consuming, expensive, and therefore undesirable. In on-site retubing of a nuclear plant steam generator, it has been proposed, for example, to remove a top portion of the steam generator shell to gain access to the tube bundle for removing same. Following removal of the tube bundle tubes for replacement, the faces of the tubesheet must be reconditioned and this must be done remotely, since the area within the steam generator shell is radioactive. It is therefore the principal object of the present invention to provide an apparatus which can perform such operation by automatic or remote control. With this object in view, the present invention resides in apparatus for machining the face of a tubesheet disposed in a steam generator shell from which the tubes have been removed, said apparatus being mounted on primary support means welded to the inner wall of said steam generator shell, and secondary support means removably attached to said primary support means, characterized in that said primary and secondary support means consists of a large diameter anti-friction bearing having a nonrotatable outer bearing race mounted on a support ring with adjustable centering means and a rotatable inner bearing race carrying a circular turntable which is parallel to the tubesheet face and removably attached at its outer periphery to said rotatable inner bearing race, said turntable having a machining tool assembly disposed on a face thereof adjacent to said tubesheet for machining the corresponding face thereof during rotary movement of said turntable, said machining tool having a head which is radially movable on said turntable, said turntable having power operated drive means for turning said turntable during operation of said machining tool assembly The invention will become more readily apparent from the following description of a preferred embodiment thereof shown, by way of example only, in the accompanying drawings, in which: : Figure 1 is a vertical perspective view of the tube-containing portion of a nuclear power plant steam generator shown partially in section; Figure 2 is a vertical view partly in outline and partly in section, showing a preferred embodiment of the present invention affiliated with the shell and tubesheet of a steam generator such as shown in Figure 1 from which the tube bundle depicted in such Figure 1 has been removed; Figure 3 is a bottom view of the a######s?#f Figure 1; and Figure 4 is an alternate mounting arrangement for a machining tool assembly of the apparatus of Figures 2 and 3. Referring to Figure 1 in the drawings, the steam generator 1 with which the tubesheet face machining apparatus of the present invention is intended to be employed in connection with replacement of the tube bundle 23 therein typically includes a vertically oriented shell 3 having a lower cylindrical portion 5, an upper cylindrical portion 7, larger in diameter than the lower portion, and a frustoconical transition portion 9 joining the lower and upper portions 5 and 7. A tubesheet 11 is disposed in the lower end of the lower portion 5 of the shell and has a plurality of holes 12 for accommodating the ends of Ushaped tubes 13 which extend upwardly from the tubesheet 11 and are closely packed to form the tube bundle 23 disposed vertically within the lower portion 5 of the shell 3. A hemispherical channel head 15 is fastened to the tubesheet 11 and has a divider plate 17 disposed therein. A primary fluid inlet nozzle 19 supplies heated affluent primary fluid from a nuclear reactor core (not shown) to one portion of the channel head 15 and a discharge nozzle 21 is disposed in the channel head 15 to return the affluent primary fluid to such reactor core. A plurality of support plates 25 are disposed throughout the tube bundle 23 to support the tubes 13 at various locations along their length to reduce flowinduced vibrations. Anti-vibration bars 27 are also disposed adjacent to the bends in the tubes 13 to prevent vibration in this portion of the tube bundle 23. A wrapper or sleeve 29 is disposed between the tube bundle 23 and the shell 3 so as to form an annular space 31 therebetween. The upper part of the upper section 7 of the shell as shown in Figure 1 has been removed to gain access to the interior of the steam generator in preparation for removal and replacement of the tube bundle therein. Various components of the steam generator usually disposed in the upper section 7 of the shell 3 also have been removed from the steam generator as shown in Figure 1 to provide access to the top of the sleeve 39 encircling the tube bundle 23. Typical operation of the steam generator, which per se forms no part of the present invention, involves the flow of heated primary fluid from a nuclear reactor core upwardly through the tubesheet 11 and one branch of the U-shaped tube bundle 23 and downwardly through the other branch of such tube bundle and back through the tubesheet 11 to the discharge nozzle 21, while secondary fluid above the tubesheet 11 and outside the tube bundle 23 becomes heated to form steam for conveyance by conduit means (not shown) to a turbine (not shown) operated by such steam. Referring to Figures 2 and 3 in the drawings, the machining apparatus of the present invention is affiliated with the lower section 5 of the shell 3 of the steam generator shown in Figure 1, for machining the upper surface 40 of the tubesheet 11 disposed in such steam generator. In accordance with the presently preferred embodiment, such apparatus comprises a face milling cutter assembly 41 carried on the lower face of a turntable 42 disposed above and parallel to the upper surface 40 of the tubesheet 11. By rotation of the turntable 42 about its central axis 43, a milling cutter head 44 at the lower end of the cutter assembly 41 is caused to machine a circular path on the upper surface 40 of the tubesheet 11. The milling cutter assembly 41 depends from a circular mounting member 45 adapted to assume different lockable rotary positions about a vertical pivot axis 46 located on the turntable 42 at one side of its axis of rotation 43. The cutter assembly 41 is so constructed and arranged that the cutter head 44 occupies the position near the outer periphery of the circular mounting member 45 so that as the rotary position of such mounting member is changed about its pivot axis 46, the radial position of cutter head 44 with respect to the turntable axis 43 is also correspondingly changed. The path along which such cutter head 44 may be positioned about the pivot axis 46 is shown schematically in Figure 3 as the circular dotdash line 46. It will be understood that in each selected rotary position of the cutter head 44 about the pivot axis 46 of mounting member 45, the turntable 42 will make at least one turn about its central axis 43 to cause a circular machining cut to be made on the upper surface 40 of the tubesheet 11. By suitable choice of such rotary positions for the cutter 44 about the pivot axis 46 and the corresponding choice of rotations of the turntable 42 about its central axis 43 the entire upper surface of the tubesheet 11 may be scanned by the cutter head. The pivot axis 46 for the mounting member 45 may be defined by a vertical shaft 48 extending downwardly from the turntable. To lock the circular mounting member 45 in any one of its selected rotary positions about the pivot axis 46, a plurality of manually-actuable locking screws 49 are provided that include finger members 50 cooperable with a shoulder 51 in the mounting member 45 to urge such member into locking engagement with a machined surface on the underside of the turntable 42. Operating personnel (not shown) located above the turntable 42 may effect such repositioning of the mounting member 45 for the cutter assembly 41, including locking and unlocking the screws 49 manually, by way of a plurality of through openings 52 extending downwardly through the turntable 42. The cutter assembly 41 includes such as an hydraulic drive motor 53 operatively connected to the cutter head 44 through the medium of a gear drive mechanism 54. The motor 53, gear mechanism 54, and cutter head 44 are mounted on vertical guide members 55 affiliated with a downwardly extending pedestal part of the assembly to permit adjustment in the vertical positioning of the cutter head 44 to control depth of cut, for example, during machining of the upper surface 40 of the tubesheet 11. To facilitate such vertical adjustment a rack and pinion arrangement 56 operated by a hand wheel 57 is provided. Locking screws 58 provide for securing the cutter head 44 and its drive members in selected vertical positions on the guide members 55. It would be appreciated that the depth of cut adjustment for the cutter head 44 as effected through operation of the hand wheel 57 and of the locking screws 58 will be effectuated manually by way of the through openings 52 in the turntable 42; the rate of rotation of such turntable during operation of the equipment being relatively slow so that the depth of cut adjustment can be made during such turntable rotation, if desired. The turntable 42 is adapted for turning movement about the central axis of the steam generator shell 3 by way of a large diameter ball bearing assembly 60 having an inner race 61 bolted to the top of the turntable 42 at its outer periphery and an outer annular race 62 that is bolted to the top of a support ring 63 that encircles the turntable 42. The support ring 63 includes an annular flange portion 64 that either directly or indirectly rests on a plurality of support lugs 65 that are welded to the interior of the steam generator shell 3 and disposed in spaced-apart circular array at a selected height above the upper surface 40 of the tubesheet 11. The machining apparatus of the present invention is adapted to be employed with different steam generator shell diameters, such as thirty-three inch, fifty-one inch, forty-four inch, etc. In the case of the smaller diameter, the annular flange 64 of the support ring 63 will rest directly on top of the support lugs 65 welded to the generator shell as shown in the left-hand portion of the drawing in Figure 2. By the use of spacer members 66 removably attached to the lugs 65 welded to the tube shell 3, as shown in the right-hand portion of the drawing of Figure 2, the machining apparatus can be adapted for operation in the larger sizes of such generator shell. For centering of the support ring 63 within the shell 3, and thereby centering the turntable 42 coaxially within such shell, a plurality of jack screws 70 are provided. For effecting turning of the turntable 42 to obtain the feeding of the rotating cutter head 44 along its circular paths atop the tubesheet 11, the apparatus is provided with a drive gear 71 operated by a motor 72 mounted on the outer ring 62 of the ball bearing assembly. The drive gear 71 cooperates with teeth 75 formed in the inner periphery of the inner race 61 of the ball bearing assembly 60. It will be apparent from the foregoing that other tools may be substituted for the milling cutter head 44. For example, in some circumstances it may be desirable to provide for reboring of the tube holes 12 in the tubesheet 11, in which case a drilling or boring tool would be substituted for the face milling cutter head 44. Referring to Figure 4, rather than being turnable about the pivot axis 46, the mounting member 45 may be reconfigured and made positionable along a straightline radial path 80 on the turntable 42 to change the radius of the circular cutting path taken by the cutter head 44 during machining operation.
What we claim is: 1. Apparatus for machining the face of a tubesheet disposed in a steam generator shell from which the tubes have been removed, said apparatus being mounted on primary support means welded to the inner wall of said steam generator shell, and secondary support means removably attached to said primary support means, characterized in that said primary and secondary support means (64,70) consists of a large diameter anti-friction bearing (60) having a non-rotatable outer bearing race (62) mounted on a support ring (63) with adjustable centering means (70) and a rotatable inner bearing race (61) carrying a circular turntable (42) which is parallel to the tubesheet face (40) and removably attached at its outer periphery to said rotatable inner bearing race (61), said turntable (42) having a machining tool assembly (41) disposed on a face thereof adjacent to said tubesheet (40) for machining the corresponding face thereof during rotary movement of said turntable (42), said machining tool (41) having a head (44) which is radially movable on said turntable (42), said turntable (42) having power operated drive means (72) for turning said turntable (42) during operation of said machining tool assembly (41). 2. An apparatus as claimed in claim 1, characterized in that said support ring (63) encircles said turntable and supports said outer bearing race (62), said inner bearing race (61) having gear teeth (75) at its inner surface, and said drive means (72) being a motor supported on said outer bearing race (62) and having a gear (71) in engagement with the gear teeth (75) of said inner bearing race (61). 3. An apparatus as claimed in claim 1, or 2, characterized in that said mounting means (45) is pivotally mounted on said turntable (42) with a pivot axis normal to said turntable (42) so as to effectuate the aforesaid radial position adjustment of said machine tool assembly (41) by pivoting said mounting means (45). 4. An apparatus as claimed in claim 1, 2, or 3, characterized in that said machining tool assembly (41) includes a power-operated cutter head (44) and adjustable support means (55,56) for advancing and retracting the position thereof relative to the aforesaid tubesheet (40) to be machined.
WESTINGHOUSE ELECTRIC CORPORATION
COOPER, FRANK WILLIAM; PEKAR, FRANK MICHAEL
EP-0005025-B1
5,025
EP
B1
EN
19,831,019
1,979
20,100,220
new
B65D1
null
B65D1
B65D 1/16B
LIGHTWEIGHT METAL CONTAINER
A lightweight metallic container is disclosed and claimed having a side wall and an effective rigid bottom wall integral therewith. The side wall and bottom wall merge to define a first inclined face, the inclined face forming an angle of between about 35° and 45° with respect to the axis of said container, a tapered member is provided and is integrally formed at the juncture of the side wall and inclined face, the member having a taper angle in a given range and a given wall taper thickness, an annular surface integrally connected to the first inclined wall for supporting the container, a second inclined face integrally connected to the annular surface, and a curved panel integrally connected with the second inclined face. The curved panel is so formed that it has a radius of curvature greater than the diameter of the annular surface. The height of the second inclined face is less than half the height of the first inclined face. The metallic container as so defined has an improved bottom configuration that provides for substantial column strength as well as internal pressure stability. One important feature of the subject bottom configuration is the reduced amount of metal used to manufacture the container.
LIGISTWEIGHT METAL CONTAINER The present invention relates to metal container bodies and more particularly to metal container bodies of the seamless variety comprised of a side wall and a bottom formed integrally therewith. The container bottom of the subject invention has an improved configuration to provide for adequate column strength along the vertical axis of the container as well as stability against internal pressure generated by the contents of the container after it has been closed and sealed. There have been numerous container configurations produced by manufacturers and this has been especially true for the two-piece container manufacturer, that is, a container having a body that has an integral bottom wall at'an end and the opposite end is' configured to have a closure secured thereto. Container manufacturers package beverages of various types in these containers formed of either steel or aluminum alloys. ' The most ideal type of container bottom wall would be a flat wall which would allow for maximum capacity for a given container with a minimum height. However, such a container is not economically feasible because in order to prevent deformation the thickness of the bottom wall would have to be of such magnitude that the cost of the container would be prohibitive. In order to negate these costs drawing and ironing processes have been installed and extensively used in recent years, especially for the aluminum container industry. In the production of these containers that utilize drawing and ironing it is important that the body wall and bottom wall of the container be as thin as possible so that the container can be sold at a competitive price. Much or has been done on thinning the body wall. Aside from seeking thin body wall structures various bottom wall configurations have been investigated. In this regard strength of the container was a paramount factor in these investigations. An early attempt in seeking sufficient rigidity of the bottom wall is to form the same into a spherical, dome configuration. The bottom wall is thereby provided with an outwardly concave dome or depression which extends substantially throughout the bottom wall of the container. In effect, this domed configuration provides increased strEngth and resists deformation of the bottom wall under increased internal pressure of the container with little change in the overall geometry of the bottom wal throughout the pressure range for which the container is designed. Various modifications of the dome configuration hae been manufactured. In this regard, the dome structure itself was integrally formed with other curvilineal or walled-members, usually at different inclinations to that of the longitudinal axis of the container in order to further strengthen the container structure. Although such modifications rendered improved ridigity and stability it has been found that such characteristics can still be achieved and in some aspects even improved upon with a minimum of metal being required. Although this domed configuration allows container manufacturers to somewhat reduce the metal thickness,these manufacturers are continuously working on techniques that will allow for further reduction in metal thickness without sacrificing container rigidity. An optimized configuration has not been an easy task. A number of containers are known and described in the patent literature having a circular side wall and an integral bottom wall comprising an inwardly domed panel having a nose or connecting protion around the periphery thereof that merges with the side wall. The connecting portion itself generally comprises an annular supporting member or bead having connected thereto an arcuate section or sections. Containers provided with this general type of bottom structure are illustrated in a number of prior art examples. For example, one example discloses a container having an integral bottom with a domed center panel recessed inwardly, and another ex shows a can structure having an integral bottom portion provided with a bead member with inclined surfaces and recessed domed panel. A further prior art example shows a can bottom defined by inclined surfaces extending from the side wall and a recessed domed center panel. A still further prior art example is a container having outer and inner inclined surfaces with a recessed domed center panel. Also, the prior art discloses a container having a bottom wall including an ellipsoidal dome surrounded by a substantial vertical wall portion which merges with the side wall of the container along an outwardly directed bead. Finally,the prior art discloses a container having a domed center portion that is recessed inwardly. As is known, a large quantity of containers are manufactured annually and the producers thereof are always seeking to reduce the amount of metal utilized in making containers while still maintaining the same operating characteristics. Simply, a change in equipment could be very costly. Because of the large quantities of containers manufactured a small reduction in metal thickness, even on the order of one thousandths of an inch, would definitely reduce manufacturing costs substantially. Of course, reduction in metal thickness cannot be exercised indiscriminately since failure of packaged materials would often result and especially with the packaging of pressurized materials such as beer, ale or other carbonated beverages which exert a high pressure in the container. The present invention provides a lightweight metal container having a side wall and an effective rigid bottom wall integral therewith, said side wall and bottom wall merging to define a first inclined face, said inclined face forming an angle of between about 350 and 450 with respect to the axis of said container, the ratio of the thickness of said bottom wall to the thickness of said side wall being about 3.2 or less, a tapered member integrally formed at the juncture of said side wall and inclined face, said member having a taper angle in the range of about 1.30 to about 2.2 and a wall taper thickness of between about 0.006 inch and about 0.010 inch, an annular surface integrally connected to said first inclined wall for supporting the container, a seccnd inclined face integrally connected to the annular surface, the height of said second inclined face being less than half the height of said first inclined face, and a curved panel integrally connected with said second inclined face, said curved panel having a radius of curvature greater than the diameter of the annular surface. The instant invention is directly concerned with pro viding a metal container configuration made withV w U 4 slightly less metal than containers of almost similar structural appearance. Although the amount of metal saved per container is small, it certainly is significant since many thousands of containers are produced and therefore any savings would be substantial. In brief, the subject invention relates to an improved bottom structure that can be manufactured with less metal and yet be consistent with strength and volume requirements for containers of almost the same general appearance. The particular metal container of the subject invention is profiled in such a way that column strength, pressure stability and other characteristics are not jeopardized yet the amount of metal utilized in producing the container structure is slightly yet significantly reduced. In particular, the container is specifically configured to be capable of withstanding substantial internal pressure without deforming in the order of 95 psi and loads of the order of 350 pounds and still retaining its serviceability. Moreover, the instant invention is concerned with providing a seamless metal can structure that is particularly advantageous as regards minimal metal thickness for a domed configured can bottom consistent with other strength and stability requirements. The improved configuration of the container bottom of the instant invention is much that where the contVal,nverL is a drawn and ironed container it can be readily formed in the tool pack of a conventional or standard draw and iron can bodymaker and at the end of the ironing operation so that no separate and costly operation need be used. It is known that a beveraye carrying a charge of carbon dioxide when packaged in a relatively thin drawn and ironed metal container has a tendency to evert or buckle outwardly when exposed to the forces that develop within such a container under certain conditions, and expecially during pasteurization or storage at warm temperatures. As noticed by the aforementioned collection of prior art patents, container manufacturers have been striving endlessly to produce a competitively priced container that has sufficient resistance to eversion or buckling when exposed to high pressures that often develop within the container. Although the varied configurations of the prior art have admittedly answered well, they have fallen short of the optimum. The subject invention provides a savings in metal over related structures because of the thinner gauges employed and a balance of structural components comprising the metal container of the profiles herein described and defined. The objects and advantages of this invention will be apparent to those skilled in the art from the following description of the accompanying drawings, in which: FIGURE 1 is an elevated view in partial section showing a container body with an end profile in accordance with the subject invention; FIGURE 2 is a fragmentary cross-sectional illustration of the blotto portion of a container of the subject invention; and FIGURE 3 is a greatly enlarged fragmentary illustration of bottom body area of a container showing the novel tapered configuration of the subject invention. In accordance with several important aspects of this invention, the bottom portion of the metal container is provided with a specially configured feature to be described in more detail herein. In general, the metal container has a side wall and an effective rigid bottom wall integral therewith, said side wall and bottom wall merging to define a first inclined face, said inclined face forming an angle of between about 350 and 450 with respect to the axis of said container, the thickness of said first inclined face being greater than the thickness of said side wall, a tapered member integrally formed at the juncture of said side wall and inclined face, said member having a taper angle in the range of about 1.30 to 2.2 and a wall taper thickness of between about 0.006 inch and about 0.0: :0 inch, an annular surface integrally connected to said first inclined wall for supporting the container, a second inclined face integrally connected to the annular surface, the height of said second inclined face being less than half the height of said first inclined face, and curved panel integrally connected with said second inclined face. The lightweight metal container comprises a unitary structure having a seamless cylindrical side wall and a bottom wall integrally formed with the side wall at the lower portion thereof, said bottom wall comprising a tapering surface extending downwardly from said side wall, said tapering surface forming a taper angle in the range of about 1.30 to about 2.2 and a wall taper thickness of between about 0.006 inch and about 0.010 inch in excess of said side wall,an outer frustoconical surface extending downwardly and inwardly from said tapering surface toward the axis of said container, said outer frustoconical surface forming a bottom angle of about 350 to about 45 with respect to the longitudinal axis of the container, a bottom radius integrally connected with and extending downwardly from said outer frustoconical surface providing an annular supporting surface for the container, an inner frustoconical surface integrally connected with said bottom radius and extending upwardly and inwardly from said annular supporting surface toward the axis of said container, the height of said inner frus,,oconical surface being reTsg than half the height of said outer frustoconical surface, and a downwardly concave center panel integrally connected with said inner frustoconical surface and extending upwardly and inwardly from said inner frustoconical surface to the axis of said container, said center panel extending slightly above the height of the outer frustoconical surface. with reference to the drawings, Figure 1 depicts a seamless metal container 17 provided with a side wall 10 and an outer substantially frustoconical surface 11 extending downwardly and inwardly from the side wall 10 to the axis of said container, an annular bead 15 extending from the first frustoconical surface providing an annular supporting surface for the container, an inner substantially frustoconical surface 13 extending upwardly and inwardly from the annular head 15 toward the axis of the container, and a recessed domed center panel 12 extending upwardly and inwardly from the inner frustoconical surface to the axis of the container. It should be stated that container body 17 may be readily produced in a draw and iron press, the container bottom 18 being integrally connected to the side wall 10 and can be easily shaped on a standard and appropriate bottom doming device. Referring now to Figure 3 there is shown a greatly enlarged view of a tapered configuration of the subject invention where te side wall 10 and outer frustoconical surface 11 unite. In particular, this configuration is integrally connected with the side wall and comprises a taper angle G formed from a point 0 one side of which is parallel to the inner side wall and the other being tangent to an inner sloping side 19. It has been found that the taper angle G'should be between about 1.3 and about 1.70 for steel containers and between about 1.8 and about 2.20 for aluminum containers. The taper thickness and taper angle affects such container qualities as denting as well as column strength and the subject invention has substantially optimized these characteristics for the containers herein described. As shown in further detail in Figure 2, the container bottom 18 is provided with a recessed domed center panel 12 that is so configured that it approximates the segment of a sphere having a radius of curvature J and recessed to a particular height K. It is preferred that the height of the inner frustoconical surface P be substantially less than the height of outer frustoconical surface. In accordance with this invention it is preferred that the height of the inner frustoconical surface P be less than half the height of the outer frustoconical surface. The inner frustoconical surfaced 13 and the axis of the container form an has been found to lie in the range of about 80 to about 00. In particular, the preferred range for aluminum containers is about 120 + 4 while the preferred range for steel containers is about 160 + 4. The outer frustoconical surface 11 and the axis of the container form a further angle F. It has been found that the angle F be limited to a range of about 35 to about 45 with 40 being preferred. It will be appreciated that as the angle F increases the concavity of the bottom radius 15 decreases and would result in a smaller diameter of support H. Of course, too small a radius of support H for a given container would render it less stable and more likely to tip over. An important aspect of the instant invention is the wall taper thickness. This is depicted in Figure 3 as C therein and is the: added thickness in excess of the wall thickness D. In general, the side wall thickness for a 12 ounce aluminum container is about 0.0049 t 0.0004 inch, and for a 12 ounce steel container the side wall thickness is about 0.0038 + 0.0004 inch. Thus, the tapering of wall 19 adds a slight but additional thickness, referred to as wall taper thickness and has been found to most advantageous when about 0.007 inch + 0.001 inch for steel containers and about 0.009 inch + 0.001 inch for aluminum containers. The aforementioned wall taper thickness in conjunction with the wall taper angle when in ranges herein disclosed provide a very economical metal container having suitable column strength and internal pressure rigidity. Of course, the wall taper thickness and side wall thickness are integral and are not separate one from the other. When total maximum thickness is reached (about 0.0110 inch for steel and 0.0135 inch for aluminum containers) the outer frustoconical surface is reached, this surface having a thickness of about the starting container stock thickness. Illustrative dimensions for aluminum and steel containers of Figures 1 and 2 are as follows where the thickness of the center panel is 0.0135 inch for aluminum and 0.0110 inch for steel. For Cans Having a Body Diameter L of About 2.60 Aluminum Steel Metal Thickness, M 0.0135 0.0120 Wall Thickness, D 0.0049 0.0038 Nose Diameter, H 2.150 2.150 Dome Depth, K 0.3650 0.3300 Height of Outer Surface,N 0.274 0.273 Height of Inner Surface,P 0.103 0.105 Center Panel Radius, J 2.3500 2.9000 Bottom Angle, F 400 400 Doe Wall Angle,E 120 16 Wall Taper Angle, G 20 1.50 Wall Taper Thickness,C 0.0090 0.0070 Can Weight,Lbs.1000 29.0 68.0 Stability Angle, Filled 240 240 Column Strength,Lbs. 450 600 reversion Ttesistance,psig 100 105 Ratio of Radius of Curvature (J) to Nose Diameter(H) 2J 2.186 2.698 H Ratio of metal Thickness M to Wall Thickness D 3.0 3.2 For Cans Having a Body Diameter L of about 2.47 Aluminum Steel Petal Thickness,M 0.0135' 0.0110 Wall Thickness ,D 0.0049' 0.0038 Nose Diameter, 2.100 2.100 Doe Depth, 0.3500 0.3200' eight of Cuter Surface,N 0.228 0.226 eight of Inner Surface,P 0.102 0.103 Center Panel Radius,J 2.3500 2.9000 Bottom Angle, F 400 40 Dome Wall Angle,E 12 16 Wall Taper Angle, G 20 1.50 Wall Taper Thickness,C 0.0090 0.0070 Can Weight,Lbs.1000 28.8 66.2 Stability Anyle,Filled 220 220 Column Strength,Lbs. 480 550 Eversion Pvesistance,psig 105 100 Ratio of Radius of Curvature (J) to Nose Diameter (H) 2J/H 2.38 2.762 Ratio of Metal Thickness M to Wall Thickness D 3.0 3.2 Stability of a metal container is an to the maker and to the consumer. Unstable cans interfere with the operation of the filling and packing machinery. Such machinery operates at high speed and cans which rock or wobble excessively cannot be handled by the machinery. From the viewpoint of the consumer, a can which tips or wobbles is not satisfactory. Stability of a can body was measured by placing a can on a flat and level surface and gradually tipping from vertical until an angle is reached at which the can becomes unstable and tips over and at about this instant the angle from the can center line to vertical is recorded and is called the stability angle. As for the column strength determination, measurements were made by placing the can body vertically and pressing it downward on a base plate of standard testing machine and a force is applied at a constant rate to the upper end of the can body, evenly distributed around the upper edge, and at the instance the can body fails the force is observed and recorded. As is known, cans employed for the packaging of pressurized products such as beer or carbonated beverages must be able to withstand internal pressures of about 95 psi. Beer is usually pasteurized in the filled and sealed can-at a temperature and for a time which results in an internal pressure of 85 psi. Generally to allow for error of temperature or time, the minimum acceptable pressure capacity of 90 psi. On the other hand, carbonated beverages vary according to the degree of carbonation. The highest degree of carbonation is encountered with club soda water which may produce an internal pressure at 1000 F of about 95 psi. Since the same can body should be useful for all pressurized beverages 95 psi is taken as the minimum pressure capability. In order to determine eversion resistant the amount of pressure that a can body can withstand is measured. Tbe can bottom is clamped by a side wall so that the side wall is sealed and the can bottom is unsupported and free. Hydraulic fluid is introduced into the can and the pressure indicated by a gauge. At the instant the can bottom reverses from concave outward to convex outward the pressure is observed and recorded. It has been found that the instant invention provided a significant increase in resistance to eversion so that more rigid and stiffer containers can be produced by having the dimensions described herein. It will be readily appreciated that when the radius of curvature J of the center panel 12 is made smaller there is more resistance to eversion of the center panel than a container having a larger radius of cur vature. It has been determined, however, that it was advantageous not to make a metal container with too small a radius of curvature. At first it was thought that by going to a larger radius of curvature the center panel would thereby be made structurally weaker and un serviceablead,u.e to the likelihood of eversion. On the contrary, it was surprising to find that the container itself having the configuration herein described was made stronger. Not only was the average or mean eversion resistance increased thereby, but also the range of pressure at which failure occurred was markedly reduced around-that-mean- It was further observed that in those few cases where failure did occur it was not catastrophic because the failure did not affect the bottom annular surface which supports the containers and therefore the container would still remain in its upright position. From the above it is clear that an essential feature of the instant invention is the degree of curvature of the domed panel itself. As already stated, the greater the concavity of such a.panel the greater its strength. In this regard, however, it was discovered that the -concavity must not be too great and that the radius of curvature for the dome panel must be greater than the nose diameter, i.e., J H. This relationship is important in that by having a predetermined range for the radius of curvature tne forces that come to bear upon the dome surface to cause eversion are in balance or substantially equal to that acting upon the inner frustoconical surface to cause its eversion. The ana loy of a chain being no stronger than its weakest link would be appropriate here. In the subject invention the forces required to cause eversion or buckling of the dome would be equal or substantially equal to those required to cause eversion of buckling of the inner frustoconical wall. In effect, there is an equalized strengthening of the load-bearing properties for the respective structural elements or surfaces of the subject invention. Simply, the two inner contiguous surfaces of the container bottom, vis., the dome and its connecting inner frustoconical surface, have in' accordance with this invention been equalized or substantially equalized in their load bearing capacity. In addition to this strengthening feature of the container bottom, the relatively larger radius of curvature allows a somewhat flatter dome so that a container manufacturer is able to produce a slightly smaller body diameter or container height and still contain a volume equal to that of the prior art container (i.e., conventional 12 ounce can) which has a slightly higher dome by virtue of a smaller radius of curvature. It has been found, moreover, that the fluid volume to metal weight ratio for the container made in accordance with this invention is greater than similar prior art containers. Thus, the subject invention may use relatively thin metal stocks, i.e., thickness in the range of about 0.0135 or less for aluminum stock and about 0.0110 or less for steel stock. In general, it has been determined that the ratio of panel wall thickness to side wall thickness for aluminum Containers should be 3.00 or less whereas for steel container this ratio should be 3.20 or less. When such thick stock materials are employed and are made to conform to the other struc tural features-herein defined and claimed there is found a substantial savings in metal as compared to cans of similar configuration but not possessing these optimum characteristics. Furthermore, as already alluded to, the stability of the container after eversion is enhanced by the subject invention in that the container disclosed herein remains stable. It will be appreciated that a container having a smaller radius of curvature or greater concavity for the dome would more than likely upon eversion result in an unstable container due to the outwardly everted portion of the bottom structure that would extend beyond the supporting member. From the above it can be said that when the radius of curvature of the dome is larger than the nose aiiereer there are advantages of this relationship in that (1) there is sub-stantial- equalization of load bearing characteristics of the dome and the inner surface so that the forces or pressures that would tend to evert either the-dome or the inner surface are about equal, (2) a slightly smaller body diameter or container height may be manufactured since a given container would have a slightly flatter dome and as a result the fluid volume to weight ratio. for the container would be greater than that of the prior art, and lastly (3) there would be a -tendency to a better stability of the container even after eversion. It will be appreciated upon further consideration of these advantages that the first two would lessen the amount-rf metal required to construc:t ¯- a container. A wide range of ferrous and aluminum-base alloys may be used for container stock to produce the containers in accordance with the subject invention. The preferred ferrous or steel stock are those of low-carbon killed steels of commercial drawing quality. They are of the continuous or ingot casted types wherein their killing media may be either aluminum or silicon. A preferred type of steel is the continuously-casted steel having various annealed tempers, such as the T-I annealed temper. Although a wide range of aluminum-base alloys may be employed for the container stock of the subject invention, a preferred aluminum-base alloy is 3004 H-19 aluminum-base stock of good drawing and ironing quality. It will be appreciated that a container constructed in accordance with the teachings of the present invention will allow the manufacturer to reduce the metal utilized without. sacrificing rigidity or substantially decreasing the resistance to eversion usually achieved by using a material having a thickness corresponding to what is presently used -for these types of containers.
CLAIMS: 1. A lightweight metal container having a side wall and an effective rigid bottom wall integral therewith, said side wall and bottom wall merging to define a first inclined face, said inclined face forming an angle of between about 350 and 450 with respect to the axis of said container the ratio of the thickness of said bottom wall to the thickness of said side wall being about 3.2 or less, a tapered member integrally formed at the juncture of said side wall and inclined face, said member having a taper angle in the range of about 1.30 to about 2.20 and a wall taper thickness of between about 0.006 inch and about 0.010 inch, an annular surface integrally connected to said first inclined wall for supporting the container, a second inclined face integrally connected to the annular surface, the height of said second inclined face being less than half the height of said first inclined face, and a curved panel integrally connected with said second inclined face, said curved panel having a radius of curvature greater than the diameter of the,. annular surface 2. -The container of claim 1, wherein said first inclined face forms an angle in the range of about 400 with respect to the axis of the container. 3. The container of claim 1 or 2, wherein said taper angle is about 1.50 and the wall taper 'thickness is about 0.007 inch. 4. A lightweight metal container capable of withstanding a substantial internal pressure without eversion comprising a unitary structure having a seamless cylindrical side wall and a bottom wall integrally formed with said side wall at the lower portion thereof the ratio of the thickness of said bottom wall to the thickness of said side wall being about 3.2 or less said bottom wall comprising a tapering surface extending downwardly from said side wall, said tapering surface forming a taper angle in the range of about 1.30 to about 2.20 and a wall taper thickness of between about 0.006 inch and about 0.010 inch in excess of said side wall, an outer frustoconical surface extending downwardly and inwardly from said tapering surface toward the axis of said container, said outer frustoconical surface forming a bottom angle between about 350 and about 450 with respect to the axis of the container, a bottom radius integrally connected with an extending downwardly from said outer frustoconical surface providing an annular supporting surface for the container, an inner frustoconical surface integrally connected with said bottom radius and extending upwardly and inwardly from said annular supporting surface toward the axis of said container, the height of said inner frustoconical surface being less than half the height of said outer frustoconical surface and a downwardly concaved center panel integrally connected with said inner frustoconical surface and extending upwardly and inwardly from said inner frustoconical surface to the axis of said container ? said downwardly concaved center panel having a radius of curvature greater than the diameter of the annular supporting surface. 5. The container of claim 5, wherein the radius of curvature of said downwardly concaved center panel is in the range of about 2.250 inches to about 3.000 inches. 6. The container of claim 4 or 5, wherein said inner frustoconical surface forms an angle in the range of about 8 to about 200 with respect to the axis of the container. 7. The container of any of the preceding claims, wherein said taper angle is about 1.50 and the wall taper thickness is about 0.007 inch. 8. The container of any of the preceding claims, wherein said taper angle is about 2.00 and the wall taper thickness is about 0.009 inch. 9. A lightweight metal container capable of withstanding a substantial internal pressure without eversion comprising a unitary structure having a seamless cylindrical side wall and a bottom wall integrally formed with the side wall at the lower portion thereof, the ratio of the thickness of said bottom wall to the thickness of said side wall being about 3.2 or less, said bottom wall comprising a tapering surface extending downwardly from the side wall said tapering surface forming a taper angle between about 1.30 to about 2.20 and a wall taper thickness between about 0.006 inch and about 0.010 inch in excess of the side wall, an outer frustoconical surface extending downwardly and inwardly from said tapering surface toward the axis of said container, said outer frustoconical surface forming a bottom angle between about 350 and about 450 with respect to the axis of the container, a bottom radius integrally connected with and extending downwardly from said outer frustoconical surface providing an annular supporting surface for the container said annular supporting surface having a diameter in the range of about 2.05 inches to about 2.2 inches, an inner frustoconical surface integrally connected with said bottom radius and extending upwardly and inwardly toward' the axis of said container, the height of said inner frustoconical surface being less than half the height of said outer frustoconical surface, and a downwardly concaved center panel integrally connec ted with said inner frustoconical surface and extending upwardly and inwardly from said inner frustoconical surface to the axis of said container to a height slightly above the height of said outer frustoconical surface. 10. The container of claim 9, wherein said taper angle is about 1.50 and the wall taper thickness is 0.007 inch. 11. The container of claim 9 or 10, wherein said radius of curvature of said downwardly concaved center panel is about 2.900 inches. 12. The container of claim 9, 10 or 11, wherein said inner frustoconical surface forms an angle of about 160 with respect to the axis of the container. 13. The container of claim 9, 10 or 11, wherein said inner frustoconical surface forms an angle of about 120 with respect to the axis of the container. 14. A lightweight metal container capable of withstanding a substantial internal pressure without eversion comprising a unitary structure having a seamless cylindrical side wall and a bottom wall integrally formed with the side wall at the lower extremity thereof the ratio of the thickness of said bottom wall to the thick ness of said side wall being 3.2 or less, said bottom wall comprising a tapering surface extending downwardly from the side wall, said tapering surface forming a taper angle of between 1.30 and about 2.2 and a wall taper thickness of between about 0.006 inch and about 0.010 inch in excess of the side wall, an outer frustoconical surface extending downwardly and inwardly from said side wall toward the axis of said container, said outer frustoconical surface forming a bottom angle of between about 350 to about 450 with respect to the axis of the container, a bottom radius integrally connected with and extending downwardly from said outer frustoconical surface providing an annular supporting surface of the container, said annular supporting surface having a diameter in the range of about 2.05 inches to about 2.2 inches, an inner frustoconical surface integrally connected with said bottom radius and extending upwardly and inwardly from said annular supporting surface toward the axis of the container, said inner frustoconical surface forming an angle in the range of between about 12 to about 160 with respect to the axis of the container, the height of said inner frustoconical surface being less than half the height of said outer frustoconical surface, and a downwardly concaved center panel integrally connected with said inner frustoconical surface and extending upwardly and inwardly from said inner frustoconical surface to the axis of said container, the radius of curvature of said downwardly concaved center panel being between about 2.250 inches and about 3.000 inches, said center panel extending at its uppermost portion slightly above said height of said outer frustoconical surface. 15. The container as recited in claim 14, wherein the cylindrical side wall is about 0.0034 inch to about 0.0055 inch in thickness. 16. The container as recited in claim 14, 15 or 16, wherein the dome height is between about 0.290 inch and 0.375 inch. 17. The container as recited in any of preceding claims 4 to 16, wherein the metal is aluminum or an alloy thereof. 18. The container as recited in any of preceding claims 4 to 16, wherein the metal is iron or an alloy thereof. 19. A lightweight aluminum-base alloy container capable of withstanding a substantial internal pressure without eversion comprising a unitary structure having a seamless cylindrical side wall and a bottom wall integrally formed with the side wall at the lower extremity thereof, the ratio of the thickness of said bottom wall to the thickness of said side wall being about 3.0 or less, said bottom comprising a tapering surface extending downwardly from the side wall said surface forming a taper angle of about 20 and a wall taper thickness of about 0.009 inch in excess of said side wall, an outer frustoconical surface extending downwardly and inwardly from said side wall toward the axis of said container, said outer frustoconical surface forming a bottom angle of about 400 with respect to the axis of the container, a bottom radius integrally connected with and extending downwardly from said outer frustoconical surface providing an annular supporting surface for the container, said annular supporting surface having a diameter of about 2.10 inches, an inner frustoconical surface integrally connected with said bottom radius and extending upwardly and inwardly from said annular supporting surface toward the axis of the container, said inner frustoconical surface forming an angle of about 120 with respect to the axis of the container, the height of said outer frustoconical surface, and a downwardly concaved center panel integrally connected with said inner frustoconical surface and extending upwardly and inwardly from said inner frustoconical surface to the axis of said container, the radius of curvature of said downwardly concaved center panel being greater than the diameter of the annular supporting surface, said center panel extending at its uppermost portion slightly above said height of said frustoconical surface 20. The container of claim 19, wherein said side wall of said container is about 0.0049 + 0.0004 inch and the center panel thickness is about 0.0135 inch. 21. The container of claim 19 or 20, wherein the nose diameter of the bottom thereof is about 2.150 inches. 21. The container of claim 19, 20 or 21, including a body diameter of about 2.600 inches. 23. The container of claim 19, 20, 21 or 22, wherein the radius of curvature of the downwardly concaved center panel is about 2.350 inches. 24. A lightweight steel container capable of withstanding a substantial internal pressure without eversion comprising a unitary structure having a seamless cylindrical side wall and a bottom wall integrally formed with said side wall at the lower extremity thereof, the ratio of the thickness of said bottom wall to the thickness of said side wall being-about 3.2 or less, said bottom wall comprising a tapering surface extending downwardly from said side wall, said tapering surface forming a taper angle of about 1.50 and a wall taper thickness of about 0.007 inch in excess of said side wall, an outer frustoconical surface extending downwardly and inwardly from said side wall toward the axis of said container, said outer frustoconical surface forming a bottom angle of about 400 with respect to the axis of the container, a bottom radius integrally connected with and extending downwardly from said outer frustoconical surface providing an annular supporting surface for the container, said annular supporting surface having a diameter of about 2.10 inches, an inner frustoconical surface integrally connected with said bottom radius and extending upwardly and inwardly from said annular supporting surface toward the axis of the container, said inner frustoconical surface forming an angle of about 160 with respect to the axis of the container, the height of said inner frustoconical surface being less than half the height of said outer frustoconical surface, and a downwardly concaved center panel integrally connected with said inner frustoconical surface and extending upwardly and inwardly from said inner frustoconical surface to the axis of said container, the radius of curvature of said downwardly concaved center panel being greater than the diameter of the annular supporting surface, said enter panel extending at its uppermost portion slightly above said height of said frustoconical surface. 25. The container of claim 24, wherein said side wall of said container is about 0.0038 + 0.0004 inch and the center panel thickness is about 0.0110 inch. 26. The container of claim 24 or 25, wherein the nose diameter of the bottom thereof is about 2.150 inches. 27. The container of claim 24, 25 or 26, wherein the body diameter is about 2.600 inches. 28. The container of claim 24, 25, 26 or 27, wherein the radius of curvature of the downwardly concaved center panel is about 2.900 inches.
BALL CORPORATION
MILLER, EDWARD C.; STRAW, DAVID ALLEN
EP-0005026-B1
5,026
EP
B1
EN
19,820,630
1,979
20,100,220
new
B28B1
null
B28B1
B28B 1/26D
INSTALLATION FOR CASTING CERAMIC SANITARYWARE ARTICLES
An installation for casting ceramic sanitaryware articles, having a plurality of moulds arranged in a horizontal line on a support structure, in which each mould includes two side parts (2,3; 40, 45) which when assembled define a casting cavity for casting a cistern tank for a water closet suite. In order to be able to open and close each mould by movement in a horizontal direction, one of the side parts (2; 40) has a vertical cavity surface for forming the back wall of the tank and the other side part (3; 45) is channel shaped in plan for forming the front and side walls of the tank, and the side parts are movable longitudinally along the support structure. One of the side parts has an integral base for forming the bottom wall of the tank. The moulds may have cores (4) for solid casting, or apertures (55) for drain casting.
INSTALLATION FOR CASTING CERAMIC SANITARYWARE ARTICLES This invention relates to an installation for casting from ceramic material in slip form articles of sanitaryware, in which a plurality of mould units are arranged in a generally horizontal line on a support structure. Casting in such installations is known as battery or bank casting. It has been proposed to cast certain articles of sanitaryware in a line of moulds which are arranged on a support structure so as to permit movement of the mould parts in a direction longitudinally of the line; for example British patent specification No. 1,140,282 shows such an installation for casting wash hand basins. Hitherto it has not been thought possible to cast cistern tanks for water closet suites in an installation of this kind because moulds for casting cistern tanks conventionally involve separation of the mould parts only in a vertical direction. Thus, normally, moulds for casting cistern tanks are made of two parts which, relative to the upright position of a cistern tank, comprise a container part which shapes the exterior of the side walls and bottom wall of the cistern tank, and a top part which closes the mould cavity, the two parts being separable at a horizontal parting plane by relative movement in a vertical direction. The cast piece is removed from the container part by movement in a vertical direction unless the mould is turned. The top part may have a core which projects down into the container part, for solid casting of a cistern tank, or the top part may simply be a closure member and the container part may rIude temperaturen @@@@@@ @@ casting of a cistern tank. Such moulds are unsuitable f use tn a horizozital line of moulds because of the vertical separation of mould parts and the vertical emptying. For the present invention, moulds for casting cistern tanks are adapted for use on a horizontal line by dividing the mould vertically into two side parts. According to the present invention there is provided an installation for casting from ceramic material in sl form articles of sanitaryware, having a plurality of mould units arranged in a generally horizontal line on a support structure, in which each mould unit comprises two side mould parts which can be assembled to define a casting cavity for casting a cistern tank for a water closet suite, one side mould part having a substantially vertical cavity surface for forming the back wall of the cistern tank and the other side part being substantially channel-shaped in plan and having substantially vertical cavity surfaces for forming the side walls and front wall of the cistern tank, one of the side parts having an integral base for forming the bottom wall of the cistern tank, the side mould parts being adapted to be opened and closed by relative movement in a direction longitudinally of the line of mould units, each side mould part being connected in back-to-back relation to the adjacent side mould part of the next adjacent mould unit in the line. Such an installation achieves the benefits of mass production with bank casting of up to fifty or more mould units in a line, which has hitherto not been possible for casting cistern tanks. For solid casting of cistern tanks the base for forming the bottom wall of the cistern tank is preferably provided on the side mould part having the vertical cavity surface for forming the back wall of the tank, and there is also provided a core part which is adapted to be moved in a vertical direction into the side parts or so as to be spaced above them. For drain casting of cistern tanks the base for forming the bottom wall of the cistern tank is preferably provided on the side mould part which is channel-shaped in plan, and either a separate mould cover part is provided or the other side mould part has an integral cover part. The invention may be carried into practice in many ways but certain specific embodiments will now be described by way of example only with reference to the accompanying drawings, in which: Figure 1 is a perspective view of part of a line of mould units for solid casting of cistern tanks; Figure 2 is a side view of the line of Figure 1; Figure 3 is a further perspective view of the line of mould units of Figures 1 and 2 during emptying; and Figure 4 is a perspective view of one of a line of mould units for drain casting a cistern tank. Figures 1 to 3 show an embodiment for solid casting of cistern tanks in a line or bank of fifty or more mould units arranged in a horizontal line on a support structure in the form of two rails 7 extending longitudinally of the line. Each mould unit 1 consists of three main mould parts: two side parts 2 and 3 and a core part 4. The side parts 2 and 3 are supported on carriers 8 fitted with rollers 9 so that they can be moved easily on the rails 7 in a longitudinal direction of the line. The side parts 2 each comprise an upstanding part 11 having a surface 12 which shapes the external surface of the back wall of the tank and a base part 13 which forms the bottom of the tank. The side parts 3 each comprise upstanding mould walls 15, 16 and 17 which form a channel shape as viewed in plan, the inside faces of which form the external surfaces of the side and front walls of the tank. Each pair of side parts 2 and 3 of the same mould unit 1 can be brought together to define the casting cavity, the lower side edges 18 and 19 being inclined to the horizontal to allow the parts to be separated directly by movement in a horizontal direction without the mould parts scraping against each other. In the line of mould units, each side part 2 is connected rigidly in back-to-back relation with the side part 3 of the next adjacent mould unit in the line. The core part 4 for each mould unit comprises a core 20 depending from a rim 21 which when the mould unit is assembled rests on the upper edges of the side parts 2 and 3 which lie in a common plane. The core part 4 is adapted to be lifted vertically above the line during emptying or lowered so that the core 20 is located between the side parts 2 and 3 in the assembled condition of each mould unit. In operation, the mould units 1 of the entire line are assembled by closing up the side parts 2 and 3 and lowering the core parts 4. The line of mould units 1 is then clamped longitudinally by an overall clamping arrangement at each end of the line. The core parts 4 may be held by clamping or other hold-down means, which may be common to all the mould units, or the core parts 4 may be sufficiently heavy simply to rest on the side parts 2 and 3 without risk of the core moving when the mould unit is filled with slip under pressure. The mould unitsl are then filled with slip, the slip flowing from a slip supply tank under gravity into the casting cavity in each mould unit 1. After a suitable casting time has elapsed, during which time moisture is absorbed by the plaster of the moulds, the moulds are opened. The emptying procedure is as follows. The core part 4 of the first mould unit of the line is lifted by a suitable lifting means which is capable of traversing the entire line of mould units. The overall clamping of the side parts is then released and dealing with each mould unit in turn, the side parts are separated by moving side part 3 away from sidepart 2 on which the tank rests on the base part 13. The tank 26 (see Figure 3) is then removed using suitable tongs or similar tools and placed on a rack at one side. The emptied side part 2 is then pulled along the track which movement simultaneously pulls the side part 3 of the next mould unit to open that mould unit. It will be appreciated that the particular design of the side parts 2 and 3 enables the cistern tanks to be cast in a line or bank casting installation and there are clear advantages in this. Figure 4 shows a mould unit for drain casting of cistern tanks. Only one mould unit is shown but a plurality of such mould units will be provided in a line, each side mould part being joined in back-to-back relation with the adjacent side mould part of the next mould unit, as for the example of Figures 1 to 3. The mould unit comprise a first side mould part 40 having a substantially vertical cavity surface 41 for forming the back wall of the tank and an integral top wall for closing the top of the tank casting cavity, and a second side mould part 45 which is substantially channel-shaped in plan having substantially vertical cavity surfaces 46, 47 and 48 for forming the side walls and the front wall of the tank and an integral base 49 for forming the bottom wall of the tank. For casting, the mould units are assembled and the cavities filled with slip under pressure. After allowing the appropriate casting time to elapse, a lower aperture 5 provided in the base 49 of each mould is opened and the surplus slip from the inside of the tank will drain out leaving the green drain-cast tanks in the moulds. The mould units are then opened, in turn, by horizontal movement of the side parts along the line and each tank is removed from the respective mould part 45 and put to one side, this operation being repeated along the complete line of moulds.
CLAIMS 1. An installation for casting from ceramic material in slip form articles of sanitaryware, having a plurality of mould units arranged in a generally horizontal line on a support structure, characterised in that each mould unit comprises two side mould parts (2, 3; 40, 45) which can be assembled to define a casting cavity for casting a cistern tank for a water closet suite, one side mould part (2; 40) having a substantially vertical cavity surface (12, 41) for forming the back wall of the cistern tank and the other side part (3; 45) being substantially channel-shaped in plan and having substantially vertical cavity surfaces for forming the side walls and front wall of the cistern tank, one of the side parts having an integral base for forming the bottom wall of the cistern tank, the side mould parts being adapted to be opened and closed by relative movement in a direction longitudinally of the line of mould units, each side mould part being connected in back-to-back relation to the adjacent side mould part of the next adjacent mould unit in the line. 2. An installation as claimed in claim 1, characterised in that, in each mould unit, the base (13) for forming the bottom wall of the cistern tank is provided on the side mould part (12) having the vertical cavity surface for forming the back wall of the cistern tank. 3. An installation as claimed in claim 1 or claim 2, characterised in that each mould unit is provided with a core part (4) which is adapted to be moved in a vertical direction between a position in which the core (20) is located between the side parts and a position in which the core is spaced above the side parts. 4. An installation as claimed in claim 3, characterised in that each core part (4) includes an integral cover which closes the top of the mould cavity when the core is located between the side mould parts. 5. An installation as claimed in claim 1, characterised in that, in each mould unit, the base (49) for forming the bottom wall of the tank is provided integrally with the side mould part (45) which is channel-shaped in plane. 6. An installation as claimed in claim 5, characterised in that a separate cover part is provided for each mould unit for closing the top of the mould cavity. 7. An installation as claimed in claim 5, characterised in that, in each mould unit, a cover part (42) for closing the top of the mould cavity is provided integrally on the side mould part (40) having the vertical cavity surface for forming the back wall of the tank. 8. An installation as claimed in any one of claims 5 to 7, characterised in that, in each mould unit, there is provided an aperture (55) in the mould base for draining excess slip from the mould cavity. 9. An installation as claimed in claim 3 or claim 4, characterised in that there is provided a lifting device mounted so as to be capable of traversing the entire line of mould units, for lifting the core part of each mould unit in turn.
IDEAL-STANDARD GMBH
MOORE, BERNARD CLIVE
EP-0005030-B1
5,030
EP
B1
EN
19,840,118
1,979
20,100,220
new
C12P19
C08B37, A61K7, A23L1
A23L2, A23L1, A61K8, C08B37, C09K8, C12P19, E21B43, A61Q11, A23G1, C09K3, C12R1
C09K 8/14, A23L 1/054B, C08B 37/00M3D, C12P 19/06, A61K 8/73, A61Q 11/00
LOW CALCIUM XANTHAN GUMS
Two novel forms of xanthan gum containing not more than about 400 ppm of calcium are disclosed. Xanthan gum having this low concentration of calcium is prepared from an aqueous fermentation medium substantially free of calcium ion and substantially free of fermentation nutrients which contain calcium. When the fermentation is carried out under conditions of high shear, the low calcium product is characterized in that oil/water emulsions of the gum exhibit smooth flow.
LOW CALCIUM XANTHAN GUMS This invention relates to xanthan gum. The preparation and uses of xanthan gum are well known to those skilled in the field of heteropolysaccharides. While aqueous compositions of xanthan gum have many desirable properties, such compositions have a chunky or non-uniform flow. The present invention is based on the discovery that there is a correlation between the calcium of xanthan gum and the flow characteristics of aqueous compositions containing xanthan gum. The invention provides a xanthan gum in which not more than about 1,6% of the xanthan gum carboxyl groups are bound to calcium ions The invention also provides a xanthan gum containing up to about 0.04 weight % calcium. The xanthan gum of the present invention, which has not more than abort 400 ppm of calcium, is prepared from an aqueous fermentation medium substantially free of calcium ion and substantially free of calcium-containing fermentation nutrients which contain calcium. When prepared under conditions cf high shear the gum provides aqueous oil/water compositions having smooth or uniform flow. In the specification the term ppm means parts per million by weight , mesh sizes are U.S. standards, and all parts and percentages are by weight. Aqueous compositions of xanthan gum tend to have a chunky or non-uniform flow characteristic. A chunky flow is an uneven, lumpy type of flow such as is encountered with tomato ketchup. A smooth or uniform type of flow is one free of lumps and unevenness such as is encountered with vegetable oil. The aqueous compo sitions include solutions of xanthan gum as well as oil/water emulsions. In general, aqueous compositions of xanthan gum containing not more than about 0.04 weight % of calcium and fermented under high shear conditions have desirable flow properties, and aqueous compositions of xanthan gum containing not more than about 0.02 weight % of calcium and fermented under high shear conditions have best flow properties. The low calcium xanthan gum of the present invention may be prepared by a heteropolysaccharide-producing bacterium of the genus Xanthomonas by the whole culture fermentation of a medium comprising a fermentable carbohydrate, a nitrogen source, and appropriate other nutrients. The bacterium may be any suitable Xanthomonas species preferably X. campestris. The bacterium is grown in a medium which is substantially free of calcium ions. By substantially free is meant up to about t ppm of calcium ion per each 1% of xanthan gum concentration in the completed fermentation broth, and preferably up to about 2 ppm of calcium per each 1% of xanthan gum concentration in the completed fermentation broth. Thus, if the xanthan gum is to be produced at a final concentration of about 2.1-2.3%, the total calcium ion content of the completed fermentation broth should not exceed about 9 ppm and preferably should not exceed about 5 ppm. To obtain such a low calcium medium the calcium content of the water in the fermentation medium may be reduced to the appropriate level by chemical means, e.g. ion-exchange treatment, or by distillation. As commercial sources of organic nitrogen contain appreciable amounts of calcium ion, it is important that the nitrogen source of the present invention be a material which is substantially free of calcium ions. An example of such a nutrient material is Promosoy 100, a soy protein concentrate (Central Soya). Use of this material at 500 ppm imparts 1-2 ppm calcium to the medium. The relationship between the total calcium ion content of the fermentation media, the final xanthan gum concentration in the broth, and the calcium ion content of the isolated xanthan gum is expressed in Table 1. TABLE 1 Calcium Ion Relationships Total Final Calcium Calcium Ion Xanthan Gum Content of of Media Concentration Xanthan Gum (ppm) (%) (ppm) 12 3 400 8 2 400 4 1 400 6 3 200 4 2 200 2 1 200 Prior art fermentations of xanthan gum failed to appreciate the benefits obtainable by low concentrations of calcium and, indeed, teach the addition of calcium either to the fermentation beer or to the reconstituted xanthan gum. Examples of such prior art teachings are U.S. patents 3,000,790, 3,054,689, 3,096,293, 3,232,929 and 4,053,699 and French patent 2,330,697. In addition the prior art teaches the use of tap water rather than deionized water, not only because of economic considerations, but because tap water contains trace elements required for growth of the gum-producing organism. See, for example, Polysaccharide (Xanthan) of Xanthomonas campestris NRRL B-1459: Procedures for Culture Maintenance and Polysaccharide Production, Purification and Analysis , Agricultural Research Service, United States Department of Agriculture (ARS-NC-51). Moreover, the prior art teaches the use of distillers solubles or soybean cake as an organic nitrogen source for the fermentation of xanthan gum. See, for example, U.S. patents 3,020,206, 3,281,329 and 3,594,280 and Materials and Methods in Fermentation , pp. 126-127 by G. L. Solomons, Academic Press, New York (1969). At a concentration in the fermentation broth of 0.4 weight %, Distillers Dried Solubles imparts a calcium content of 150.8 ppm to the fermentation broth while at a concentration of 0.45 weight % in the fermentation broth soybean meal imparts a calcium content of 16.7 ppm to the fermentation broth. The gum produced at a concentration of about 2.1-2.3% with the use of such organic nitrogen sources would have a calcium content of about 0.66-0.728 calcium in the case of Distillers Dried Solubles and about 0.07-0.08% in the case of soybean meal because xanthan gum binds all available calcium ion up to a maximum level of about 2.6%, assuming that no other calcium is present in the water or other media. com- content Xanthan gum is an anionic polysaccharide due to the presence of about 20% glucuronic acid and 4% pyruvate in the molecule. It has been experimentally determined that about 0.026 g calcium will react with all of the carboxyl groups in 1 g of xanthan gum In other words this amount of calcium is the stoichiometric amount based on the carboxyl groups in the xanthan gum molecule. From this relationship it. can be calculated that for each 1% of xanthan gum in the final fermentation broth, a calcium concentration in the broth of 260 ppm is the stoichiometric quantity sufficient to react with all of the carboxyl groups in the xanthan gum molecule. The gum recovered from such a broth will have a calcium content of about 26,000 ppm. The % of carboxyl groups that will react with diminishing amounts of calcium can likewise be calculated. The relationship of calcium content to % of carboxyl groups bound is shown in Table 2. TABLE 2 Ca++ Concentration v. % Carboxyl Bound Total Ca Content Xanthan Gum Ca Content of % Carboxyl Groups of Media (ppm) Concentration (%) Xan. Gum (ppm) Bound 260 1 26,000 100 22 1 2,200 8.5 7 1 700 2.7 4 1 400 1.6 2 1 200 0.8 520 2 26,000 100 44 2 2,200 8.5 14 2 700 2.7 8 2 400 1.6 4 2 200 0.8 650 2.5 26,000 100 55 2.5 2,000 8.5 17.5 2.5 700 2.7 10 2.5 400 1.6 5 2.5 200 0.8 Thus, the xanthan gum of the present invention can be described chemically as xanthan gum in which up to about 1.6% of the carboxyl groups are bound to calcium and the remaining carboxyl groups are bound to sodium, potassium, a mixture of sodium and potassium or other noncalcium cations. The smooth flow obtainable with the low calcium xanthan gum of the present invention is liable, in some cases, to be degraded by high temperature pasteurization conditions. For this reason, it is preferable to pasteurize at temperatures which do not exceed about 800C. During the fermentation of xanthan gum, the fermentation broth is continually monitored to assure good mixing. As the viscosity of. the broth increases with the amount of gum produced, frequent monitoring and a corresponding increase in agitation rate assures that all parts of the broth are properly aerated. The criterion of good mixing, well known to those skilled in the polysaccharide fermentation art, is sufficient to produce the low calcium xanthan gum of this invention. When it is desired to produce the low calcium xanthan gum having smooth flow properties, high shear is required during the fermentation process. The following agitation conditions have been found to be adequate to produce the low calcium, smooth flow xanthan gum of this invention. Agitation comparable to these agitation conditions is defined herein as high shear . Fermentor Size Agitation Conditions 3.8 litres Three 8-cm flat turbine impellors. The initial agitation is set at 400 RItI (32 metres/min) and is typically increased to 800-1000 RPM (64 to 80 metres/min) by 16-24 hours. 14 litres Three 7.5-cm flat-blade impellors. The fermentation is started with an agitation rate of 400 f (30 metres/min) and is typically increased to 1000 RPM (75 metres/ min) by 16-24 hours. The agitation can be increased as necessary to provide high shear up to 1500 RPM (112 metres/min). 30 litres Two 12.85-cm V-shaped turbine impellors. The initial agitation is 300 RPM (37.5 metres/ min) which is increased to 700 RPM (87.5 metres/min) by 16-24 hours. 70 litres Two 15-cm flat blad turbine impellors and one 15-25-cm propellor. This fermentor is started with an agitation rate of 300 RPM 45 metres/min) and increased to 600 RPM 90 metres/min) by 16-24 hours. It can be increased thereafter as needed to provide high shear to a maximum of 750 RPM (122.5 metres/min). The high shear must be imparted to the beer during the fermentation process. If the beer is subjected to high shear after the fermentation is completed, the resulting gum does not exhibit smooth flow. Likewise, it is preferred to continue the high-shear conditions throughout the entire fermentation process. A correlation has been found between the smooth flow property of the xanthan gum of this invention and the viscosity of an oil/water emulsion made up from the gum. The following test protocol can therefore be followed to determine whether a low calcium xanthan gum can also be characterized as having smooth flow. TEST METHOD 1 3.5 g of low calcium xanthan gum is slurried in 20 g of vegetable oil. The slurry is added. to 300 ml tap water in a Sunbeam solid state Waring blender and mixed for 20 seconds at the lowest speed (stir button). Mixing is stopped, 13 g of NaCl is added, and the mix is agitated at the highest speed (liquify button) for 10 seconds. The entire emulsion is poured into a 400 ml beaker and viscosity readings are obtained at room temperature on a Brookfield LVF viscometer, spindle 3 at 60 rpm. The xanthan gum used should contain between 86 and 92% solids and should be milled so that at least 98% passes through an 80 mesh screen and less than 40% passes through a 325 mesh screen. A low calcium xanthan gum is smooth flow if under these conditions viscosity readings of less than 1650 cP are obtained. It is preferred that the viscosity be less than 1600 cP. Alternative, although less reliable, tests require visual observations. For example, the emulsion prepared as above is observed while being poured and its flow characteristics noted. A beaker containing such an emulsion is swirled so that its sides are coated and then the sides are observed. If the coating of emulsion on the sides is generally homogenous rather than streaked and uneven, the gum can be considered to be smooth flow. The low calcium xanthan gum of this invention can be used for any of the uses to which xanthan gum can be put. In addition, when still in the fermentation broth it is the intermediary for producing the smooth-flow low calcium xanthan gum of this invention. Smooth-flow xanthan gum finds applicability in a variety of areas. First, to the extent that its properties are similar to those of xanthan gum, it can be used as a substitute in formulations requiring xanthan gum. However, the smooth flow xanthan gum of this invention is particularly useful in pourable and spoonable salad dressings. Solubility is markedly improved in reconstituted dry mixes such as fruit flavored beverages, cocoa drinks, gravies, and soups. Texture and flow properties are markedly improved in high sugar/solids systems such as sugar syrups, toothpaste, shampoo, hand cream, and fruit preserves. Representative usage levels are: z by Weight No/low oil salad dressing 0.5 - 1.5 High oil salad dressing 0.2 - 0.8 Toothpaste 0.7 - 2.0 preferably 1.0 - 1.2 Dry Foodstuffs (dispersible) 0.2 - 1.5 Representative formulations using smooth flow xanthan gum of this invention are as follows: Salad Dressing To 40 parts of sugar add 20 parts of instant starch and 5 parts of smooth flow xanthan gum. Dry blend and then disperse in 410 parts of water. Mix until dissolved and add 60 parts of sugar. Mix in Z0 parts of salt, 5 parts of mustard and 40 parts of fresh egg yolks. Using a fast whip beater mix in 300 parts of corn oil and 100 parts of 100 grain vinegar. Orange Flavored Drink Mix A drink is prepared by adding the following blended ingredients to 1 quart (944 ml) cold water and stirring for 30 seconds. Gums. Bakers Special Sugar 125.713 Citric Acid, granulated anhydrous 4.55 Sodium Citrate, fine granular hydrous 1.05 Artificial Orange Juice Flavor 24825 (American Flavor and Fragrance Corp.) 0.504 Ascorbic Acid 0.49 Orange Essence Oil 1939 (Borden) 0.336 Smooth Flow Xanthan Gum 0.28 Kowet Titanium Dioxide (Kohnstamm) 0.042 FD & Yellow No. 5 0.021 FD & Yellow No. 6 0.014 133.0 Toothpaste Using known processes, a toothpaste is prepared from the following ingredients: % by Weight Dicalcium phosphate dihydrate 45.0 Glycerine 12.5 Sorbitol 12.5 Sodium lauryl sulfate 1.5 Saccharin 0.2 Flavoring agent 1.0 Water 26.3 Smooth Flow Xanthan Gum 1.0 The resulting paste has short, non-stringy flow, whereat a paste made with regular xanthan gum has noticeable stringiness. Instant Hot Cream Soup Mix An instant soup is prepared by adding the followin blended ingredients to 3/4 cup (180 ml) boiling water and stirring for 2 minutes. Gms. Star Dri 24F orn Syrup Solids (Staley) 6.56 Veg Cream (times) (Nestle) 3.75 Gelatinized Cura Jel (Staley) 3.00 Milk Solids N:n-fat (instantized) 2.50 Salt 1.50 Sugar 1.00 MSG 0.90 Powdered onion 0.20 Maggi Hydroly=ed Plant Protein (Nestle) 0.10 Smooth flow xanthan gum 0.25 The following examples further illustrate the present invention without, however, limiting the same thereto. EXAMPLE 1 All the media and media ingredients are prepared sing the following procedure in deionized water to minimize the presence of calcium. The flask seed medium is YM broth (Difco). These flasks are inoculated with a loopful of a strain of Xanthomonas campestris NRRL B-1459 grown on nutrient agar (Difco) or YM agar plates. The inoculated flasks are placed on a gyrotary shaker (New Brunswick Scientific, Inc.) at a shaking speed of 200-300 rpm. The temperature is controlled at 28-330C. After 18-40 hours these seeds are used to inoculate a five-liter fermentor vessel containing three liters of a medium containing the following ingredients: 3.0 % Dextrose 0.05% Promosoy 100 (Central Soya) 0.09% NH4NO3 0.5 % Na2HPO4 0.01% MgSO4#7H2O The medium also contains trace elements such as BO3, Mn++, Fe++, Cu++, Zn++, Co++, MoO-4, and an antifoam agent (Sag 471). The fermentation temperature is controlled at 28-330C with the agitation rate set so that proper mixing of the fermentor contents occurs. Sterile air is supplied at a rate of 0.2-1.0 (v/v). After 18-4Q hours, this seed is used to inoculate either 50 L of similar medium in a 70L fermentor, or 20L of such medium in a 30L fermentor. This medium is composed of the following ingredients: 3.0 % Dextrose 0.5 % Na2HPO4 0.09% NH4NO3 0.018 MgSO4.7H20 0.05% Promosoy 100 In these fermentors, the pH is controlled in the range of 6.0-7.5 using KOH addition. Aeration is similar to that in the smaller fermentor. The agitation is increased as necessary to maintain high shear. The agitation in the 30L and 70L fermentors is as defined above for high shear . The fermentation is terminated when the carbon source has been fully utilized. The fermentation broth is pasteurized in the fermentation vessel at 750C for 15 minutes. The product is recovered by alcohol precipitation. The recovered fibers are dried for 2 hours in a steam oven at 550C followed by milling through a 20-mesh screen. This product, designated sample 1, is a low calcium, smooth flow xanthan gum. A second batch is prepared following the procedure of sample 1 but using Distillers Solubles as the organic nitrogen source and tap water instead of deionized water. This product, sample 2, is representative of commercially available xanthan gum. A third batch is prepared using the same conditions as those used to prepare sample 1 except that deionized water containing 40 ppm added calcium is used in the media. This product, designated sample 3, is also comparable to commercially available xanthan gum. EXAMPLE 2 1. Seed Preparation Fresh YM agar plate cultures of X. campestris B-1459 are used to inoculate YM broth flasks. The inoculated flasks are placed on a gyrotary shaker at a shaking speed of 200-300 rpm. At 24-30 hrs., these flasks are used to inoculate flasks containing the follow ing components: Starch 2.67% Na2HPO4 0.50% Promosoy 100 0.19% NH4NO3 0.09% NZ Amine A 0.03% MgS04.7H20 0.02% FeSO4.7H20 5 ppm HoLe salts 1 ml/L Balab 0.26% Defoamer (Sag) 0.02% *Tap Water =596.228 *The starch slurry is prepared in tap water for hydrolysis and represents 10% of the final fermentor volume. o The fermentation temperature is controlled at 28-330C with. the agitation rate set so that proper mixing of the fermentor contents occurs. Sterile air is supplied at a rate of 0.2-1.0 (v/v). The flasks are used at 2435 hrs. to inoculate 14-liter fermentors with a 6-7% inoculum level. 2. . Final Fermentor Fermentors of a l4-liter capacity are used for the final fermentation containing about 10 liters of the following medium: Corn syrup 4.2% Na2HPO4 0.053% Promosoy 100 0.0336% MgSO4.7H2O 0.02% NH4NO3 0.106% FeSO4.7H2O 5 ppm HoLe salty . 1 ml/L Defoamer (Sag) 0.01% Deionized water #95.58% The FeSO4.7H2O and HoLe salts are autoclaved separately. Alternatively, they are filtered instead of being added directly to the medium to be autoclaved. The pH is controlled with 25% NaOH or KOH at 6.0-7.5. Aeration is similar to that in the smaller fermentor. Agitation is as defined above for high shear for a 1/4-litre fermentor* Fermentation is terminated when the carbon source is less than 0.1%. The fermentation broth is pasteurized in the fermentation vessel at 75 C for 15 minutes-. The product is recovered by alcohol precipitation. The recovered fibers are dried for 2 hours in a steam oven at 550C followed by milling through a 20-mesh screen. The product is a low calcium, smooth-flow xanthan gum. EXAMPLE 3 Xanthan gum samples -are prepared under varying calcium levels. The viscosities of the gum samples (1% and 2% w/w, in deionized (D.I.) water and 1% w/w KC1 solution) and low oil emulsions are determined using a Brookfield LVF viscometer, at 60 rpm and appropriate spindle. A slurry of each gum (6.4 g) in Kraft vegetable oil-specially processed soybean oil (40 g) is added to 500 ml of water with stirring. After hydration, sodium chloride (26 g) and 10% acetic acid (75 ml) are added. The emulsions are milled in a Sterling colloid mill at a setting of 0.015 . Working yield values are determined from the viscosity profiles at low shear rates obtained by using the spring relaxation method on the Wells-Brookfield RVT plate and cone viscometer. (See Jeanes et al., (1973) J. Appl. Polymer Sci. 17 pp. 1621-1624. The working yield value is defined as the shear stress (dynes/cmê) required to produce a shear rate of 0.01 sec Visual observation of flow properties are determined by pouring low oil emulsions from container to container. Flow properties are rated as smooth through light chunky , medium chunky to heavy chunky . A quantitative determination of flow properties is carried out by measurement of the flow rate of gum solutions (1% w/w in 1% KC1) and emulsions in a Bostwick Consistometer. This instrument which is available from Central Scientific Co., Inc., 26005 Kostner Avenue, Chicago, Illinois 60623 determines consistency by measuring the distance that a material flows under its own weight during a given time interval. The distance travelled by the moving front after 5 minutes is a reproducible measure of the flow properties (degree of smoothness) of the solutions. Sample 4 Sample 5 Sample 6 Calcium Content (ppm) 130 2322 43572 Magnesium Content (ppm) 391 914 1019 1% Viscosity, D.I. H2O (cP, 60 rpm, spindle 3) 410 810 815 1% Viscosity, 1% KCl (cP, 60 rpm, spindle 3) 1075 1250-1550 1175 Working Yield Value, 1% Gum, D.I. H2O (dynes/cmê) (1) 15.5 26 Working Yield Value, 1% Gum, 1% KCl (dynes/cmê) 22 52 42 2% Viscosity, D.I. H2O (cP, 60 rpm) 1040 N.D. 1710 2% Viscosity, 1% KCl (cP, 60 rpm, spin. 4) 4070 N.D. 4080 2% D.I. Solution Visual Flow Characteristic Smooth Chunky Chunky Working Yield Value, 2% Gum, D.I. H2O (dynes/cmê) 16 N.D. 52 (1) Too low to determine due to low viscosity ( < 800 cP) in D.I. water Sample 4 Sample 5 Sample 6 Visual Flow Characteristic of Low Oil Emulsion Smooth Medium to Light to Heavy Chunky Medium Chunky Low Oil Emulsion Viscosity (60 rpm) 1390 1410 1490 Low Oil Emulsion Working Yield Value (dynes/cmê) 45 N.D. 82 Bostwick Test, Distance Covered After 5 min (cm) 1% Gum and 1% KCl 17.2 10.9 12.7 Low Oil Emulsion 13.2 N.D. 9.7 N.D.= Not Determined EXAMPLE 4 A series of seven fermentations are carried out using deionized water for Run 1, and deionized water together with increasing ratios of tap water for Runs 2-9. The proteinaceous nutrient is Promosoy 100. At the end of the fermentation the gum in each sample as recovered, analyzed for calcium content, and its flow property determined visually using the procedure of Example 1, As the Promosoy 100 is substantially devoid of calcium, essentially all of the calcium found upon analysis is derived from the tap water. The following results are obtained: Flow Properties (low oil/H2O Run Ca (ppm) emulsion) 1 37 Smooth 2 123 Slightly Chunky 3 126 Smooth 4 193 Slightly Chunky 5 207 Smooth 6 315 Slightly Chunky 7 315 Slightly Chunky 8 478 Chunky 9 536 Chunky EXAMPLE 5 X. campestris is fermented under the low calcium high shear conditions of this invention. Following fermentation, samples of the fermentation broth are removed from the fermentor and pasteurized at various temperatures and times using the copper coil immersed in a hot oil bath. The fermentation broth remaining in the fermentor is pasteurized in place at 75 C for various times. Using these procedures, the following samples are prepared: BD-118 No. pasteurization (control) BD-122 750C for 2-3 minutes in coil BD-123 750C for 10 minutes in coil BD-124 790C for 2-3 minutes in coil BD-125 990C for 2-3 minutes in coil BD-119 750 for 2-3 minutes in fermentor BD-120 750C for 5 minutes in fermentor BD-121 750C for 15 minutes in fermentor The xanthan gum in these samples is precipitated with alcohol. The fibrous product is dried overnight in a 45 C oven followed by milling through a 20-mesh screen. Calcium Content Pasteurization Emulsion Emulsion Flow Properties Sample No. (ppm) Conditions Viscosity (cP) Visual Bostwick BD-118 145 No pasteurization 1165 Smooth 14.0 BD-122 145 75 C, 2-3 min., coil 1215 Smooth 13.8 BD-123 140 75 C, 10 min., coil 1340 Smooth 12.1 BD-124 140 79 C, 2-3 min., coil 1240 Smooth 12.5 BD-125 N.D. 99 C, 2-3 min., coil 1215 Smooth 12.8 BD-119 135 75 C, 2-3 min., steam 1310 Smooth 12.7 BD-120 N.D. 75 C, 5 min., steam 1180 Smooth 13.3 BD-121 140 75 C, 15 min., steam 1270 Smooth 13.6 N.D. Not determined Note: These samples were prepared from the same batch of brothM; and therefore should have identical Ca contents. This is confirmed by analysis for calcium, which results are indicated above, wherein differeces are within experimental error. EXAMPLE 6 X. campestris is fermented under the low calcium high shear conditions of this invention. Following fermentation, samples of the fermentation broth ate removed from the fermentor and pasteurized at various times and temperatures by passing the broth through a copper coil immersed in a hot oil bath, followed by rapid cooling using an ice bath. The following samples are prepared: BD-107 79 C for 2-3 minutes BD-108 8500 for 2-3 minutes BD-109 91 C for 2-3 minutes BD-110 99 C for 2-3 minutes BD-111 790C for 10 minutes BD-112 116 C for 2-3 minutes BD-113 990C for 4-5 minutes BD-115 No pasteurization (control) The xanthan gum in these samples is precipitated with alcohol, dried for two hours in a steam oven at 55 C, and milled through a 20-mesh screen. Emulsion Emulsion Flow Properties Sample No. Viscosity (cP) Visual Bostwick BD-107 1610 Light-medium 10.5 BD-108 1615 Light-medium 10.8 BD-109 1535 Light-medium 10.5 BD-110 1735 Light-medium 9.85 BD-111 1540 Light 10.75 BD-112 1635 Light-medium 10.3 BD-113 1600 Medium 10.6 BD-115 1360 Smooth 13.6 These samples are prepared from the same broth and therefore have identical Ca contents. EXAMPLE 7 In order to demonstrate that the smooth flow property is dependent upon calcium ion content of the fermentation broth in which the xanthan gum is produced, and is independent of Mg ion content, the following comparisons are made with emulsions made using xanthan gum prepared from a broth having the indicated level of Ca and Mg. Flow Properties Ca/Mg of Low Oil Sample Ca++ Mg++ Ratio Emulsion Sample ¯¯¯¯ Mg Ratio Emulsion 7 4347 1019 4.28 Medium-Heavy Chunky 8 2322 914 2.54 Medium-Heavy Chunky 9 1866 917 2.03 Medium-Heavy Chunky 10 772 388 1.99 Light Chunky 11 567 546 1.04 Medium Chunky 12 261 594 0.44 Smooth 13 153 546 0.28 Smooth 14 130 391 0.33 Smooth Samples which. have smooth flow properties are characterized by Ca++ levels of 261 ppm or below. EXAMPLE 8 An oil-well drilling fluid is made up in conventional manner from the following- con- stituents: low calcium, smooth flow xanthan gum, 0.34 kg; water, 189.27 liters; bentonite, 3.63 kg; carboxymethyl cellulose 0.23 kg; and XC1, 4.76 kg. Ths mud exhibits the following properties: Fann Viscometer Rolled 16 hrs. Dial Readings Initial at 1500F 600 rpm 31.3 27.7 300 rpm 22.7 20.7 200 rpm 19.3 17.4 100 rpm 14.5 13.2 6 rpm 6.1 5.3 3 rpm 5.2 4.7 Plastic Viscosity, cP 8.6 7.0 Yield Point, 2 14.1 lb/100 ftê 14.1 13.7 API Filtrate, ml 11.4 12.0 These results show the excellent characteristics of an oil-well drilling fluid of the invention. In particular, the high viscosity at low shear rates provides good hole cleaning and the low viscosity at high shear rates increases the penetration rate of the bit. EXAMPLE 9 A French dressing is made using the following formulation: Ingredients % Vegetable Oil 38.00 38.00 Water 34.65 34.65 Sugar 11.50 11.50 Vinegar (100 grain) 9.00 9.00 Salt 4.00 4.00 Paprika, powdered 1.35 1.35 Mustard, powdered 1.25 1.25 Low calcium, smooth flow xanthan gum 0.25 Xanthan gum (Control) 0.25 100.00% 100.00% Procedure: 1. Dry blend xanthan gum with one-half of the sugar and hydrate with water and vinegar under vigorous agitation for 15 minutes. 2. Add blend of all remaining solids. 3. Add oil, slowly at first, then at normal rate. 4. Emulsify with a colloid mill at 0.02 . The flow properties of the dressings are measured in the Bostwick Consistometer using the procedure described in Example 3 with the following results: BOSTWICK RESULTS Visual Examination of Distance in cm at Time Indicated Flow Properties Seconds 5 10 20 30 60 120 180 Xanthan Gum Low calcium 10.0 10.8 11.7 12.5 13.6 14.7 15.3 Smooth Control 5.0 5.8 6.6 7.2 8.1 9.0 9.5 Chunky EXAMPLE 10 A low calorie French dressing contain ing approximately o.6 calories per millilitre or 3 calories per teaspoonful is made using the following formulation: Ingredients: % Water 55.95 55.95 Vinegar (50 grain) 18.00 18.00 Tomato Paste (26%) 7.50 7.50 Vegetable Oil 6.00 6.00 Lemon Juice 5.00 5.00 Salt 3.50 3.50 Egg Yolk (fresh) 2.00 2.00 Paprika 0.60 0.60 mustard 0.50 0.50 Low calcium , smooth flow xanthan gum 0.75 Xanthan gum (Control) 0.75 Onion powder 0.10 0.10 Garlic powder 0.05 0,05 Non-nutritive sweetener 0.05 0.05 1C0.00 100.00% Procedure: 1. Disperse the xanthan gum in the water and add with good agitation to all oil, vinegar and lemon juice in which the mustard is dispersed. Complete hydraticn in 10-15 minutes with stirring. 2. After hydration, add tomato paste and egg yolk 3. Add blend. of all solids with stirring. 4. Emulsify with a colloid mill at 0.015 (O.038 cm). The flow properties of the dressings are measured in the Bostwick Consistometer using the procedure described in Example 3 with the following results: Visual Examination of Distance in cm Flow Properties Seconds 5 10 20 30 60 120 180 Xanthan Gum Low calcium 7.5 8.0 8.5 8.7 9.3 9.8 10.2 Smooth Control 4.0 4.7 5.4 5.7 6.2 6.6 6.8 Chunky EXAMPLE 11 Various low calcium xanthan gum are produced according to the teachings of this invention and tested according to Test Method 1 and by visual observation with the following results: : Sample Visc. (cP) Flow (visual determination) 15 2350 Very Chunky 16a(1) 1670 Chunky b 1830 Chunky c , 1800 Chunky 17a 1800 Chunky b 1730 Chunky c 1800 Chunky 18a 1510 Slightly Chunky b 1510 Smooth 19a 1580 Slightly Chunky b 1520 Smooth 20a 1710 Slightly Chunky b 1730 Slightly Chunky 21a 1510 Smooth b 1500 Smooth c 1540 Smooth 22a 1360 Smooth b 1350 Smooth (1) Letters indicate replicates of same sample, so that viscosity differences are within experimental error. EXAMPLE 12 Pilot Plant Fermentation Smooth-flow, low calcium xanthan gum is prepared in a 4164-litre fermentor using soft water. Inoculum: Age - 54 1/2 hrs. (378.5 litres) pH - 6.82 Viscosity - 2550 cP Medium: Corn Syrup (D.S.) 3.96 (4164 litres) NH4NO3 0.106% K2HPO4 0.053% Promosoy 100 0.033% MgSO4#7H2O 0.01% Balab Defoamer 0.25% (v/v) K-60 Defoamer 0.022 (v/v) KOH To control pH at 6.0-7.5 Fermentation Beer pH 7.06 Temperature 30-31 C Aeration 0.2-1.0 (v/v) Agitation: Disc and turbine impellors Number of sets: 3 Number of blades/set: 5 Disc diameter: 50.8 cm Blade dimension: 6.35 cm x 10.16 cm Impellor diameter: 71.1 cm Speed - 150 rpm Recovery: Beer pH adjust to 6.O with H2SOt Beer rate - 5 gpm Pasteurization - 74 C/6 min Ppt. with 3 volumes isopropanol Following the procedure of Example 12 but replacing K2HPO4 with Na2HPO4, the smooth-flow, low calcium xanthan gum of the present invention is also produced.
CLAIMS 1. A xanthan gum in which not more than about 1.6% of the xanthan gum carboxyl groups are bound to calcium ions. 2. A xanthan gum containing up to about 0.04 weight % calcium. 3. A xanthan gum as claimed in Claim 1 containing ut to about 0.02 weight % of calcium. 4. A smooth-flow xanthan gum in which not more than about 1.6% of the xanthan gum carboxyl groups are bound to calcium ions. 5. A smooth-flow xanthan gum as claimed in Claim 4 containing up to about 0.02 weight % of calcium. 6. An aqueous composition containing a xanthan gum as claimed in Claim 4. 7. \ An aqueous composition as claimed in Claim 6 in the form of a water-in-oil emulsion. 8. A dry-mix composition comprising a foodstuff and an effective amount of low-calcium smooth-flow xanthan gum. 9. A toothpaste composition comprising glycerine, water, an abrasive, and an effective amount of lolç-calcium smooth-flow xanthan gum.
MERCK & CO. INC.
RICHMON, JOE B.
EP-0005039-B1
5,039
EP
B1
EN
19,830,316
1,979
20,100,220
new
B65H31
null
B65H39, B65H29
B65H 39/11, L65H408:111
PAPER SHEET DEFLECTING SYSTEM FOR SORTER MECHANISM
Paper sheet deflecting system for a continuous paper sorting machine having a receiver 14 which is comprised of at least two columns of inclined side-by-side stacks of paper storage bins 15 with entrances for receiving paper sheets from a reversible feeder conveyor 28. The receiver 14 is mounted on track means 16 for lateral movement relative to its feeder mechanism 10, such that the bin entrances move past the feeder 10 and present a particular bin address to a particular deflector and deflector guide position. The paper sheets can be deflected off the feeder conveyor 28 to a predetermined bin address whether they are moving down the conveyor 28, from the top or up the conveyor 28 from the bottom.
PAPER SHEET DEFLECTING SYSTEM FOR SORTER MECHANISM This invention relates to sheet distributing or sorting devices and more particularly to a receiver and feeder apparatus which can continuously receive and sort large numbers of multi-paged documents as copies of a page proceed from a reproducing device such as a printer or copy making machine. This application references our copending European Patent Application No. 79500624.8 filed on even date herewith for Continuous Sorter Machine and corresponding to U.S. Patent Application Serial No. 897,272 dated 1th April 1978. Prior art paper distributors, sorters and/or collators have encountered many problems. One is that the rapid advances in copy producing machine and press machine speeds have made increased demands on sorters. In order for the maximum production capability of a printing or copy making machine to be utilized, it is necessary that the sorter have the capacity to receive the printer or copy machine output without loss of press or copy making machine time. large capacity sorting machines have been introduced to the market place but they are not continuous. For instance, in some sorters after a vertical column of trays or bins has been filled, it is necessary to stop the press and shift that filled column away from the feeder and then move an empty column into position. Thus there is lost a significant amount of press or copy machine production time. Additionally, time is lost if the bins have to be unloaded on line. A continuous sorter places unusual demands on both that feeder and receiver sections. The machine must continuously accept paper copies from the reproduction device aid lidlidiL them in such a way as to avoid interruptions when a column of bins is filled and feeding must shift to a new column, While smaller collators or sorters are mainly iended for the office Inarket as a necessary adjunct to office copying machinery, larder sorters are more intended for the high volume commercial market and for large inplant reproduction centers, commercial houses and printing departments. These higher volume paper handling installations may be turning out catalogs, maintenance manuals, instruction books, brochures, sales material and perhaps other items such as reports, bid specifications and other large quantity, muiti-page publications. Those skilled in the art will appreciate the savings in labor, time and expense if the reproduction capacity of a particular printing or copying center can be sorted at a rate which is consistent with the copy making capability. Among the prior art references which may be considered with respect to the features of this invention are the following: United States Patent Nos. 3,420,517; 3,273,882; 3,356,362; 3,848,867; 3,937,459; 3,938,801; 3,740,050; 3,944,217; and 3,963,235. The devices covered by the above patents do not disclose tulle structure of this invention EMI4.1 A continuous paper sorting machine in which the receiver with tile bins is designed generally in accordance with the teachings of U. S. Patent No. 3,938,801 which describes side-by-side stacks of inclined columns of paper receiving bins or shelves. The receiver is moved laterally with respect to a generally upright feeding device, in which the feeder presents a generally vertical feed conveyor with deflectors and guides for intercepting sheets moving up or down the conveyor and directing them into bins in the receiver as the receiver moves a given bin in a column past a given deflector position. The feeder of this invention utilizes a reversible feeder belt conveyor so that sheets may be fed to a given bin address moving either up or down the reversible conveyor. The paper sheet deflecting system of this invention incorporates deflectors which deflect paper sheets off the conveyor in either direction of travel. Deflector guides are iiicur'jortitud wi Lii tliu defectors to control tiu sheets au they are directed off the conveyor and toward a particular bin address. Two deflectors are used for a single bin address in the receiver because of the reversibility of the feeder conveyor. which deflector is used depends upon the direction of travel of the paper sheet on the conveyor. Accordinyly, it is amony the features, objects and advantages of the invention to provide a paper sorting maclijiic deflecting system for a continuous sorter which is uniquely designed and intended for maximiziny the production of a conunercial printing, reproducing, duplicating or copying center. The invention is a unique system for intercepting slices off a reversible conveyor and directing them into a desired bin address. The invention is particularly suited for use in printing shops or reproduction centers for such things as multipage brochures, catalogs, books and other items which must be produced in large numbers. The system is capable of handling sheets at the high speeds of present day advanced copying, printing and duplicating machinery. The system is uniquely simple and inexpensive for continuously filling a large number of bins. Brief Description of Drawings Figure 1 is a perspective view showing generally tulle general arrangement and organization of the sorter including the receiver and feeder mechanism. Figure 2 is a partial cross-section view in elevation slowing details of construction of the feeder; Figure 3 is an enlarged partial cross-section view in elevation showing in greater detail the construction features of the invention; Figure 4 is a partial view in perspective showing additional details of the deflector; and figure 5 is a cross-ection view in plan along the line 5-5 of Figure 2 showing additional details of the system. EMI6.1 Referring now to the drawings and particularly Figures 1 and 2, it will be seen that the deflector system of this invention is located at the interface between a feeder, generally identified by the number 10, and a receiver generally identified by the number 14. A duplicator or press device generally designated by the number 12 delivers copies to the feeder 10 for transport of those copies to the receiver 14 and bins 15. The receiver moves laterally on track structure 16. Feeder 10 includes infeed conveyor section 18, a proof tray assembly 20 and a control panel 22. The infeed conveyor feeds either to an upwardly angled intermediate conveyor 24 or a downwardly angled ntermediate conveyor 26. A tower section generally designated by the number 28 supports a vertically disposed reversible feeder conveyor, bin deflectors and guides to be described more in detail hereinafter. The tower section 28 is supported on a base section 30 shown in generally outlined form in Figure 1. Referring now to Figure 2, it will be seen that the tower section 28 includes the upper end of upwardly angled intermediate conveyor 24 and includes large diameter belt -pulleys 40 mollnied on shaft 42. A series of equally spaced guide plates 44 with a radius 46 are provided to enable sleets of paper to move around the end of the conveyor. Several spring loaded retainer pulleys 48 and 50 for contacting 2 or more belts are provided for positive engage nlen, of the sects as tizzy traverse around the end of the conveyor on belts 41. It will be seen that the lower end of lower intermediate conveyor 26 has a similar structure and feeds in similar fashion to the lower end of the feeder conveyor now to be described. The feeder conveyor comprises a series of lower belt pulleys 60 mounted on a drive shaft 62 in close proximity to the lower rollers of the downwardly inclined intermediate conveyor 26, for receiving sheets of paper as they come around the lower end and onto the feeder conveyor. At the upper end of the feeder conveyor are a series of pulleys 64 mounted on shaft 66. A series of continuous belts 68 are received on the pulleys 60 and 64. It will be seen by reference to Figure 5 that the tower is composed of side frame members 70 and 72 having interior support frame members 74 and 76. Deflector support strips 78 on one side and 80 on the other side extend from top to bottom of the feeder conveyor frame and include a series of triangular vertically spaced apart openings 82 for supporting the two-way deflectors generally designated by the number 90. The deflectors 90 am elongate members of light aluminum sheet having a front surface 92 and at apprcximately 900or at a right angle thereto a backwardly extending top surface 94. At each end of the deflector is an extension Portion 96 with a mounting tab piece 98 located at the outermost lower part of the extension section 96. The tabs 98 mount in the triangular openings 82 in the side mounting:pieces 78. It can be seen that the deflectors are formed with a series of cutout sections 102 which are formed in the face wall 92 and the top wall 94. Diagonal portions 104 extend from the lower part of the face wall 92 to the rear part of the upper wall 94 within the cutout sections 102 or may be eliminated altogether. The openings 102 are fonned in the deflector to provide clearance for the belts 68 when the deflector is moved out to its paper intercept position. A rear wall 106 extends from the lower part of the front face wall 92 generally rearwardly along substantially the entire length of the deflector to provide a strengthening continuous wall section for the deflector. A rearwardly and downwardly ancjliny top connector wdll 108 also extends from the rear part of top wall 94 for the same strengthening features. At one end section 96 of the deflector is a depending actuator leg 110 which as can be seen is connected to one end of a compression spring 112. The deflector is biased by the spring 112 into its retracted mode by pushing against the leg 110 to rotate the deflector rearwardly. Each spring 112 connects to the core member of a solenoid 114 so that which, tlic solenoid is actuated the spring 112 is compressed to igull tab 110 in to force the deflectors to rotate out wardly into the position shown best by the second deflector in Figure 3. A deflector guide frame consisting of side frame members 120 and 122 as best seen in Figure 5 is formed to pivot as around hinges 123 to allow access to the conveyor belts aud deflectors ill tIie event of a paper jam. Extending between the frame members 120 and 122 are a series of fifty Y-slla±cd deflector guides 124 having horizontal section 126 terminating at an outer end 128 and also having upwardly angled leg 130 and downwardly angled leg 132. It will be noted that the deflector guides are positioned in such a way that the upper leg 130 is spaced a predetermined distance directly below the lower leg 132 of the deflector guide next above. It can be seen that a deflector 90 in its actuated position pivots outwardly in such a way that the front and top faces 92 and 94 of the deflector are at approximately 450 angles to the conveyor belts 68. The horizontal section 126 of the deflector guides can also be seen to be located approximately midway of the opening between the bottom of one bin 15 and the top of the entrance wall tray or bin 15 next below. The outer end 128 of the horizontal section of the deflector guide is located in close proximity to the plane of the entrance walls of the bins and are as close as can be without interfereing with the passage of the receiver 14 as it moves by the feeder conveyor. roller 140 at the top and another roller 142 at the bottom of the tower as seen in Figure 2 restrain the receiver from coming any closer than the spacing allowed for by the rollers 140 and 142. An opening 129 is provided through the entire stack of deflector guides 124 to accommodate an unobstructed photoelectric beam to sense the leading and trailing edges of paper as they are handled by the sorter. Receiver 14 has fifty functioning bins 15 as seen in Figures 2 and 3. The top bin 17 is a nonfunctioning bin because it will be observed that the top most deflector guide 124 is located below the nonfunctioning bin 17 and above the topmost of the fifty functioning bins 15. By reference to Figure 3, it will be seen that a sheet of paper coming down the conveyor is directed into bin B1 by the topmost deflector 90 being energized into its deflect or intercept position. The topmost deflector guide 124 is used on its upper surface for the guiding. In order to direct a sheet of paper into bin B1 coming up the conveyor it is necessary that the next lower deflector 90 be actuated and the lower surface of the topmost deflector guide is utilized. The sorter control system is programmed so that the paper deflector is actuated in order that a specific bin receive a paper sheet. Because it takes two deflectors to service one bin, it will be appreciated that the conveyor requires 51 deflectors with 50 deflector guides 124 to service 50 functioning bins 15. By referring to the deflectors and particularly the actuated deflector it is understood that it services two bins 15 depending on the direction of travel of the paper sheets. Operation of the feeder and receiver is continuous and is best described as follows. A first or page 1 master is inserted in the press or duplicator. Several copies are first directed to the proof tray and then the sorting job begins. Odd numbered pages coming out of the press are directed to lower intermediate conveyor 26 and up the feeder conveyor to the top bin. Sheets will be fed up the conveyor 68 and deflected to the desired bin address by a deflector and the lower surface of a X-shaped deflector. The receiver moves a discrete distance from left to right and presents the next bin address until all 50 bins in a column have been filled. If the sorting job extends to the next column copies continue to be fed to the feeder conveyor 68 via lower intermediate conveyor 26 and up the feeder conveyor to the topmost bin In the second column. The topmost bin of the second column Is offset fron the lowermost bin of the first column by the same increment of distance as the bins are offset from each other in each column. Assuming that two complete columns of bins are being used for a sortIng job the feeder continues to feed around the lower intermediate conveyor until all fifty bins In the second column are also filled. By the time the bottommost bin the second column has received its copy of page 1 from the press, copies of the page 2 master are already proceeding up the upper intermediate conveyor 24. The feeder belts 68 ara reversed to bring the first sheet from the top to the bottom of the feeder conveyor and filling of the bins with copies of page 2 begins with the lowermost bins in column two where the fIrst page sorting job ended. Thus the feeding of bins is continuous not only from bin to bin but from. column to column. Also, it can be appreciated that odd numbered pages from the duplicator are fed from the bottom up while the receiver Indexes from eft to right and even numbered pages are fed from the top down while the receiver moves from rear to left. Obviously, also, two adjacent deflectors are needed for a single bin add ress. When coming down the conveyor sheets are deflected by the top one of two adjacent deflectors and directed against the top surface of a deflector guide and into the bin opening. when coming from the bottom a sheet is deflected by the lower one of two adjacent deflectors and off the lower surface of a deflector into the same bin address. Thus the need for one more deflector than there are bins or yuiclcs. It will be understood that sheets are not fed alternately from top and bottom but that the feeder conveyor moves in one direction only until the sorting of the copies of one large is complete. The copies of the next page to be sorted are then fed from the opposite direction and the receiver direction of movement is reversed.
EMI17.1 EMI17.2 1. Paper sheet transport and deflector system for a continuous sorter mechanism having a feeder and a receiver a predetermined number of bins, comprising: a) a generally vertically disposed, reversible belt type feeser conveyor which selectively transports sheet of paper either up or down said conveyor for direction to and deflection into a predetermined bin addres in said receiver, the bins in said receiver each having an entrance opening of predetermined dimensions, b) a series of deflector devices mounted on said conveyor having a front and rear extending top walls generally at right angles to each other and located behind said belts in a retracted position and which when pivoted into a paper deflect position said front and top ails are at approximately 450 angles to the plane of said belts, there being one more deflector device than the number of bins in said receiver, and c) deflector guide iieans disposed between the etrance opening to each bin and said deflector devices and belts such that a paper sleet copy of one page traveling up time feeder conveyor is deflected by a first deflector device into contact with the undersides of a deflector guide for guiding said sheet into a given bin and such that a paper sheet copy of a second sheet traveling down the feeder conveyor is deflected into the same given bin by the deflector next above said first deflector device and by topside of the same deflector guide 2. The paper sheet transport and deflector system according to Claim 1 and which the deflector guide for each bin opening has a horizontal section terminating in predetermined spaced relationship to the plane of the receiver bin entrances and positioned so as to be generally midway of tha vertical dimension of said bin entrance opening. 3. The paper sheet transport and deflectors system according to Clain 2 and in which said deflector guide for each bin includes an upwardly angled leg and a downwardly angled leg diverging from said horizonal section such tJiat the upwardly anyled leg is in close proximity to said first deflector device and said downwardly angled leg is in close proximity to said deflector device next below when the deflector devices are pivoted to their deflect position. 4. The paper sheet transport and deflector system according to Claim 1 and in which each deflector device is spring loaded to a normally retracted position and also connecten to an electrical actuator dice for being pivoted to its deflect position. 5. The paper sheet transport and deflector system according to Claim 1 and in which said deflector guide are mounted in a hinged frame connected to said feeder. 6. The paper sheet transport and deflector system according to Claim 1 and in which each of said deflector devices has cutaway sections in the front and top walls so that when a deflector is moved to its deflect position there is no interference between said deflector and the conveyor belts. 7. Paper sheet transport and deflector system for a continuous sorter mechanism having a feeder and 2 receiver with a predetermined number of bins, comprising: (a) a generally vertically disposed, reversible multiple belt type feeder conveyor which selectively transports sheets of paper either up or down said conveyor for direction to and deflection into a predetermined bin address in said receiver, the bins in said receiver each having an entrance opening of predetermined vertical dimension, (b) a series of deflector devices mounted on said conveyor having a front wall generally parallel with and behind said belts and a rearwardly extending top wall generally at right angles to said front wall and also having cutaway sections in said front and top walls in alignment with said belts and further having end mounting means for limited pivotal movement of said deflector devices such that when pivoted into a paper deflect position said front and top walls are at approximately 450 angles to the plane of said belts, there being one more deflector device than the number of bins in said receiver, and c) deflector guide means disposed between the entrance opening to each bin and said deflector devices and belts such that a paper sheet traveling up the feeder conveyor is deflected by a first deflector device into contact with the upper surface of a deflector guide for guiding said sheet into a given bin and such that a paper sheet travelling down the feeder conveyor is deflected into the same given bin by the deflector device next above said first deflector device and by the lower surface of the same deflector guide. 8. The paper sheet transport and deflector system according to Claim 7 and in which the deflector guide for each bin opening has a horizontal section terminating in predetermined spaced relationship to the plane of the receiver bin entrances and positioned so as to be generally midway of the verticle dimension of said bin entrance opening. 9. The paper sheet transport and deflector system according to Claim 8 and in which said deflector guide for each bin includes an upwardly angled leg and a downwardly angled leg diverging from said horizontal section such that the upwardly angled leg is in close proximity to said first deflector device and said downwardly angled leg is in close proximity to said deflector device next below when the deflcctor devicesarepivoted to their deflect position. 10. The paper sheet transport and deflector system according to Claim 7 and in which each deflector device is spring loaded to a normally retracted position and also connected to an electrical actuator device for being pivoted to its deflect position. 11. The paper sheet transport and deflector system according to Claim 7 and in which said deflector guides are mounted in a hinged frame connected to said feeder.
HOLLIDAY, DAVID H.; ORDIBEL, INC.
GREENE, RONALD W.; HOLLIDAY, DAVID H.
EP-0005040-B1
5,040
EP
B1
EN
19,821,215
1,979
20,100,220
new
B65H31
null
B65H39
B65H 39/11, L65H408:111
CONTINUOUS PAPER SORTING MACHINE
Continuous paper sorter mechanism in which a receiver section 14 is mounted for lateral movement relative to a feeder mechanism 10 which has an in-feed conveyor 18 which takes paper from a copy making device 12 and feeds the paper either to an intermediate downwardly inclined conveyor 26 or onto an intermediate upwardly inclined conveyor 24, depending on whether the feeder 10 is distributing paper from the top or from the bottom. Sheets from the intermediate conveyors 24 and 26 in turn are transported to a generally vertically disposed, reversible feeder conveyor. The feeder conveyor is provided with a plurality of two-way deflectors which intercept the sheets and direct them off the conveyor moving either downwardly or upwardly. A deflector guide section is disposed between the deflectors and the entrances of the bins in the receiver. A proof tray mechanism 20 is also provided over the in-feed conveyer 18.
Continuous Paper sorting Machine This invention relates to sheet distributing or sorting devices and more particularly to an apparatus which can continuously sort large numbers of multi-paged documents as copies of a particular page proceed from a reproducing device such as a printer or copy making machine. This application references copending European Patent Applications No. 79300625.5 , for Beeding Mechanism For A Continuour Sorting Machine , No. 79300626.3 , for Bin Receiver Mechanism for a Continuous Paper Sorting Machine ; and No. 79300623.0. , for Paper Sheet Deflecting System for Sorter Mechanisml all of which have been filed on even date with the instant application. Prior art paper distributors, sorters and/or collators have encountered many problems. One is that the increases in material and labour costs have made it imperative that the capacity of the reproduction machine be utilized to its maximum. In order for the maximum production capability of a printing or copy making machine to be utalized, it is necessary that the sorter have the capacity to receive the printer or copy making machine output without undue loss of press or copy making machine time. Large volume sorting machines have been introduced to the market place but they are not continuous. For instance, after a column of trays or bins has been filled, it it necessary to shirt that filled column away from the feeder and move an empty column into position to continue the sorting job, Thus, there is lost a significant amount of press or copy machine production time between columns. Additionally, tine is lost if the bilis Iiave to be unloaded on line. The differences in the volute of jobs that sorters must Iiaiidle suggest that sorters should be modular to the extent hat if a module does not have the capacity, additional modular receiver bin sections may be provided witllout any substantial loss of time or extra handling of the copied material. While smaller collators or sorters are mainly intended for the office market as a necessary adjunct to office copying machinery, larger sorters are more intended for the high production commercial market and for large in-plant reproduction centers, commercial houses and printing departments. These higher volume paper handling installations niay be turning out catalogs, maintenance manuals, instruction books, brochures, sales material und perhaps other ituintr such as reports, bid specifications and other large quantity multi-page publications. Those skilled in the art will appreciate the savings in labor, time and money if the output of a printing or copying center can be sorted and handled at a rate which is matched to the press and duplicating macllinery production capability. Agony the prior art references which may be considered with respect to tulle features of this invention are the following; United States Patent Nos. 3,420,517; 3,2?3,882; 3,356,362; 3,84S,867; 3,937,459; 3,938,801; 3,740,050; 3, 944,217; and 3,963,235. The devices covered by the above list of patents are considered to be non-anticipatory of the teacj#inys of this invention. A continuous paper sorting machine in which the receiver with the bins is designed generally in accordance with the tedrallings of U. S. Patent No. 3,938,801 which describes side-by-side stacks of inclined columns of paper receiving bins or sileives. The receiver of this invention is moved laterally with respect to a generally upright feeding device, in which the feeder is comprised of a base section and an upstanding tower portion. An in-feed can veyor is located generally midway between the top and bottom of the tower and receives sheets of paper from the press or duplicating machinery. A proof tray is supported above the in feed conveyor and a deflector mechanism is provided on the infeed#conveyor for directing the sheets either upwardly into the proof tray or to allow the sheets to ass on through to the feeder. At the inner end of the infeed conveyor are an upwardly extending intermediate conveyor and a downwardly extending intermediate conveyor. A deflector at the junction of the infeed and the upward and downwardly intermediate conveyors directs sheets of paper either into the upper intermediate conveyor or onto tlle downwardly intermediate conveyor depending upon feeder controls programming. A generally vertically disposed reversible feeder conveyor extends between the outer ends of the two intermediate conveyors and receives paper from either direction The feeder has drive and clutching means for reversing the direction of movement of the feeder conveyor. A series of paper deflectors are located on the feed conveyor and are designed to deflect paper copies from either direction. The deflectors are individually actuatod by drive solenoids. A deflector guide section is provided on a hinged frame which swings away from the conveyor to allow access to paper jams and for maintenance. The deflector guide frame is mounted for pivotal movement so that the guides are precisely located with respect to the entrances to the bins on the receiver. The receiver is constructed in two column modules which moves on casters along a track assembly. A chain drive mechanism has means for being releasably engaged by a fork on the receiver base. The chain is precisely controlled to present a particular bin address to a deflector at a given instant in time. Several modular receivers may be detachably engaged to each other so that as many as 600 bin addresses may be utilized. The bins are generally horizontal at their entrance end but tilt or slant to one side in order to aid the alignment of paper sheets into neat stacks as the sheets are fed into the bin. Accordingly, it is among the features, objects and advantages of tlle invention to provide a paper sorting machine feeder device which is continuous and uniquely designed and intended for maximizing the production of a coziunercial printing, reproducing, duplIcating or copying center. The invention is particularly intended to reduce and to minimize the amount of time a reproduction, printing or copy ins device loisca due to the lack of a continuous paper copy sorting capability which is matched to copy making capacity. Because of the unique feeder in conjunction with the canted columns of bins type of receiver, there is no necessity to stop the sorting of paper copies from column to column. The machine can continue to sort as it moves front coluinn to column without interruption of copy production. Ti#e receiver can be unloaded off line, so that a filled receiver may be rolled away and an empty receiver moved into position with a minimum of lost time. The invention is particularly suited for use in printing shops or reproduction centers for such things as multi-page brochures, catalogs, books and other items which must be produced in large numbers. The machine is capable of receiving sheets and feeding them at the high speeds of present day advanced copying, printing and duplicating machinery. Figure l is a perspective view showing the general arrangement and oryanization of the sorter and particularly of tile feeder mechanism of this invention; Figure 2 is a partial top plan view of the infeed conveyor including the proof tray; Figure 3 is a partial side elevation view in cross section showing details of the infeed conveyor and details of its sollutruction; ; leisure 4 i a partial elevational cross-section view of tSIe nluclline sllowiny additiollal details of the intermediate conveyors and of the infeed conveyor section; Figure 5 is a diagralullatic view of the conveyor drives and clutching arrangements for reversing the feeder conveyor; Figures 6 and 7 are schematic representations of the belt drive arrangement for the various conveyors; Figure 8 is a partial cross-section view along the line 8-U of Figure 4 showing additional details of the feeder conveyor construction; ; Figure 9 is a partial elevational cross-sectional view along the line 9-9 of Figure 8 showing additional conveyor details; Figure 10 is a partial front elevation view of the. deflector guide section of the feeder; Figure 11 is an enlarged partial cross-section view in elevation showing in greater detail the construction features of the invention; Figure 12 is a partial view in perspective showing additional details of the deflector; Figure 13 is a front elevation view of the receiver of this invention; Figure 14 is a partial top plan view of the track assembly showing details of the track construction; Figure 15 is a partial elevational cross-section view of tulle receiver base and track assenbly; Figure 16 is a partial elevational cross-section view showing details of the chain engagement means and the module interlock; figure 17-is a partial plan view of the details of Figure 16; Figure 18 is a partial plan view of a bin in the receiver; ; Inure 19 is an end elevational view of the bin of picture 18; Figure 20 is a partial elevation cross-section of a bin and particularly of its entrance end with respect to deflector guides on its feeder; and 1'iyuL.#a 21 is a partial front diayranunatic view of the receiver to fure}Xer illustrate details of construction. Referring now to the drawings and particularly Figure 1, it will be seen that tlie feeder mechanism of this invent iori, generally designated by the number 10, is in position between a duplicator or press device generably designated by the nwlber 12 and a receiver mechanism generally designated by the number 14. The receiver moves laterally on track structure 16. Feeder 10 includes infeed conveyor section 18, a proof tray assembly 20 and a control panel 22. The infeed conveyor feeds either to an upwardly angled intermediate conveyor 24 or a downwardly angled intermediate conveyor 26. A tower section generally designated by the number 28 supports a vertically disposed reversible feeder conveyor, bin deflectors and guides to be described more in detail hereinafter. The tower section 28 is supported on a base section 30 shown in generally outlined form in Figure 1. Referring now to Figures 2 and 3, it will be seen that the in feed conveyor 20 includes side frame menibers 36 In wliich is supported a conveyor plenum enclosure 38 having an outer end 40 and inner end 42. The conveyor plenum 38 lias a wall 46 in which are disposed rows of openings 48. The openings 48 are formed in the wall 46 so as to present transverse as well as longitudinal rows over substantially tìle entire length of the plenum structure 38. A shaft 50 is supported adjacent the inner end 42 of the plenum and has affixed thereto a plurality of rollers 52. In like manner, at the outer end 40 a shaft 54 has a series of belt rollers 56. A series of belts 58 extend around the rollers 52 and 56 as seen in the drawings. A short section of transfer conveyor belts 60 extend around rollers 62 which are also affixed to shaft 54 to accept the sheets of paper from the press or duplicating device for transfer to the infeed conveyor 18. A fan means 34 is provided in the infeed conveyor for creating vacuum or negative pressure for holding the sheets of paper on the belts 58. The proof tray structure, generally designated by the number 20 includes proof conveyor belts 64 which extend around pulleys 66 and 68 mounted on shafts 70 and 72 respectively. The proof conveyor feeds to a tray 74 having side walls 76. A proof deflector 80 is mounted on a shaft 22 and is biased into a normal position such that when power is off the deflector would be in an intercept position with respect to sheets of papers coming onto the infeed conveyor. The proof deflector 80 is actuated by a solenoid 84 as seen in Figure 2. Additionally, a direction deflector 86 is provided at tle inner end of the infeed conveyor strucLure for direction sheets of paper off the infeed coiivcyor either to the upwardly angled intermediate conveyor 24 or twe downwardly angled lntermediate conveyor 26. Directional deflector 86 is mounted on shaft 88 and is in turn selectively actuated by tlle solenoid 90 again shown in Figure 2. Tlse proof conveyor belts and pulleys 64, 66 ad 68 are driven by a power belt 92 extending from a drive pulley 94 on shaft 54 to a pulley 96 mounted on shaft 70. The infeed conveyor belts 58 in turn are driven by a belt 98 which extends around drive pulley 100 mounted on shaft 50, again as best seen in Figures 2 and 3. Figure 4, directed to details of the base 30 and the feeder tower frame 28, shows base 30 to be a generally rectaiiyular box-like structure housing motor 110 and other parts as will be more particularly described hereinafter. Base 30 has a bottom wall 112, side walls 114,a rear wall 116 and top wall 118. A conveyor frame receiving area is defined by a recessed wall 120 which is spaced a pre determined distance from the front wall 120, and as can be seen, angles upwardly and rearwardly generally parallel to the bottom intermediate conveyor section 26. Supported within the recessed area of the frame are two spaced apart niain upstazidiny or vertical frame members 124 and 126 seen in Figure 4 and also in Figure 8. A horizontal top frame member 128 interconnects main upright frame members 124 and 126. cunting frame members 128 and 130, as best seen in Figure 8, are secured to the main upright frame members 124 and 126, respectively, for additional frame rigidity as well as for supporting other party. Supported between the uprigllts 124 and 126 is an internal, triangular, inner wall structure generally designated by the number 132. It will be seen by reference to Figure 4 twat the wall 132 extends from near the lower crid of the uprights up Jlsts to a point noar the uper end of the uprights. Extending generally vertically is a wall 134 which with wall 132 defines a triangular enclosed space 136 within a basic frame structure. A shroud occupied by the fan 140 provides air evacuation means for the lower intermediate conveyor 26 while a fan 144 surrounded by shroud 142 provides air evacuation means for the upper intermediate conveyor 24. Note that the shrouds and fans 138, 140, 142 and 144 are part of the wall structure 132 just described. In the vertical wall 134 are shroud 146 towards thule lower pcirt of cavity 136 and shroud 148 towards the upper part of cavity 136. In this regard, see also Figure 5. Shrouds 146 and 148 are occupied by fans 150 and 152, respectively. The air evacuation means direct the air inwardly from the direction of the conveyors and exhaust it through screened openings 154 as shown in Figure 1. Lower intermediate conveyor 26 includes an elongated generally rectangular plenum wall 160 which has both transverse and longitudinal series of holes 162. At the lower end of the plenum are a series of belt conveyor pulleys 164 mounted on shaft 166. At the upper end of lower inter Inediate conveyor 26 are a plurality of belt pulleys 168 mounted on shaft 170. Since the sheets of paper must transverse around the lower end of intermediate conveyor 26, tlic radius of turn is laryer as can be seen by reference to the relative difference between the lower pulleys 164 as opposed to the upper pulleys 168. A series of guide and idler Pulleys 172 increase the ainount of wrap of the belts 174 around rollers 164 but are primarily for the purpose of kccpfny the belts out of the way of other parts. A series of spaced apart guide plates 176 having a radius of curvature 178 extend along the bottom in non-interfering relationship with belts 174. A plurality of individual guide or pressure rollers 180 are mounted on plates 176 onto engage belts 174 as they begin to contact rollers 164. In like manner, a series of rollers 184 also mounted on plates 176 engage the belts 174 to assist in the positive movement of sheets of paper around the lower end of the intermediate conveyor as the belts leave contact with rollers 164. In this way, paper sheets move positively around the end of the intermediate conveyor to be engaged by the feed conveyor 28 to be described hereinafter. In like manner, upper intermediate conveyor 24 has laryer diameter upper belt pulleys 190 mounted on shaft 192 with pressure or paper guide rollers 194 and 196. Lower end pulleys 198 are mounted on shaft 200 with the upper end shaft 192 and the lower end shaft 200 being mounted at the ends of plenum wall 202 having transverse and longitudinal rows of openings 204. Belts 206 extend around the upper and lower pulleys again with idler or wrap-around pulley assembly 208 serving the same function as pulleys 172 at the lower end of the lower intermediate conveyor. Finally, guide plates 210 having a radius of curvature 212 allow a Iit of papur to traverse around the top end of tlle conveyor to tlle vertical feed conveyor. It is to be observed that the pressure or retainer rollers 196 and 194 could be mounted individually on the guide plates or on a cinallon shaft or bar extending laterally across the top. The feeder conveyor section 28, reference being had to figures 4 and 8 through 12, has side frame members 220 and 222 which attach to and extend between the vertical mountiny pieces 129 and 130 as seen in Figure 8. At the upper end of feeder conveyor 28 are belt pulleys 224 mounted on shaft 226 and at the lower end are pulleys 228 mounted on shaft 230. A series of belts 232 extend around the upper and lower pulleys 224 and 228 and idler or guide roller assembly with pulleys 234 are mounted at spaced intervals between the upper and lower end pulley assemblies as seen in Figures 8 and 9. A series of deflectors nuinbering 51 in total are spaced between the frame members 220 and 222, said deflectors being generally designated by the number 240. The deflectors 240 are elongated members of light aluminum sheet having a front surface 242 and at approximately 900 or at a right angle thereto a backwardly extending top surface 244 and the two walls form an edge 243. At each end of the deflector is an extension portion 246 with a mounting tab piece 248 located at the outermost lower part of the extension section 246. The tabs 248 mount in the triangular openings 250 in the side mounting pieces 220 and 222. It can be seen that the deflectors are formed with a series of cutout sections 252 which are formed in trhe face wall 242 and the top wall 244. Diagonal portions 254 extend from the lower part of the face wall 242 to the rear part of the upper wall 244 within the cutout sections 252 although diagonals 254 may be eliminated altogether. The openings 252 are formed in the deflector to provide clc#rne for tlie bulls 232 when tlie deflector is moved out to its paper intercept position. A rear wall 256 extends from tlse lower part of the front face wall 242 generally rearwardly along substantially the entire length of the deflector to provide a strengthening continuous wall section for the deflector. 7 rearwardly and downwardly angling top connector wall 250 also extends from the rear part of top wall 244 for the same strengthening features. At one end section 246 of the deflector is a depending actuator leg 260 which as can be seen is connected to one end of a compression spring 262. The deflector is biased by he spring 262 into its retracted mode by pushing against he leg 260 to rotate the deflector rearwardly. Each spring 262 connects to the core member of a solenoid 264 so that when the solenoid is actuated the spring 262 is compressed to pull tab 260 in to force the deflectors to rotate outwardly into the position shown best by the second deflector in Figures 4 and 11. Figures 4, 8, 10 and 11 show details of the deflector guide assembly generally designated by the number 27 which includes side frame members 272 and 274 with one side 274 being provided with a hinge 276 for swinging the deflector guide assembly away from the face of the feed conveyor. Extending horizontally between the side frame members 272 and 274 are the generally Y-shaped guide deflectors indicated by the nuiber 278. The guide do ctors have a horizontal outer section 280 terminating at an outer end 2U1 dnd an upwardly angled inner arm 282 and a downwardly angled in arm 284. It will be noted by reference to Figures 4 and 11 that the outer end 281 of the horizontal section 280 of the deflector guides termlinates approximately mid-way between the openings to bins in the receiver. When the deflectors 240 are rotated or pivoted outwardly to intercept a piece of paper the edge 243 is approximately midway between the lower angled arm 284 and the upper angled arm 282 of adjacent deflector guides. Thus a sheet of paper coming from the top of the feeder conveyor will be deflected into a given bin address by one deflector and if approaching its bin address from the bottom of the feed conveyor will be deflected into the same address by the next lower deflector. Since there are 50 bins in the receiver and 50 guide deflectors 278 it is necessary that there be 51 deflectors in order to properly address sheets of paper into the available bins. An opening 286 is formed in each guide 278 and extends all the way from the top to the bottom of the deflector guide assembly 270 to accommodate the lislt and photocell components 283 and 285 as seen at the bottom and top of the feeder conveyor tower in Figure 4. Receiver 14 has fifty functioning bins 15 as seen in Figures 4 and 11. The top bin 17 is a nonfunctioning bin because it will be observed that the topmost deflector guide 278 is located below the nonfunctioning bin 17 and above the toplnost of the fifty functioning bins 15. By reference to Figure 11, it will be seen that a sheet of paper cominy down the conveyor is directed into bin Bi by tulle topmost deflector 240 being energized into its deflect or intercept position. In order to direct a sheet of paper into bin B1 coming up the conveyor it is necessary t1#at the next lower deflector 240 be actuated. The sorter collErol system is progranaled so that the proper deflector is actuated in order that a specific bin address receive a paper sheet. Because it takes two deflectors to service one bin, it will be appreciated that the conveyor requires 51 deflectors with 50 deflector guides 278 to service 50 functioning bins 15. By referring to the deflectors and particularly tulle actuated deflector, it is understood that it services two bins 15 depending on the direction of travel of the paper sheets. A clutching and drive assembly is shown diagrammatically in Figure 7 and includes motor 110 and a drive pulley 111. The drive pulley drives belt 113 which in turn drives pulley 115 on shaft 166 at the bottom of lower intermediate conveyor assembly 26. Note in Figure 6 that a belt 98, also seen in Figure 2, is used to transfer power from the lower inturmudiate conveyor 26 to the upper intermediate conveyor 24 and also to the infeed conveyor 18. A belt 92 at the outer end of the infeed conveyor drives the proof conveyor belts. Thus it will be seen that the motor 110 drives a11 of the conveyor sections of the feeder. In order to reversibly drive feeder conveyor belts 232,two clutch assemblies 117 and 119 are driven by a belt 121 through a lower pulley 123 and an upper pulley 125. A reversilss drive belt 127 connects drive power to lower sllaft 230 of the reversible feed conveyor through pulley 231. Wll clutch 117 is engaged, the feeder conveyor is moved to transport paper upwardly from the bottom. When tne lower clutch 119 is engaged, tlle feeder conveyor will trallsport paper from the top down. It will be seen by reference to Figure 4 that a horizontally disposed contact roller 290 near the top and a horizontal roller 292 near the bottom are supported on the feeder to engage the receiver 14 as it moves laterally by the feeder to prevent contact and to maintain a predetermined distance relationship between receiver and feeder. It will be seen by reference to Figure 13 that the receiver 14 is comprised of a base section 300 having a bottom wall 302, and casters 304 and 306 with the casters 306 being located under the extension section 308 of the base 300. Upwardly extending side frame members 310 and 312 are iiitcrcoz#nuctud at tlleir upper end by frame top section 314. A center frame piece 316 divides the receiver, into two angled columnar spaces 318 and 320. The columnar spaces 318 and 320 include individual shelves or bins 322 which will be described more in detail hereinafter. The generally upstanding receiver structure has an entrance side 324 and an unloading or exit side 326. The frame is generally vertical in the plane of its entrance and exit sides and inclines at a predetennined angle in the direction of its movement. Extui#diny across tlle depth of the machine from the entrance to the unloading side, as best seen in Figures 15, 16 and 17, is an actuator rod 328 which is spaced just above bottom wall 302 and which rod 328 is supported by bearing 33b at aiic end and bc=arillg 332 on the exit side of the machine. izod 328 can be seen to extend through the base wall 300 to the exit side and on the outside is provided witli handle 33d, which extends generally upwardly for e t accuss by t operator. Secured to rod 328 are a pair of depending engage anent forks 336 which extend through an opening 338 in bottom wall 302. As can be seen, the forks 336 are spaced apart so that they will not interfere with the receiver chain drive on the support and drive track. Handle 334 of the engagement rod 328 engages a notch 340 in a holding clip 342 secured to the center frame piece 316 on the unloading side. It will be noted that the handle 334 engages retainer notch 340 in the generally perpendicular position and in which position the forks 336 extend generally straight down. A spring latch member 344 is supported at its anchor end 346 by wall 302. The spring latch member has a generally horizontal section 348 which extends under rod 66 and towards that end of the base away from extension plaLfont# 308. An opening 350 is provided in base wall 302 to receive a coupler section 352 and range 354 formed in the other end of the spring latch 344. When handle 334 is in the vertical position, as shown in Figure 16, spring latch 344 witll the coupler section 352 is up as shown so that if a second modular receiver unit 14 is being used the two units will be latched together. A flat is formed in rod 328 to register with the latch when the forks are engaged with the chain. An opening is located in extension section 308 which will slide up ramp 354 and under the opposite end of the base and will register with the opening 350. When the forks on rod 336 are straight down and thus engaged 'with the chain, as mentioned above, spring latch 344 is up and tlle coupler section 352 extends through tlle opelliny 350 in the base wall 302 as well as through the opening in the extension section 308 of the second receiver sllodule Linus holding the two receivers together. It will be noticed Lliat the handle 334 is moved according to the direction which it is desired to roll the receiver. When handle 334 is roved the flat is rotated with the rod to cain the latch down and release the receiver modules from each other. If an empty receiver is being rolled onto the track section, the handle will be moved in one direction so as to present the forks 336 at an appropriate angle. If it is desired to roll the receiver off after it is filled, then the handle 328 is moved in the opposite direction to permit forks 336 to release from the chain mechanism. The track section 16 includes a floor wall 360 with upstanding side channel 362 on the entrance side and upstanding channel 364 on the exit side. Supported on the floor wall 360 of the track section 16 are caster guide walls 366 for casters 304 and 306 and track guide walls 368 near side rail 364 for receiving the other casters 304 and 306. he guide rails 366 and 368 can be seen in Figure 14 to be spread slightly at the incoming end of the track to facilitate rolling an empty unit onto the track. Between the guide rail channels for the casters is a drive motor 370 which through drive chain 372 turns a reduction gear which in turn drives a main chain pulley 374. An idler chain pulley 376 is located at the other end of tlie track section so that a continuous drive chain 378 extends around the chain pulleys 374 and 376. .s lured to the chain as can be seen in Figures 15, 16 and 17, is a transverse arm inuiitbur 380 wllich is mounted on the chain such that it extends out on either side to be engaged by forks 336. When a new receiver has been rolled onto the track section, the handle 334 which controls the position of the engaging forks 336 is moved so that the forks are angled to allow the forks to engage member 380. As soon as engagement has been made, the bar is moved to the up rigllt position to firmly secure the receiver to the chain. The controls will thell by appropriate energizing signals to motor 370 position the receiver with respect to the feeder to present a particular bin address such as bin number B1 in proper position for beginning a sorting operation. The bins, best shown in Figures 18 through 20, and generally identified by the number 322, have a generally upstanding entrance wall 390 which has an upper edge 392 which as can be seen is spaced a predetermined distance below the bin next above. The deflector guides 278 are part of tlle feeder and are in approximately the position shown in ligure 20, when the sorter is in operation. Thus, ulltrallcee wall 390 is angled as at 394 and 396 to facilitdte the entrance of sheets of paper which will be entering a bin either froio above or from below depending upon whether ti#e feeder is sending sheets over the top or around tl#e bottom. The bins 322 have main support wall or shelf portion 398 which also can best be seen in Figure 18 to }ldVe a center cut-away portion 400 which extends from the exit or unloudìny end 402 generally centrally thereof to an inner end 404 <RTI ID=20.24> which as can be seen is a slightly more than }salf-way toward the entrance end of the bin. The bins 322 are formed such that the shelf portion 398 is generally horizonal across the front. Lxtending diagonally from one disde of the front to the opposite side at the unloading end is a line 406 which places the approximate other half of the shelf portion 398 at a slight downward angle to assist in moving paper into lined stacks in the bin. A side wall 408 is formed along the high side of the bin and on the opposite side is wall 410 along that side of the bin having the angled, down section. At the top and bottom of the sorter frame structure are two support rods 412, only one of which is shown in Figure 18, which support releasable slide pieces 414. A belt member 416 attaches to the pieces 414 and extends through the cut-out portion 400 of the stack of bins to arrest the motion of the sheets of paper after they enter the bins. The belt 416 is not a jogging device since the slanting of the bin shelves is the primary factor in the alicunlnent of the sheets of paper into neat stacks. Figure 21 indicates diagraminatically more detail about the arrangement of the bins. The bins are arranged so that in a colunm the bin next below the bin next above is spaced laterally a specified amount as for instance .30 or .242 inches depending upon the width of the bins in the particular receiver being used. The increment of distance by which Llic bins are laterally offset from each other is consistent dowii tlie entire length of the column from Ul'to 1350. In like munner, the top bin B51 in the second column is spaced the same amount of distance laterally from 1350 as the rest of the bins are from each other. The controls are set to iludex tlie motor or moveillent of the chain to resent a particular bin dress from B1 through 13100 to a delivery position adjacent the feeder 14. Operation of tlle feeder and receiver is continuous asld is best described as follows. A first or page all master is inserted in the press or duplicator. Several copies are first directed to the proof tray and then the sorting job begins. Odd numbered pages coming out of the press are directed to lower intermediate conveyor 26 and up the feeder conveyor to the top bin. Sheets will be fed up the conveyor 232 and deflected to the desired bin address by a deflector and the lower surface of a Y-shaped deflector. The receiver moves a discrete distance from left to right and presents the next bin address until all 50 bins in a column have been filled. If the sorting job extends to the next column copies continue to be fed to the feeder conveyor via lower intermediate conveyor 26 and up the feeder conveyor to the topmost bin in the second column. Tiie topmost bin of the second column is offset from the lowermost bin of the first column by the same increment of distance as the bins are offset from each other in each colullul. Assuming that two complete columns of bins are being used for a sorting job, the feeder continues to feed around the lower intermediate conveyor until all fifty bins in the second column are filled. By the time the bOttOll)-lllOSt bin in tile second column has received its copy of page 1 from the press, copies of the page 2 master are already pi-oceeding up the upper intennediate conveyor 26. T1#e feeder belts 232 are reversed to bring the first sheet from the top to the bottom of the feeder conveyor and Eillillg of tlle bins witil copies of page 2 begins with the lowest bin in column 2 where the first page sorting job ended. Thus the feeding of bins is continuous not only from bin to bin but from column to column. Also, it can be appreciated that odd numbered pages from the duplicator are fed from the bottom up while the receiver indexes from left to right and even numbered pages are fed from the top down while the receiver moves from riglit to left. Obviously, also, two adjacent deflectors are needed for a single bin address. When coming down the conveyor sheets are deflected by the top one of two adjacent deflectors and directed against the top surface of a deflector guide and into the bin opening. When comiZig from the bottom the sheet is deflected by the lower one of two adjacent deflectors and off the lower surface of a deflector into the same bin address. Thus the need for one more deflector than there are bins or guides.
Claims 1. A contilluous paper sorter mechanism, comprising: a) a receiver section having a support frame including a base section with caster cans attached to the bottoiu of said base for movement of said receiver along a track asseiribly and further including upstanding support frame means for supporting a predetermined equal number of Paper receiving bin means in side-by-side columns in such a way that said columns are canted at a preselected angle in tlle direction of movement of sdid receiver and which framu means has an entrance side and an unloading side and <RTI ID=24.13> which sides are adapted to be generally parallel to a feed conveyor, b) an elongated floor track assembly for supporting said receiver mechanism thereon, and including drive means for Illoving said receiver in both directions along a predetermined path on said track assembly, c) a generally upright continuous feeder mechanism including (1) a main supporting frame including a base section and an upstanding tower section, (2) a first infeed conveyor means for receiving sheets of paper to be sorted from a paper copy-making device and having a receiving end and a discllarye end, said first conveyor means including directioiial deflector means at its discharge end for selectively directing sheets of paper to a second or third intermediate conveyor means, (3) a second intermediate conveyor means for receiving paper sleets from said first conveyor Ifleans for transporting sheets of paper to the upper cnd of a. feeder conveyor means, (4) a third intermediate conveyor uied!)5 tur transporting sheets of paper to the lower elld of a feeder conveyor means, (5) generally vertically disposed fourth feeder conveyor means in predetermined spaced relation to the entrance side of said receiver section alld which is reversible so as to selectively receive paper sheets from said second and third conveyor means, said fourth feeder conveyor also including a plurality of bin deflector means for selectively directing paper sheets into said bin means as the said paper sheets proceed along said fourth conveyor means either from the top or froin tiie bottom, and d) muaiis for moving all said conveyor means, means for selectively reversing said fourth feeder conveyor means, and means for selectively actuating all said deflector means. 2. The continuous sorter mechanism according to Claim 1 and in which a plurality of paper deflector guide Jeans are provided generally between said bin deflector means and the entrances to said bin means for assisting in directing sheets of paper to said bin means. 3. The continuous sorter mechanism according to Claim 2 and ill which said plurality of paper guide means are mounted on a secondary frame pivotally attached to said tower section so that said paper guide means may be swung away from said #did fourth conveyor inuans and said bin dflector means. 4. '1'lle cojltinuous sorter mechanism according to Claim I and in which said intermediate second and third conveyor means angle upwardly to the upper end and downwardly to the lower end respectively of said fourth feeder conveyor means. 5. The continuous sorter mechanism according to Claim 1 and in which a drive and clutching means are located in the base section of said main supporting frame for effecting rapid reversal of said fourth feeder conveyor means. 6. The continuous sorter mechanism according to Claim 1 and in which a proof or paper receiving tray is located above said first infeed conveyor for selectively receiving sheets of paper from said first infeed conveyor means, and further including a proof deflector means near the receiving end thereof for selectively guiding sheets of paper off said infeed conveyor means and to said proof tray. 7. The continuous sorter mechanism according to Claim 6 and in which said a fifth proof conveyor means is disposed generally between said proof deflector means and said proof} tray for conveying sheets of paper to said proof tray. B. TiiL continuous sorter mechanism according to Claim 1 and ill which all of said conveyor nieans are comprised of a plurality of (generally equally spaced apart, minimum area crosu-section, individual continuous belt strips which prusent minimum amount of contact with said sheets of paper to recce the driven conveyor mass and to reduce the static electricity charge in the paper sheets and conveyor system, said individual belt strips being mounted on drive and idler rollers to minimize friction in the conveyor system. 9. TiLL# continuous sorter mechanism according to Claim 1 and in which air evacuating means are provided for creating a vacuum for all of said conveyor means for assisting in time transport of sheets of paper on all said conveyors. 10. The continuous sorter mechanism according to Claim 1 and in which said plurality of bin deflector means are provided with individual solenoid means for selectively actuating each bin deflector Incans as determined by the control system. 11. Tlie continuous sorter mechanism according to Claim 1 in in which said plurality of deflector devices mounted on sdid conveyor have front and rear extending top walls rally dt rig angles to each other and located being said fourth feeder conveyor in a retracted position and which when pivoted into a paper deflect position said froiit ana top walls are at approximately 450 angles to the plane of said conveyor there being one more deflector device than t.e number of bins in said receiver. 12. The contiiiuous sorter mechanism according to Claim 11 and in which said deflector guide means are disposed between the entrance opening to each bin and said deflector devices arid feeder conveyor such that a paper silent traveling down the feeder conveyor is deflected by a first deflector device into contact with a deflector guide for guiding said sheet into a given bin and such that a paper sheet traveling up the feeder conveyor is deflected into time same given bin by the deflector next below said first: deflector device and by the same deflector guide. 13. Tiie continuous sorter m#ci#anism according to Claim 1 and in which said bins have entrance openings and in which the deflector guide means for each bin opening has a horizontal section terminating in predetermined spaced relationship to the plane of the receiver bin entrances and positioned so as to be generally midway of the vertical dinieijsion of said bin entrance opening. 14. The continuous sorter mechanism according to Claim 13 and in which said deflector guide means for each bin includes an upwardly angled leg and a downwardly angled leg diverging from said horizontal section such that the upwardly angled leg is in close proximity to said first deflector device and said downwardly angled leg is in close proximity to said deflector device next below when the deflector devices are pivoted to their deflect position. 15. The continuous sorter mechanism according to Claim 1 and in which each bin deflector device is spring loaded to a normally retracted position and also connected to an electrical actuator device for being pivoted to its deflect position. 16. The continuous sorter mechanism according to Claim 1 and in which said deflector guide means are mounted in a hinged frunle conllected to said feeder. 17. 'lXlle The continuous sorter mechanism according to Claim 1 alld in which each of said bin deflector devices has cutaway sections in the front and top walls so that wijen a bin deflector is nioved to its deflect position there is no interference between said deflector and the conveyor. 18. The continuous sorter mechanism according to Claim 1 and in which said track assembly further includes chain drive means for moving said receiver along guide cllanslel means on said track assembly, said chain drive means including a holding member for releasably engaging a drive engaging member on said receiver base to position said receiver at a preselected position with respect to said chain drive means, and power means for driving said chain. 19. The continuous sorter mechanism according to Claim 18 and in which said holding member is a transversely disposed arm member secured to the upper run of said chain drive means and in which said releasable drive engaging means is a pivotal fork member forreleasably engaging said arm member for precise positioning of said receiver on said track. 20. The continuous sorter mechanism according to Claim 19 and in which said pivotal fork member is secured to an actuator bar having an operator handle which releasably locks the bar and fork member into operative engagement with said arm member for positioning of said receiver, and which actuator bar and operator. handle can be moved so as to disengage said fork m#nber from said arian member to allow tlie receiver to be rolled onto or off said floor track assembly. 21. The continuous sorter mechanism according to Claim 1 and in which each column contains 50 bins such that numerically corresponding bins are horizontally aligned to tlicir their entrance ends. 22. he continuous sorter mechanism according to Claim 21 and in which each bin has a generally upstanding entrance wall extending upwardly to within a preselected distance of the bin next above it to define said entrance opening. 23. The continuous sorter mechanism according to Claim 1 and in which At least a portion of each of said bins tilts downwardly to assist in the alignment of paper copies Into neat stacks. 24. The continuous sorter mechanism according to Claim 23 and in which said bins are provided with cutaway sections extending from the unloading end toward tlie entrance end such hat an unobstructed cavity is defin-d frown t!ie base to the top of said receiver fraine through -each column of bins und through which cavity paper arresting means extend. 25. he continuous sorter mechanism according to Claim 1 and in which said base of said receiver extends generally horizontally in the direction in which the bin' columns are angled to form a base extension and under which extension is located caster means. 26. The continuous sorter mechanism according to Claim 1 and in which latching means are provided on said base section such that at least two receiver mechanisms can be releasably attached to each other to increase the nmlber of bins available for sorting operations.
HOLLIDAY, DAVID H.; ORDIBEL, INC.
CLARKSON, ANTHONY C.; GREENE, RONALD W.; HOLLIDAY, DAVID H.
EP-0005041-B1
5,041
EP
B1
EN
19,821,215
1,979
20,100,220
new
B65H31
null
B65H39
B65H 39/11, L65H408:111
FEEDING MECHANISM FOR A CONTINUOUS SORTING MACHINE
Continuous feeder mechanism for a continuous paper sorting machine including a receiver 14 comprised of two columns of inclined side-by-side stacks of paper storage bins with entrances for receiving paper sheets from the feeder 10. The feeder 10 has an in-feed conveyor 18 which takes paper from a copy making device 12 and feeds it either to an intermediate downwardly inclined conveyor 26 or onto an intermediate upwardly inclined conveyor 24, depending on whether the feeder 10 is distributing paper from the bottom or from the top. Paper sheets from the intermediate conveyors 24 and 26 in turn are transported to a generally vertically disposed, reversible feeder conveyor 28 which is provided with a plurality of two-way deflectors which intercept the sheets and direct them off the conveyor 28 moving either downwardly or upwardly. A deflector guide section is disposed between the deflectors and the entrances of the bins in the receiver 14.
FEEDING MECHANISM FOR A CONTINUOUS SORTING MACHINE This invention relates to sheet distributing or sorting devices and more particularly to an apparatus which can continuously sort large numbers of multipaged documents as copies of a particular page proceed from a reproducing device such as a printer or copy making machine. Reference is made to our copending European Patent ;pplication No. 79300624.8 , filed on even dated herewith, entitled Continuous Paper Sorting Machine and corresponding to U.S. Patent Application Serial No. 897,272 dated 17th April 1978 Prior art paper distributors, sorters and/or collators have encountered many problems. One is that the large increase in the costs of labour and mnterils has made it more imperative that the available press or duplicator capacity be utilized to its fullest. In order for the maximum volume capability Of a printing, duplicating or copy making machine to be utilized, it is necessary that the sorter have the capacity to receive the printer or copy making machine output withouttundue loss of press or copy making machine time. Large volume sorting machines have been introduced to the market place but they are not continuous. For instance, after a column of trays or bins has been filled, it is necessary to shift that filled colums away from the feeder and nove an empty column into position to continue the sorting job. Thus there is lost a significant amount of press of copy machine production time between columns. Additionally, the time is lost if the bins have to be unloaded on line. The differences in the volume of jobs that sorters must handle suggest that sorters should be modular to the extent that if a module does not have the capacity, additional modular receiver bin sections may be provided. without any substantial loss of time or extra handling of the copied material. While smaller collators or sorters are mainly intended for the office market as a necessary adjunct to office copying machinery, larger sorters are more intended for the high volume commercial market and for large in-plant reproduction centers, commercial houses and printing departments. These higher volume paper handling installations may be turning out catalogs, maintenance manuals, instruction books, brochures, sales material and perhaps other items such as reports, bid specifications and other large quantity multipage publications. Those skilled in the art will appreciate the savings in labor, time and money if the output of a printing or copying center can be sorted and handled at a rate which is matched to the press and duplicating machinery production capability. Among the prior art references which may be considered with respect to the features of this invention are the following: United States Patent Nos. 3,420,517; 3,273,882; 3,356,362; 3,848,86?; 3,93?,459; 3,938,801; 3,740,050; 3,944,217 and 3,963,235. The devices covered by the above list of patents are considered to be non-anticipatory of the teachings of this invention. A continuous paper sorting machine in which the receiver with the bin is designed generally in accordance with the teachings of U.S.Patent No.3,938,801 which describes sideby-side stacks of inclined columns of paper receiving bins or shelves. The receiver of tijis is moved laterally with respect to a generally upright feeding device in which the feeder is comprised of a base section and an upstanding tower portion. An in-feed conveyor is located generally midway between the top and bottom of the tower and receives sheets of paper from the press or duplicating machinery. A proof tray is supported above the in feed conveyor and a deflector mechanism is provided on the infeed conveyor for directing the sheets either upwardly into the proof tray or to allow the sheets to pass on through to the feeder. At the inner end of the infeed conveyor are an upwardly extending intermediate conveyor and a downwardly extending intermediate conveyor. A deflector at the junction of the infeed and the upward and downwardly intermediate conveyors directs ehets of paper either into the upper intermediate conveyor or onto the downwardly intermediate conveyor depending upon feeder controls programming . A generally vertically disposed reversible feeder conveyor extends between the outer wilds of tlie two intcrmediate conveyors and receives paper fro!ll eitIer direction. The feeder has drive and clutching means for reversing the direction of movement of the feeder conveyor. A series of paper deflectors are located on the feed conveyor and are designed to deflect paper copies from either direction. The deflectors are individually actuated by drive solelloida. S. deflector guide section is provided on a hinged frame which swings away from the conveyor to allow access to paper jams and for maintenance. The deflector guide frame is mounted for pivotal movement SO that the yuides are precisely located with respect to the entrances to tlic bins on the receiver. Accordingly, it is among the features, objects and advdntayes of the invention to provide a paper sorting machine feeder device which is continuous and uniquely designed and intended for maximizing the production volume of a commercial printing, reproducing, duplicating or copying center. Tiie invention is particularly intended to reduce and to minilllize the amount of time a reproduction, printing or copying device loses due to the lack of a continuous paper cdpy sorting capability which is matched to copy making capacity. Because of the unique feeder in conjunction with the canted columns of bins type of receiver, there is no necessity to stop the sorting of paper copies from column to column. The machine can continue to sort as it moves from tray-to-tray and from column-tocolumn without interruption of copy production. The receiver can be unloaded off line, so that a filled receiver may be rolled away and an empty receiver moved into position with a miiiimuin of lost time. The invention is particularly suited for use in printing shops or reproduction centers for such things as multi-page brochures, catalogs, books and other items which must be produced in large numbers. The machine is capable of receiving sleets and feeding them at the high speeds of present day advanced copying, printing and duplicating machinery. Figure 1 is a perspective view slowing the general arrangement and ortjanization of the sorter and particularly of the feeder mechanism of this invention; Figure 2 is a partial top plan view of the infeed conveyor including the proof tray; Figure 3 is a partial side elevation view in crosssection showing details of the infeed conveyor and details of its construction; Figure 4 is a partial elevational cross-section view of the machine showing additional details of the intermediate conveyors and of the infeed conveyor section; Figure 5 is a diagraiiunatic view showing the arrange ment of vacuum inducing fans in the feeder device; ; Figures 6 and 7 are diagrammatic views of the conveyor drives and clutching arrangements for reversing the feeder conveyor; Figure 8 is a partial cross-section view along the line 8-8 of Figure 4 showing additional details of the feeder conveyor construction; Figure 9 is a partial elevational crossrsectional view along the line 9-9 of Figure 8 showing additional conveyor details; and Figure 10 is a partial front elevation view of the deflector guide section of the feeder. Referring now to the drawings and particularly Figure 1, it will be seen that the feeder mechanism of this invention, generally designated by the number 10, is in position between a duplicator or press device generally designated by the number 12 and a receiver mechanism generally designated by the number 14. The receiver moves laterally back and forth on track structure 16. Feeder 10 includes an infeed conveyor section 18, a proof tray assembly 20 and a control panel 22. The infeed conveyor feeds either to a downwardly angled intermediate conveyor 26 or an upwardly angled intermediate conveyor 24. A tower section generally designated by the number 28 supports a vertically disposed reversible feeder conveyor, bin deflectors and guides to be described more in detail hereinafter. The tower section 28 is supported on a base section 30 shown in generally outlined form in Figure 1. Referring now to Figures 2 and 3, it will be seen that the infeed conveyor 20 includes side frame members 36 in which is supported a conveyor plenum enclosure 38 having an outer end 40 and inner end 42. The conveyor plenum 38 has a wall 46 in which are disposed rows of openings 48. The openings 48 are formed in the wall 46 so as to present transverse as well as longitudinal rows over substantially the entire length of the plenum structure 38. A shaft 50 is supported adjacent the inner end 42 of the plenum and has affixed thereto a plurality of rollers 52. In like manner, at the outer end 40 a shaft 54 has a series of belt rollers 56. A series of belts 58 extend around the rollers 52 and 56 as seen in the drawings. A short section of transfer conveyor belts 60 extend around rollers 62 which are also affixed to shaft 54 to accept the sheets of paper from the press or duplicating device for transfer to the infeed conveyor 18. A fan means 34 is provided in the infeed conveyor for creating vacuum or negative pressure for holding the sheets of paper on the belts 58. The proof tray structure, generally designated by the number 20 includes proof conveyor belts 64 which extend around pulleys 66 and 68 mounted on shafts 70 and 72 respectively. The proof conveyor feeds to a tray 74 having side walls 76. A proof deflector 80 is mounted on a shaft 82 and is biased into a normal position such that when power is off the deflector would be in an intercept position'with respect to sheets of paper coming onto the infeed conveyor. The proof deflector 80 is actuated by a solenoid 84 as seen in Figure 2. Additionally, a direction deflector 86 is provided at the inner end of the infeed conveyor structure for directing sheets of paper off the infeed conveyor either to the upwardly angled intermediate conveyor 24 or the downwardly angled intermediate conveyor 26. Directional defledtor 86 is mounted on shaft 88 and is in turn selectively actuated by the solenoid 90 again shown in Figure 2. The proof conveyor belts and pulleys 64, 66 and 68 are driven by a power belt 92 extending from a drive pulley 94 on shaft 54 to a pulley 96 mounted on shaft 7O. The infeed conveyor belts 58 in turn are driven by a belt 98 which extends around drive pulley 100 mounted on shaft 50, again as best seen in Figures 2 and 3. Figure 4, directed to details of the base 30 and the feeder tower frame 28, shows base 30 to be a generally rectangular box-like structure housing motor 110 and other parts as will be more particularly described hereinafter. Base 30 has a bottom wall 112, side walls 114, a rear wall 116 and top wall 118. A conveyor frame receiving area is defined by a recessed wall 120 which is spaced a predetermined distance from the front wall 120, and as can be seen, angles upwardly and rearwardly generally parallel to the bottom intermediate conveyor section 26. Supported within the recessed area of the frame are two spaced apart main upstanding or vertical frame members 124 and 126 seen in Figure 4 and also in Figure 8. A horizontal top frame member 128 interconnects main upright frame members 124 and 126. Mounting frame members 128 and 130, as best seen in Figure 8, are secured to the main upright frame members 124 and 126, respectively, for additional frame rigidity as well as for supporting other parts. Supported between the uprights 124 and 126 is an internal, triangular, inner wall structure generally designated by the number 132. It will be seen by reference to Figure 4 that the wall 132 extends from near the lower end of the uprights to a point near the upper end of the uprights. Extending generally vertically is a wall 134 which with wall 132 defines a triangular enclosed space 136 within a basic frame structure. A shroud occupied by the fan 140 provides air evacuation means for-the lower intermediate conveyor 26 while a fan 144 surrounded by shroud 142 provides air evacuation means for the upper intermediate conveyor 24. Note that the shrouds and fans 138, 140, 142 and 144 are part of the wall structure 132 just described. In the vertical wall 134 are shroud 146 towards the lower part of cavity 136 and shroud 148 towards the upper part of cavity 136. In this regard, see also Figure 5. Shrouds 146 and 148 are occupied by fans 150 and 152, respectively. The air evacuation means direct the air inwardly from the direction of the conveyors and exhaust it through screened openings 154 as shown in Figure 1. Lower intermediate conveyor 26 includes an elongated generally rectangular plenum wall 160 which has both transverse and longitudinal series of holes 162. At the lower end of the plenum are a series of belt conveyor pulleys 164 mounted on shaft 166. At the upper end of lower intermediate conveyor 26 are a plurality of belt pulleys 168 mounted on shaft 170. Since the sheets of paper must traverse around the lower end of intermediate conveyor 26, the radius of turn is larger as can be seen by reference to the relative difference between the lower pulleys 164 as opposed to the upper pulleys 168. A series of guide and idler pulleys 172 increase the amount of wrap of the belts 174 around rollers 164 primarily to provide clearance between other parts and belts 174. A series of spaced apart guide plates 176 having a'radius of curvature 178 extend along the bottom in non-interfering relationship with belts 174. A plurality of individual guide or pressure rollers 180 are mounted on plates 176 to engage belts 174 as they begin to contact rollers 164. In like manner, a series of rollers 184 also mounted on plates 176 engage the belts 174 to assist in the positive Inoveinent of sheets of paper around tI)e lower end of the intermediate conveyor as the belts leave contact with rollers 164. In this way, paper sleets move positively around the end of the intcrnlediaLe conveyor to be engaged by the feed conveyor 28 to be described hereinafter. In like manner, upper intermediate conveyor 24 has larger diameter upper belt pulleys 190 mounted on shaft 192 with pressure or paper guide rollers 194 and 196. Lower end pulleys 198 are mounted on shaft 200 with the upper end shaft 192 and the lower elld shaft 200 being mounted at the ends of plenum wall 202 having transverse and longitudinal rows of openings 204. Belts 206 extend around the upper and lower pulleys again witji idler or wrap-around pulley assellMly 208 serviny the same function as pulleys 172 at the lower end of the lower intermediate conveyor. Finally, guide plates 210 having a radius of curvature 212 allow a sheet of paper to traverse around the top end of the conveyor to the vertical feed conveyor. It is to be observed that the pressure or retainer rollers 196 and 194 could be mounted individually on ti0C guide plates as shown or on a common shaft or bar extending laterally across. The feeder conveyor section 28, reference being had to Figures 4 and 8 through 10, has side frame members 220 and 222 which attach to and extend between the vertical mounting pieces 129 and 130 as seen in Figure 8. At the upper end of feeder conveyor 28 are belt pulleys 224 mounted on shaft 226 and at the lower end are pulleys 228 mounted on shaft 230. A series of belts 232 extend around the upper and lower pulleys 224 and 228 and idler or guide roller assemblies with pulleys 234 are mounted at spaced intervals between the upper and lower end pulley assemblies as seen in Figures 8 and 9. A series of deflectors nunibering 51 in total are spaced between the frame members 220 and 222, said deflectors being generally designated by the number 240. The deflectors 240 are made of light aluminum sheet and are formed with a front wall 242 which when in retracted position is generally parallel to and as can be seen, slightly rearward of the carrying or paper contact surface of the belts so that the front walls of the deflectors in retracted position do not interfere with the movement of paper with the belts. The deflectors are also formed with a top wall 244 which is generally at right angles and extendiny rearwardly froiu the front face 242 to define deflector edges 243. The front faces 242 are provided with openings 246 extending rearwardly on the topwall 244 in the form of opening 248, as best seen in Figures 8 and 9. Mounting ears 250 at the ends of the deflectors 240 are received in triangular lloles in frame pieces 220 and 222. Each of the 51 deflectors is provided with a depending actuating tab 252 engaged by solenoid 254. It will be seen particularly by reference to Figure 8 that light compression springs 256 are disposed between the tabs 252 and Llle solenoids 256 so that the deflectors are normally biased into their refracted position as seen in figure 4. Upon eJ0ergization of the solenoid the deflectors are pivoted outwardly around the ears 250 to above t2e deflectors into an intercept or deflecting position within respect to pieces of paper moving either downwardly or upwardly or belts 232. Thus the edge 243 formed by the intersection of the front face 242 and the top wall 244 of the deflechtors is extended outwardly so that: the front surface 242 and top surface 244 are each at approximately a 450 angle to the belts. Figures 4, 8 and 10 show details of the deflector guide assembly generally designated by the number 260 which include side frame members 262 and 264 with one side 264 being provided with a hinge 266 for swinging the deflector guide assembly away from the face of the feed conveyor. Extending horizontally between the side frame members 262 and 264 are the generally Y-shaped guide deflectors indicated by the number 268. The guide deflectors have a horizontal outer section 270 and an upwardly angled inner arm 272 and a downwardly angled inner arm 274. It will be noted by reference to Figure 4 that the outer end of th horizontal section 270 of the deflector guides terminates approximately midway between the openings to bins in the receiver. When the deflectors 240 are rotated or pivoted outwardly to intercept a piece of paper the edge 243 is approximately midway between the lower angled arm 274 and the upper angled arm 272 of adjacent deflector guides. Thus, a sheet of paper coming from the top of the feeder conveyor will be deflected iiito a given bin address by one deflector and if approaching its bin address from the bottom of the feed conveyor will be deflected into he same address by by the next lower deflector. Since there are 50 bins in the receiver air 50 guide deflectors 268, it is necessary that ere be 51 deflectors in order to properly address sheets of paper into the available bins. An opening 276 extends all the way from the top to the bottom of the deflector guide assembly 268 to accommodate the light and photocell components 280 and 282 as seen at the bottom and top of the feeder conveyor tower in Figure 4. A clutching and drive assembly is shown diagrammatically in Figure 7 and includes motor 110 and a drive pulley 111. The drive pulley drives belt 113 which in turn drives pulley 115 on shaft 166 at the bottom of lower intermediate conveyor assembly 26. Note in Figure 6 that a belt 98, also seen in Figure 2, is used to transfer power from the lower intermediate conveyor 26 to the upper intermediate conveyor 24 and also to the infeed conveyor 18. A belt 92 at the outer end of the infeed conveyor drives the proof conveyor belts. Thus, it will be seen that the motor 110 drives all of the conveyor sections of the feeder. In order to reversibly drive feeder conveyor belts 232 two clutch assemblies 117 and 119 are driven by a belt 121 through a lower pulley 123 and an upper pulley 125. A reversing drive belt 127 connects drive power to lower shaft 230 of the reversible feed conveyor through pulley 231. When clutch 117 is engaged, the feeder conveyor is moved to transport paper upwardly from the bottom. When the lower clutch 119 is engaged, the feeder conveyor will transport paper from the top down. It will be seen by reference to Figure 4 that a horizontally disposed contact roller 290 near the top and a horizontal roller 292 near the bottom are supported on the feeder to engage the receiver 14 as it moves laterally by the feeder to prevent contact and to maintain a predetermined distance relationship between receiver and feeder. Operation of more feeder and receiver is continuous and is best described as follows. A first or page 1 master is inserted in the press or duplicator. Several copies are first directed to the proof tray and then the sorting job begins. Odd numbered pages coming out of the press are directed to lower intermediate conveyor 26 and up the feeder conveyor to the top bin. Sheets will be fed up the conveyor 232 and deflected to the desired bin address by a deflector and the lower surface of a Y-shaped deflector. The receiver moves a discrete distance from left to right and presents the next bin address until all 50 bins in a column have been filled. If the sorting job extends to the next column copies continue to be fed to the feeder conveyor via lower intermediate conveyor 26 and up the feeder conveyor to the topmost bin in the second column. The topniost bin of the second column is offset from the lowernlost bin of the first column by the same increment of distance as the bins are offset from each other in each colun'n. Assuming that two complete columns of bins are being used for a sorting job, the feeder continues to feed around the lower intermediate conveyor until all fifty bins in the second column are filled. By the time the bottommost bin in the second column has received its copy of page 1 from the press copies of the page 2 master are alreadey proceeding up the upper intermediate conveyor. The feeder belts 232 are reversed to briny the first sheet from the top to the bottom of time feeder conveyor and filling of the bins will copies ot page 2 begins with the lowest bin in column 2 where the first page sorting job ended. Thus the feeding of billS is continuous pilot only from bin to bin but from column to column. Also, it can be appreciated that odd nw burtd pages from tlie duplicator are fed from the bottom up while the receiver indexes from left to right and even numbered pages are fed from the top down while the receiver moves from right to left. Obviously, also, two adjacent deflectors are needed for a single bin address. When coming down the conveyor sheets are deflected by the top one of two adjacent deflectors and directed against the top surface of a deflector guide and into the bin opening. When coming from the bottom the sheet is deflected by the lower one of two adjacent deflectors and off the lower surface of a deflector into the same bin address. Thus the need for one more deflector than there are bins or guides.
CLAIMS: 1. A generally upright continuous feeder mechanism for a paper sorter having a receiver in which said receiver includes columnar stacks of inclined side-by-side paper storage bins means with entrances for receiving paper sheets from said feeder, said receiver being detachably mounted for lateral movement relative to said feeder mechanism, said feeder mechanism comprising; ; a) a main supporting frame including a base section and an upstanding tower section, b) a first infeed conveyor means for receiving sheets of paper to be sorted from a paper copy-making device and having a receiving end and a discharge end, said first conveyor means including directional deflector means at its discharge end for selectively directing sheets of paper to a second or third intermediate conveyor means, c) a second intermediate conveyor means for receiving paper sheets from said first conveyor means for transporting sheets of paper to the upper end of a feeder conveyor means, d) a third intermediate conveyor means for receiving paper sheets from said first conveyor means for transporting sheets of paper to the lower end of a feeder conveyor means, e) generally vertically disposed fourth feeder conveyor means in predetermined spaced relation to the entrances of said bin means and which is reversible so as to selectively receive paper sheets from said second and third conveyor means, said fourth feeder conveyor also including a plurality of bin deflector means for selectively directing paper sheets into said bin means as the said paper sheets proceed along said fourth conveyor means either from the top or from the bottom, f) means for moving all said conveyor means, means for selectively reversing said fourth feeder conveyor means and means for selectively actuating all said deflector means. 2. The continuous feeder mechanism according to Claim 1 and in which a plurality of paper guide means are provided generally between said bin deflector means and the entrances to said bin means for assisting in directing sheets of paper to said bin means. 3. The continuous feeder mechanism according to Claim 2 and in which said plurality of paper guide means are mounted on a secondary frame pivotally attached to said tower section so that said paper guide means may be swung away from said fourth conveyor means and said bin deflector means. 4. The continuous feeder mechanism according to Claim 1 and in which said intermediate second and third conveyor means angle upwardly to the upper end and downwardly to the lower end respectively of said fourth feeder conveyor means. 5. The continuous feeder mechanism according to Claim l and in which a drive and clutching means are located in the base section of said main supporting frame for effecting rapid reversal of said fourth feeder conveyor means. 6. The continuous feeder mechanism according to Claim 1 and in which a proof or paper receiving tray is located above said first infeed conveyor for selectively receiving sheets of paper from said first infeed conveyor means, and further including a proof deflector means near the receiving end thereof for selectively guiding sheets of paper off said infeed conveyor means and to said proof tray. 7. The continuous feeder mechanism according to Claim 6 and in which said a fifth proof conveyor means is disposed generally between said proof deflector means and said proof tray for conveying sheets of paper to said proof tray. 8. The continuous feeder mechanism according to Claim 1 dtid in which all of said conveyor means are comprised of a plurality of yenerally equally spaced apart, minimum arua cross-section, individual continuous belt strips which present a minimum amount of contact with said sheets of paper to reduce the driven conveyor mass and to reduce the static electricity charge in the paper sheets and conveyor system, said individual belt strips being mounted on drive and idler rollers to minimize friction in the conveyor system. 9. The continuous feeder mechanism according to Claim 1 and in which are evacuating means are provided for creating a vacuum for all of said conveyor means for assisting in the transport of sheets of paper on all said conveyors. 10. The continuous feeder mechanism according to Claim 1 and in which said plurality of bin deflector means are provided with individual solenoid means for selectively actuating each bin deflector means as determined by the control system. 11. A generally upright continuous feeder mechanism for a paper sorter receiver in which said receiver includes columnar stacks of side-byside paper storage bins having a generally perpendicular entry side for receiving paper sheets from said feeder, said receiver being detachably mounted for bidirectional movement at a predetermined speed along a track which is generally at a right angle to the direction in which paper sheets are fed to said receiver bins, said columnar stacks of bins being inclined at a predetermined angle from the vertical along the path of movement of said receiver, said feeder mechanism comprising: a) a first: infeed conveyor means for receiving sheets of paper to be sorted from a paper copy-inakiny device and Slaving a receiving end with a discharge end, said first conveyor means including a directionsl deflector means at its discharge end for selectively directing sheets of paper upwardly and downwardly; ; b) a generally upwardly angled second intermediate conveyor means for receiving paper sheets from said first conveyor for transporting sheets of paper upwardly to the upper end of a feeder conveyor, c) a generally downwardly angled third intermediate conveyor means for receiving paper sheets from said first conveyor for transporting sheets of paper downwardly to the lower end of a feeder conveyor, d) a generally vertically disposed fcurth feeder conveyor means which is generally parallel and in predetermined spaced relation to the entry side of said rtucivcr and which is reversible so as to selectively receive paper sheets from said second and third conveyor means, said fourth feeder conveyor also including a plurality of bin deflector means registering with the entrallce to said bins in said receiver for directing paper sheets into said bins as the said paper sheets proceed along said fourth conveyor either from the top or from the bottom, c) a plurality of guide means provided on said feeder mechanism between said fourth feeder conveyor and the entrance to said bins for guiding sheets from said fourth collvecr and deflectors into said bins, and f) means for moving all said convevor means. means for selectivel; reversing said fourth feeder conveyor, and means for selectively actuating each of said bin deflector means. 12. The continuous feeder mechanism according to Claim 11 and in which said plurality of paper guide means are mounted on a secondary frame pivotally attached to said tower section so that said paper guide means may be swung away from said fourth conveyor means and said bin deflector means. 13. The continuous feeder mechanism according to Claim 11 and in which a drive and clutching means are located in the base section of said main supporting frame for effecting rapid reversal of said fourth feeder conveyor means. 14. The continuous feeder mechanisjn according to Claim 11 and in which a proof or paper receiving tray is located above said first infeed conveyor for selectively receiving sheets of paper from said first infeed conveyor means, and further including a proof deflector means near tile receiving end thereof for selectively guiding sleets of paper off said infeed convevor means and to said proof tray. 15. The continuous feeder mechanism according to Claim 14, and in which said fifth proof conveyor means is disposed generally between said proof deflector means and said proof tray for conveying sheets of paper to said proof tray. 16. The continuous feeder mechanism according to Claim 11 and in which all of said conveyor means are comprised of a plurality of generally equally spaced apart, minimum area cross-section, individual continuous belt strips which present a minimum amount of contact with said sheets of paper to reduce the driven conveyor mass and to reduce the static electricity charge in the paper sheets and conveyor system, said individual belt strips being mounted on drive and idler rollers to minimize friction in the conveyor system. 17. The continuous feeder mechanism according to Claim 11 and in which air evacuating means are provided for creating a vacuum for all of said conveyor means for assisting in the transport of sheets of paper on all said conveyors. 18. The continuous feeder mechanism according to Claim 11 and in which said plurality of bin deflector means are provided with individual solenoid means for selectively actuating each bin deflector means as determined by the control system.
HOLLIDAY, DAVID H.; ORDIBEL, INC.
GREENE, RONALD W.; HOLLIDAY, DAVID H.
EP-0005046-B1
5,046
EP
B1
EN
19,820,217
1,979
20,100,220
new
G08B25
null
G08B25
G08B 25/01E
ELECTRICAL ALARM CIRCUITS AND SYSTEMS
Intrusion-detection units (1) which are linked in an alarm system to a central control unit (3) by cable (2), each include a coder circuit (8) responsive to opening of intrusion- and tamper-alarm contacts (5, 6) to change the magnitudes of current flow in respective alarm and tamper signalling lines (14, 15) of the cable (2). Current is supplied to the tamper-signalling line (15) in the circuit (8) via the collector-emitter path of a transistor (16) from the positive supply-line (10) of the cable (2), until the alarm-contacts (5) in its collector circuit open, whereupon current supply of the same magnitude is continued to that line (15) via the base-emitter path from the alarm-signalling line (14). The increase in current in the latter line (14) is detected, to indicate the alarm condition, in a decoder circuit (9) of the control unit (3) by operational amplifiers (36, 40) that respond to the consequent tendency for change in potential of the line (14). The decoder circuit (9) also includes operational amplifiers (22, 23) to detect change in current magnitude in the tamper-signalling line (15) for indicating the tamper condition, such change occurring upon opening of the tamper-contacts (6) of any coder circuit (8) or any breaking or shorting together of the lines (10, 11, 14, 15) of the cable (2). Opening of the tamper-contacts (6) interrupts a current-supply path that is connected to the tamper-signalling line (15) in parallel with the collector-emitter path of the coder-circuit transistor (16), or alternatively interrupts the emitter circuit of that transistor (16). A resistor (20) is connected across the supply-lines (10, 11) to increase current supply to the tamper-line (5) via a diode (21) if the negative supply-line (11) is broken.
Electrical Alarm Circuits and Systems This invention relates to electrical alarm circuits and electrical alarm systems including such circuits, being concerned especially with electrical alarm circuits in which there is electrical-signal change in a first or second of two signalling lines in dependence respectively upon whether a first or second alarm condition exists. Electrical alarm systems for use in providing alarm signals in response to intrusion into an area to be protected, also conventionally include provision for responding to attempts to interfere with or otherwise tamper with, the intrusiondetector units of the system. In general the cabling that is provided to connect the detector units to the relevant central station or alarm-control unit incorporates three pairs of lines, a first pair of lines being used for signalling the intrusion-alarm condition, a second pair for signalling the tamper-alarm condition, and the third pair for supplying electrical power to the detector units. These lines, which may extend over considerable distance, are vulnerable to attack and unless expensive precautions are taken for their protection can represent a weakness in the security of the alarm system as a whole. It is an object of the present invention to provide an electrical alarm circuit which may be used to improve security in this respect. According to the present invention there is provided an electrical alarm circuit of the kind in which there is electrical-signal change in a first or second of two signalling lines in dependence respectively upon whether a first or second alarm condition exists, characterised in that the first signalling line is connected to a device which is operative in one or the other of two currentconducting modes in series with the second signalling line in dependence upon whether the first alarm condition exists, that substantially the same magnitude of current flow is established in a second signalling line via said device in the two operational modes, that the magnitude of current flow in the first signalling line via said device is dependent upon which of the two operational modes is applicable, and that occurrence of the second alarm condition is effective to change the overall magnitude of current flow in the second signalling line whereby the magnitudes of current flow in the first and second signalling lines are indicative of the existence or otherwise of the first and second alarm conditions respectively. By using the electrical alarm circuit of the present invention it ig possible to achieve a high degree of system security especially in regard to attacks on the first and second signalling lines and other lines included in the cabling. The circuit may simply include a transistor having base and emitter electrodes connected to the first and second signalling lines respectively, and arranged such that the collector circuit of the transistor is interrupted for example by the opening of a set of switch contacts in response to the occurrence of the first alarm condition so as to switch main current flow within the transistor from the collector-emitter path to the base-emitter path and thereby increase current flow in the first signalling line. The emitter current of the transistor may be utilized in these circumstances to establish current flow in the second signalling line that remains substantially constant irrespective of the occurrence of the first alarm condition, but which is interrupted or otherwise changed if one or both of the signalling lines is broken or they are shorted together. Accordingly it is possible with the electrical alarm circuit of the present invention to provide distinctive indications of intrusion-alarm and tamper-alarm conditions in a simple and effective manner, and to do this with just the two signalling lines in addition to any power-supply lines required. An electrical alarm system including electrical alarm circuits in accordance with the present invention will now be described, by way of example, with reference to the accompanying drawing. The drawing shows an electrical intrusion-alarm system with the electrical alarm circuits incorporated into intrusion-detector units of the system. Referring to the drawing, the alarm system is shown as comprising three detector units 1 that are linked via a multi-core cable 2 with a central, control unit 3. The detector units 1 incorporate conventional detectors 4 that are located and arranged to respond to intrusion into the area to be protected; the detectors 4, which may be active or passive devices, respond not only to intrusion but also to attempts to tamper with their operation. In the latter respect and as illustrated in the drawing for one detector 4 only, each detector 4 includes one set of normally-closed contacts 5 that are opened whenever an intrusion alarm is to be given, and a set of normally-closed contacts 6 that are opened whenever a tamper alarm is appropriate. The opening of either set of contacts 5 and 6 is signalled via the cable 2 to control equipment 7 of the unit 3. The equipment 7 processes such signals in accordance with normal practice, to provide the required alarm procedures and responses. To the extent that the system has so far been described with reference to the accompanying drawing, it is generally of conventional form. Systems of this conventional form, whilst including provision for responding to tampering with the detectors themselves, are in general vulnerable to attacks on the cabling linking the detector units to the control unit. More especially, such systems can often be rendered inoperative by shorting together selected leads of the cabling. The system to be described, however, is of improved security in this respect as compared with the known systems and achieves this, together with economy in cabling, by the addition of simple electrical circuitry to the detectors and central, control unit. In particular, a so-called coder circuit 8 is incorporated in each individual detector unit 1 and a so-called decoder circuit 9 is incorporated in the control unit 3. Furthermore, the cable 2 linking the units 1 with the unit 3 involves just two pairs of leads. The leads of one pair provide direct-current supply-lines 10 and 11 to the units 1 from the positive and negative terminals 12 and 13 respectively of the 12volt power supply for the unit 3. The other pair of leads provide lines 14 and 15 interconnecting the circuits 8 and 9 for signalling intrusion-alarm and tamper-alarm conditions to the unit 3. Each circuit 8 includes an N-P-N transistor 16 having its base electrode connected directly to the line 14 and its collector electrode connected to the line 10 via a diode 17 (protecting the transistor 16 against supply-polarity reversal) and the contacts 5 of the respectively-associated detector 4. The emitter electrode of the transistor 16 is connected to the line 15 via a resistor 18. Connection in parallel with the collector-emitter path of the transistor 16 is also made to the line 15 from the line 10 via a resistor 19 that is connected in series with the contacts 6 of the associated detector 4. A resistor 20 and a normally nonconductive diode 21, which are common to the three shuntconnected circuits 8, are connected across the lines 10 and 11 and across the lines 11 and 15 respectively. The line 15 is connected in the circuit 9 to a voltagelevel detector that involves two operational amplifiers 22 and 23. The signal voltage developed across a resistor 24 connected between the lines 15 and 11 is applied to the amplifiers 22 and 23 via a resistor 25. The amplifiers 22 and 23 act respectively to compare this voltage with upper and lower voltage levels which differ from one another by 0.25 volt and which are established in a voltage-divider chain of three resistors 26, 27 and 28 connected across lines 10 and 11. The outputs of the two amplifiers 22 and 23 are connected via respective diodes 29 and 30 to the junction of resistors 31 and 32 in a voltage-divider chain which is connected across lines 10 and 11 and which includes two further resistors 33 and 34. The junction of the resistor 32 with the resistor 33 in this chain is connected to the base electrode of an N-P-N transistor 35 that is connected in the common-emitter circuit configuration for supplying tamper-alarm signals to the control equipment 7. It is to the junction of the resistor 31 with the resistor 34, on the other hand, that line 14 is connected in the circuit 9. The junction of the resistors 31 and 34 in the ciruit 9 is established as a virtual earth (point of constant potential) by negative feedback from an operational amplifier 36. The output of the amplifier 36 is in this respect connected to such junction via a resistor 37 that is shunted by a diode 38, whereas one of its inputs is connected to this same junction via a resistor 39. The other input of the amplifier 36 and one of the inputs of a fourth operational amplifier 40 are connected to the junction of two resistors 41 and 42 that are connected in series chain with two diodes 43 and 44 across lines 10 and 11. The amplifier 40 compares the output of the amplifier 36 with the potential at the junction of resistors 41 and 42 to derive intrusion-alarm signals for supply to the control equipment 7. In the normal condition in which the contacts 5 and 6 of all detectors 4 are closed and tere is no cause for either intrusion- ortamper-alarm operation of the equipment 7, lines 14 and 15 are maintained respectively at about 6 volt and 1 volt positive with respect to terminal 13. Transistor ] of each circuit 8 is fully conductive at this time such that the magnitude of current flowing in the resistor 18 equals that flowing in the resistor 19. Base current is in each case drawn via line 14 from the virtual-earth junction of resistors 31 and 34, the magnitude of current in resistor 34 being double that in resistor 31 with the result that the output of the amplifier 36 is low. The amplifier 40 compares this low output with the potential at the junction between resistors 41 and 42, so as to apply a normal, low-output signal to the equipment 7. A low-output signal is also applied to the equipment 7 by the normallyconductive transistor 35, the transistor 35 in this respect remaining conductuve while both diodes 29 and 30 are nonconductive. Both diodes 29 and 30 remain non-conductive while the potential of line 15 with respect to terminal 13 remains at its normal value within the upper and lower limits of comparison established for the amplifiers 22 and 23 in the chain of resistors 26 to 28. The opening of the alarm contacts 5 in any of the detectors 4, breaks the collector circuit of the transistor 16 in the associated circuit 8. The emitter current of the transistor 16 in these circumstances, however, remains constant, and so the opening of contacts 5 switches the transistor 16 into a condition in which there is a significant increase in its base current drawn via line 14 from the resistor 34. The amplifier 36 responds to oppose the consequent tendency for change in potential of line 14, by increasing current flow in the resistors 37 and 31. The output signal of the amplifier 36 applied to the amplifier 40, therefore rises above the potential at the junction of resistors 41 and 42. The amplifier 40 in its turn responds to this to provide a hlgE.-output signal to the equipment 7 indicative of the intrusion-alarm condition signalled by the opening of contacts 5. The opening of the set of contacts 5 of any detector 4 does not affect the magnitude of current flow in line 15, since the emitter current of the associated transistor 16 remains constant in spite of such opening. Accordingly the potential of line 15 is unchanged and the transistor 35 in the circuit 9 continues to conduct as normal. However (and indeed irrespective of whether the contacts 5 are open or closed) opening of the contacts 6 in any of the detectors 4 breaks current flow to line 15 through the resistor 19 of the associated circuit 8. This break in current flow causes the potential of line 15 to fall below the lower comparison limit established for the amplifier 23. The response of the amplifier 23 to this condition causes the diode 30 to conduct and this in its turn causes the transistor 35 to become non-conductive. A high-output signal is thus applied in the equipment 7 from the collector circuit of the transistor 35 to indicate the tamper-alarm condition signalled by the opening of the contacts 6. The tamper-alarm condition is also signalled in the system if there is tampering with the cable 2, or more particularly with any of lines 10, 11, 14 and 15. If line 10 is broken, this again cuts off current flow to line 15 through the resistor 19, reducing the potential of line 15 below the lower comparison limit and producing the high-output signal from the transistor 35 in the same manner as for the opening of contacts 6. Reduction in potential of line 15 to produce the same outcome also takes place if line 15 itself, or line 14, is broken; in the latter case the transistor 16 loses its base reference and current supply to line 15 via the resistor 18 is in consequence reduced significantly. On the other hand, if line 11 is broken, the potential of line 15 increases by virtue of the current supplied to line 15 via the resistor 20 and ttie now-conductive diode 21. The potential of line 15 rises in this way above the upper comparison limit established for the amplifier 22, and the response of the amplifier 22 to this causes the diode 29 to conduct. Conduction of the diode 29 renders transistor 35 non-conductive so as to indicate the tamper condition to the equipment 7 as before. The system also responds to any of the conditions in which lines 10, 11, 14 and 15 are shorted together rather than being broken. More especially, shorting of line 14 to line 10 increases current flow to line 15 in each circuit 8 so that the potential of line 15 rises above the upper comparison limit for the amplifier 22. The same applies if line 14 is shorted to line 15 or line 15 is shorted to line 10, the response of the amplifier 22 in all three cases bringing about indication of the tamper condition to the equipment 7. Shorting of line 14 or line 15 to line 11 similarly brings about an indication of the tamper condition, the current flow in line 15 being in each case reduced with a consequent fall in potential of line 15 below the lower comparison limit for the amplifier 23. Finally, shorting together of lines 10 and 11 will be effective, in the blowing of fuses in the power-supply source to terminals 12 and 13 or otherwise, to indicate the tamper condition to the equipment 7 in the normal manner for power failure. Nuisance actuation of the alarm system is reduced by minimizing the effects of high-frequency pick-up in the cable 2. In this respect a capacitor 45 is connected with the resistor 39 to decouple high-frequency components on line 14 from the input to the amplifier 36. Similarly, a capacitor 46 is connected with the resistor 25 to decouple high-frequency components on line 15 from the inputs to the amplifiers 22 and 23. The diodes 43 and 44 serve to ensure that the potential of the junction of resistors 41 and 42 and used as the reference for operation of the amplifiers 36 and 40, is appropriately related to the establishment of a potential of 6 volt positive with respect to terminal 13 for the emitter electrode of the transistor i6 in each circuit 8. The voltage drop across each diode 43 and 44 is substantially equal to the base-to-emitter voltage of the transistor 16 and remains so with temperature change, thereby providing for temperature compensation in the operation of the amplifiers 36 and 40. Although the system has been described above as including three detector units 1, more or fewer, and in particular just one, may in principle be provided. Where as described a single resistor 20 is used it is preferably located at the furthest extremity of the lines 10, 11, 14 and 15. For convenience the circuits 8 and 9 may be provided in the form of devices that can be readily added into existing systems to up-grade them, and in these circumstances each circuit 8 may incorporate the resistor 20 and diode 21; where more than one circuit 8 is to be installed in such a system the resistor 20 may then be disconnected in all but the most remote installation. In order to achieve maximum security it may be found preferable to connect the detector units 1 in cascade with one another (the lines 10, 11, 14 and 15 being extended through each successive unit 1 to the next) rather than in the particular shunt-connection illustrated. Furthermore it may be found preferable to omit the resistor 19 and connect the contacts 6 in the emitter circuit of the transistor 16, in all except the most remote unit 1.
Claims: 1. An electrical alarm circuit ir. which there is electricai- signal change in a first or second of two signalling lines in dependence respective Qibon zither a first or second alarm condition exists, characterised in that the first signalling line is connected to a device which is operative in one or the other of two current-conducting modes in series with the second signalling line in dependence upon whether the first alarm condition exists, that substantially the same magnitude of current flow is established in the second signalling line via said device in the two operational modes, that the magnitude of current flow in the first signalling line via said device is dependent upon which of the two operational modes is applicable, and that occurrence of the second alarm condition is effective to change the overall magnitude of current flow in the second signalling line whereby the magnitudes of current flow in the first and second signalling lines are indicative of the existence or otherwise of the first and second alarm conditions respectively. 2. An electrical alarm circuit according to Claim 1 further characterised in that the said device is a transistor having base and emitter electrodes connected to the first and second signalling lines respectively. 3. An electrical alarm circuit according to Claim 2 further characterised in that the collector circuit of the transistor is interrupted in response to the occurrence cf the first alarm condition so as to switch main current flow within the transistor from the collector-emitter path to the base-emitter path and thereby increase current flow in the first signalling line. t A' alarm circuit according to Claim 2 or Claim 3 her characterised in that the emitter current of the transistor establishes a first component of current 4 ir: trie second signalling line, and that a second cpsnent of current flow in the second signalling line sblished via resistance that is connected to the found signalling line in parallel with the collector nutter path of the transistor. 5 An alarm circuit according to Claim 4 further characterised in that switching means is included in series with the said resistance to interrupt the second component of current flow in response to the occurrence of the second alarm condition. 6. An alarm circuit according to any one of Claims 2 to 5 further characterised in that resistance is connected across two power-supply lines to the circuit, that the collectoremitter path of the transistor is connected between a first of the power-supply lines and the second signalling line, and that a diode is connected between the second powersupply line and the second signalling line to conduct in response to interruption of the said second power-supply line. 7. An electrical alarm system in which one or more alarmdetector units are linked to an alarm-control unit by first and second signalling lines, and in which each of the one or more alarm-detector units responds distinctively to first and second alarm conditions to produce electricalsignal change in the first or second signalling line in dependence upon whether the first or second alarm condition exists, characterised in that each of the one or more alarmdetector unit includes an electrical alarm circuit according to any one of Claims 1 to 6, that the alarm-control unit includes an electrical circuit for connecting the two signalling lines to the two sides respectively of an electrical power supply and for providing respective output responses to change in current-flow magnitude in th. first and second slgnlling lines. 8. An electrical alarm system according to Claim 7 further cheracterised in that the said electrical circuit of the alarm-control unit includes resistance connecting the first signalling line to one side of the power supply and means for responding to tendency for change in potential of the junction between the said resistance and the first signalling line such as to counteract such tendency, and that the output response of this said circuit to change in currentflow magnitude in the first signalling line is provided in accordance with the said response of said means. 9. An electrical alarm system according to Claim 7 or Claim 8 further characterised in that the said electrical circuit of the alarm-circuit includes resistance connecting the second signalling line to one side of the power supply and means for responding to departure of the voltage across this resistance from a predetermined range, and that the output response of this said circuit to change in currentflow magnitude in the second signalling line is provided in accordance with the said response of the latter means.
CHUBB ELECTRONICS LIMITED
WOOLVIN, TREVOR JOHN
EP-0005058-B1
5,058
EP
B1
EN
19,841,017
1,979
20,100,220
new
A61K31
null
A61K31, A61P25, G06F9, A61P5
A61K 31/475, A61K 31/50, A61K 31/405, A61K 31/195, A61K 31/395, A61K 31/415, A61K 31/635, A61K 31/585
COMPOSITION FOR REGULATING DOPAMINE OR NOREPINEPHRINE LEVELS IN NEURONAL SYNAPSES
A material and composition are provided for regulating dopamine or norepinephrine levels in neuronal synapses. The levels of dopamine and/or norepinephrine are regulated by administering a neutral amino acid composition to a patient wherein increased or decreased brain levels of dopamine and/or norepinephrine are effected when the composition contains increased or decreased amounts of tyrosine and/or phenylalanine. Increased or decreased brain levels of serotonin are obtained when the amino acid composition contains increased or decreased amounts of tryptophan. The neutral amino acid composition can be administered alone or concomitantly with a drug which increases or decreases dopaminergic or noradrenergic neurotransmission.
A MATERIAL AND COMPOSITION FOR REGULATING DOPAMINE OR NOREPINEPHRINE LEVELS IN NEURONAL SYNAPSES This invention is concerned with a material for use in regulating (increasing or decreasing) the amount of dopamine or norepinephrine released into neuronal synapses. The invention also relates to a pharmaceutical composition comprising such a material. It is known that the neurotransmitters dopamine and norepinephrine are derived from dihydroxyphenylalanine (DOPA). DOPA is, in turn, produced in neurons by the enzymatic hydroxylation of the amino acid tyrosine. This process is catalyzed by the enzyme tyrosine hydroxylase. The DOPA is decarboxylated to dopamine by the enzyme aromatic L-amino acid decarboxylase (AAAD) and norepinephrine is produced from dopamine in neurons that also contain the enzyme dopamine beta-hydroxylase. It is also known that within this reaction chain, the rate-limiting step is the conversion of tyrosine to DOPA. For this reason, DOPA has been administered to patients who suffer medical disability resulting from dopamine deficiency in diseases such as Parkinsonls Disease. Unfortunately, DOPA, when administered, is taken up by cells throughout the body and converted to dopamine and this interferes with the normal metabolic processes in these other cells. In addition, DOPA interferes with the body's normal storage of the neurotransmitter serotonin, and lowers brain levels of the compound 5-adenosylmethionine. It is believed that these effects contribute to such unwanted side-effects as the On-Off Phenomenon and, in some patients, psychotic symptoms. Other types of drugs that act by increasing dopamine and norepinephrine levels in synapses include the Monoamine Oxidase Inhibitors (which slow the destruction of these neurotransmitters) and the tricyclic antidepressants; these compounds, which are used in treating diseases like depression; also relatively non-specific - producing many chemical effects besides increasing synaptic dopamine and norepinephrine levels - and thus have a range of unwanted side-effects such as the dangerous increases in blood pressure that occur when peoples receiving monoamine oxidase inhibitors eat certain foods. Other diseases appear to be caused by the presence of excessive quantities of dopamine or norepinephrine within synapses including psychosis (too much dopamine), movement disorders like tardive dyskinesia and the Gilles de la Tourette Syndrome (too much dopamine), and hypertension and cardiac arrhythmias (too much norepinephrine released from sympathetic neurons). These diseases now usually are treated by drugs that block the interactions of dopamine or norepinephrine with their post-synaptic receptors, such as phenothiazines or butyrophenones. However, these agents all exhibit some non-specific actions as well, and thus cause side-effects. Prior attempts to increase or decrease the levels of dopamine or norepinephrine by modifying neuronal tyrosine levels had been deemed unsuccessful because the total amounts of these compounds in brains and tissues were not noted to change. It was first observed in Wurtman et al (Science 185:183-184, July 12, 1974) that increases in brain DOPA concentrations, which, under the conditions of the experiments, varied in proportion to the rates at which dopamine and norepinephrine were being synthesized could be obtained by increasing brain tyrosine concentrations, and that decreases in brain DOPA concentrations could be produced by giving rats treatments that decreased brain tyrosine. An example of a treatment that increased brain tyrosine was the administration of tyrosine itself; an example of a treatment that decreased brain tyrosine was the administration of one of the other neutral amino acids, e.g. leucine, that competes with plasma tyrosine for uptake into the brain. Prior to that disclosure, it had been believed that the rate-limiting enzyme, tyrosine hydroxylase, was so saturated with tyrosine, that increases or decreases in brain tyrosine levels would not affect tyrosine's conversion to DOPA. In neither the above Wurtman et al article nor a subsequent paper by Gibson and Wurtman (Biochem.Pharmacology, 26:11371142, June, 1977) was it actually shown that such changes in DOPA accumulation were accompanied by changes in brain dopamine nor norepinephrine levels. Furthermore, in neither was it shown that changing brain tyrosine levels had any effect on the amounts of dopamine nor norepinephrine released into synapses. It is an object of the present invention to provide a means for increasing or decreasing the amounts of dopamine and/or norepinephrine that actually are present within synapses. Such changes in synaptic transmitter levels need not be associated with changes in the total amounts of dopamine or norepinephrine present in the brain or other tissues, inasmuch as it is now known that not all of the molecules of the transmitters that are stored in neurons are equally accessable for relase into synapses. It is another object of the invention to provide such a means which is biochemically specific and which lacks the undesirable side effects associated with administration of DOPA, the PIWO inhibitors, the phenothiazines, and the other drugs described above. Such a means can by itself be therapeutic in various disease states. Alternatively, it can be used in combination with other drugs to amplify their therapeutic effects. A therapeutic material embodying the invention can be used for treating diseases associated with a deficiency or an excess of dopamine and/or norepinephrine in synapses. We have found that treatments that increase or decrease neuronal tyrosine levels can also cause corresponding increases or reductions in the amounts of dopamine or norepinephrine released into synapses. The tyrosine, its precursor, phenylalanine, or other neutral amino acids can be administered alone or in admixtures, with or without other drugs, in order to raise or lower brain tyrosine (and phenylalanine) levels, and thereby to treat diseases associated with deficiency or excess of dopamine and/or norepinephrine in synapses. By varying the proportion of tryptohan, another amino acid, in the mixture, the synthesis and synaptic release of serotonin, another brain neurotransmitter, can similarly be controlled. Increased intrasynaptic dopamine levels are obtained after tyrosine and/or phenylalanine administration only when the dopamine-releasing neurons are active, i.e. are firing frequently. Increased synaptic norepinephrine levels are obtained by giving tyrosine regardless of whether the norepinephrine-releasing neurons are or are not especially active. Decreases in dopamine and norepinephrine release into synapses can be obtained by lowering brain tyrosine levels by administering neutral amino acid compositions low in tyrosine levels. Decreases in serotonin release can similarly be obtained by lowering brain tryptophan levels. By regulating the proportion of tyrosine in a given mixture of neutral amino acids, it can be caused to increase or decrease dopamine and/ or norepinephrine release. Phenylalanine can, in low doses, be used in place of tyrosine. Tryptophanis proportion in the neutral amino acid mixture can be used to regulate serotonin's release into synapses while regulating dopamine and norepinephrine release as described herein. The invention provides a material for use in regulating the amount of dopamine or norepinephrine released into synapses in the brain, characterised by a neutral amino acid which is tyrosine, phenylalanine or a mixture thereof (with or without other neutral amino acids) and is effective to regulate blood plasma levels of tyrosine or phenylalanine to form corresponding amounts of dopamine and/or norepinephrine in the brain. The material may be associated with a drug which induces an increase or decrease in dopaminergic or noradrenergic neurotransmission; this drug may be provided separately or in admixture with the said material. The invention also provides a composition in pharmaceutical dosage form comprising material according to the invention. The invention also provides a pharmaceutical composition comprising an excipient and material according to the invention. The invention also provides a pharmaceutical composition.comprising (a) a drug which, when administered to a human having active dopamine-releasing neurons increases or decreases dopaminergic neurotransmission and (b) a neutral amino acid which comprises tyrosine, phenylalanine or mixtures of tyrosine and phenylalanine to increase or decrease dopaminergic neurotransmission. The invention also provides a pharmaceutical composition comprising (a) a drug which, when administered to a human, increases or decreases dopaminergic neurotransmission and (b) a neutral amino acid which comprises tyrosine, phenylalanine or mixtures of tyrosine and phenylalanine (with or without other neutral amino acids) to increase or decrease brain norepinephrine levels. The compositions are, for example, provided in unit dosage form. There now follows a description to be read with reference to the accompanying drawings of embodiments of the invention. This description is given by way of example only, and not by way of limitation of the invention. In the drawings: Figure 1 is a graph illustrating norepinephrine synthesis in the brains of rats; and Figure 2 is a graph illustrating a correlation between homovallic acid and brain tyrosine in rats. Tyrosine and/or phenylalanine and/or other neutral amino acids is administered to a patient either alone or in combination with one or more other drugs thereby to increase or decrease the levels of dopamine and/or norepinephrine which are released into synapses. Serotonin release also can be controlled at the same time by varying the proportion of tryptophan present in the amino acid mixture. In order to increase dopamine release, it is necessary that the dopamine-releasing neurons in the patient's brain be relatively active, i.e. are firing frequently, such as is the case in patients with Parkinson's Disease. However, release of norepinephrine or serotonin into synapses can be varied using amino acid mixtures whether or not the norepinephrinereleasing or serotonin-releasing neurons are especially active. Similarly, decreases in dopamine or norepinephrine release can be produced by administering amino acid mixtures that compete with tyrosine for uptake for the brain thereby decreasing brain tyrosine levels. The composition of the amino acid mixture that is utilized depends upon the nature of the illness in the patient that is to be treated. When there is need to increase dopamine and/or norepinephrine release without increasing that of serotonin, tyrosine (and/or phenylalanine) is adminstered, with or withoutother amino acids not including serotonin's precursor, tryptophan, in doses ranging between 5 mg/kg and 200 mg/kg. This therapy is useful, alone or as an adjunct to drug therapies, in treating Parkinson's Disease, certain types of depression, essential hypertension, or the low blood-pressure that results from impaired peripheral sympathetic nervous function (orthostatic hypotension). In some situations, phenylalanine can be used as a substitute for tyrosine, inasmuch as much of this amino acid is converted to tyrosine in the liver, and released into the blood stream for uptake into the brain. However, plasma phenylalanine levels should be less than about double those of tyrosine, since at the higher levels, phenylalanine competes with tyrosine for uptake into the brain, and can inhibit the enzyme tyrosine hydroxylase. When there is need to sustain or increase brain serotonin levels while increasing dopamine or norepinephrine release, these compositions also contain tryptophan in addition to tyrosine and/or phenylalanine and other neutral amino acids. This combination is especially useful in treating certain types of depression, or sleep disorders. Other neutral amino acids than these compositions can contain include the branched-chain amino acids (leucine, isoleucine, Valine), as well as methionine, threonine, and histidine. The amino acids can be supplied as monomers or as natural or synthetic polymers, e.g. peptides. The phenylalanine, tryptophan and tyrosine will be referred to collectively as the useful amino acids . When there is need to decrease synaptic dopamine levels, for example, in psychosis, or in such movement disorders as tardive dyskinesia or Gilles de la Tourettets Syndrome, i.e., diseases in which dopaminergic neurons are probably hyperactive, neutral amino acid mixtures are administered which contain relatively little or no tyrosine or phenylalanine. Similar mixtures can be used to decrease synaptic norepinephrine, and to increase or decrease synaptic serotonin depending upon their tryptophan contents. The ratios of the plasma concentrations of tyrosine, phenylalanine and tryptophan to the sum of the other neutral amino acids are normally about 0.08-0.12, 0.07-0.12 and o.06-o.i4 respectively, depending on the composition of the diet. In some diseases, e.g., cirrhosis of the liver leading to coma; diabetes; hyperinsulinism; such catabolic states as starvation, cachexia, disseminated cancer, or severe burns or trauma, these ratios are abnormal, causing changes in brain dopamine, norepinephrine and serotonin release. The particular compositions used in these situations are designed to restore the plasma ratios to normal In the primarily neurologic or psychiatric diseases listed above, the goal of amino acid therapy is to raise or lower these ratios above or below their normal ranges, in order to increase or decrease the release of dopamine or norepinephrine (or serotonin) into synapses. The tyrosine, phenylalanine and other neutral amino acids can be administered as free amino acids, esters, salts, natural or synthetic polymers, or as constituents of foods. The route of administration can be oral or parenteral, e.g., intravenous. EXAILE I This example illustrates that brain norepinephrine can be synthesized by increasing brain tyrosine levels. This example shows that the rate at which 3 methoxy-4-hydroxy-phenylethyleneglycolsulfate (MOPEG-S04), the major brain metabolite of norepinephrine, accumulates in rat brain also varies as a function of brain tyrosine levels. This shows that brain tyrosine levels affect not only the synthesis, but also the turnover and release of brain norepinephrine. Male Sprague-Dawley rats (Charles River Breeding Laboratories, Wilmington, MA) weighing 150 g were housed in hanging cages (6-8 per cage), given ad libitum access to tap water and a 26% protein diet (Charles River Rat Mouse-Hamster Maintenance Formula 24RF), and maintained under light (300 microwatts/cm2; Vita-Lite, Duro-Test Corp., North Bergen, N.J.) between 8 At4 and 8 PEI daily. Rats used for diet experiments were fasted overnight and then allowed to consume the experimental diet starçing at 10 SI. Diets of different compositions were prepared in agar gel (35 g/100 ml of water) as described by Gibso et al, Biochem. Pharmacol., 26, 1137-1142 (1977). All amino acids and drugs were injected intraperitoneally. Norepinephrine synthesis and turnover in brain neurons were estimated by measuring the rate of accumulation of MOPEG-S04 after probenecid administration or exposure to a cold environment. .he MQPEG-S04 in brain homogenates was isolated using an anion exchange column (A-25 DEAE Sephadex; Pharmacia, Piscataway, N.J.); the method used was basically that of Meek and Neff, Br. J. Pharmacol., 45, 435-441 (1972), but modified to allow both tyrosine and MOPEG-S04 to be measured in the same sample. An aliquot of each homogenate (in 0.15 M ZnSO4) was first assayed for tyrosine by the method of Waalkes and Udenfriend, J. Lab. Clin. Med., 50, 733-736 (1957). An equal volume of 0.15 M barium hydroxide was then added to the remaining homogenate, which was rehomogenized (Polytron, Brinkman Instruments, N.Y.), centrifuged and assayed for MOPEG-S04 by the method of Meek and Neff above. Recoveries of MOPEG-S04 and tyrosine from whole brain homogenates were 7o75cA and 85-952b respectively. Tyrosine (Grand Island Biological Co., Long Island, N.Y.) and probenecid (Sigma Chemical Co., St. Louis, Wiz), which are poorly soluble in water, were dissolved in dilute NaOH; the solutions were then buffered to pH 7.4 with hydrochloric acid and brought to a known volume with saline. This yielded a fine suspension that was suitable for injection. In experiments on stress produced by exposure to cold, animals received the more soluble ethyl-ester form of tyrosine (J.T. Baker, Phillipsburg, N.J.), instead of tyrosine itself, to raise brain tyrosine levels. Data were analyzed by one-way or two-way analysis of variance. Probenecid treatment significantly raised the MOPEG-S04 level in brain from 123 ng/g in diluentinjected controls to 175 ng/g in probenecid-treated animals (P < 0.001) (Table I). Tyrosine administration alone had no effect on brain NOPEG-S04; however, pretreatment with this amino acid significantly enhanced the probenecid-induced rise in MOPEG-S04 (to 203 ng/g, as compared with 175 ng/kg in rats receiving probenecid alone (P < 0.01; Table I). TABLE I Accumulation of MOPEG-S04 after Probenecid Administration and Pretreatment with Thrrosine Brain Tyrosine Level Brain MOPEG-S04Level Wg/g) (np/p, ' Pretreatment Diluent Probenecid Diluent Probenecid Diluent 13.9 + 0.5 15.7 + 0.7 123 + 6 175 + 6 Tyrosine 23.3 + 1.5 24.7 + 1.3 127 + 2 203 + 8 Note: In each of 3 experiments, groups of 4-6 rats were injected with either a dose of tyrosine (100 mg/ kg, i.p.) known to accelerate brain dopa synthesis or its diluent and, 30 min. later, with probenecid (400 mg/kg, i.p.) or its diluent. Animals were killed 60 min. after the second injection, and their whole brains were analyzed for tyrosine and MOPEG-S04. Tyrosine administration significantly raised brain tyrosine levels (P + 0.001) whereas probenecid failed to modify brain tyrosine or its response to exogenous tyrosine. Probenecid significantly raised brain MOPEG-S04 (P + O.OQ1), and tyrosine pretreatment significantly enhanced this response (P + 0.01). Data were analyzed by two-way analysis of variance. Values are expressed as means + SEMI. Placing the rats in a cold environment (40C) increases norepinephrine turnover; this accelerates the formation of both norepinephrine itself and its metabolite, MOPEG-S04, , in brain neurons. The rats were exposed to cold to determine whether treatments that changed brain tyrosine levels could influence the rate at which the brain accumulates MOPEG-S04 in rats exposed to cold stress and not given probenecid (Fig. 1). Exposure to cold for 1 hr. increased brain I.OPEG-S04 levels by about 40% (from 80 ng/g to 114 ng/g; P < 0.01). .In animals treated with either of the amino acids or with saline, brain tyrosine levels paralleled, and were significantly correlated with, those of MOPEG-SO4 (r = 77, P < 0.05; Fig. 1). Pretreatment with tyrosine raised brain tyrosine levels by about 80G,' (from 13.3 yug/g, in saline-injected animals, to 24.6jug/g; P < 0.01) and those of MOPEG-S04 by 70% (from 114 ng/g to 193 ng/g; P < 0.01). Pretreatment with valine failed, in this study, to cause significant alterations in brain tyrosine or NOPEG-S04 levels (14.3pug/g and 117 ng/g, respectively); however, brain tyrosine and MOPEG-S04 levels were also significantly correlated in these animals, as in other experimental groups (Fig. 1). The relationship shown in Fig. 1 was obtained as follows: Groups of rats were injected intraperitoneally with valine (200 mg/kg), an amino acid that competes with tyrosine for uptake into the brain (8), or with tyrosine (125 mg/kg of the ethyl ester) or saline; 30 min. later they were placed in single cages. in a cold (4 C) environment. After 1 hr., all animals were killed, and their whole brains were analyzed for tyrosine and NOPEG-S04. Control animals were injected with saline and left at room temperature (220C), also in single cages, for 90 min. Each point represents the tyrosine and MOPEG-S04 levels present in a single brain. Data were pooled from several experiments. Brain tyrosine and M0PEG-SO4 levels in animals kept at room temperature were 14.6pug/g and 80 ng/g, respectively. In Fig. 1, the symbols are as follows: closed circles, animals pretreated with valine; open circles, animals pretreated with saline; closed squares, animals pretreated with tyrosine. To determine whether physiologic variations in brain tyrosine level. might also influence brain norepinephrine synthesis and turnover (as estimated by measuring IIOPEG-S04 levels), the accumulation of this metabolite in animals exposed to a cold environment was examined after being allowed to consume a single meal that could be likely to elevate tyrosine levels. Animals that had been fasted. overnight were given access to either a protein-free (0% casein) or a 40o0 casein meal between 10 and 11 EtI; they were then placed in the cold (4 C) for 1 hr., after which they were killed, and their brain analyzed for tyrosine and MOPEG-S04. Fasted control animals remained at room temperature (220C) during this 2-hr. period. Exposure to cold accelerated the accumulation of MOPEG-S04 in brains of fasted rats, from 123 ng/g (in fasted control animals kept at 22 C) to 163 ng/g (P c 0.05); this treatment had no effect on brain tyrosine levels (10.1 ug/g vs. 10.5 g/g). Among animals placed in the cold, consumption of either a 0% or a 40N casein meal enhanced brain MOPEG-S04 accumulation by 40 50% (Table II; P < 0.01). The 0% casein meal increased brain tyrosine by about 40% (P < 0.01), whereas the 40,S casein meal increased brain tyrosine by 77% (P < 0.01). When the consumption of a protein-free meal failed to elevate brain tyrosine levels, brain MOPEG-S04 levels also failed to rise (Table II). Among protein-fed animals in this study, the brain tyrosine level increased by about 50% (from 13.4 to 19.5 g/g, P( 0.01), and brain MOPEG-S04 rose in parallel. These data show that treatments that increased brain tyrosine levels can accelerate the accumulation of the norepinephrine metabolite IdOPEG-S04 in the brains of rats pretreated with probenecid or exposed to a cold environment. Such treatments can be pharmacologic (i.e., intraperitoneal injection of tyrosine) or physiologic (i.e., consumption of a high-protein meal). They are compatible with the high Km of tyrosine hydroxy- lase for its substrate, relative to brain tyrosine concentrations. The enzyme is especially vulnerable to substrate limitation when it has been activated, inasmuch as activation selectively enhances its affinity for its cofactor. MOPEG-S04 is the major metabolite of norepinephrine formed in rat brain and it is transported out of the brain by a probenecid-sensitive mechanism. After probenecid administration, MOPEG-SOX accumulates at a linear rate in rat brain for at least 60 min. Since brain norepinephrine levels remain constant during this interval, the rate of MOPEG-S04 accumulation provides a useful index of the rate of norepinephrine synthesis. This rate apparently is lower in unstressed, probenecidtreated rats than in animals placed in the cold (Tables I and II), however, in both circumstances, it is depended on brain tyrosine levels. TABLE II Brain MOPEG-S04 Accumulation after Ingestion of a Single Protein-free or 40', Protein Diet among Rats placed in a Cold Environment Treatment Tyrosine MOPEG-S04 Eg/g) (ng/g) EXPERIMENT I Fasted 10.5 + 0.55 163 q 9 Protein-free 14.4 + 0.24* 239 + 17* (0% Casein) 40% Casein 18.1 + 0.85* I 228 + 9* I EXPERIMENT II Fasted 13.4 0.67 195 9 Protein-free 13.3 0.81 182 18 (OgC Casein) 40% Casein 19.5 1.03* 264 20* * Values are significantly different from corres ponding fasted group (P < 0.01). Values are significantly different from corres ponding protein-free group (p c 0.01) Note: Groups of 4-6 rats were fasted overnight and then allowed access to one of the test diets at 10 AM. At 11 AM, animals were placed in an environmental chamber at 40C for 1 hr. They were killed at noon, and their whole brains were analyzed for tyrosine and MOPEG-S04. Animals given protein-free and 40% protein diets consumed 9.7 and 10.5 g, respectively, in Experiment I, and 6.2 and 8.0 g in Experiment II. Data presented as means + SEM. EXAMPLE II This example illustrates that brain dopamine release can be enhanced by increasing brain tyrosine levels. To determine whether tyrosine levels also affect the synaptic release of catecholamine neurotransmitters, the effect of tyrosine administration on the accumulation of the dopamine metabolite, homovanlllic acid (HVA) was examined in brains of animals pretreated either with probenecid (a compound that prevents the egress of organic acids from the cerebrospinal fluid, Spector and Lorenzo, 1974) or with haloperidol (a drug that blocks central dopaminergic receptors, Ungerstedt et al, 1969). It was found that increasing the brain tyrosine levels accelerates IWA accumulation in brains of haloperidoltreated animals, but not in animals given probenecid. Male, 150 to 200 g Sprague-Dawley rats (Charles River Breeding Laboratories,Wilmington, ItL) were exposed to light (Vita-Lite, Duro-Test Co., North Bergen, N.J.) between 9 EI and 9 PM daily and allowed access to Big Red Rat Chow (Charles River Breeding Laboratories) and water ad libitum. Drugs were injected intraperitoneally at a volume of 2 ml/kg body weight. Haloperidol was administered as a soluble prep2ration (Haldols McNeil Laboratories, La Jolla, CA); tyrosine and probenecid (Sigma Chemical Co., St. Louis, MO) were dissolved in 1 N NaOH and adjusted to pH 10.0. Control animals received the appropriate diluents. Twenty minutes after an injection of tyrosine (100 mg/kg) or its diluent, the animals received haloperidol (2 mg/kg) or probenecid (290 mg/kg); 70 min. later they were killed by decapitation. Brains were quickl, removed, and the striata were dissected out (Glowins1i and Iverson, 1966), frozen on dry ice, and subsequently assayed for HVA. Tyrosine was assayed in homogenates of the-remaining brain (Waalkes and Udenfriend, 1957). To affirm that tyrosine concentration in the homogenates of remaining brain are similar to those in striatum homogenates, brains were compared from groups of 6 animals treated, some of which had received tyrosine and/or haloperidol, and no statistical significance was detected. Tyrosine hydroxylase activity was measured bv a modification of the method of Waymire et al. (1971). Corpora striata were homogenized in 10 volumes of 0.05 M Tris-acetate buffer (pH 6.0), containing 0.2 per cent Triton X-100 (Harleco, Philadelphia, PA). The homogenates were centrifuged for 10 min. at 10,000 g, and the super- natant fluids were collected for assay (Coyle, 1972). The assay medium contained, in a total volume of 110 l: 50 Fl of a supernatant fluid; 65 nnoles of D:.:'H4 (2-amino4-hydroxy-6, 7-dimethyl-5, 6,7, 8-tetrahydropteridine hydrochloride (synthetic cofactor obtained from Calbiochem, San Diego, CA); 29 nanomoles of pyridoxal phosphate; 4 nanomoles of 2-mercaptoethanol; 240 units of catalase; 0.01 millimoles phosphate buffer (pH 6.2); and 10 l of aromatic L-amino acid decarboxylase prepared from hog kidneys (Coyle, 1972). Samples were preincubated for 2 min. at 370C. The reaction was started by adding 10 pl of L- 1-14C - tyrosine (specific activity, 0 90 FCi/rsole) to a final concentration of 0.1 mt in the assay medium and then incubating the sample at 370C for 30 min. The assay was stopped by the addition of 0.5 ml of 10 per cent trichloroacetic acid. The acidified medium was then shaken for 2 hours to recover the 14CO2, which was trapped by folded filter paper strips placed in 0.2 ml of NCS tissue solubilizer (Amersham/Searle, Arlington Heights, IL). The strips were then transferred to scintillation vials containing 10 ml of Aquasol (New England Nuclear, Boston, MA), and their radioactivity was counted. Blanks utilized either boiled supernatant fluids or complete assay mixtures containing monoiodotyrosine (0.2 mM); both methods yielded similar results. Tyrosine administration markedly potentiated (by 59 per cent; P < 0.001) the accumulation of HVA in striata of haloperidol-treated rats (Fig. 2). It failed, however, to affect the HVA levels in animals given probenecid, even though brain tyrosine levels were elevated to an equivalent extent (Fig. 2). Among haloperidol-treated rats, striatal HVA and brain tyrosine concentrations were highly correlated (r = 0.70; P < 0.01) (Fig. 2); no such correlation was observed in probenecid-treated animals. The failure of HVA accumulation (and thus of dopamine formation) to vary with brain tyrosine level in probenecid-treated rats may reflect the operation of a receptor-mediated feedback mechanism, which couples the activation of striatal dopamine receptors to a suppression of dopamine synthesis. It can be postulated that tyrosine administration initially enhances the synthesis and release of dopamine in striata of probenecid-treated animals, and that the consequent increase in the activation of dopamine receptors causes a feedback decrease in dopamine formation. The decrease in dopamine formation would lead to a fall in the production of HVA. This hypothetical feedback mechanism would fail to operate in haloperidol-treated animals; hence, tyrosine levels could continue to affect dopamine synthesis, even after dopamine release was accelerated. To examine the possibility that the failure of tyrosine administration to accelerate striatal IWA accumulation in probenecid-treated rats resulted from a feedback change in the kinetic properties of tyrosine hydroxylase, we measured the enzyme's affinity for tyrosine and for its pterin cofactor, DMPH4, on brain samples from each of our experimental groups. The prior administration of tyrosine failed to affect the Kms of tyrosine hydroxylase for tyrosine of DMPH4 in vitro (Table I). A & noted previously (Zivkovic et al, 1974; Zivkovic and Guidotti, 1974), haloperidol administration did decrease the enzyme's Km for DI E 4 (Table III). Fig. 2 of tyrosine administration on the accumulation of HVA in corpora striata of rats given haloperidol or probenecid. Rats received tyrosin (100 mg/kg) or its diluent followed in 20 min. by haloperidol (2 mg/kg) or probenecid (200 mg/kg); they were sacrificed 70 min. after the second injection. Data from individual animals receiving haloperidol are indicated by open circles; data from rats receiving haloperidol plus tyrosine are indicated by closed circles. Striatal HVA levels were highly correlated with brain tyrosine levels in all animals receiving hzloeridol (r = 0.70; P < 0.01). In contrast, the striatal HVA levels of animals receiving probenecid alone (n = 17) did not differ from those of rats receiving probenecid plus tyrosine (n = 11). Brain tyrosine and striatal HVA concentrations in each group were (respecti.vely): probenecid, 17.65 + 1.33 and 1.30 + 0.10 Fg/g; probenecid plus tyrosine, 44.06 + 3.91 and 1.31 + 0.11 Xg/g; haloperidol, 17.03 + 0.97 and 2.00 + 0.10 Sg/g; ; and haloperidol plus tyrosine, 36.02 + 2.50 and 3.19 + 0.20 sg/g- TABLE III Effect of Pretreatment with Tyrosine or its Diluent, Plus Probenecid or Haloperidol, on the Kms of Striatal Tyrosine Hydroxylase for Tyrosine and DMPH4 Treatment Km for Km for tyrosine ( M) DMPH4 (mM) Probenecid 53.9 + 2.2 0.72 + 0.01 Probenecid plus tyrosine 52.1 + 1.7 0.67 9 0.06 Haloperidol 48.1 + 1.9 0.13 + 0.01 Haloperidol plus tyrosine 48.4 + 1.1 0.12 + 0.01 Animals were treated as described for Fig. 3. Samples of striatum were assayed for tyrosine hydroxylase activity by using tyrosine concentrations of 0.125 1.0 mM and DMPH4 concentrations of 0.1 to 0.5 Si. Haloperidol administration with or without tyroslne significantly reduced the Km of tyrosine hydoxylase for DiSH4, as compared to that observed in probenecid-treated animals (P c 0.001, Studentts t-test). These data provide further support for the hypothesis that tyrosine hydroxylase may not always be saturated with its amino acid substrate in vivo - i.e., in animals whose brains are synthesizing larger-than- normal quantities of dopamine as a consequence of dopamine-receptor blockade (by haloperidol). Moreover, they show that increasing the saturation of the enzyme (by administering tyrosine) can enhance not only the formation of dopa and of the catecholamine neurotransmitter, dopamine, but also the release of this transmitter. Control by tyrosine of dopamine synthesis and release can be expected to operate whenever dopaminergic neurons are firing frequently, e.g., in Parkinsonts Disease; after haloperidol.
Claims: 1. A material for use in regulating the amount of dopamine or norepinephrine released into synapses in the brain, characterised by a neutral amino acid which is tyrosine, phenylalanine or a mixture thereof (with or without other neutral amino acids) and is effective to regulate blood plasma levels of tyrosine or phenylalanine to form corresponding amounts of dopamine and/or norepinephrine in the brain. 2. A material according to clan 1 wherein said amino acid is tyrosine and also comprising tryptophan in an amount to increase or decrease brain serotonin levels. 3. A material according to claim 1 characterised by tyrosine and phenylalanine, the amount of phenylalanine being less than that which competes with tyrosine for uptake into the brain. 4. A material according to claim 1 for use in the treatment of a disease that causes dopamine-releasing neurons to be active and containing tyrosine or phenylalanine. 5. A material according to claim 1 characterised by association with a drug which induces an increase or decrease in dopaminergic neurotransmission. 6. A material according to claim 1 characterised by association with a drug which induces an increase or decrease in noradrenergic neurotransmission. 7. A composition in pharmaceutical dosage form comprising material according to any one of the preceding claims. 8. A pharmaceutical composition comprising an excipient and material according to any one of claims 1 to 6. 9. A pharmaceutical composition comprising (a) a drug which, when administered to a human haring active dopamine-releasing neurons increases or decreases dopaminergic neurotransmission and (b) a neutral amino acid which comprises tyrosine, phenylalanine or mixture of tyrosine and phenylalanine to increase or decrease dopaminergic nurotransmission, 10. A pharmaceutical composition comprising (a) a drug which, when adminstered to a human, increases or decreases dopaminergic neurotransmission and (b) a neutral amino acid which comprises tyrosine, phenylalanine or mixtures of tyrosine and phenylalanine (with or without other neutral amino acids) to increase or decrease brain norepinephrine levels.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
WURTMAN, RICHARD J.
EP-0005064-B1
5,064
EP
B1
EN
19,841,010
1,979
20,100,220
new
C07D213
null
B01J27, C07D213
M07D213:61, C07D 213/61
PROCESS FOR PREPARING 2,3,5,6-TETRACHLOROPYRIDINE
2,3,5,6-Tetrachloropyridine and pentachloropyridine are prepared by reacting a chlorosubstituted (trichloromethyl) pyridine in the liquid state with chlorine at temperatures of at least about 160°C in the presence of a Lewis acid type catalyst. The products are useful as intermediates for the preparation of herbicides and pesticides.
PROCESS FOR PREPARING 2,3,5,6-TETRAcRLOROPYRIDINE AND PENTACHLOROPYR ID I NE The present invention concerns a process for the preparation of 2,3,5,6-tetrachloropyridine and pentachioropyridine. The chlorinated pyridine derivatives of the present invention are known compounds having been previously prepared by a number of processes. These compounds have uses, such as pesticides, and are also employed as chemical intermediates in the preparation of other highly desired herbicide or pesticide products. Previous methods for preparing such compounds include those described in U.S. Patent Nos. 3,538,100 and 3,186,994 and the prior art noted therein. According to the '100 patent, pentachloropyridine and 2,3,5,6-tetrachloropyridine (hereinafter referred to for convenience as ',Penta and Tetra products, respectively,) have been prepared by chlorination of liquid 2,6-dichloropyridine at temperatures of at least about 1800C and in the presence of a metallic halide catalyst. Polychloropyridines, including Penta and Tetra products, are also produced according to the '994 patent by chlorinating a polychloro-(trichloromethyl)pyridine reactant in the liquid state at a temperature of at least 1600C, preferably under irradiation with ultraviolet light. The present invention provides a process for preparing 2,3,5,6-tetrachloropyridine and pentachloropyridine which comprises reacting chlorine with a liquid chlorosubstituted (trichloromethyl)pyridine reactant of the formula: EMI2.1 wherein R1 and R3 are chloro or E The starting material, e.g., 2-chloro-, 2,3-dichloro-, 2,5-dichloro- or 2,3,5-trichloro-6 (trichloromethyl)pyridine, is contacted in the liquid state with chlorine at temperatures of at least about 1600C and at atmospheric or superatmospheric pressure in the presence of a Lewis acid type catalyst. The process of the present invention is preferably conducted under anhydrous conditions, and is preferably carried out in a continuous, cyclical operation to produce the preferred product of symmetrical tetrachloropyridine. In the accompanying drawings, which are more fully referred to in the description following below: Figure 1 is a diagrammatic sketch showing apparatus used in what is considered to be the best mode known for practicing the invention. Figures 2 and 3 are graphs illustrating results obtained in the batchwise practice of the invention as described in Example 1 - Table A and Example 2 - Table B, respectively. Figures 4 and 5 are graphs illustrating results obtainable in the practice of the invention on a recycle basis as described in Example 3 and Tables L and M. Figure 6 is a graph which demonstrates the results of an extended recycle run and effect of tar concentration on production of desired symmetrical tetrachloropyridine. In carrying out the process of the present invention, gaseous chlorine is passed into a liquid chloro-substituted 6- (trichloromethyl )pyridine starting material at a temperature of at least about 1600C in the presence of a Lewis acid type catalyst. An equimolar amount of the chlorine gas reactant is employed with from about 0.3 to about 10 excess molar proportions of chlorine per mole of starting material desirably being employed. The continuous passage of excess chlorine gas through the reaction mixture serves not only to supply a large amount of reactant but to sweep out any carbon tetrachloride or hydrogen chloride by-products. The most suitable rate at which the chlorine gas is fed will vary with the reaction temperature, pressure, reaction mixture volume, etc. An excess amount of from about 0.3 to about 5.0 moles of chlorine per hour is usually employed per mole of chloro-substituted 6-(trichloromethyl)pyridine starting reactant. Representative catalysts include, for example, Lewis acid type catalysts such as metals or metallic halides capable of being converted to covalent metallic chlorides under the conditions of the chlorination reaction of the present invention. Thus, metals themselves such as iron, zinc, aluminum, and the like can be employed, preferably in the powdered form. Representative covalent metallic chlorides or halides which can be converted to the chloride form include those such as ferric chloride, ferric bromide, aluminum chloride, aluminum bromide, antimony pentachloride, molybdenum pentachloride, tungsten hexachloride, boron trifluoride, titanic chloride, or nickel chloride. As will be understood by those skilled in the art, no equivalency in activity or operability of the catalyst materials is to be inferred. While certain catalysts have been found to provide good results over a short reaction period, for example, at atmospheric pressure, others which may be operable may require long reaction time periods which may not be economically feasible to obtain similar results. Further, certain catalysts may be superior when employed at elevated temperatures and/or pressures. The degree of catalytic activity may also vary depending upon the particular product which is to be produced, the degree of catalyst solubility or miscibility with the starting material, and the use of fixed bed versus slurried catalyst. In any event, those skilled in the art can, by routine experimentation according to the teachings of the specification and numerous examples herein, readily determine the optimum catalyst and amount thereof required for any particular product to be made or for any particular set of pressure, temperature or time conditions desired. Catalysts bonded to inert supports or the use of co-catalysts are also contemplated for use in the present invention. Catalysts preferred for use in the present invention include halides of ruthenium, tantalum, tungsten, molybdenum, niobium, aluminum, zinc, and iron. Highly preferred catalysts for use in the present invention include the ferric and aluminum halides, and iron and aluminum metals. A preferred catalyst is ferric chloride. The catalysts are usually employed in an amount ranging from about 1 to about 20 mole % by weight based on the amount of chloro-substituted 6-(trichloromethyl)pyridine starting material. Preferably, a catalyst concentration of from about 1.0 to about 10 mole % is employed. While the desired products of the present invention can be obtained by the chlorination, at atmospheric pressure, of 2-chloro-6-(trichloromethyl)pyridine and other similar reactants in the presence of an effective catalyst at temperatures of from about 160 to about 2200C, it has also been surprisingly found that such products can be obtained in a much more efficient and economical manner if the chlorination reaction is carried out at pressures substantially in excess of atmospheric. Moreover, in the preparation of the highly preferred tetrachloropyridine, it was surprisingly found that increases in the production of the same were directly correlated to increases in one or more of the pressure, temperature, or catalyst amount parameters. Generally, an increase of 10-150 in the temperature range has the effect of approximately doubling the reaction rate, while an approximately doubling in the pressure from 100 to 200 psig (from 7 to 14 kg/cm2 gauge) elicits a similar response. Up to certain levels and with certain catalysts, an approximate doubling of the catalyst amount also has been found to approximately double the reaction rate. Thus, in carrying out the process of the present invention, illustratively described with respect to 2-chloro-6- (trichloromethyl )pyridine as the starting material, the starting material in molten form is usually added to a reactor previously heated to at least about 1000C and the reactor purged with nitrogen. Catalyst in an amount sufficient to catalyze the reaction is then added and chlorine flow commenced, usually at a sufficient rate to pressure the reactor to about 15 psig, (1 kg/cm2 gauge) or more. The temperature of the reactor is then slowly increased to at least about 1600C and the reaction maintained until sufficient amounts of the desired pyridine compounds are obtained. Liquid samples from the reactor and vent gases are periodically taken and analyzed by known methods to monitor the course of the reaction. The reaction is terminated by stopping the heating of the reactor and the flow of chlorine thereto and allowing the reactor pressure to drop to atmospheric. Distillation of the reaction product obtained can then be carried out to obtain the desirable products therefrom and the still bottoms can be recovered and re-used in the process. The reaction process is generally illustrated below, on a batch-wise basis, for the prepar ation of the desired Tetra and Penta products: EMI7.1 A small amount of 2,6-dichloropyridine (usually less than 0.1) is sometimes observed in the initial stage of the reaction. However, the same is apparently quickly converted to 2,3,6-trichloropyridine, which subsequently converts to the desired 2,3,5,6-tetrachloropyridine (V). The amount of 2,3,6-trichloropyridine (also partially derived from some of (III)) formed is also minimal, ranging from about 1% at lower reaction temperatures to about 4% at higher temperatures. During the initial stages of the reaction, conversion of the 2-chloro-6-(trichloromethyl)pyridine (I) is largely to the 2,3-dichloro compound (Il) with lesser amounts of the 2,5-dichioro compound (III) being formed. Small amounts (e.g., 4-82 by wt.) of 2,4 -dichloro-6-(trichloromethyl)pyridine may sometimes be present as an impurity in starting material (I), and this impurity is converted to 2,4,5-trichloroand 2,3, 4-trichloro-6- (trichloromethyl )pyridine (not illustrated) during the early stages of the reaction and eventually to product (VI). During the formation of the formula (II) and (III) compounds, compounds (IV), (V), (VI) and (VII) are produced in lesser amounts, with the concentrations of products (IV), (V) and (VII) increasing significantly following obtention of peak amounts of compounds (II) and (III). The production of compound (V) continues to increase significantly during the reaction while the concentration of compound (IV) peaks and then begins to diminish. The concentration of compound (VII) continues to increase, although at a lesser rate than compound (V), but will eventually equal and surpass the peak concentration of compound (V) if the reaction is continued for a sufficient period of time. Those skilled in the art will appreciate that materials (II) or (III) can be derived from sources other than (I) and that they can be used to prepare materials (IV) through (VII), and that material (IV) likewise may be obtainable from other methods known in the art and can be utilized as the starting material to prepare products (V) through (VII) according to the present invention. The use of any one or more of mixtures of these as starting materials is to be understood as being embodiments within the scope of the present invention. Thus, 2,3- and 2,5-dichloro-6-(trichloromethyl)pyridine products [(II) and (III)] can be prepared by reacting chlorine and 2-chloro-6-(trichloromethyl)pyridine (I) at atmospheric pressure and at a temperature of at least about 1600C in the presence of a catalyst. The optimum amount of product (II) obtained is generally from about 2 to about 4 times the optimum amount of product (III). While products (II) and (III) can be obtained under the conditions noted, the reaction time necessary to obtain significant conversion of the starting material thereto is quite long, e.g., substantially in excess of about 100 hours. Accordingly, for reasons of efficiency and economy, it is preferred that the reaction be carried out at reaction temperatures of at least about 1600C and under pressures substantially in excess of atmospheric, e.g., from about 15 to about 220 psig (1-15.4 kg/cm2 gauge) and a catalyst amount of about 2 mole %. In a highly preferred embodiment, the reaction is carried out at temperatures of from about 1600C to about 2200C, pressures of about 100 psig to about 220 psig (7-15.4 kg/cm2 gauge) and a catalyst amount of about 4 mole % or more, thereby generally obtaining optimum yields of products (II) and (III). Preferably, a reaction temperature of about 2000C, a reaction pressure of about 200 psig (14 kg/cm2 gauge) and a catalyst amount of from about 1 to about 10 mole % are employed. In the latter embodiment, optimum yields of products (II) and (III) can be obtained in a batch reaction in about 10-12 hours. When (II) is the desired product, it is preferred that ruthenium trichloride be employed as the catalyst. Product (IV) can be prepared from starting material (I) under the same general reaction temperature and pressure ranges as above, with preferred temperatures of from about 160 to about 2200C, pressures of from about 100 to about 220 psig (7-15.4 kg/cm2 gauge) and catalyst amounts of from about 2 to about 10 mole % being employed. Most preferably, reaction temperatures of from about 180 to about 1900 are employed at reaction pressures of from about 190 to about 210 psig (13.3-14.7 kg/cmZ gauge). In a highly preferred embodiment of the present invention, the process is employed to obtain optimum amounts of the tetrachloropyridine compound (V). In such embodiment, the starting material (I) is reacted with chlorine under the same general conditions as set forth above. As noted, the reaction can be conducted at atmospheric pressure, but the reaction time necessary to obtain optimum amounts of the product is extremely long. Therefore, it is preferred that the process be carried out at reaction temperatures of from about 160 to about 2200C, preferably from about 180-2100C, at reaction pressures of from about 15 to about 220 psig (1 -15.4 kg/cm2 gauge), preferably from about 100 to about 220 psig (7-15 kg/cmZ gauge) and at catalyst amounts of from about 1 to about 10 mole %. While some product can be obtained when operating at the lower ends of said preferred ranges, for example, 1700 and 110 psig (7.7 kg/cm2 gauge), it was found that certain increases in one of the temperature, pressure, or catalyst amount parameters greatly affected the reaction time needed to obtain optimum amounts of the tetrachloro compound. Generally, it was found the reaction rate about doubled when the reaction pressure was nearly doubled from 110 to about 200 psig (7.7 to 14 kg/cm2 gauge), the reaction temperature (1700C) and catalyst amount remaining constant. Likewise, a 10-150C increase in the reaction temperature was found to more than double the reaction rate at a constant pressure of 200 psig (14 kg/cm2 gauge) and catalyst concentration. Similarly, at constant reaction pressure and temperature, for example, 200 psig (14 kg/cm2 gauge) and 2000C, the reaction rate was found to be about doubled when the catalyst amount was increased from 2 to 4 mole %. However, the use of larger amounts of catalyst, e.g., generally from about 5 to about 10 mole %, has been found to result in an undesirable build-up of tar by-products in the product still bottoms. This increase in tar build-up is particularly undesirable where the same is recycled with still bottoms to form part of the feed starting material. Accordingly, reaction temperatures of from about 180 to about 2100 and reaction pressures of from about 190 to about 210 psig (13.3-14.7 kg/cm2 gauge) are preferred; optimum amounts of the tetra pyridine product of up to about 40-50 weight percent of the reaction product can be obtained under such conditions in reaction periods of from about 40 to 70 hours when using about 2 mole % by weight of catalyst. In a highly preferred embodiment, the reaction temperature is about 2000C, the reaction pressure is about 200 psig (14 kg/cm2 gauge) and the catalyst is employed in an amount of from about 1 to about 10 mole %. It is to be noted that the only constraint placed upon the superatmospheric pressures employed is one of economics, and that pressures in excess of the preferred 190-220 psig (13.3-15.4 kg/cm2 gauge) range may be employed. Those skilled in the art will, however, recognize that the cost for pressure equipment to allow operation above 220 psig (15.4 kg/cm2 gauge) is greatly increased, and that the cost thereof may exceed any benefits obtained. The 2-chloro-6- (trichloromethyl )pyridine starting material is known and can be prepared according to the methods taught in U.S. Patent 3,420,833. All of the products (II)-(VII), their physical properties, and methods of analysis therefor are known in the art. The interior surfaces of the reactors and inlets, outlets, conduits, etc., should be of materials which resist corrosion by chlorine and hydrogen chloride. Thus, for example, such surfaces may be lined with glass, carbon, nickel, etc. The following examples illustrate the liquid phase methods but are not to be construed as limiting the invention. The product distribution in all tables is in terms of weight %. Example 1 A chlorination reactor comprising a 300 ml flask fitted with a sparge tube connected via a rotometer and needle valve to a chlorine source and a condensor connnected to a caustic scrubber was charged with a melt (200 grams) of a 2-chloro-6 - (trichloromethyl )pyridine starting material. Catalyst was then charged to the reactor and the reaction mixture warmed to about 2000C at atmospheric pressure with stirring, and chlorine was sparged into the solution at the rate of about 0.1 mole/hr. Samples were removed via a sampling port at 6 hour intervals. The results of operations employing such procedure are set forth below in Table A and illustrated in Figure 2 hereof, the product distribution being in terms of weight percent. TABLE A Temperature: 200 Catalyst: 10.0 mole % Fe Pressure: Atmospheric Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 93.3 0.3 - - - - 6.1 1 6 63.0 17.5 9.2 0.7 1.9 0.1 6.5 0.8 2 12 32.4 35.5 18.8 2.2 3.3 0.2 5.5 2.1 3 18 10.6 47.0 24.2 5.1 4.9 0.4 4.2 3.7 4 24 0.6 47.6 21.7 13.9 6.6 1.1 3.1 5.3 5 30 - 36.6 14.6 25.7 10.6 2.6 4.3 5.4 6 36 - 30.1 9.5 32.6 14.1 3.7 5.4 4.6 7 42 - 21.4 5.9 38.0 18.9 4.8 6.8 4.1 8 48 - 16.0 3.5 40.2 23.0 5.4 8.7 3.4 9 54 - 10.6 1.9 40.2 27.4 5.9 11.3 2.6 10 60 - 6.3 0.8 39.3 31.4 6.2 13.9 2.0 11 66 - 4.4 0.5 36.6 34.6 5.9 16.3 1.6 12 72 - 2.6 0.2 36.8 36.9 6.0 19.8 1.2 13 78 - 1.4 0.1 27.9 41.3 5.5 22.5 0.9 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. Example 2 A two liter, Parr reactor with glass liner and equipped with an air driven stirrer is pre -heated to about 100-1250C and one kilogram of a 2-chloro-6-(trichloromethyl)pyridine starting material is melted and poured into the warm reactor and the desired amount of iron powder catalyst is calculated and added to the starting material melt. The reactor is then sealed, and chlorine, from a gas cylinder placed in a heated and stirred water bath, is delivered to the liquid phase in the heated reactor via a dip-leg. The pressure of the reaction is regulated by heating the chlorine supply cylinder and the C12 flow is regulated at a desired level. The rate of vent gases (Cl2 and HCl) is controlled by a pressure regulator. Once the C12 flow is commenced to the stirred liquid reaction mass, the reaction is monitored closely until the desired temperature and gas flow is achieved and temperature, pressure and vent gas flow monitored thereafter on a continuous basis. During the course of the reaction, samples of the reaction mass are periodically taken and analyzed. Once the reaction has reached the desired point of completion, the flow of chlorine is stopped and the heating of the reactor is discontinued. Data set forth in the following tables represent the results of several experimental runs using the above-described procedure. References to products are as designated in the formulas set forth hereinabove. TABLE B Temperature: 200 Catalyst: 2.0 mole % Fe Pressure: 110 psig Vent Gas Flow: 50 ml/min. (7.7 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 24 1.7 43.6 32.2 9.3 1.1 1.3 0.2 5.2 1.0 2 48 1.5 13.1 51.3 12.0 2.6 6.5 0.2 4.5 2.6 3 72 1.4 1.1 50.2 7.6 8.9 17.6 0.7 3.4 4.6 4 96 1.3 0.1 26.7 1.5 20.0 33.3 2.2 7.2 4.2 5 120 1.5 0.5 17.5 0.6 16.2 42.5 2.1 11.1 3.5 6 144 1.5 0.7 18.3 0.5 13.1 44.8 1.9 11.8 3.8 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE C Temperature: 200 Catalyst: 2.0 mole % Fe Pressure: 200 psig Vent gas flow: 50 ml/min (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 12 1.7 46.4 32.3 8.0 1.0 0.7 0.2 5.3 0.8 2 24 1.7 27.2 47.1 9.5 1.9 2.6 0.3 5.1 1.5 3 36 1.7 9.5 56.7 10.0 3.2 6.5 0.3 4.1 2.7 4 48 1.7 1.7 57.6 8.2 6.5 12.4 0.6 3.1 4.2 5 60 1.7 0.4 48.2 4.1 12.7 20.1 1.1 3.6 5.0 6 72 1.8 0.4 36.4 1.6 18.8 26.4 1.9 5.4 4.6 7 87 1.8 0.4 20.5 0.5 20.9 36.6 2.4 8.9 3.4 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaction. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE D Temperature: 170 Catalyst: 2.0 mole % Fe Pressure: 200 psig Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 8.5 74.2 9.2 3.4 0.5 0.3 0.2 5.1 0.2 2 16 1.5 68.1 14.3 5.0 0.9 0.3 0.4 5.3 0.3 3 24 59.3 20.4 7.1 1.3 0.3 0.5 5.0 0.5 4 32 49.5 28.0 9.6 1.8 0.4 0.7 4.8 0.7 5 40 1.7 41.6 31.7 10.9 1.9 0.7 0.8 4.5 0.8 6 56 25.3 42.6 15.5 3.0 1.2 1.1 3.9 1.4 7 68 17.9 47.6 17.4 3.8 1.7 1.1 3.6 1.7 8 84 6.3 54.4 20.0 6.1 3.3 1.3 2.7 2.6 9 92 2.5 53.6 19.6 8.5 4.3 1.7 2.1 3.0 10 104 1.6 0.5 48.6 16.8 14.8 6.0 2.1 1.6 3.4 11 118 0.3 39.9 12.2 24.1 8.4 3.0 2.0 3.2 12 128 0.3 35.4 9.6 29.4 9.7 3.7 2.2 3.0 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaction. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE D (Continued) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 13 143 0.1 27.2 6.3 37.6 11.7 4.7 2.8 2.8 14 152 0.1 22.1 4.6 41.7 13.1 5.3 3.2 2.5 15 184 0.5 0.1 8.5 0.9 53.9 18.0 7.6 5.8 1.5 16 213 0.1 3.4 0.5 55.5 19.1 8.6 10.0 0.7 17 237 0.1 3.7 0.1 45.8 22.1 7.8 16.7 0.1 18 255 0.4 0.1 3.7 0.4 34.4 29.4 5.6 21.3 0.4 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaction. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE E Temperature: 185 Catalyst: 4.0 mole % Fe Pressure: 200 psig Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 14 -**** 34.2 37.6 12.8 1.7 0.8 0.4 4.3 1.0 1E*** 14 36.2 38.7 13.2 1.8 0.8 0.5 4.3 1.0 2 28 - 13.7 48.4 17.0 3.6 2.6 0.6 3.2 1.9 2E 28 15.1 51.4 17.6 3.7 2.9 0.7 3.4 2.0 3 47 - 0.4 43.6 9.5 18.5 13.2 1.7 2.3 3.3 3E 47 0.4 45.5 9.7 18.9 13.3 1.8 2.3 3.3 4 71 - - 14.4 1.1 38.0 28.5 3.9 6.6 2.2 4E 71 - 15.5 1.1 39.0 28.9 4.0 6.7 2.2 5 93 - - 2.3 0.1 31.7 36.5 4.3 17.3 0.6 5E 93 - 2.6 0.1 0.6 36.7 4.5 17.6 0.6 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaction. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. *** E means FeCl3 extracted from sample. **** Not analyzed. TABLE F Temperature: 200 Catalyst: 4.0 mole % Fe Pressure: 200 psig Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 12 -**** 12.1 47.2 16.5 3.3 4.6 0.5 3.4 2.1 1E*** 12 12.5 48.4 16.7 3.4 4.7 0.5 3.4 2.2 2 24 - 0.6 45.3 9.9 12.1 15.9 1.0 2.7 3.6 2E 24 0.5 48.5 10.2 12.4 16.0 101 2.7 3.7 3 40 - 0.1 12.7 0.8 28.8 35.3 3.3 8.9 2.3 3E 40 0.1 14.0 0.8 30.0 35.4 3.3 9.0 2.3 4 48 - 0.1 5.0 0.2 25.4 40.7 3.6 14.1 1.4 4E 48 0.1 5.8 0.4 25.9 40.9 3.5 14.1 1.4 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. *** E means FeCl3 extracted from sample. **** Nor analyzed. TABLE G Temperature: 170 Catalyst: 7.0 mole % Fe Pressure: 110 psig Vent Gas Flow: 50 ml/min. (7.7 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 24 3.8 43.1 24.9 9.7 3.3 0.3 0.5 4.0 0.7 2 48 7.5 24.5 34.4 13.7 3.4 0.7 0.6 3.0 1.2 3 72 4.4 11.2 45.9 17.2 4.9 1.9 0.7 2.6 2.0 4 96 4.6 4.0 47.8 17.0 8.8 4.3 1.1 1.9 2.7 5 120 4.3 1.4 44.4 13.1 16.4 6.8 1.7 1.7 2.9 6 144 4.7 0.5 35.7 8.2 25.6 10.6 2.7 2.1 2.7 7 168 2.6 0.2 25.5 4.4 38.4 13.6 4.0 2.9 2.4 8 192 2.2 0.2 15.3 2.0 46.3 16.4 4.9 4.1 1.8 9 221 3.3 0.1 8.2 0.8 49.0 19.2 5.7 5.9 10 245 2.2 - 4.7 0.4 49.4 22.5 6.1 7.9 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaction. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE H Temperature: 170 Catalyst: 7.0 mole % Fe Pressure: 200 psig Vent Gas Flow: 50 ml/min. (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 24 4.6 29.0 35.5 15.5 2.5 0.6 0.5 3.4 1.1 2 48 5.2 7.1 45.3 17.0 7.8 4.0 1.0 1.8 2.4 3 72 5.3 2.6 41.8 10.9 15.5 9.0 1.7 1.8 2.8 4 96 5.3 2.4 38.5 7.5 17.0 12.2 2.0 2.3 2.8 5 120 4.8 2.1 35.3 5.9 18.0 14.3 2.1 2.7 2.9 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaction. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE I Temperature: 185 Catalyst: 7.0 mole % Fe Pressure: 200 psig Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 -*** 92.2 0.3 - - 0.2 - 5.7 1 12 - 3.1 46.6 21.8 9.8 2.6 0.8 1.6 2.9 2 18 - 1.5 42.0 16.6 15.8 6.3 1.4 1.7 3.0 3 24 - 0.2 33.3 9.94 24.4 12.3 2.1 2.2 2.8 4 31 - 0.1 19.3 3.0 37.1 21.0 3.6 3.8 2.3 5 42 - - 5.8 0.3 46.6 26.2 5.3 8.1 1.2 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. *** Not analyzed. TABLE J Temperature: 200 Catalyst: 7.0 mole % Fe Pressure: 100 psig Vent Gas Flow: 150 ml/min. (7.7 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 12 5.3 31.9 28.1 11.6 1.3 1.0 0.2 4.1 1.1 2 24 4.9 3.5 45.3 14.3 7.5 7.2 0.6 2.4 3.0 3 36 5.0 0.5 26.3 3.7 24.6 19.3 2.2 4.1 2.9 4 48 3.5 0.2 8.3 0.6 35.5 28.5 4.4 9.3 1.7 5 60 4.1 - 1.0 0.1 22.5 33.8 4.3 20.2 0.4 6 72 2.9 - 0.2 - 12.6 29.0 3.4 39.3 0.2 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. TABLE K Temperature: 200 Catalyst: 7.0 mole % Fe Pressure: 200 psig Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) **2,3,4 0 0 - 92.2 0.3 - - 0.2 - 5.7 1 6 4.7 30.4 33.0 13.1 1.8 1.5 0.3 4.0 1.2 2 12 4.8 4.7 46.1 14.0 5.9 7.2 0.5 2.5 2.8 3 18 4.9 1.9 42.9 10.0 10.4 12.1 0.8 2.5 3.3 4 24 4.7 0.5 30.3 4.0 21.0 20.1 1.8 3.7 3.0 5 30 3.6 0.4 15.0 1.0 30.4 30.3 3.2 7.3 2.5 6 36 2.9 0.3 5.8 0.3 28.2 36.3 3.6 12.1 1.5 7 42 1.8 - 2.4 0.1 25.3 40.8 3.9 19.8 0.9 * G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. ** 2,3,4-trichloro-6-(tricholoromethyl)pyridine. The foregoing Tables A-K indicate that varying amounts of desired products (II) through (VII) can be prepared in batch reactions at various pressures, temperatures and catalyst concentrations and indicate the effect of varying one or more of said parameters. It is apparent that the products (II)-(VII) can be obtained in good yields under the general reaction conditions of the present invention. While data on production of several products is noted in the Tables, it will be apparent to those skilled in the art that the batch reactions can be terminated whenever optimum amounts of a desired product have been obtained and such product thereafter recovered. Thus, as noted in Table A, optimum amounts of products (II) and (III) can be obtained at 2000C and atmospheric pressure after a period of about 18-24 hours when using a high (10 mole %) amount of catalyst, although use of such a high catalyst concentration results in undesirably high levels of tar (in excess of about 10 wt. %) in the product distillation bottoms. However, optimum yields of such products can also be obtained with the use of only about 2.0 mole % catalyst, thus minimizing undesired tar build-up, by increasing the pressure, although a longer reaction period of about 48 hours is required. Table B (see also Figure 3), sample number 2, demonstrates such effect. The effect of further increasing the pressure on the reaction time is shown in Table C, sample 2, about the same optimum amounts of (II) and (III) as obtained in Tables A and B being obtained in a reaction period of about 24-36 hours. Tables D and G indicate that longer reaction periods are also needed to obtain optimum amounts of (II) and (III) when reaction temperatures in the lower end of the operable temperature range are used, even where high pressures and increased catalyst amounts are employed. However, a comparison of data in Tables D and E indicates that the reaction rate is more than doubled as a result of increasing the temperature about 150C and/or doubling the catalyst concentration. The effect of temperature increase on reaction rate under the same pressure and catalyst conditions as in Table E is readily apparent from the data in Table F (sample number 1) wherein a short reaction period of only about 12 hours results in optimum production of (II) and (III). The effect of doubling the catalyst from about 2 to about 4 mole % under the same temperature and pressure conditions is also readily apparent from a comparison of Table C (samples 3-4) and Table F (sample 1), the reaction rate also being more than doubled. Similar results are also seen from a comparison of data in Tables H-K, wherein the pressure and temperature parameters where varied while the catalyst amount was kept constant. As to the preparation of product (IV) from (I), the same general observations as noted above can be drawn from the data of Tables A-K. Optimum operating conditions are indicated by data in Tables I and K, particularly those noted in Table I. Likewise, the effects of pressure, temperature and catalyst amounts on the preparation of (V) from (I) are as noted above, with the conditions of Tables F and K resulting in the shortest reaction periods for the production of optimum amounts of product (V). The foregoing examples illustrate the batchwise practice of the process. The process can, however, be conducted on a recycle basis. The following example illustrates the preparation of product, starting with substantially pure starting material (I), and illustrates that still bottoms containing original catalyst can be recovered from the distillation of the desired product and recycled, with little loss of catalyst activity, with make-up starting material (I). Example 3 A pilot-plant chlorination system similar to that employed in Example 2 is utilized, the essential difference being the introduction of chlorine gas to the vapor phase above the liquid starting material (I). In such operation, 261 pounds (118 kg) of a molten 2-chloro-6 -(trichloromethyl)pyridine starting material was pumped into a warmed (1000C) glass-lined reactor having a stirrer and the system purged with N2. 1.3 Pounds (0.59 kg) of iron powder, as the catalyst, was added to the reactor and the flow of chlorine gas at 100 psig (7 kg/cm2 gauge) into the reactor vapor space was commenced. The temperature of the reactor was slowly raised to about 1900C over a period of about 18 hours, and the reactor then pressured to about 200 psig (14 kg/cm2 gauge). The reaction temperature during the rest of the reaction period was maintained at about 2000C. Samples are periodically taken and analyzed to monitor the course of the reaction The reaction is terminated by cutting the heat to the reactor and allowing the pressure to drop to atmospheric. The reactor and lines are then flushed with N2 and the reactor contents removed and subjected to a vacuum for about 12 hours to remove residual Cl21 HCl and CC14. The contents are then distilled at reduced pressure (about 20 mmHg) and the tetra (V) and penta (VII) products removed over a period of about 20 hours. The still bottoms are collected for recycle experiments. Results obtained as a result of following the above procedures are set forth in the following Table L and are illustrated in Figure 4 hereof: TABLE L Temperature: C* Catalyst: 2 mole % Fe Pressure: 200 psig Vent Gas Flow: 80-85 Vol. % Cl2 (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) (VII)** 0 0 - 87.4 1.2 0.3 - 1.3 - 5.7 1 10.2 - 67.1 15.5 6.0 0.4 0.7 - 5.4 2 15.2 - 57.1 23.3 8.7 1.2 0.5 - 5.2 3 18.0 - 50.5 27.9 10.1 1.0 0.6 0.4 5.0 4 26.0 - 22.5 45.0 15.4 2.2 2.5 0.4 4.3 5 30.0 - 10.3 52.0 16.4 3.3 5.2 0.4 3.7 6 34.0 - 2.5 54.4 16.2 5.9 9.5 0.5 3.0 7 38.0 - 0.4 50.0 12.6 11.5 14.2 0.8 2.7 8 42.0 - - 41.8 8.8 18.5 18.0 1.7 3.4 TABLE L (Continued) Temperature: C* Catalyst: 2 mole % Fe Pressure: 200 psig Vent Gas Flow: 80-85 Vol. % Cl2 (14 kg/cmê gauge) Time Sample (hr) FeCl2 (I) (II) (III) (IV) (V) (VI) *(VII) 9 0 - - 30.6 5.0 25.6 23.2 2.2 4.9 10 6 - - 21.8 3.0 28.7 29.4 2.6 6.7 11 12 - - 13.6 1.6 31.2 32.6 3.3 9.2 12 18 - - 7.3 0.7 31.0 36.0 3.7 12.6 * Temperature Profile 0 - 18 hr. 190 18 - end 200 ** G.C. peak for VII coincides with peak for 2,4-dichloro-6-(trichloromethyl) pyridine present during early stages of reaktion. A portion (536 grams) of the still bottoms remaining after distillation and removal of products V and VII from the product mixture noted in Sample No. 12 in Table L above was mixed with 536 grams of starting material (I) (about 92% 2-chloro-6-(trichloromethyl)pyridine) to give the recycle seed starting material mix noted at sample 0 in Table M below. No additional catalyst was added, the catalyst being that contained in the recycle still bottoms. The seed starting material was then chlorinated utilizing the equipment and procedures of Example 2. The results obtained are set forth in Table M below and are illustrated in Figure 5. TABLE M Temperature: 200 C Catalyst: 1 mole % Fe Pressure: 200 psig Vent Gas Flow: 150 Vol. % Cl2 (14 kg/cmê gauge) Time Sample (hr) (I) (II) (III) (IV) (V) (VI) *(VII) 0 0 - 30.6 5.0 25.6 23.2 2.2 4.9 1 9 - 21.8 3.0 28.7 29.4 2.6 6.7 2 20 - 13.6 1.6 31.2 32.6 3.3 9.2 3 25 - 7.3 0.7 31.0 36.0 3.7 12.6 4 33 - 7.3 0.7 31.0 36.0 3.7 12.6 5 36 - 7.3 0.7 31.0 36.0 3.7 12.6 * G.C. peak for VII coincides with peak for 2,4-dichloro-6 -(trichloromethyl)pyridine present during early stages of reaction. The foregoing data illustrate the advantage realized in preparing product II by starting with a recycle seed material as well as the ability to recycle catalyst with little loss of activity. The process of the present invention can also be carried out on a continuous recycle basis to prepare the various products and is the preferred mode for preparing symmetrical tetrachloropyridine (V). Such process comprises the continuous chlorination of a catalyzed liquid phase reaction mass comprising 2 -chloro-6-(trichloromethyl)pyridine reaction at temperatures of at least about l600C and at pressures of from about atmospheric to about 220 psig (15.4 kg/cm2 gauge). The reaction is carried out in a series of reactors for a period of time sufficient to obtain a desired amount of product (V). When such concentration thereof has been reached, the reaction mass is removed from the last reactor and the desired product obtained by fractional distillation of the reaction mass, the still bottoms or a portion thereof being recycled to the first reactor to comprise part of the feed thereto. The overheads can be condensed and the by-products recovered. Preferably, the reaction temperature is from about 100 to about 2100C, the reaction pressures are from about 190 to about 220 psig (13.3-15.4 kg/cm2 gauge) and the catalyst amount ranges from about 1.0 to about 10 mole %. A reaction temperature of from about 200 C., a reaction pressure of about 200 to about 220 psig (14-15.4 kg/cm2 gauge), and a catalyst amount of about 1 to about 5 mole % are preferred; temperatures and catalyst amounts in excess of these preferred ranges, while operable, tend to cause an undesired increase in tar build-up, which has a detrimental effect on the production of the desired product. The continuous cyclical process will be described with reference to the preparation of preferred product (V) under preferred conditions and with the reaction scheme noted in Figure 1, which is presently considered the best mode for the continuous preparation of product (V). In the flow sheet of Figure 1, the molten 2-chloro-6-(trichloromethyl)pyridine feed containing the catalyst is introduced via line 11 and mixed with recycle still bottoms returning via line 25 and the mixture is pumped (not illustrated) to heated reactor 12 and reacted with vaporized chlorine (vaporizer not illustrated) fed through line 14 to the bottom of reactor 12 from chlorine source 13 to form a chlorinated reaction mixture. The chlorinated reaction mixture flows by gravity overflow from reactor 12 to reactor 16 via line 15 where it is further reacted with chlorine fed to the bottom of reactor 16 through line 17. The chlorinated reaction mixture from reactor 16 is likewise fed through line 18 to reactor 19 and further reacted with chlorine fed to reactor 19 through line 20. The chlorinated reaction mixture is then passed from reactor 19 to distillation unit 22 through line 21, wherein volatile overheads are removed via line 23 and desired product recovered through line 24. The still bottoms are removed from the bottom of unit 22 and transfered as a recycle stream via line 25 to feed line 11. Each of reactors 12, 16 and 19 are vented (26a, 26b and 26c, respectively) for release of excess C12 and other volatile by-products. Monitoring of the vent gases also serves as a means to follow the course of the reaction. Catalyst can be separately added to reactor 12 if so desired (not illustrated) and the amount of tar in the recycle stream can also be controlled by a bleed valve on line 25 (not illustrated). The number of reactors is not considered to be critical and fewer or greater numbers of reactors can be used, the conditions and average residence tine for each reactor being accordingly adjusted for the product(s) desired and temperature/pressure conditions employed. Initially, the reaction can be commenced by feeding a composition comprising about 90 weight percent or more of the 2-chloro-6-(trichloromethyl)- pyridine starting material in the liquid state (at about 750C) to reactor 12 along with about 2 mole % ferric chloride catalyst and an excess amount of chlorine to provide about 70% C12 in the vent gases. The reaction mass is initially heated at about 1900C at a pressure of about 200 psig (14 kg/cm2 gauge) for a period of about 18 hours. Thereafter, the reaction temperature is raised to about 2000C and the catalyzed liquid phase reaction mass passed from reactor 12 through each of succeeding reactors 16 and 19, each maintained at about 2000C and about 200 psig (14 kg/cm2 gauge), with excess Cl2 fed to each. However, since the initial conversion of starting material (I) to products (II) and (III) is a slow process, it is preferred that a seed starting material comprising the catalyst and about 30 weight % 2-chloro-6-(trichloromethyl)pyridine (I), about 40 weight % product (II) and (III) and about 20 weight % (IV), 10% other chlorinated pyridine products be charged to reactor 12 on a continuous basis and the catalyzed liquid reaction mass subjected to chlorination at about 2000C and about 200 psig (14 kg/cm2 gauge) as it passes successively through each of the 3 reactors. While the sparging of the chlorine up through the reaction mass provides agitation thereof, the reaction mass is preferably stirred or recirculated by pump-means in each of the reactors. The average residence time in each reactor is from about 18 to about 20 hours. The reaction mass from reactor 19 is continuously removed to the distillation column 22 wherein the desired product (V) is recovered along with (VII). About 80-90% of the product stream recovered (about 40% by weight of the reaction mass) is desired product (V) while about 10-20% is mostly product (VII). About 60% of the reaction mass comprises by-products HCl and Cl21 which are also separated from the desired products, and the still bottoms and tars (tars being about 1-5 weight % tar based on starting material). The still bottoms and some tar are recycled to reactor 12 along with an appropriate amount of make-up feed and additional catalyst (if needed) to maintain the desired starting material composition. The products obtained from the distillation column may be further purified by fractional distillation or recrystallization procedures. The foregoing continuous recycle embodiment is illustrated in the following Example 4. Example 4 A continuous, recycle process utilizing a reactor scheme substantially as set forth in Figure 1 was carried out over a prolonged period to study the effects of tar build-up upon the rate of production of symmetrical tetrachloropyridine (D). Three, one-gallon (3.78-1.) capacity nickel reactors were utilized with the feed starting material, comprising recycle still bottoms and make-up 2-chloro-6-(trichloromethyl)pyridine (I) starting material (about 30 weight % total of (I) in the feed to the first reactor) and catalyst as needed, being fed at a rate of 3 ml/min. The catalyst amount was maintained at a level of about 1.6 mole %, while the temperature and pressure in each of the reactors was maintained at about 2000C and about 200 psig (14 kg/cm2 gauge), respectively. The average residence time of the reaction mass being chlorinated in each reactor was about 20 hours, the total residence time in the three reactors being about 60 hours before the reaction mass was withdrawn and distilled. The continuous recycle process was continued for a period of 62 days and the weight x of tar versus desired product (V) monitored by analysis of the product material obtained from the last reactor. The results of such operations were plotted and are noted in the graph of Figure 6. As can be seen from Figure 6, the build-up in tar concentration the first 20 days of operation from 1 to about 4 weight % was very detrimental to the production of desired product (V), decreasing the level thereof from a high of nearly 40 weight % to about 20 weight %. Temporarily decreasing the tar level in the recycle stream and hence the starting feed material from a high of 6 weight % to about 1 weight % over a period of about 10 days resulted in increased levels of product (V), the level of product (V) stabilizing at about 25-28 weight % as the tar level in the reaction mass was allowed to again increase to a level of about 3 weight %. The foregoing example illustrates the continuous, recycle embodiment of the invention and demonstrates the detrimental effect of high tar levels in the reaction mass. Example 5 In other operations utilizing procedures substantially similar to Examples 1 and 2 hereof, additional catalysts were evaluated for use in the present invention. In such operations, the chlorination of the starting material (I) (about 93% by weight of 2-chloro-6-(trichloromethyl)pyridine) was carried out at atmospheric pressure at a temperature of about 2000C and a catalyst concentration of about 5 mole %. In one particular set of operations, the weight % of starting material (I) remaining after 20 hours, hours to achieve maximum concentration of products (II) and (IV), and weight % of (V) after 70 hours were determined with tungsten, molybdenum, tantalum and niobium catalysts and the results are as follows: TABLE N I II IV V Catalyst Mole % Wt. % Hours Hours Wt. % WCl6 5 < 1 5 55 33 MoCl5 5 < 1 5 45 28 MoCl3 6.1 < 1 5-10 45 20 MoOCi4 5 < 1 3 40 30 TaCl3 5 < 1 48 48 17 NbC15 5 18 45 > 70 7 In other similar operations, the following area % of (I), (II), (III) and (IV) were obtained with other catalysts after the reaction times indicated: : TABLE O Catalyst Mole % Hours I II III IV - 0 93.3 0.3 - Aluminum 5 18 78.1 8.6 3.6 0.3 *Aluminum 5 24 67.2 13.3 3.8 0.7 Zinc (Metal) 5 18 88.1 3.1 1.5 0.1 Zinc (Dust) 5 24 84.1 5.0 2.4 0.3 **RuCl3 6 48 8.1 48.8 5.1 7.0 * 1 mole % 12 added. ** Ruthenium Trichloride. Example 6 Other operations utilizing the procedures of Example 2 were carried out, data from additional runs using aluminum metal (2 mole %) and tantalum pentachloride (2 mole %) being presented in the following Tables P and Q, respectively: TABLE P Temperature: 200 Catalyst: 2.0 mole % Al Pressure: 200 psi Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) (I) (II) (III) (IV) (V) (VI) *(VII) 0 0 92.0 0.4 - - 0.1 - 6.0 1 5 69.4 14.1 3.1 0.4 0.2 0.1 6.1 2 12 50.2 28.7 5.9 1.2 0.8 0.3 6.2 3 18 38.6 36.5 6.7 1.4 1.4 0.3 6.1 4 24 29.9 44.0 7.9 1.6 2.4 0.3 6.0 5 36 10.6 53.6 8.9 3.5 6.7 0.4 4.8 6 48 3.7 56.8 7.4 4.0 11.3 0.3 3.6 7 60 0.3 46.8 3.8 10.4 17.0 1.1 3.5 8 68 0.3 40.8 2.2 13.2 23.4 1.4 4.1 * G.C. peak for VII coincides with peak for 2,4-dichloro-6 -(trichloromethyl)pyridine present during early stages of reaction. TABLE Q Temperature: 200 Catalyst: 2 mole % TaCl Pressure: 200 psi Vent Gas Flow: 150 ml/min. (14 kg/cmê gauge) Time Sample (hr) (I) (II) (III) (IV) (V) (VI) *(VII) 0 0 92.2 0.3 - - 0.2 - 5.7 1 4 51.7 23.0 8.6 1.0 0.5 0.2 5.1 2 11 19.8 42.5 13.2 2.5 1.6 0.2 3.4 3 18 6.9 50.5 14.2 3.7 4.5 0.2 2.7 4 24 0.8 51.2 12.4 7.8 9.1 0.5 2.2 5 30 - 39.2 6.3 19.8 14.0 1.5 2.7 6 36 - 25.2 2.4 27.4 20.1 2.2 4.4 7 42 - 14.0 0.7 31.6 24.9 3.0 7.2 8 46 - 9.0 0.1 29.8 31.9 3.0 10.6 * G.C. peak for VII coincides with peak for 2,4-dichloro-6 -(trichloromethyl)pyridine present during early stages of reaction.
CLAIMS 1. A process for preparing 2,3,5,6tetrachloropyridine and pentachloropyridine which comprises reacting chlorine with a liquid chlorosubstituted 6- (trichloromethyl) pyridine reactant of the formula: EMI45.1 wherein R1 and R3 represent chloro or H, at a temperature of at least about 1600C in the presence of a Lewis acid type catalyst. 2. A process as claimed in claim 1 wherein the catalyst is employed in an amount of from 1 to 10 mole percent, based on the pyridine reactant. 3. A process as claimed in claim 1 or claim 2 wherein the reaction temperature is the range of from 160 to 220 C. 4. A process as claimed in any one of the preceding claims wherein the reaction is carried out under a pressure in the range of from 15 to 220 psig (1-15.4 kg/cm2 gauge). 5. A process as claimed in any one of the preceding claims wherein the reaction is carried out at a temperature in the range of from 180 to 2100C under pressure in the range of from 100 to 220 psig (7-15.4 kg/cmê gauge). 6. A process as claimed in any one of claims 1 to 4 wherein the reaction is carried out at a temperature of about 200 C and a reaction pressure of about 200 psig (14Kg/cm2 gauge) and the catalyst is employed in an amount of from 1 to 10 mole percent, based on the pyridine reactant. 7. A process as claimed in any one of the preceding claims wherein the catalyst is ferric chloride, ferric bromide, aluminium chloride, aluminium bromide, antimony pentachloride, molybdenum pentachloride, tungsten hexafluoride boron trifluoride, titanic chloride or nickel chloride. 8. A process as claimed in claim 6 wherein the catalyst employed is ferric chloride. 9. A process as claimed in any one of the preceding claims wherein the pyridine reactant 2-chloro-6-(trichloromethyl) pyridine.
THE DOW CHEMICAL COMPANY
DIETSCHE, THOMAS JAMES; LOVE, JIM
EP-0005069-B1
5,069
EP
B1
EN
19,811,111
1,979
20,100,220
new
C23G3
B08B13, B65G29
B65G29, B08B13, C23G3
B65G 29/02, C23G 3/00, B08B 13/00
WASHING INSTALLATION FOR MACHINED PARTS
A washing installation for washing machined parts having internal ducts comprises a pair of axially spaced article-holders (2) mounted on a common drive shaft (9), and a transfer device (1) for transferring articles (7) to be washed to the holders (2). Each holder (2) is rotatable step-wise from an article-loading and unloading station and through a plurality of washing stations before returning to the loading and unloading station, and a plurality of holding locations (3) are provided on the holder (2) to hold a plurality of articles (7), there being provided a washing box (5) at each holding location for applying washing medium to the article (7). The latching devices (8) are provided one at each of the holding locations (3) for holding the articles (7) in position at all times other than when the holding location is at the loading and unloading station. In order to improve the washing action to be applied to each article (7) and particularly to the internal ducts thereof, each washing box (5) is connected to a corresponding one of the latching devices (8) for movement therewith so that, when the latching device (8) moves to the latched position, the article (7) is held firmly in position in the holding location (3) and also against the washing box (5). In order to prevent handling problems during the loading and unloading of the articles (7), it is preferred that the supply of washing liquid to the washing boxes should be controlled so that no washing liquid is supplied to a washing box (5) when the latter has been moved with the holder (2) to the loading and unloading station.
WASHING INSTALLATION FOR MACHINED PARTS This invention relates to a washing installation for washing articles such as machined parts having internal ducts, said installation comprising a washing machine and a transfer device for transferring articles to be washed to the washing machine, said washing machine comprising a rotary article-holder which is rotatable step-wise from an article-loading and unloading station and through a plurality of washing stations before returning to the loading and unloading station, a plurality of holding locations provided on said holder to hold a plurality of articles, a plurality of washing devices provided one at each of said holding locations for applying a washing medium to the article held at the location, and a plurality of latching devices provided one at each of said holding locations for holding a corresponding article at each location during rotation of the article-holder through said washing stations. Washing machines are very well known in which the articles to be washed are transferred by a conveyor device or pushed by a system of push bars with eclipsable fingers. These machines have wheels placed on the bars and the articles pass from these bars to the wheel and are taken step-by-step by the wheels through washing stations until they have gone round completely and returned to the original positions. A variation in these known machines consists of placing washing boxes at each of the wheel stations, so that washing takes place the whole time the article moves from station to station, due to the gradual turning of the wheel. The articles are normally fixed within each of the wheel stations by means of a latch finger which is opened by the action of a spring and an eccentric. This latch finger is open in the loading and unloading station and closed in all the other stations. One of the main disadvantages of placing the articles on washing jets of the actual wheel, consists of the fact that the flow of liquid is continuous in all of the stations, including the loading and unloading stations. As a result of this , the force of the jets acts during the loading and unloading of articles, which is a very delicate moment and there is the risk that the jets may make the articles jump and not become properly held in position and/or cause damage to the washing machine or the articles. A washing installation according to the invention is able to overcome the disadvantages of the known washing machines and achieves greater efficiency in forcing the washing liquid through the inner ducts of the article to be washed (when the article is an internally ducted part such as a machined part). Accordingly, the present invention provides a washing installation for ashing articles such as machined parts having internal ducts, said installation comprising a washing machine and a transfer device for transferring articles to be washed to the washing machine and said washing machine comprising: : a rotary article-holder which is rotatable stepwise from an article-loading and unloading station and through a plurality of washing stations before returning to the loading and unloading stations, a plurality of holding locations provided on said holder to hold a plurality of articles, a plurality of washing devices provided one at each of said holding locations for applying a washing medium to the article held at the location, and a plurality of latching devices provided one at each of said holding locations for holding a corresponding article at each location during rotation of the article-holder through said washing stations; characterised in that each washing device is connected to a corresponding one of said latching devices so that an article, when held in the corresponding holding location, is also held against the washing device to be washed thereby. According to a preferred embodiment, there is provided a distribution device for distributing washing liquid to the washing devices and comprising a fixed casing through which is taken a drive shaft for said article holder, a supply pipe connected to said casing, and a distributor mounted on the drive shaft for rotation therewith and having ducts corresponding in number to the number of washing devices and communicable with the interior of the casing and leading to said washing devices. The invention will now be described in detail, by way of example only, with reference to the accompanying drawings in which: Figure 1 is a perspective view of a washing installation according to the invention and comprising a washing machine formed by two rotary article-holders, and a transfer device for transferring articles to the article-holders; Figures 2 and 3 are detailed views, in size elevation and in front eievation respectively, of a washing station of one of the article-holders shown in Figure 1; and Figures 4 and 5 illustrate transverse and longitudinal cross-sectional views respectively, of a distributor element for controlling the supply of washing liquid to the washing stations of the articleholders. Referring now to the drawings, there is shown a washing installation comprising a washing machine formed by two rotary article-holders, and a transfer device for transferring articles, such as internally ducted machined parts, to the article-holders. The transfer device is designated by reference numeral 1 and comprises fixed and movable longitudinal bars. An article can be supported on the fixed bars, and is then transferred by the movable bars to a loading (and unloading) station of each article-holder. Each article holder takes the form of a rotary wheel 2 which is provided with a plurality of article- holding locations, formed by housings 3, and which is rotatable step-wise from the loading and unloading station and through a plurality of washing stations before return -ing to the loading and unloading station at which a washed article may be transferred back to the transfer device 1. The loading and unloading station is provided, at any one time, by the outermost of the housings 3. As shown in Figures 2 and 3, an article 7 is held at the loading and unloading station. At all times, except for the instant of loading or unloading of the articles 7, a latching device provided at each housing 3 is operative to hold the article 7 in position and comprises a latch finger 8. Each housing 3 includes flanged holders 4 which cooperate with the latch finger 8 in order to hold the article 7 in position. At each housing 3, there is provided a washing device in the form of a washing box 5 having outlet nozzles 6 which direct washing liquid onto the article 7. As will be seen in Figures 2 and 3, the outlet nozzles 6 contact the surface of the article 7, and may be in registry with entrance holes to internal ducts formed in the article 7, when the latter is a machined part. Each latch finger 8 is pivotally mounted on the wheel 2 for movement between a closed, article-holding position, as shown in Figures 2 and 3, and an open, release position (not shown). When the latch finger 8 is in the release position, an article 7 may be loaded or unloaded from or to the transfer device 1. In order to provide improved washing efficiency, each washing box 5 is connected to a corresponding latch finger 8 for movement therewith. Thus, when the latch finger 8 moves to the closed position as shown, the washing box 5 applies a clamping force to the article 7 (preferably via the nozzles 6) to push the article 7 against the flange holders 4, and a very powerful washing action can be applied to the surface of the article 7 and/or to internal ducts of the article 7. As will now be described with reference to Figures 4 and 5, a washing liquid distribution arrangement is provided to supply washing liquid to the washing boxes when the latter are in positions other than the loading and unloading station. On the common shaft 9 of the two wheels 2 there is mounted a distributor device 10 which comprises a fixed housing through which the shaft 9 is taken. Washing liquid is supplied to the distributor device 10 via a supply pipe 11, which then passes to the washing boxes 5 via ducts 13, equal in number to the number of washing boxes 5, which lead from outlet passages provided in a distributor 12 which is rotatable with the shaft 9. In order to control the distribution of washing liquid to the washing boxes 5 as a function of the rotation of the wheels 2, an apertured control plate 14 is fixed in the device 10 and has apertures 15 which register intermittently with the ducts 13. Thereby, the outlet points of the washing liquid can be pre-set. The arrangement of the control plate 14 is such that no washing liquid is supplied to a washing box 5 when the latter is at the loading and unloading station for the articles 7. When a washed article 7 is to be unloaded e.g. from the left-hand wheel 2 of Figure 1, the latch finger 8 (and the washing box 5 connected thereto) is pivoted against spring action to a released position (not shown), and the movable bars of the transfer device 1 then move upwardly, horizontally and then downwardly in order to transfer the washed article 7 from the unloading station onto the fixed bars of the transfer device 1 at a position intermediate the two wheels 2. Thereafter, the article may be transferred to undergo a washing sequence in the right-hand wheel 2.
CLAIMS 1. A washing installation for washing articles such as machined parts having internal ducts, said installation comprising a washing machine (2) and a transfer device (1) for transferring articles (7) to be washed to the washing machine and said washing machine compising: a rotary article-holder (2) which is rotatable step-wise from an article-loading and unloading station and through a plurality of washing stations before returning to the loading and unloading station , a plurality of holding locations (3) provided on the said holder (2) to hold a plurality of articles, a plurality of washing devices (5) provided one at each of said holding locations (3) for applying a washing medium to the article held at the location , and a plurality of latching devices (8) provided one at each of said holding locations for holding a corresponding article at each location during rotation of the article-holder through said washing stations; characterised in that each washing device (5) is connected to a corresponding one of said latching devices (8) so that an article, when held in the corresponding holding location (3),is also held against the washing device (5) to be washed thereby. 2. A washing installation according to claim 1, characterised by a distributor device (10) for distributing washing liquid to the washing devices (5) and comprising a fixed casing through which is taken a drive shaft (9) for said article-holder (2) , a supply pipe (11) connected to said casing, and a distributor (12) mounted on the drive shaft (9) for rotation therewith and having ducts (13) corresponding in number to the number of wash V Ul ing devices (5) and communicable with the interior of the casing and leading to said washing devices (5). 3. A washing installation according to claim 2, characterised in that an apertured control plate (14) is fixed in the casing and is arranged to control the communication between the ducts (13) of said distributor (12) and the interior of the casing, the apertures (15) of the control plate (14) coinciding intermittently with said ducts (13) during the stepped rotation of the article -holder (2) so as to pre-set the outlet points of the washing liquid. 4. A washing installation according to claim 3, characterised in that the control plate (14) is so arranged as to prevent the supply of washing liquid to a washing device (5) when the latter is at the loading and unloading station. 5. A washing installation according to claim 2, characterised by a pair of axially spaced articleholders (2) mounted on said drive shaft (9).
INGENIERIA AGULLO, S.A.
AGULLO, MIGUEL NEGUI
EP-0005075-B1
5,075
EP
B1
EN
19,820,714
1,979
20,100,220
new
E04G21
E04C5, F16G11
E04C5, F16G11, D07B7, E04G21
E04C 5/12, E04C 5/16B1, E04G 21/12, F16G 11/04
CONNECTING DEVICE FOR WIRES
A device for connecting two wires in series consists of a block (3) having two bores (8) extending end-to-end of the block. At first ends (12) of the bores (located respectively at opposite ends of the block) the wires are anchored when tensioned (e.g. by means of split conical wedges), so that the tensioned length of each wire extends through the block to exit at the second end of the bore. To improve access to the wires when tensioning them, the bores have portions (8a and 12) extending from said first ends which have straight axes (20,22), these axes not being parallel to each other but lying in parallel planes. Adjacent the second ends, the walls of the bores have curved portions to permit the wires to lie on a common axis where they exit from the bores.
Connecting device for wires'1 The present invention relates to a device for connecting in series two wires which are to be placed under tension, said device comprising a block having two opposite ends, two bores each extending from one end to the other end of the block to receive the respective wires and two anchoring means respectively associated with the bores for anchoring the two tensioned lengths of the wires respectively at the opposite ends of the block with the tensioned length extending through the respective bores, each bore over at least a substantial portion of its length having a straight longitudinal axis. Such devices are particularly applicable in the field of concrete reinforced by prestressed or post-stressed wires. In this specification, including the claims, we mean by the word wire to include strand, cable and other multi-ply wires used e.g. in concrete reinforcement, as well as single-filament wires. The invention is applicable to all such different forms of tendon. U.E. patent specification 1s467,30 describes the construction and operation of a device for connecting two wires, particularly in reinforced concrete work. The device is a block having parallel bores for the respective wires, and anchoring means (specifically longitudinally split conical wedges) for anchoring the wire at one end of each bore with the tested length extending through the bore. Since the device of the present invention is used in generally the same way as this known device, reference should be made to specification 1,467,309 for a full description of that device and its use. In practice this known device suffers certain disadvantages. Firstly, when the Jack is applied to one end of the device in order to pull one wire through the device (thereby tensioning both wires), the other wire is often an obstruction since it exits from the device at the same end. Secondly if the device is joining two wires at a point which is located in a flat array of parallel wires, the wires adjacent the wires being joined may obstruct the operation of the Sack, and it may not be possible to operate the jack from both above and below the array of wires (as is necessary if it is desired to apply the jack to both the wires being connected by the device). A further disadvantage of the known device is that the tensioned wires are given a sharp bend where they exit from the bores; this creates friction when the wires are being tensioned, leading to a need for excessive force and inexact tensioninl=. The object of the present invention bµwt6JU/ provide a connecting device for wires which overcomes the disadvantages Of the known device and is therefore easier to use than this known device; in particular the object is to reduce or avoid obstruction of a jack by the wires being connected or by adjacent wires. The-invention as claimed is intended to achieve this result. The new arrangement of the bores in the device has the effect that the two bores are tilted with respect to each other, so that (i) the wires both inside and outside the bores do not lie in a common plane thus minimizing obstruction, and (ii) the device can be arranged (with the connected wires horizontal) so that a jack can be applied to both wires from above the device. Preferably, each said bore has a first end at which in use the tensioned wire is anchored and a second end at which the tensioned length of the wire exits from the bore. The said portion of the bore having a straight axis is at said first end. In order to avoid a sharp correr at said second ends of the bores, preferably the bore is so shaped as to permit the wire within the bore to curve away from said straight axis and out of the said respective parallel planes to an extent such that at the respective second ends of the two bores, the two wires can lie substantially axially. Preferably the said straight axis portions of the bores are at least 30%, more preferably at least o% of the length of the bores. The preferred embodiment of the present invention will now be described in greater detail by way of example with reference to the accompanying drawings, in which: Fig. 1 shows the device embodying the invention connecting two lengths of wire; Fig. 2 is an end view of the device of Fig. 1, with the wires and anchoring wedges omitted for clarity; Flg. 3 is a section on the line III-III of Fig. 2, the plaice of the section including the straight axis of one of the bores; Fig. 4 is a side view, partly sectioned on the line TV-TV of Fig. 2; and Fig. 5 is a section on the line V-V of Fig. 4. Referring to Figures 1 to 5, the illustrated device 2 is used to connect two tensioned lengths of wire 4 and6. The device 2 primarily consists of a block 3. Two bores 8 and 10 which extend throughout the length of the block 3 from one end 3a thereof to the other end 3b thereof receive the wires 4 and 6 respectively. Teach bore 8,10 has a straight central portion 8a, lOa (Figs. 3 and 4) of substantially constant circular cross-section and two flared portions, one at each end of the bore. The first flared portions 12 and 14 are frusto-conical and house anchoring means 18 and 16 in the form of split frusto-conical wedges which hold the wires 4 and 6 secure when tension is applied to the wires, with the tensioned lengths extending through the bores 8,10. The frusto-conical portions 12,14 are coaxial on axes 20,22 with the constantsection portions 8a, 1Oa. The combined length of the portion 12 and the portion 8a in each case is more than half the overall length of the bore e, and constitutes a straight portion of the bore. The mouths of the frusto-conical portions 12,14 are surrounded by annuli 17,19 perpendicular to the conical axes. These annuli 17,19 form-abutment surfaces for the jack which is applied to the block to tension the wires 4,6. It can be seen from Fig. 1 that the tensioned lengths 4,6 of wire, where they emerge from the block 3, are coaxial on the line X-X'. As seen in Fig. 4, the straight axes 20,22 of the bores appear parallel; as Fip. 3 shows they are however at an angle to each other. In fact they lie in parallel planes, one of which (for the bore 8) is the plane of section in Fig. 3 and the other of which is indicated by the broken line 24 in Fig. 2. In order that the tensioned wires 4,6 may lie coaxially on the line X-X' (Figs. 1 and 4) as they emerge from the respective ends of the bores 8,10 remote from the anchoring wedges, lengths of the bores adjacent these ends are flared, non-symmetrically with respect to the axes 20,22. This is best seen in Figs. 2 and 4. Thus the interior wall of the block 3 bounding the bore 10 at the outside of the device (i.e. the side away from the other bore 8) is curved outwardly as indicated at 26 in Fig. 4. Consequently, an exit aperture 30 of the bore 10 at this end has an oval or slot shape. The major axis of this oval (see Fig. 2 is not perpendicular to the parallel plane 24 in which the axis 22 of the bore 10 lies, but is tilted. In the assembled state of the device, the tensioned wire 6 lies against this curved wall 26 at the outside of the bore 10 with the result that the axis of the wire is smoothy; transformed from the straight axis 22 to te coaxial line X-X' of the two wires 4,6. This curvature is in a plane perpendicular to the plane 24 (th@ough, because the bore axis 22 is Lot perpendicular to the plane of the paper in Fig. 2, the long axis of the oval aperture 3n is tilted, as mentioned above. The corresponding aperture 28 of the bore E can partly be seen in Fi. 2). As seen in Fig. 4, the angle between the line Z- > and the axes 20,22 15 in each case 14 . As seen in Fig. 3, the corresponding angle between line X-Y.' and the axes 20, 22 is 6'. The bore 8 is shared and arranged similarly to the bore 10. The device herein illustrated has several main advantages over that of specification 1,467,309. In the latter, the tensioned lengths of the two wires outside the device and the lengths within the bores of the device all lie in the sane plane. In the present device, there is no such common plane; accordingly there is likely to be less interference from the wires with a jack applied to the device to tension a wire. Secondly, as Fig. 3 shows best, both axes 20,22 (which are the axes along which a jack is applied) can be directed upwardly at an angle to the horizontal; this makes it much easier to apply the jack to both ends of the device when the device is located in amid a horizontal row of wires. Thirdly, the smooth curvature of the wires within the bores 8,10 means that problems caused by friction during tensioning can be minimized, since sharp angles against which the wires would rub when being tensioned are avoided.
ClAIMS: 1. A device for connecting in series two wires (4,6) which are to be placed under tension, said devicecomprising a block (3) having two opposite ends (3a,3b) two bores (8,10) each extending from one end to the other end of the block to receive the respective wires and two anchoring means (16,18) respectively associated with the bores (8,10) for anchoring the two tensioned lengths of the wires respectively at the opposite ends of the block with the tensioned lengths extending through the respective bores, each bore over at least a substantial portion (8a and 12, 10a and 14) of its length having a straight longitudinal axis (20,22) characterized in that the respective axes (20,22) of the two bores (8,10) are not parallel to each other but lie in parallel planes. 2. A device according to claim 1 wherein each said bore (8,10) has a first end (12,14) at which in use the tensioned wire is anchored and a second end (28,30) at which the tensioned length of the wire exits from the bore, the said portion (8a and 12, 1Oa and 14) having a straight axis being at said first end (12,14) and the bore being so shaped as to permit the wire within the bore to curve away from said straight axis (20,22) towards the said second end (28,30) and out of the respective one of the said parallel planes to an extent such that at the respective second ends (28,30) of the two bores the two wires can lie substantially coaxially to each other. A A device according to claim 1 or claim 2 wthel-ein at the end (12,14) of each bore (8,10) at which the wlre is anchored, the bore has a frustoconical portion (12,14) whose conical axis coincides with said straight axis (20,22), the anchoring means being a longitudinally split frustoconical wedge (16,18).
STRONGHOLD INTERNATIONAL AG
CARO ROQUETA, EDUARDO
EP-0005077-B1
5,077
EP
B1
EN
19,820,203
1,979
20,100,220
new
B29D7
B29H3, B29F3
B29C47, B29B7, B29L7, B29K7, B29K27
B29C 47/32
EXTRUSION APPARATUS AND METHOD OF USE THEREOF
In extrusion apparatus of the type having a generally cylindrical roller (40), a stationary die head surface (24) confronting the roller (40) and defining therewith an extrudate chamber (50), and means for rotating the roller (40) to force material through the chamber (50) to an extrudate shaping orifice (52) defined by the roller (40) and a downstream portion of the die head (23), a bearing pad (27 and 28) is interposed between the roller (40) and the die head (20). The roller (40) is biased against the bearing pad (27 and 28) so that the pad (27 and 28) serves to space the roller (40) from the die head (20) to accurately control clearance between the die head (20) and roller (40) at the extrudate shaping orifice (52).
EXTRUSION APPARATUS AND METHOD OF USE THERE & This invention relates to extrusion apparatus and the method of use thereof. Extruders are normally used for the production of continuous strips having substantially constant cross-section. The material to be formed or extru- date is fed into the extruder,brought to a fluid or semi-fluid condition by heat, mechanical agitation or a combination of heat and mechanical agitation and forced out through an orifice having a shape generally corresponding to the.cross-section desired in the finished strip. One type of extrusion apparatus is the single roller die extruder, which includes a generally cylindrical roller and a stationary die head. The die head has a surface which confronts an arcuate portion of the cylindrical surface of the roller and cooperates with the roller to define an extrudate chamber. Means are provided for introducing an extrudate into this extrudate chamber. The roller is rotated about its axis to force the extrudate in a dor¯rnstreem direction towards a extrudate shaping orifice defined by a downstream portion of the confronting surface of the die head and the surface of the roller itself. The direction downstream, as used in this dis closure, should be understood to mean the direction towards which the surface of the roller moves in its rotation, thule the term upstream should be understood to mean the opposite- direction. The terms axial and axially will also be used in this disclosure and should be under stood as referring to the axis of rotation of the roller. As can be appreciated, the thickness of the strip issuing from a single roller die extruder is controlled, at least in part, by the clearance between the stationary die head and the roller at the extrudate shaping orifice. In the single roller die extruders of the prior art, such as those set forth in United States Patents 3,871,810 and 3,869v304, the roller is positioned by the frame of the apparatus in proximity to the stationary die head so that the clearance between the surface of the die head which forms part of extrudate shaping orifice and the roller will yield the desired strip thickness and shape. Although such apparatus is capable of producing satisfactory strips, it is difficult to accurately control the thickness of the finished strip produced by such apparatus. The material in the extrudate chamber between the roller and the die head is under substantial pressure. Although the exact pressure in the chamber is unknown, it is believed to be about 176,000 kg per square meter at the point immediately upstream from the orifice. In an extruder of typical size, this extrudate pressure acting on the roller and die head creates a force on the order of 1361 kg tending to deflect the apparatus frame and move the roller away from the die head. This movement of the roller makes it difficult to accurately maintain the clearance between the roller and the die head, and therefore makes it difficult to control the thickness of the finished strip issuing from the extruder. According to the invention extrusion apparatus comprises a generally cylindrical roller; a stationary die head having a surface confronting said roller over a portion of the arcuate surface thereof to define a chamber between said die head and said roller; means for supplying an extrudate in a fluid condition to said chamber; means for rotating said roller about its axis to force said extrudate in a downstream direction through said chamber so that at least the extrudate in a downstream portion of said chamber is under pressure, a downstream portion of said confronting surface of said die head cooperating wit the surface of said roller to define an extrudate shaping orifice at the downstream end of said chamber; means for biasing said roller towards said die head and a bearing surface designed to accept the reaction forces between said roller and said die head when said roller is so biased. From another aspect of the invention a method of extruding a strip of extrudate includes the steps of feeding the extrudate in fluid condition into a chamber defined by the arcuate surface of a generally cylindrical roller and a confronting surface of a die head; rotating the roller about its axis to carry the extrudate in a downstream direction through the chamber to force the extrudate through an extrudate shaping orifice defined by the roller and a portion of the confronting surface of the die head at the downstream end of the chamber, and, during the rotation of the roller, biasing the roller towards the die head with the reaction forces being accepted by a bearing surface. By biasing the roller towards the die head and accepting the reaction forces between the roller and the die head by one or more bearing surfaces it is possible to overcome the effects of the chamber pressure and hold the roller and die head in constant relative position during extrusion, so leading to better control of the thickness of the extruded strip. Preferably the bearing surface is a surface of a bearing pad interposed between the roller and the die head. The pad may be secured, desirably releasably, to the die head and the bearing surface of the pad is then in contact with the roller surface. Alternatively the pad may be secured, again desirably releasably, to the roller and the bearing surface of the pad is then in contact with the die head. In another alternative the bearing surface may be a surface of the die head itself, the roller being biased into contact with that surface. Desirably at least two axially spaced similar bearing surfaces are provided. A better understanding of the invention will uke gained from the following description of preferred embodiments thereof, given in conjunction with the accompanying drawings in which: Fig. 1 is a schematic perspective view of an extrusion apparatus in accordance with one embodiment of the present invention; Fig. 2 is a rragmentary, elevational view of the apparatus shown in Fig. 1; Fig. 3 is a fragmentary, sectional view of the apparatus shown in Figs. 1 and 2, taken along line 3-3 in Fig. 2; Fig. 4 is a fragmentary, sectional view of the apparatus shown in Pigs. 1-3, taken along line 4-4 in Fig. 1; Fig. 5 is an exploded view showing a portion of the die head of the apparatus shown in Figs. 1-4; ; Fig. 6 is a fragmentary sectional view of a portion of the apparatus shown in Figs. 1-5, taken along line 6-6 in Fig. 2. Fig. 7 is a fragmentary, sectional view similar to Fig. 3 but showing an alternate embodiment of the present invention. In the drawings, in which like reference numerals are used to denote like features in the different views, an extrusion apparatus according to a preferred embodiment of the present invention is shown in Figs. 1 through 6. The major components of the apparatus, as shown in Fig. 1, include a frame 10, a die head 20 affixed to the frame and extrudate supply means 30. b roller 40 is rotatably mounted on bearing blocks 41 which are slidably mounted to frame 10 by means of ways 43. Roller 40 is rotatable about its axis in the direction indicated by the arrow in Fig. 1 by a drive means indicated generally at 60. Preferably drive means 60 includes a variable speed D. C. motor 61, planetary speed reducer 62, and a belt drive 63 linking the motor to the speed reducer. A means for biasing roller 40 towards die head 20 t 18 provided in the form of a pair of Jackscrews 45 thread edly engaging bearing blocks 41 and rotatably mounted to brackets 42, of which only one is visible. in Fig. 1. 3rackets 42 are affixed to frame 10. Therefore, rotation of the jackscrewss 45 will force bearing blocks 41, and hence roller 40, towards die head 20. A A handwheel 46 is linked to a shaft 47 which is arranged so that it may be linked to either one of the jack- screws 45 or to both of them at once through worm gear sets associated with the Jackscrews. Thus, each jackscrew may be rotated independently to align the axis of the roller 40 with the die head 20, and then both Jackscrews may be rotated simultaneously to force both ends of the roller evenly against the die head. As shown in Fig. 4, the roller 40 and die head 20 cooperatively define an extrudate chamber 50 between their confronting surfaces. Extrudate supply means 30 forces the extrudate 70, in a fluid condition, into the chamber 50 through a passageway 26 in die head 20. The rotation of roller 40 forces the extrudate 70 through the chamber and out through an orifice at the downstream end or the chamber where it is shaped into a continuous strip 71. The structure of the chamber and orifice will be described below. The strip 71 ls carried downstream, away from die head 20, by the continued rotation of roller 40, and is then removed from thn roller by conventional means, not shown. The term fluid has been used to describe the condition of the extrudate in the chamber. This term should be understood to include any flowable condition. For example, an extrudate composed of rubber stock may be in a gummy condition, would be in a fluid condition. Of course, depending on the nature of the extrudate, the extrudate may have to be heated or cooled so that it will cure to a solid or semi-solid condition by the time it is removed from the roller. This may be accomplished by heating or cooling the roller 40 and the die head 20 by conventional means ,well known to those skilled in the art. As seen in sectional view in Fig. r¯-, die head 20 includes a base element 21, an upstream element 22 and a downstream element 23. These element are shown in exploded view in Fig. 5. A surface 24 of upstream element 22 confronts roller 4o and cooperates with the arcuate surface 48 of roller 40 to define an upstream portion of the extrudate chamber 50. A surface 25 of c'#wnstream element 23 confronts roller 40 and cooperates with the arcuate surface 48 of roller 40 to define a downstream portion 51 of the extrudate chamber. The extrudate 70 enters the chamber 50 from extrudate supply means 30 through a channel 26 in base element 21 of die head 20. This channel 26 extends into upstream element 22 and communicates with the extrudate chamber 50. As shown in Fig. 3, the confronting surface 25 of downstream element 23 cooperates with the surface 48 of roller 40 to define an extrudate shaping orifice 52 at downstream end of the downstream portion 51 (Fig. 4) of the extrudate chamber. As the extrudate 70 moves through the extrudate chamber and the orifice 52, it is shaped to a cross-section substantially corres ending to the shape Or the orifice. The roller-confronting surface 25 of downstream element23 of die head 20 is shaped so that it will define an orifice 52 of the desired shape in cooperation with the surface 48 Or the 1roller. As shown in Fig. 4, the roller confronting surfaces 24 and 25 of die head elements 22 and 23 preferably are also shaped so that they converge with the surface 48 of roller 40 in the downstream direction. This convergence helps to pressurize the extrudate as it is forced downstream by roller 40 towards the orifice 52. A sufficient extrudate pressure at the orifice is desirable because it helps to prevent voids in the finished product. There is a gap 53 between the upstream die head element 22 and the surface 48 of roller 40 upstream of the extrudate chamber 50. Because the rotation of roller 40 forces the extrudate downstream, away from the gap, the extrudate does not flow out through this gap. As shown in Fig. 2, bearing pads 27 and 28 are interposed between the roller 40 and the die head 20. In particular, upstream bearing pads 27 are affixed to the upstream element 22 of die head 20, while downstream bearing yeds 28 are affixed to the downstream element 23 of die head 20. As shown in Figs. 5 and 6, two downstream bearing pads 28 and two upstream bearing pads 27 are provided, forming two sets of bearing pads. The sets of bearing pads art: axially spaced apart, one on each side of the extrudate chamber 50 and 51 (Fig. 6). The roller 40 is forced against the :earing pads 27 and 28 (Fig. 2) by ackscrews 45 ( g. 1). The force exerted by the biasing means or #i. kscrews- 45 on the roller 40 to bias it against bearing pads 27 and 28 is at least equal to the force exerted by the extrudate pressure in the chamber which tends to torch roller 40 away from the die head 20 and thus away fron bearing pads 27 and 28. Therefore, roller 40 will always bear against bearing pads 27 and 28 throughout the operation of the apparatus despite the presence of extrudate pressure in the chamber. As the roller, the bearing pads and the die head are quite rigid, the bearing pads will accurately position the roller 40 with respect to the die head, and twill accurately maintain the clearance between the surface 48 of the roller and the surface 25 of element 23 of the die head 70 which forms part of the extrudate shaping orifice 52 (Fig. 3). Thus, the size of the extrudate shaping orifice 52 will be accurately maintained during operation of the apparatus and the thickness of the. strip issuing from the apparatus can also be accurately main tamed. The placement of the bearing pads shown in Figs. 1 through 6,. axially spaced apart with bearing pads on both sides of the extrudate chamber, prevents misalignment of the roller with the die head which might be caused by unbalanced loading of the roller if the pads were placed on only one sido of the extrudate chamber. The particular placement of the bearing pads in the embodiment of Figs. 1 through 6 also allows the use of the bearing pads in axially confining the extrudate within the extrudate chamber, in addition to their use in spacing the roller from the die head. As seen in Fig. 6, the upstream bearing pads 27 affixed to upstream element 22 of die head 20 lie immediately axially outboard of the upstream portion 50 of the extrudate chai'#er. Because the roller surface 48 of roller 40 bears on pads 27 during operation of the apparatus (Fig 2), there is no clearance between the pads and the roller during operation of the apparatus. Therefore, the extrudate cannot leak axially outward from the upstream portion of the extrudate chamber. As set forth above, the extrudate is formed into the finished strip at the extrudate shaping orifice 52 which is defined by the surface 25 of the downstream roller die head element 23 and the surface 48 of roller 40 (Fig. 3). The lateral edges of the finished. strip are formed at the axially spaced lateral boundaries 54 and 55 of this orifice. In the embodiment shon in Figs. 1 through 6, the downstream bearing pads 28 are positioned axially outboard of the boundaries 54 and 55 and remote from these boundaries. Be- cause the downstream element 23 of die head 20 is spaced from the surface 48 of roller 4o over its entire axial extent, there are additional gaps 56 and 58 lying between the lateral boundaries 54 and 55 of the extrudate shaping orifice 52 and the downstream bearing pads 28. Some extrudate will flow out from the extrudate chamber through these gaps 56 and 58 and form a trim on the lateral edges of the finished strip. This trim is removed from the strip in a subsequent operation. To To control the amount of flash or trim on the finished strip, the configuration of the downstream bearing pads 28 and the downstream element 23 of die head 20 are chosen such that the gaps 56 and 58 have a thickness which is so small that the amount of material passing through the gaps is negligible. For example, in the ex of Ortiresidewallslabs, the gaps 56 and 58 are trusion preferably no thicker than about .07Ç cm. As set forth above, roller 40 bears against the bearing pads 27 and 28 (Fig. 2) with substantial force. Because the bearing pads 27 and 28 are fixed to the stationary die head 20, the surface 48 of roller 40 must slide over the contacting surfaces 114 and 115 of pads 27 and 28 as roller 40 rotates. Therefore, the materials from which pads 27 and 28 are fabricated must be chosen to folm a low friction bearing with the surface 48 of roller 40. This bearing must operate without galling or excessive wear even under the substantial contact pressures between the roller surface 48 and the pad surfaces 114 and 115 which are encountered in operation of the apparatus. To prevent galling, the bearing pads 27 and 28 should be fabricated from a material with a hardness which differs from that of the roller. Since the bearing pads can be readily replaced as described below, it is preferable to fabricate the bearing pads from material which is softer than the material of the roller surface 48 so that the surfaces 114 and 115 of pads 27 and 28 will wear and the roller surface 48 will be preserved. The bearing formed by the roller and the pads should preferably be capable of operation without any external lubrication. If external lubricants such as oil were applied to either the roller surface or the bearing pads, they might contaminate the extrudate stream and thus contaminate the finished strip. The bearing must also be capable of operation at the die head temperature employed in operation of the apparatus. Of course, the required die head temperature will vary with the material to be extruded and thus the heat resistance requirements for the bearing pads will also vary with the material to be extruded. For use in the extrusion of natural rubber, the preferred material for the bearing pads is a composition of nylon 6/6 and molybdenum disulfide sold under the registered trademark Nylatron GS by the Polymer Corporation, Pennsylvania, U.S.A. Reading/ Another suitable pad material is a filled polytetrafluoroethylene composition sold under the registered California trademark Turcite by the W. S. Shamban Co. Los Angeles/ U.S.A. The roller 40 is preferably fabricated from a hard, metallic material such as steel or iron. The preferred structure and assembly of die head 20 is shown in exploded view in Fig. 5. Die bead base element 21 is provided with generally V-shaped notch 101. Upstream element 22 is provided with a mating, generally V-shaped tongue 102 which seats in notch 101.- A conventional key 103 is seated in an axially extending keyway 104 in the downstream surface of upstream element 22. A similar axially extending keyway 105 is provided in the upstream surface of downstream element 23 to engage the projecting portion of key 103 and align the downstream element 23 with the upstream element 22. In the operating condition of the die head, the downstream element 24 is forced against upstream element 22 by a force'applying means such as a fuid cylinder (not shown) acting through a push rod 106 (Fig. 4). Thus, upstream element 22 is also forced against base element 21 so that elements 23, 22 and 21 are locked firmly together. The downstream bearing pads 28 are affixed to the downstream confronting element 23 by screws 107, which engage threaded holes (not shown) in downstream element 23. Of course, to allow downstream element 23 to seat closely against upstream element 22, the heads of screws of 107 are countersunk into the bearing pads 28. The surfaces 108 of bearing pads 28 which will face away from the roller IS0 in the operating condition of the assembly are arranged to seat against corresponding supporting surfaces 109 of downstream element 23. The upstream bearing pads 27 are ar# fa#tened to up stream element 22 by screws 110 engaging threaded holes 111 in element 22. The bck surface 112 of each of the bearing pads 27 seats on the corresponding surface 113 of element 22. The screws 110 help restrain the pads 27 on surface 113 against the wiping or frictional forces generated by the roller during operation of the apparatus. To prevent damage to the roller, the heads of screws of 110 are countersunk into pads 27. To assure an accurate fit of the pads 27 against the arcuate surface 48 of roller 40 (Fig. 2) the surfaces 114 of pads 27 which contact the roller surface are con toured to a radius matching that of roller surface 48. Be- cause, in the embodiment shown, the arcuate extent of contact between the pads 28 and the roller 40 is fairly small, the surfaces 115 of pads 28 which contact roller surface 48 may be fabricated as flat surfaces. Over the small arcuate extent of the mutual contact between surfaces 115 and 48, #the deviation between the straight surfaces 115 and the curved surface 48 of roller 40 is negligible. The construction of the die head as described above allows the apparatus to be readily dismantled for maintenance. When the force applied by push rod 106 (Fig. 2) is relieved and the roller 40 is moved away from the die head ,by the jackscrews- 45 (Fig. 1), die elements 22 and 23 may be readily removed from base element 21. Once the die elements 22 and 23 have been removed from the apparatus, bearing pads 27 and 28 may be readily exchanged for new ones. If it is desired to change the shape of the finished strip, downstream element 23 may be exchanged for a different downstream element, and the apparatus may be reassembled. Of course, the finished strip issuing from the apparatus after the reassembly will reflect the shape of the new downstream element. If major changes are to be made in the shape of the finished strip, it may also be desirable to replace upstream element 22 to preserve the desired flow pattern at the transition between the two confronting elements 22 and 23. As described above, the strips formed by the apparatus shown in Figs. 1 through 6 will normally have some trim along their lateral edges, which must be removed from the strip after forming, An apparatus according to an alternate embodiment, partially depicted in Fig. 7, will form strips without this trim on the edges. The apparatus this alternate embodiment is identical to the apparatus shown in Fig. 1-6 except for the configuration of the downstream die element and the bearing pads associated therewith. In the apparatus of this embodiment, as shown in Fig. 7, the downstream bearing pads 28 are affixed to the downstream die element 2# and are axially spaced apart from one another. However, bearing pads 28 extend axially inward so that they define the axially spaced lateral boundaries 54' and 55' of the extrudate.shaping orifice 52'. Because the surface 48 of roller 40 bears against the pads 28', no extrudate can pass between the pads 28' and the 'roller surface 48. Thus, the lateral edges of the strip lissuing from the orifice will be formed without trim by contact of the extrudate with the bearing pads 28' at the boundaries 54' and 55' of orifice 52'. As will be readily appreciated, many variations and combinations of the features set forth above can be utilized. By way of example only, the bearing pads need not be affixed to the die head. Rather, they may be formed as hoops of bearing material affixed to the roller at axially spaced locations. Although the sliding contact will then be between the hoops of bearing msterial (the bearing pads) and the die head rather than between the pads and the roller surface, the location of the roller with respect to the die head will still be maintained if the roller bears upon the die head through the pads or hoops. Alternatively, and also by way of example only, the bearing pads may be formed integrally with the die head if the die head material is selected by use of the criteria set forth above for the bearing pad material. Thus, the entire die head may be fabricated from molybdenum do sulfide filled nylon 6/6. Of course, a reinforcing fabric may be incorporated in the finished strip produced by the apparatus by feeding the fabric into the extrudate chamber of the apparatus through the upstream gap 53 (Fig. 4) during operation of the apparatus.
CLAIMS: 1. Extrusion apparatus comprising a generally cylindrical roller (40); a stationary die head having a surface (24, 25) confronting said roller over a portion of the arcuate surface (48) thereof to define a chamber (50) between said die head and said roller; means (30) for supplying an extrudate in a fluid condition to said chamber; means (60, 61, 62, 63) for rotating said roller about its axis to force said extrudate in a downstream direction through said chamber so that at least the extrudate in a downstream portion (51) of said chamber is under pressure, a downstream portion of said confronting surface of said die head cooperating with the surface of said roller to define an extrudate shaping orifice (52) at the downstream end of said amber; means (45, 46, 47) for biasing said roller towards said die head and a bearing surface (114, 115) designed to accept the reaction forces between said roller and said die head when said roller is so biased. 2. Extrusion apparatus as claimed in claim 1 in which the material of said bearing surface and its confronting element are selected so that the mutually contacting surfaces thereof will form a bearing operable without the application of external lubrication. 3. Extrusion apparatus as claimed in claim 1 or claim 2 in whizz said bearing surface (114, 115) is a surface of a bearing pad (27, 28) interposed between said roller and said die head and spacing said roller from said die head. 4. Extrusion apparatus as claimed in claim 3 in which at least two bearing pads are interposed between said roller and said die head and said pads are spaced axially from one another. 5. Extrusion apparatus as claimed in claim 4 in which said pads form the axially spaced lateral boundaries of at least a portion of said chamber. 6. Extrusion apparatus as claimed in claim 5 in which said pads additionally define the axially spaced lateral boundaries (54', 55') of said extrudate shaping orifice. 7. Extrusion apparatus as claimed in any one of claims 4 to 6 in which said pads are affixed, preferably in releasable manner, to said die head. 8. Extrusion apparatus as claimed in claim 7 in which said roller has a surface formed of material, for example metal, which is harder than the pad material, for example a composition of nylon 6/6 and molybdenum disulfide or a composition including polytetrafluoroethylene. Extrusion apparatus as claimed in any one of the preceding claims in which said apparatus includes a frame (10) and a bearing block (41) slidably mounted to said frame, said die head is mounted to said frame and said roller is rotatably mounted to said bearing block, and said means for biasing said roller towards said die head includes means (45, 46,47) for biasing said bearing block toward said die head. 10. Extrusion apparatus as claimed in claim 9, wherein said die head includes a base element (21) mounted to said frame, an upstream element (22) releasably mounted to said base element and a downstream element (23) releasably mounted to said upstream element, an upstream portion of said chamber is defined by a surface (24) of said upstream element confronting said roller and said extrudate shaping orifice is defined by a surface (25) of said downstream element confronting said roller. 11. Extrusion apparatus as claimed in claim 10, insofar as dependent on claim 4, wherein s-aid bearing pads include two upstream bearing pads (27) which are affixed to said upstream element and two downstream bearing pads (28) which are affixed to said downstream element so that said upstream and downstream bearing pads constitute two sets of bearing pads spaced axially from each other and lying axially outboard of said chamber on both sides thereof. 12. The improvement as claimed in claim 11, wherein said downstream bearing pads (28') define the axially spaced lateral boundaries (54', 55') of said extrudate shapinq orifice,and said upstream bearing pads define the axially spaced lateral boundaries of said upstream portion of said chamber. 13. A method of extruding a strip of extrudate including the steps of: feeding the extrudate in fluid condition into a chamber (50) defined by the arcuate surface (48) of a generally cylindrical roller (40) and a confronting surface (24, 25) of a die head; rotating the roller about its axis to carry the extrudate in a downstream direction through the chamber to force the extrudate through an extrudate shaping orifice (52) defined by the roller and a portion (25) of the confronting surface of the die head at the downstream end of the chamber, and, during the rotation of the roller, biasing the roller towards the die head with the reaction forces being accepted by a bearing surface (114,115). 14. A method as claimed in claim 15, in which the bearing surface comprises surfaces of two bearing pads (27) interposed between the roller and the die head and axially defining spaced from one another, the pads axially spaced lateral boundaries of at least a portion of the chamber, and the method further comprises the step of axially confining the extrudate in said portion of the chamber by means of the bearing pads. 15. A method as claimed in claim 13 or claim 14 in which the bearing surface comprises surfaces of two bearing pads (28') interposed between said roller and the downstream portion of said die head and spaced axially from one another so that the bearing pads define the axially spaced lateral boundaries (54', 55') of said extrudate shaping orifice, and the method further comprises the step of forming the lateral boundaries of the strip by contact between the extrudate and the pads at the extrudate shaping orifice.
UNIROYAL LTD.
GIESBRECHT, GEORGE GERHARDT
EP-0005080-B1
5,080
EP
B1
EN
19,820,224
1,979
20,100,220
new
F21M1
H01K7
F21V14, F21V7, H01K7, F21V11
F21V 7/04, H01K 7/02, F21V 7/00C, F21S 8/00R4, R21V11:10, R21V11:18, F21V 7/09
SPOTLIGHT LANTERN PROJECTION SYSTEM
A light projection system for a spotlight lantern, comprising a grid filament lamp and a rear reflector, wherein the grid filament (11) is located to extend axially along the optical axis of the reflector (12). The rear reflector (12) and/or a frontal reflector (13) used in conjunction therewith is preferably regularly or irregularly facetted in such a manner that each facet produces a patch of light just filling the aperture of a gate, shaping pattern or iris (15). The system shows remarkably improved efficiency compared to known systems having a grid filament disposed transverse to the optical axis.
Spotlight Lantern Projection System This invention relates to a light projection system for a spotlight lantern. A spotlight lantern is required to produce a welldefined beam of light having an even distribution of light through its cross-section. For reasons of efficiency, it is necessary to employ a light source, e.g. an electric filament, in conjunction with one or more reflectors. This combination is referred to herein as a light projection system. The light projection system concentrates light through a gate, shaping pattern or iris, and then through an optical objective, in order to produce the required beam. The object in designing the light projection system is uniformly to fill the gate, pattern or iris with light so that as much light as possible is concentrated by the objective to produce the required uniform, well-defined beam having a minimum of light spill at its edges. From the prior art, various reflectors and combinations of reflectors are known. Thus, European 220/240 volts lanterns conventionally employ a grid filament mounted perpendicular or approximately perpendicular to the optical axis of the lantern. In conjunction with such filaments, it has been proposed to use rear reflectors defined by various part surfaces of revolution, in particular conic sections such as spherical sections, ellipsoidal sections and parabolic sections. It is also known to combine one such rear reflector with a partial frontal reflector likewise conforming to a surface of revolution, such as a spherical rear reflector with an ellipsoidal frontal reflector or an ellipsoidal rear reflector with a spherical, ellipsoidal or hyperbolic frontal reflector. More complicated reflectors have also been proposed, including reflectors defined by curves representing cartographic projections and reflectors based on surfaces of revolution modified by localised flattening, the aim being to improve efficiency and light distribution. In the United States, the use of a 110/120 volts mains electric supply has made possible the development of spotlight lanterns incorporating a light projection system based on a linear spirally wound coil filament mounted along the optical axis. This system shows significantly improved efficiency compare with most European light projection systems. However, it has so far proved impossible to produce satisfactory short and reliable spirally wound coil filament lamps to operate at 220/240 volts. Existing 220/240 volts linear lamps have fragile filaments which do not remain linear in use. Furthermore, the length of the filament results in poor light distribution and undesirably large lanterns. The object of the present invention is to provide an improved light projection system which is suitable for the European 220/240 volts mains supply, According to the invention, there is provided a light projection system for a spotlight lantern, characterised by a flat grid filament lamp mounted with the grid disposed axially on the optical axis of a rear reflector. The main advantage of the invention is one of improved efficiency compared with known systems suitable for a 220/240 volts mains supply, and permitting use of a reflector arrangement which enables efficiency to be still further increased, Thus, the rear reflector preferably comprises a partial surface of revolution defined by a large plurality of facets. These facets may cover the reflector regularly or irregularly. A partial frontal reflector may be employed in addition. This may also be facetted, but alternatively may be spherical or herbo.ic. A spherical rear reflector may be employed when the frontal reflector is facetted. With any of these reflector arrangements, a preferred system is used in combination with a gate, shaping pattern or iris, each reflector facet in use producing a patch of light which just fills said gate, pattern or iris. An arrangement of light projection system in accordance w th the invention will now be described with -eference to the accompanying drawings, in which: Figures to 3 restectively show three differing reflector arragemens which may be employed in sonjurction with an axial grid filament, and Fi-res t and 5 show constructional details of a facetted rear reflector. The arrangement shown in Figure 1 comprises a 220/240 volt lamp 10 having a grid filament 11. Such a lamp has a conventional cylindrical envelope, but in accordance with the invention the grid filament 11 extends axially, lying in a plane containing the axis of the envelope, which is collinear with the optical axis 0 of the lantern. The lamp 10 is mounted longitudinally on the axis of a cup-shaped rear reflector 12, which axis is also collinear with the optical axls O. The surface of the reflector i2 generally conforms to a conic section such as a paraboloid or an ellipsoid. An aperture is provided at the centre of the rear reflector 12 to accommodate the lamp 10 extending axially therethrough, so that the grid filament 11 is disposed along the axis of revolution of the reflector. The reflector is more exactly defined by a large plurality of small facets or flats which sub-divide the reflector into annular zones. One example of rear reflector 12, shown in Figures 4 and 5, has about eleven annular zones 20 defined by the facets 21, each zone 20 having about thirty six facets 21 extending around the reflector to define a regular polygon having thirty six sides. In such a case the reflector 12 is said to be regularly facetted. The zones 20 are of approximately equal width w measured along a generator 22 of the reflector 12, and therefore the width of said zones measured by projection thereof on to the axis 0, increases from the centre of the reflector outwardly to the zone of greatest diameter. Figure 5 is also marked to show the respective angles made by the facets 21 of successive zones 20 with the intersecting zonal planes 23 normal to the axis 0. With regular facetting, the facets 21 are of increasing width x around successive zones 20 with increasing diameter of the reflector 12. It may sometimes be preferable to vary the widths x of the facets 21 within each of some or all of the zones 20 depending on whether said facets are illuminated by the edge of the grid filament 11 or by the face thereof. In such a case the reflector 12 is said to be irregularly facetted. The above-described arrangement can employ a partial frontal reflector in addition to the rear reflector, as shown in Figures 2 and 3. In Figure 2, such frontal reflector 13 is defined by an annular portion of a regular spherical or hyperbolic section, facing rearwardly to reflect light from the filament 11 on to the rear reflector 12, from which the light, together with that directly incident on the rear reflector 12 from the filament 11, is reflected forwardly through the axial zone defined by the inner diameter of the frontal reflector 13. The modification shown in Figure 3 employs a facetted frontal reflector 14. In this case, however, the frontal reflector 14 is employed to reflect light from the filament 11 in the forward direction, When the facetted frontal reflector 14 is employed, a rear reflector 12 of regular spherical form may be used instead of a facetted rear reflector. In all cases, the grid filament 11 is disposed axially, being contained in a plane also containing the axis 0 of the reflector or reflectors (12, 13, 14). However, the location of the filament 11 along the axis 0 varies with the reflector arrangement employed. Generally, the filament 11 is situated deeper into the cup-shaped form of the rear reflector 12 when a frontal reflector 13 or 14 is omitted, and furthest outward from the bottom of the cup when a frontal reflector 13 is employed which reflects light rearwardly. In all embodiments (see Figures 1 to 3), the light projection system is arranged so that each facet 21 reflects from the grid filament 11 a patch of light which just fills a beam-confining aperture means 15 located between the light projection system and an optical objective 16, The aperture means 15 may be constituted by a gate, a shaping pattern or an iris. In this way it is ensured that a spotlight lantern, in which the light projection system together with the aperture means 15 and the objective 16 are incorporated, will produce a well-defined beam with minimum light spill at the edges, with uniform distribution of light through the section of the beam, and also with minimum waste of light, thus ensuring high efficiency. It should be appreciated that the above described arrangements are by way of example only and may be modified in various ways within the scope of the invention, especially in respect of the arrangements of reflector or reflectors,
Claims 1. A light projection system for a spotlight lantern, characterised by a flat grid filament lamp (10) mounted with the grid (11) disposed axially on the optical axis of a rear reflector (12), 2. A system as claimed in claim 1, wherein the rear reflector (12) comprises a partial surface of revolution defined by a large plurality of facets (21). 3. A system as claimed in claim 2, in which the reflector (12).is regularly facetted. 4. A system as claimed in claim 2, in which the reflector (1Z) is irregularly facetted. 5. A system as claimed in any one of claims 1 to 4, in conjunction with a partial frontal reflector (13 or 14). 6. A system as claimed in claim 5, in which the frontal reflector (14) is facetted. 7. A system as claimed in claim 6 when appendant to claim 1, in which the rear reflector (12) is spherical. 8. A system as claimed in claim 5, in which the frontal reflector (13) is spherical. 9 A system as claimed in claim 5, in which the frontal reflector (13) is hyperbolic. 10. A system as claimed in any of claims 2 to 9, in combination with aperture means (15) in the form of a gate, shaping pattern or iris,-each reflector facet (21) in use producing a patch of light which Just fills said gate, pattern or iris.
THE RANK ORGANISATION LIMITED
MCKENZIE, RODERICK ALEXANDER; MOORE, MARTIN WARWICK
EP-0005082-B1
5,082
EP
B1
EN
19,820,512
1,979
20,100,220
new
A24B15
C02F3, C12P3
A24B15, C02F3
A24B 15/20, C02F 3/34
MICROBIAL NITRATE REMOVAL FROM TOBACCO MATERIALS BY DISSIMILATORY DENITRIFICATION
A process for the reduction of the nitrate-nitrogen content of tobacco by microbial treatment is disclosed. Tobacco materials are subjected, under controlled conditions, to the action of a microorganism effective in its ability to degrade nitrates through biochemical reactions in which nitrogen gas is ultimately formed. The process is applicable for all types of tobacco materials such as tobacco filler, aqueous tobacco extracts, stems, and tobacco processing streams from various reconstitution processes, as well as tobacco processing effluent. Tobacco materials treated in accordance with this process, when incorporated into a tobacco smoking product, have been found to deliver a significantly reduced amount of oxides of nitrogen in the smoke.
MICROBIAL NITRATE REMOVAL FROM TOBACCO MATERIALS BY DISSIMILATORY DENITRIFICATION Technical Field The present invention pertains to a process for reducing certain nitrogen-containing compounds present in tobacco materials. More specifically, the present invention provides a process for treating tobacco materials by subjecting them to the action of microorganisms whereby nitrate and the subsequent metabolic intermediates are substantially reduced and removed, thereby reducing the total nitrogen content of the tobacco product. Smoking articles prepared from the treated tobacco products deliver significantly lowered amounts of oxides of nitrogen on smoking. Background of Prior Art It is generally recognized that smoking products having a lowered amount of oxides of nitrogen present in the smoke are desirable. Several techniques have been suggested for reducing oxides of nitrogen in smoking articles. US Patents 3,616,801 and 3,847,164 relate generally to reconstituted tobacco and methods wherein ion exchange, ion retardation resins, or electrodialysis techniques are utilized to selectively remove Inorganic constituents from aqueous tobacco extracts. The methods disclosed relate generally to the removal of nitrate-containing compounds from tobacco. These particular methods xay be feasible on a small scale but are apt to be both expensive and impractical on a commercial scale. In addition, the methods described appear to be limited to reconstituted tobacco methodology and are not particularly suitable for treating other forms of tobacco such as leaf or filler. Moreover, regeneration of the ion exchange resin or disposal of the resin containing the crude nitrate-containing compounds adds to the cost and also presents a problem from an ecological and environmental viewpoint. More recently, a process for recovering crystalline potassium nitrate from tobacco extracts has been described in U.S. patents nos. 4131117 and 4131118. Concentrated tobacco extracts are cooled to effect crystallizat;ion of potassium nitrate which is then removed by centrifugation. The partially denitrated tobacco extract containing about 0.3 to 0.5% nitrate is then recombined with a fibrous tobacco web as-in making reconstituted tobacco. The crystalline potassium nitrate by-product may be used for agricultural purposes. An additional method for removing certain agents from tobacco is disclosed in U. S. Patent 3,995,646 and involves placing the tobacco in heated liquid for a preselected time period. The wash solution containing tobacco solubles is presumably discarded. The washed tobacco is dried and then rehydrated to restore the tobacco to a condition suitable for use in cigarettes. This process suffers certain disadvantages in that subjecting higher grades of tobacco such as prime leaf or filler to washing in hot or boil- ing water results in an undesirably high loss of tobacco solubles and flavorants. Moreover, disposal of the tobacco solubles solution presents a problem from an environmental viewpoint. Tso et al. in US Patent 3,845,774 describe tobacco treatment methods. referred to as homogenized leaf curing wherein the tobacco is homogenized and incubated under well defined and control led conditions. Nitrate-nitrogen and total nitrogen are reduced somewhat; however, the amount of reduction is not as significant as that of the present process. Tso et al. alludes to the fact that tobacco modification can be accomplished by the use of additional techniques during homogenization and incubation, such as enzyme and microbial action; however, no specific methods or means for reducing nitrate-nitrogen are suggested. W. O. Atkinson et al. reported a reduction in nitratenitrogen in homogenized tobacco leaf curing wherein the tobacco was extracted with aqueous-ethyl alcohol prior to incubation. (Procedings of the University of Kentucky Tobacco and Health Research Institute, Lexington, Kentucky, Conference Report 4, March 1973, p. 829-33). The use of aqueous-ethyl alcohol for extraction purposes results in the loss of desirable tobacco flavorants thereby rendering this method undesirable for our purposes. The use of microorganisms is known in the art of fermenting tobacco, especially tobaccos suitable for use in cigars and the like. Microorganisms have been used to produce milder tobaccos and to modify certain types of tobacco flavorants. More recently, US Patents 4,037,609 and 4,038,993 disclosed methods for reducing the nicotine content of tobacco by microbial treatment using microorganisms obtained from cigar tobacco. Aerobic fermentation techniques are employed wherein nicotine is degraded via microbial action to 3-succinoylpyridine. In accordance with the present invention, a process for reducing the nitrate content of tobacco materials is disclosed wherein the tobacco materials are subjected to microbial action to effect substantial nitrate-nitrogen reduction and removal. The process has several advantages when compared to prior methods for nitrate removal. In particular, the nitrate removal is accompanied by the concomitant reduction of the total nitrogen content of the treated materials. The process is specific for nitrate, leaving the cation concentration, i.e., K+, Na+, etc., unchanged. The end product via microbial action is nitrogen gas, which is evolved and can be reused for sparging gas, thus eliminating troublesome disposal problems experienced in prior methods of nitrate removal. The process does not require overly expensive equipment and is not energy intensive. Moreover, the process is adaptable to all types of tobacco materials, i.e., aqueous tobacco extracts, tobacco leaf, stems, shredded filler, and the like, whereas the known methods are generally applicable to tobacco that is ultimately utilized in reconstituted tobacco sheets. Brief Summary of the Invention The present invention provides a process for the reduction of the nitrate-nitrogen content of tobacco materials via a dissimilatory denitrification pathway. Tobacco materials are inoculated with a microorganism known to be effective in the dissimilatory reduction of nitrate-nitrogen to nitrogen gas via a series of enzymatic reactions shown schematically below. NO3 + NO2 + NO + N20 + N2 Dissimilatory denitrification is preferred in that the end product of nitrate metabolism, nitrogen gas, is evolved from the reaction mixture, thereby leaving no other nitrogenous-containing metabolic intermediate products that could potentially affect the subjective characteristics of the denitrated tobacco material, or influence the further formation of oxides of nitrogen in the generated smoke. The process of the present invention may be utilized for the denitrification of tobacco components, aqueous tobacco extracts, or waste streams containing tobacco solubles having nitrate salts. Optimum denitrification is observed when the nitrate-nitrogen level is at least 10 ppm and generally no greater than about 3000 ppm. The process described in this invention is particularly suitable for the treatment of burley tobacco which has a relatively high nitrate level as compared to other tobacco types such as bright. Moreover, the process of the present invention may be utilized in combination with other known methods for denitrification of tobacco materials to achieve substantial total nitratenitrogen removal from tobacco materials. Detailed Description of the Invention Certain organismsare known to reduce nitrate to elemental nitrogen via a series of anaerobic metabolic steps that are generally referred to as dissimilatory denitrification. Alternatively, some organiamsare known to reduce nitrate to ammonia with intermediate products such as nitrite and hydroxylamine. This is generally known as assimilatory nitrate reduction. For the purpose of the present invention, dissimilatory reduction is preferred in that elemental nitrogen is the end by-product of nitrate reduction and is completely removed from the tobacco materials substrate. Organism which are effective in dissimilatory reduction of nitrates include Micrococcus denitrificans Beijerinck, NC1B8944 Paracoccus denitrificans, ATCC 19367; R. Y. Stanier Paracoccus denitrificans, ATCC 17741; and NRC 449 Mary T. Clement + Paracoccus denitrificans, ATCC 13543. Other dissimilatory denitrifiers are selected species of the Genera Pseudomonas, Alcaligenes, Bacillus and Propionibacterium. The Paracoccus denitrificans strain ATCC 19367 utilized in the present process was obtained from the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852. Organisms effective only in the reduction of nitrate to nitrite in tobacco materials are not considered suitable for use in the present process in that the total oxides of nitrogen content in the smoke from treated tobacco materials is not significantly reduced. Table 1 Morphological and Biochemical Characteristics of Paracoccus (Micrococcus) denitrificans ATCC 19367 A. MORPHOLOGY Cells are coccoid, averaging about 1 in diameter. They are gram negative and occur in pairs, singly, and aggregates. Agar Colonies: Circular, entire, smooth, glistening, white, opaque. B. PHYSIOLOGY Optimum growth: 25-300C, Range: 5-370C, Nitrates and nitrites are electron acceptors in dissimilation being reduced to nitrous oxide and nitrogen. Anaerobic growth with the production of gas in the presence of nitrate. insole not produced. Urease activity-negative. Catal ase-positive. Aerobic growth on salicin, dulcitol, d-.xylose, adonitol, lactose, mannitol, sucrose, sorbital, maltose, dextrose, mannose, raffinose and rhamnose but with the production of neither acid or gas. Aerobic growth fructose, and arabinose with the production of trace amounts of acid. No growth on aesculin or arginine. Starch is not hydrolyzed. Gelatin is not hydrolyzed. Prior to treating tobacco materials containing nitratenitrogen, it is necessary to obtain an inoculum build-up of microorganisms. Inoculum build-up is achieved under controlled anaerobic conditions. Growth and maintenance of the microorganisms may be carried out either in a nitrate broth or a broth derived from aqueous tobacco extracts containing nitrate-nitrogen. Normally the broth should have a nitrate-nitrogen content of at least 10 ppm and preferably about 1400 ppm to support and achieve the desired amount of inoculum build-up. Concentrations of nitrate-nitrogen greater than about 3000 ppm may have adverse effects on the microorganisms. Inoculum is added to a broth containing nitrate in a shake flask adapted for anaerobic conditions. The dissolved oxygen content should be maintained at no more than about 3 ppm. This is achieved by intermittent sparging, generally at a rate of l.5 to 1.0 liter/minute with a gas such as nitrogen, helium, or carbon dioxide. The initial pH of the broth should be between ab#jJt 6 and 8 and preferably between 6.8 and 7.2. The broth is maintained at a temperature between about 200C and'409C with temperatures between 300C and 350C being preferred. Agitation is generally achieved by low to medium speed stirring at about 60 to 300 rpm. It will be recognized by those skilled in the -# that the amount of culture added to the nitrate broth is a-ma teir of judgment. However, we have found that by adding inoculul I to culture broth to give an initial optical density of about 0 3 to 0.4 at 660 mu as determined using an Hitachi-Perkin Elmer Sp ctrophotometer, Model 120, results in an acceptable inoculum bull -up within a time range of about 8 to 24 hours. Tobacco materials suitable for use in the present process may be in various forms such as leafs shredded filler, riled, crushed or shredded stems, tobacco fines, or aqueous extracts of the above components. Semi-solid fermentation technique < may be utilized in the case of some of the tobacco components li;ted above. The tobacco components may be mixed with water to give a slurry having concentrations in the range of about 5 to 4t.solids by weight. Optimum denitrification of the tobacco slurry is t nerally achieved in the range of about 5-20% solids by weight. After natively, an aqueous tobacco extract may be prepared contain ig nitrate-nitrogen in the range of 10 ppm'to no greater than a zut 3000 ppm. Partially denitrated extracts, such as those obta ed by the denitration-crystaltization process as disclosed inD.S,;;tents 4131117 4131118, are highly suitable for use in the present process. Such partially denitrated extracts will generally have a nitrate;- nitrogen content of about 0.3 to 0.5% prior to treatment a':co#ing to the process of the present invention. The tobacco slurry thus prepared, is added to a fernentor such as, for example, a Labline rotary drum fermentor. Suitable nutrients and buffering salts, such as Fecal3, K2IiP04, MgS04#7H2O, NH4Cl, and glucose are added, and the slurry is sterilized at 15 psi for about 45 minutes. After cooling, the sterile material is inoculated with at least 10g V/V of inoculum. The inoculum obtained from the inocula build-up step previously described should have an optical density of about 0.5 to 1.5 and preferably about 1.0. Alternatively, the tobacco mixture is inoculated with inoculum from a tobacco extract broth to give viable counts of at least about l x 107 cells per milliliter. The amount of inoculum added to the tobacco will, to a great extent, determine the time necessary to reduce the nitratenitrogen present. Larger amounts of inoculum than those indicated above may be used without adversely affecting the tobacco. When the process is used in connection with commercial processing of tobacco, it may be desirable to increase the amount of inoculum added in order to minimize processing time. Generally, processing times required to totally reduce the nitrate-nitrogen will be in the range of about 12 to 72 hours. Of course, shorter periods may be used to achieve a lesser degroe of denitrification. During the fermentation of the tobacco slurry or extract, the temperature is maintained at about 300C to 400C and preferably at about 35 C. The dissolved oxygen content is controlled at OL 3 ppm with intermittent sparging at a rate of about 0.5 to 1.0 liter/minute with a suitable sparging gas. Agitation at no less than about 60 RPM is.employed. During the fermentation, the pH is recorded and maintained in the range of about 6.0 to 8.0 and optimally between about 6.8 and 7.2. The rate of denitrification may be assessed by ascep-. tically sampling the mixture periodically and measuring the nitrate content using a specific nitrate ion electrode such as an Orion Model 93-07 nitrate ion electrode. When denitrification is complete, the tobacco material is dried to a suitable moisture content for further tobacco processing. In the case of tobacco extracts, it may be desirable to concentrate the extract prior to reapplication to a fibrous tobacco web as in making reconstituted tobacco. The denitrified tobacco materials or reconstituted tobacco may then be further treated by the addition of suitable casings, flavorants, and the like and then dried and utilized in the production of smoking products. The process of the present invention is adaptable to treating a variety of forms of tobacco in various stages of curing. For example, the process is highly suitable for use in treating uncured tobaccos, particularly burley tobacco wherein homogenized leaf curing processes are employed. Moreover, the process may be used to advantage with cured tobaccos in strip form, stems, shreds or tobacco fines, or in tobacco extracts suitable for subsequent use in making reconstituted tobacco. The process is also adaptable for use in denitrifying tobacco effluent streams resulting from routine tobacco processing operations. The effluent stream may be diverted to suitable reservoirs for denitrification treatment prior to discharging in the usual manner, thereby eliminating ecological problems and potential pollution. The present invention may be illustrated by the following examples of presently preferred practices which demonstrate the effectiveness of the treatment of tobacco materials with microorganisms capable of effecting dissimilatory denitrificÅation. Example 1 A. PREPARATION OF MAINTENANCE AGAR SLOPES Maintenance slopes were prepared according to the following formulation: 'Glucose - .10.0 g Peptone 10.0 g - MgSOr¯7H20 0.5 g FeCl3 0.002 g K2HPO4 7,0 g KN03 10.0 g Agar 15 g Distilled or deionized water To make 1 liter The mixture was boiled for one minute, dispensed in tubes and sterlized at 15 psi for 15 minutes. Paracoccus denitrificans (ATCC 19367) was streaked on the storage agar prepared above. The agar was maintained at 33 + 20C for 48 hours. The resultant slopes were stored no longer than 21 days at 0-50C. B. PREPARATION OF NITRATE BROTH Nitrate broth was prepared according to the following formulation: KH2P04 5.2 g K2HPO4 10.7 g MgSO#.7H20 0.2 g NH4C1 1.0 g FeCl3 0.002 g Glucose 10.0 g KN03 10.0 g Water - To make 1 liter The medium was sterilized in an autoclave at 15 psi for 15 minutes and cooled prior to inoculation. C. TOBACCO EXTRACT BROTH A tobacco extract broth containing soluble burley tobacco components was prepared according to the following procedure. One hundred grams of burley tobacco strip was extracted with 1 liter of distilled water at 0-50C for 24 hours.. After expressing through 4 layers of cheesecloth, the following nutrients were added to the tobacco extract: KH2P04 5.2 g K2HPO4 10.7 g MgS04¯7H20 0.2 g NH4Cl 1.0 g FeC13 0.002 g Glucose 10.0 g Water To make 1 liter The final broth should contain between 100-2500 ppm nitrate-nitrogen. Following sterlization in an autoclave at 15 psi for 15 minutes, the pH was adjusted to 7.0 using sterile 2N KOH. D. INOCULUM BUILD-UP Paracoccus denitrificans cells from 48-hour old agar slants prepared in Step A, were transferred into 250 ml of sterile nitrate broth (Step B) in a 1 liter fermentation flask. The mix ture was sparged with nitrogen and maintained at 350C for 24 hours with rotary agitation at 60 rpm. The resultant culture was used to inoculate fresh nitrate or tobacco extract broth. Transfers in this manner were repeated at least five times. After the fifth transfer, cells were harvested by centrifugation and resuspended in nitrate broth. This culture was then used to inoculate 10 liters of nitrate broth to give an initial concentration of approximately l x 107 cells per milliliter. The fermentor used was a New Brunswick Scientific Company, Modular Microferm Bench Top Fermentor-Series MF-114 equipped with a pH recorder-controller and dissolved oxygen recorder-controller. The starting dissolved oxygen (DO) was 5 ppm; neither nitrogen gas nor air were sparged during the fermentation. The DO was totally depleted in the first 15 minutes. After approximately 24 hours, 95% of the nitrate was reduced. Total nitrogen content was also reduced. The nitrate-nitrogen content was determined using a Technicon Autoanalyzer II system with a modification of the procedure as published by L. F. Kamphake et al., International Journal of Air and Water Pollution, 1, 205-216, 1976. Total nitrogen content was determined by Kjeldahl digestion using a Technicon Block Digestor followed by an Autoanalyzer readout of ammonia by the Berthelot reaction. Fermentation conditions and results are shown below. FERMENTATION CONDITIONS Time: 24 hours. Temperature: 350C + 0.20C. pH: 7.0-7.2 maintained by automated acid-base additions using sterile 2N KOH or 2M acetic acid Agitation: 100 rpm Inoculum: 1 x 107 cells per milliliter - initial concentration DO: initial of 5 ppm; no control of DO was used. Table 2 Results 0 Time .24 Hours NO3-N (ppm) 1416 78 Total -N (mg/ml) ¯ 1.06 0.15 Glucose (mg/ml) 11.0 3.7 Example 2 A tobacco extract containing 2600 ppm soluble nitratenitrogen was placed in a MF 114 Microform fermentor (New Brunswick Scientific Company) equipped with pH and dissolved oxygen monitors and controllers. To the extract were added on a g/l basis, 1.0 g NH4C1, 0.2 g MgSO4.7H#0,.l0 9 glucose, 0.002 g FeCl3, 10.7 g K2HPO4, and 5.2.g KH2PO4. The mixture was sterilized at 15 psi for 45 minutes, cooled, and inoculated with Paracoccus denitrificans as. prepared in Example 1(D). The initial concentration of micro- organisms was approximately 1 x 107 cells per milliliter. FERMENTATION CONDITIONS Temperature: 350C Initial pH: 7.0 pH: 6.8-7.2 controlled with either sterile 2N KOH or 2M acetic acid Agitation: 200 rpm DO: 0.-0.5 ppm Sparge: N2 gas controlled by DO moniter and controller Time: 72 hours Analytical results are tabulated in Table 3. Table 3 Tobacco Extract NO,-N(ppm) NO2-N(ppm) Total-N (ppm) O Time 2600 N.D.* 4800 72 Hours < 10 N.D. 2200 *Not detectable , Example 3 In a similar manner to Example 2, a tobacco extract was prepared having a nitrate-nitrogen content of800 ppm. following addition of the buffering salts and nutrients as in Example 2, the mixture was sterilized and inoculated with a suspension of Paracoccus denitrificans grown in a nitrate broth as described in Example l(D) to give an initial concentration of approximately 3 x 107 cells per milliliter. Fermentation conditions were identical to Example 2. The 'results are tabulated in Table 4 below. Table 4 Tobacco Extract NO#'-N(ppm) NO;-N(ppm) Total-N (ppm) O Time - 1800 N.D. 3820 24 Hours < 10 N.D. 2000 Example 4 In a similar manner to Example 2; a tobacco extract was prepared having a nitrate-nitrogen content of 2000 ppm. Following addition of the buffering salts and nutrients as in Example 2, the mixture was sterilized and inoculated with a suspension of Paracoccus denitrificans grown in a nitrate broth as described in Example 1(D) to give an initial concentration of about 3 x 107 cells per milliliter. FERMENTATION CONDITIONS Temperature: 350C Initial pH: 7.0 pH: 6.8-7.2 controlled with either sterile 2N KOH or 2M acetic acid Agitation: 300 rpm DO: 0-0.5 ppm Sparge: Helium gas. sparged at 200 ml/minute (continuously) Time: 24 hours The results are tabulated in Table 5 below. Table 5 Time N03- -N (ppm) NO#-N(ppm) Total-N (ppm) O Time 2000 N.D. 3700 24 Hours < 10 N.D. - 1800 Example 5 Burley tobacco components including (1) filler, (2) stems, (3) strip, and (4) fines were placed in individual flasks. Nutrients and buffering salts were added in the following amounts based on a total final volume of 1 liter: 10,7 g K2HPO4, 5.2 g KH2P04; 0.002 g FeCl3; 0.2 g MgS04#7H2O, 1.0 g NH4C7, and 10.0 g glucose. Following sterilization for 45 minutes at 15 psi, the contents of each flask were inoculated with Paracoccus denitrificans broth as prepared in Example 1 to give an initial concentration of about 3 x 10' cells per milliliter. FERMENTATION CONDITIONS Temperature: 350C Initial pH: 7.0 Agitation: 60 rpm DO: < 0.5 ppm Sparge: N2 gas - intermittent Time: 24¯ hours The results are tabulated in Tables 6, 7, and 8. Table 6 NO3-N X NO3-N (mg/g tobacco) Reduction Stem 5Z (W/V) O Time 38.5 - 24 Hours N.D. 100 Fines SX (W/V) O Time 38.5 - 24 Hours N.D. 100 Table 7 Total-N NO3 -N NO2 -N (mg/g tobacco) (mg/g tobacco) (mg/g) Tobacco Filler O Time 40.4 19;3 N.D. 10% (W/V) 24 Hours 23.4 N.D. N.D. Strip O Time 40.4 17.9 N.D. 10% (W/V) 24 Hours 21.6 N.D. N.D. Table 8 NO3-N X N03-N (mg/g tobacco) Reduction Tobacco Filler O Time 19.55 - 20X (W/V) 24 Hours 14.38 26.5 - 48 Hours 0 100 Strip O Time 21.28 - 20% (W/V) 24 Hours ¯ 7.94 62.7 48 Hours 0 lOO Example 6 An aqueous effluent sample containing 1360 ppm nitratenitrogen was adjusted to pH 7.0 with 2M K2HPO4 and 2N KOH. Two hundred and fifty milliliter aliquots of the buffered effluent samples were placed in two l-liter flasks; Into one flask was added 0.25 g,NH4CI, 0.05, g MgS04#7H20, 0.0005 g FeCl3, and 2.5 g glucose. No nutrients were added to the other flask. Both flasks were autoclaved at 15 psi for 45 minutes, cooled, and inoculated with Paracoccus denitrificans to give an initial concentration of about 1 x 107 cells per milliliter. The flasks were sparged for five minutes with oxygen scrubbed nitrogen gas, and then placed in a rotary shaking water bath. The flasks were agitated at 80 rpm for 16 hours at 350C. The results are tabulated in Table 9 below. Table 9 X NO3-N NO3-N (ppm) Reduction Buffer only 0 Time 1360 16 Hours 320 76.4% Complete system 0 Time 1360 16 Hours < 1
' ' CE,P.:LMS 1. A process for denitrification of nitrate-nitrogen from tobacco materials, extracts or processing effluents, comprising the steps of: (a) contacting the tobacco material, extract or effluent with an inoculum of denitrifying microorganisms to provide an initial concentration of the microorganisms effective to reduce nitrate-nitrogen by dissimulatory denitrification in which nitrogen gas is formed; and (b) maintaining the tobacco material extract or effluent in contact with the microorganisms for a period and under conditions to promote fermentation and achieve a substantial degree of denitrification, 2. A process according to claim l in which the tobacco material, extract or effluent is maintained in contact with the microorganisms for a period of about 12 to 72 hours, at a temperature of about 20 C to about 400C, a pH within the approximate range from 6 to 8, and simultaneously maintaining the dissolved oxygen content at no more than about 3 ppm. 3. A process according to claim 1 or 2, wherein the tobacco material is tobacco stems, strip, shreds, or fines. 4. A process according to claim 1, 2 or 3, wherein tobacco material is extracted with water to produce an aqueous tobacco extract having a nitrate-nitrogen content of from 10 ppm to 3000 ppm, and the extract is then contacted with the microorganisms. 5. A process according to claim 1, 2 or 3, wherein the tobacco material is suspended in water to form a slurry having a concentration of S to 40% solids by weight and the microorganisms are then added to the slurry. 6. A process according to claim 5, wherein the slurry is formed having a concentration of about 5-20% solids by weight. 7. A process according to claim l or 2 wherein an effluent stream having a nitrate-nitrogen content of at least 10 ppm is treated. 8. ?. process according to any of claims 1 to 7, wherein the denitrifying microorganism is Paracoccus denitrificans
PHILIP MORRIS INCORPORATED
SEMP, BERNARD ALBERT; TENG, DANIEL MING-YI
EP-0005084-B1
5,084
EP
B1
EN
19,850,731
1,979
20,100,220
new
B21D22
B21D37
B21D22
B21D 22/28
APPARATUS FOR DRAWING AND IRONING CONTAINERS
A drawing and ironing machine consists of a redraw assembly, at least one ironing assembly and a stripper assembly arranged in series and each having a ring having a opening to define a path for a punch. A cup holder sleeve (20) cooperates with the redraw assembly (26) to hold a cup (12) while it is forced through the redraw assembly (26) by the punch (24) which also cooperates with a domer assembly at the end of its path to reshape the end wall of the cup (12). Each of the rings (26, 232, 300, 310) are spring biased to a centered position by circumferentially spaced spring assemblies (70, 244) that accommodate radial movement of the ring with respect to the path. The cup holder sleeve (20) is also movable radially of the path and tiltable axially of the path while the domer assembly has a domer element which is also spring biased to a centered position. The various assemblies also have surfaces that cooperate with a surface on the frame that accommodate radial movement and have a fluid supplied thereto to reduce friction between the surfaces.
Apparatus for Drawing and Ironing Containers Description Technical Field The present invention relates generally to can making machines and more specifically to an improved floating arrangement for various components of a drawing and ironing machine. In the formation of a two-piece container, it has been customary to utilize a plurality of die assemblies that cooperate with a punch for converting circular metal discs into finished containers which have a sidewall and an integral end wall. One of these processes consists of originally drawing a circular metal disc into a cup utilizing what is commonly referred to as a cupping machine. The cup is then transferred to a bodymaker wherein the cup is converted into the finished container. In one process, which is being used commercially, the preformed cup is first redrawn to a smaller diameter and larger height and then is substantially simultaneously converted to an ironed container wherein the sidewall thickness is reduced in one or more steps. One type of such commercial machine is produced by Ragsdale Bros., Inc. and is identified as a Model CE-24 canwall drawing and ironing press. Normally the material for such containers is either aluminum or tinplate. In such a process, a punch normally cooperates with a plurality of ironing dies and the stroke of the punch is fairly long in order to produce conventional 12 and 16 ounce containers. The length of the stroke of the punch for the bodymaker or press has heretofore created substantial problems in producing a satisfactory container which has a uniform wall thickness in the sidewall thereof. One of the problems encountered has been in maintaining all of the elements in very accurate alignment with respect to each other in order to produce a finished container which has a uniform wall thickness around the entire perimeter thereof and also the entire length thereof. Background Prior Art In order to alleviate some of the problems in maintaining accurate alignment between the various dies and the punch, several proposals for producing floating ironing dies have been proposed. For example, British Patent No. 724,251 published February 16, 1955 discloses a method of supporting ironing dies that will accommodate movement of the dies with respect to the punch but will also provide a self-centering feature which theoretically will reposition the die to a predetermined position whenever all external forces have been removed. The particular arrangement for accomplishing the self-centering and floating feature in the assembly disclosed in the British patent consists of cooperating inclined surfaces between the ironing die and its support mechanism with a biasing mechanism which will automatically center the ironing dies with respect to a predetermined axis whenever external forces are removed. The biasing mechanism in this patent has been illustrated as either consisting of an elastomeric member or rubber ring which produces a centering action between an ironing die and a cooperating support. Alternatively, the centering means in the disclosed patent also shows the use of springs that cooperate with the ironing die and the support to center the ironing die with respect to a predetermined axis. However, such arrangement has not been too successful in accurately returning the ironing die to a centered position after being moved away from the centered position. One additional problem that has been encountered in the formation of two-piece drawn and ironed containers has been encountered when the cup is initially formed and then is redrawn just prior to the ironing of the sidewall. In a redraw operation just prior to the ironing of the sidewalls of the cups, it is customary to hold the cup through what may be termed a cup holder sleeve in an accurate position with respect to the redraw ring just prior to the punch entering into the cup and forcing the cup through the redraw ring. It has been found that, under certain conditions, the cup holder sleeve is not accurately centered, while applying uniform hold-down pressure on the cup to hold the cup in a fixed position with respect to the redraw ring. This will produce an uneven redrawn cup which can produce a tearoff of the longer end either in the redraw state or in subsequent ironing stages. It has also been found that when there is no accurate alignment between the punch and the redraw ring which reshapes the cup, the wall thickness of selected portions of the cup may be reduced during the redraw process which results in ultimately having varying thicknesses in different portions of the sidewall of the finished container. It has also been determined that if the cup holder sleeve face does not apply a uniform pressure to the cup it may wrinkle in selected areas during the redraw application. A further problem has also been encountered in insuring that the domer assembly and stripper assembly are accurately aligned with the punch as the end wall is reformed and the partially finished container is stripped from the punch. Summary of the Invention The present invention is particularly adapted for a drawing and ironing machine that includes a frame which has a redraw assembly, at least one ironing assembly and a stripper assembly arranged in series, and each having an opening to define a path with a punch movable along the path through the openings. A cupholder sleeve assembly has an axial bore adapted to receive the punch and cooperates with the redraw die assembly to hold a cup while the cup is being forced through the redraw die assembly and through the respective ironing assemblies. A domer assembly is also located at the end of the path of the punch and reforms the end wall of the cup after it has passed through the respective assemblies and the stripper assembly engages the upper free edge of the partially finished container to strip the container from the punch as the punch is withdrawn through the respective assemblies. According to the present invention, at least one of the redraw, ironing or stripper assemblies is designed to accommodate radial movement of the center of the opening through which the punch passes in order to accommodate any misalignment between the punch and the openings in the various assemblies. The domer assembly is likewise movable radially of the path for the punch to insure that the center of the domer is centered with respect to the axis of the punch. The primary aspect of the invention is the fact that the ironing dies are radially movable with respect to the path for the punch and are automatically returned to a centered position by circumferentially spaced centering spring means. The ironing dies are supported on an air float to reduce friction and lubri cant is supplied to the opening in the die. According to one aspect of the present inven tion, a cup holder sleeve assembly is designed to be capable of allowing the cup holder sleeve to automati cally be moved radially with respect to the axis of a drawing and ironing machine and also be capable of being tilted with respect to the axis to accommodate accurate positioning of the cup holder sleeve face with respect to the surface of the redraw ring and accur ately position the cups with respect to a ring and apply uniform pressure to the cup. More specifically, the cup holder sleeve assembly includes a support having an opening therein with a zrecesw extending from the periphery of the opening and a cup holder sleeve and support element having portions received into the recess of the support. The support element and cup holder sleeve are normally maintained in a centered position with respect to the opening in the support by centering springs which accommodate radial movement of the support element and the cupper sleeve. The cup holder sleeve and support element have cooperating spherical surface segments that are normally maintained in engagement with each other through further hold-down springs which accommodate tilting of the axial bore in the sleeve with respect to the axis of the aperture in the support element. Lubricating means are provided for supplying lubricant between the cooperating spherical surface segments on the support element and the cup holder sleeve as well as the supporting surfaces between the support element and the support which accommodates radial movement of the support element and cup holder sleeve within the support. According to a further aspect of the present invention, the redraw die assembly has a redraw die that is floatingly mounted with respect to the axis of the punch associated therewith so as to be movable in a radial plane with respect to the axis of the punch as well as the axis of the cup holder sleeve and the assembly is normally held in a centered position with respect to the path for the punch by biasing springs that cooperate with the periphery of the assembly. The assembly includes a support and a redraw ring carried by the support and also preferably includes an enlarged nesting ring which acts as a pilot for receiving and accurately positioning the cup with respect to the redraw ring. The redraw die assembly also incorporates lubricating means for supplying lubricant to the inner face between the redraw ring and the cup to reduce the frictional forces and produce a cup having a better finish. The lubricating means consists of an annular lubricating channel within the support surrounding the nesting ring with the channel being in communication with the opening in the ring through a plurality of circumferentially spaced flow paths which have their inner ends terminating non-radially with respect to the center of the opening in the ring. This arrangement creates a swirling or vortex flow for the lubricant fluid to the opening in the ring during the redraw operation and also cools the redraw ring during the remainder of the cycle. The redraw ring assembly also is supported on a fluid bearing within the frame for the assembly to reduce frictional forces and aid in accommodating radial movement of the assembly with respect to the path. According to a further aspect of the invention, the stripper assembly of the drawing and ironing assembly is also mounted for radial movement with respect to the path and is again centered with respect to the path by centering springs that cooperate with the periphery of the assembly and is supported on a fluid bearing. The domer assembly includes a support that has a recess with the base of the recess defining a support surface. A carrier element is located in the recess and has a cooperating surface which engages the bottom of the recess and both the carrier and the recess in the support are circular with the recess being enlarged so as to accommodate movement of the carrier element in all directions along a plane which extends perpendicular to the path of movement of the punch. The domer assembly also includes supply means for introducing a bearing fluid between the two surfaces with biasing means between the support and the carrier element which normally maintain the surfaces in a predetermined position with respect to each other and accommodate radial movement of the carrier element within the recess. The biasing means or springs are positioned such that the domer member or element supported on the carrier is always returned to the predetermined position whenever external forces are removed from the assembly. According to one aspect of the invention, the support also includes prestressing means for prestressing the springs located between the support and the carrier element so that the carrier element is always returned to a predetermined position with respect to the path or axis of the punch regardless of variations in spring forces being applied by the respective springs. The prestressing means consists of a ring which surrounds a reduced-portion of the carrier element and is spaced therefrom but is fixedly secured in a predetermined position with respect to an enlarged portion of the carrier element. The springs, which are equally spaced circumferentially around the periphery of the reduced portion, are biased into engagement with the inner surface of the positioning ring and also engage a sidewall of a reduced portion of the recess. Brief Description of the Several Views of the Drawings Fig. 1 schematically illustrates a fragmentary sectional view of a drawing and ironing machine into which the present invention can be incorporated; Fig. 2 is an enlarged plan yiew of the cup bolder sleeve support with portions thereof broken away for purpose of clarity; Fig. 3 is a fragmentary sectional view, as viewed along line 3-3 of Fig. 2; Fig 4 is a fragmentary sectional view, as viewed along line 4-4 of Fig. 2; Fig. 5 is an enlarged fragmentary sectional view similar to Fig. 3 showing the details##of#tbe#redraw and ironing die assemblies; Fig. 6 is an enlarged fragmentary sectional view similar to Fig. 3 showing the details of the stripper assembly; Fig. 7 is an enlarged fragmentary plan view, as viewed along line 7-7, showing part of the redraw assembly; and Fig. 8 is an enlarged fragmentary sectional view similar to Fig. 3 showing the details of the domer assembly. Detailed Description While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated. Fig. 1 of the drawings schematically illustrates selected portions of a bodymaker 10 used for converting a cup 12 into a finished container 14. Bodymaker 10 includes a cup holder sleeve 20 which has an axial bore 22 therein through which a punch 24 is adapted to be moved. Punch 24 is axially aligned with path P and is movable along a path P which has a plurality of die assemblies in a support 30. The first die assembly consists of a redraw ring assembly 26 and the other die assemblies are ironing ring assemblies 28. Before the stroke of punch 24 and cup holder sleeve 20 is initiated, a cup 12 is generally aligned with redraw ring 26 through a cup locating mechanism (not shown) and cup holder sleeve 20 is then moved axially generally to the position illustrated in Fig. 1 to hold the cup 12 in a fixed position with respect to redraw ring 26. Punch 24 is then moved axially through bore 22 to force the cup initially through the redraw ring 26 wherein the cup diameter is decreased and the cup height is increased and subsequently through the ironing rings 28 which cooperate with the peripheral surface of punch 24 to reduce the sidewall thickness of cup 12. After the cup has been passed through the respective rings, the lower end of the punch, which is generally dome shape in cross section, cooperates with domer 34 to reform the bottom wall of the cup and produce a finished container. During the return stroke of punch 24, stripper assembly 32 engages the upper free edge of finished container 14 to strip the container from the punch. As was indicated above, one of the problems encountered in producing satisfactory containers utilizing a process described above, is to maintain accurate alignment of all of the various parts at all times. Any misalignment of any of the elements by even as little as one ten-thousandths of an inch will result in having a finished container which has a sidewall of uneven thickness. One of the most critical initial areas in the above described process is to make sure that the cup is accurately positioned with respect to the redraw ring and uniform hold-down pressure is applied to the cup before the drawing and ironing process is initiated. For practical considerations, a clearance must be maintained between the periphery of punch 24 and the inner surface of cup holder sleeve 20. Therefore, the punch cannot be utilized for aligning the cup holder sleeve with respect to the axis of the punch which is presumed to be aligned with the center of the opening in redraw ring 26. Therefore, in cases of jams, the large unsymmetrical forces that are developed in the system may force the cup holder sleeve out of alignment with the axis of punch 24 and redraw ring 26. The result may be that the sleeve remains permanently misaligned after a jam and may become exaggerated during subsequent jams. According to one aspect of the present invention, cup holder sleeve 20 is mounted for universal movement with respect to the path P to facilitate tilting and radial movement during a jam while still remaining aligned after a jam. As most clearly illustrated in Fig. 3, cup holder sleeve 20 is supported in a cup holder sleeve support 40 which consists of first and second members 42 and 44 which have cooperating threads 46 to be assembled with respect to each other, for a purpose that will be described later. Support 40 has a substantial circular opening 48 therein which is aligned with the circular opening 50 that is defined in the redraw ring 26 and the centers of these openings are located along the path P of punch 24. Members 42 and 44 cooperate with each other to define a recess 52 extending from the periphery of opening 48 and recess 52 has a shoulder 54 which extends substantially radially from the axis of opening 48. A support element or cup holder sleeve support member 60 has a peripheral portion 62 which is received into recess 52 and also has a contiguous cooperating surface 64 which is in engagement with shoulder surface 54. Support element 60 also has a circular aperture 66, therein, which is generally of the same size as bore 22 in cup holder sleeve 20. According to one aspect of the invention, cup holder support element 60 and cup holder sleeve 20 are normally centered with respect to opening 48 through centering means which will now be described. In the illustrated embodiment, the centering means consists of four circumferentially spaced biasing means 70 that are equally spaced from each other around the perimeter of the substantially circular support 40. The respective biasing means 70 are spaced approximately 90 degrees from each other and produce equal forces around the perimeter of support element 60 to maintain the support element in a centered position with respect to the circular support 40 more particularly opening 48. The respective biasing means 70 are identical in construction and only one will be described in connection with Figs. 2 and 3. Each biasing means 70 consists of a spring 72 that has one end received into a cup 74 which has an annular shoulder 76 cooperating with an enlarged portion 78 of a radial opening in support 40. The opposite end of spring 70 engages the inner surface of a support ring 80 which forms part of support 40. The springs 72 are selected so as to produce an equal force and cup 74 is designed so that the inner surface thereof is in engagement with the periphery of support element 60 as illustrated in Figs. 2 and 3. The cups 74 are all accurately dimensioned so that when the shoulders 76 engage with support 40, the free ends of the cups are on a common circle which has a diameter that is equal to the peripheral diameter of the support element 60. However, if external forces are applied to cup holder sleeve 20 which may result from a misfed cup or a defective cup, the springs will accommodate radial movement to prevent permanent misalignment between opening 48 and redraw ring 26. When the external forces are removed the springs which were compressed will return the sleeve to a centered position. The centering means or biasing spring 70 will, therefore, always accurately position support element 60 in a centered position with respect to opening 48 which is accurately centered with opening 50. According to a further aspect of the invention, the axis of bore 22 of cup holder sleeve 20 can also be tilted with respect to the path P if there is a misfed cup to apply a uniform hold-down pressure at all times. For this purpose, support element 60 has an arcuate or spherical surface segment 90 on the lower surface thereof surrounding aperture 66 and the concave surface segment 90 cooperates with a convex surface segment 92 defined on an enlarged portion 100 on the upper end of cupper sleeve 20. The cooperating surface segments 90 and 92 will accommodate movement of the lower free end of cup holder sleeve 20 to allow the cup holder sleeve to assume an angular position wherein the axis of bore 22 is axially aligned with the axis of punch 24. The centers of spherical surface segments 90 and 92 are located at a point 95 which is located on path P. Flat surfaces 54 and 64 and spherical surfaces 90 and 92 are normally held in engagement with each other through biasing means that cooperate with support 40 and cupper sleeve 20, as well as support element 60. For this purpose, enlarged portion 100 of cup holder sleeve 20 is received into recess 52 and spring biased tabs 102 are received in recesses 103 and cooperate with the lower surface of enlarged portion 100 for biasing the various surfaces into engagement with each other. More specifically, each tab (there being four equally spaced around the perimeter of support 40) has a cup 104 secured thereto as by welding and a hold-down spring 106 is telescoped into the cup. Cup 104 is received in an opening 108 in member 42 and one end of the spring engages the surface on member 44 which forms part of support 40. The base of each recess 103 in member 42 defines an accurate space between the tab and surface 54 and such spacing will be maintained even when the spring forces for the respective springs are different. Thus, each tab 102 is biased into the position illustrated in Fig. 3 wherein the axis of aperture 66 and the axis of bore 22 are aligned with the axes of openings 48 and 50. However, should there be a need for having the cup holder sleeve 20 tilted with respect to the path P of punch 24, the tabs will allow a certain amount of tilting movement of the sleeve 20 with respect to support element 60. According to a further aspect of the invention, the various surfaces which are moved relative to each other are continuously lubricated through lubricating means which will now be described. The lubricating means is most clearly illustrated in Fig. 4 and consists of an opening 110 in member 42 which has a threaded exterior portion 111 to which a source of pressurized lubricant may be connected. The inner end of opening or bore 110 is in communication with a continuous circumferential recess 112 that is defined in shoulder surface 54 of member 42. The recess 112 extends around the entire perimeter of surface 54 and is also in communication with a second continuous recess 120 in surface 90 through one or more small openings 122. Therefore, a continuous flow of fluid from a source (not shown) through opening 110 will provide a constant supply of lubricant between the relatively movable surfaces of the cup holder sleeve assembly. This arrangement substantially reduces the frictional forces that must be overcome when the various elements have to be moved with respect to each other. Of course, the continuous supply of lubricant to these relatively movable surfaces will also substantially reduce the wear of the overall assembly. According to another aspect of the present invention, redraw die assembly 26 is mounted on support 30 in a manner that allows radial movement of the assembly with respect to the normal path of movement P of punch 24 to allow the assembly to be moved to a centered position with respect to the axis A of punch 24, should the punch be offset from the path P. As illustrated in Fig. 5, redraw die assembly 26 includes a support 230 which supports a redraw ring 232 that has a circular opening 234. Support 230 has a lower flat surface 236 which extends perpendicular to path P and is in extended engagement with a flat surface 238 that is defined in frame structure 225. The periphery of support 230 is preferably circular, and centering means 240 cooperate with the periphery of support 230 to normally maintain support 230 and ring 232 centered with respect to path P. The centering means 240 consists of an annular ring 242 which is held in a fixed position on frame 225 and has a plurality of circumferentially spaced spring assemblies 244 associated therewith. Preferably, at least four such spring assemblies 244 are circumferentially equally spaced around the perimeter of support 230 and each spring assembly 244 includes a plunger 246 reciprocated in an opening 247 extending into the inner surface of ring 242. Plunger 246 has an enlarged flange 248 located in a cup 250 with a spring 252 also located in cup 250 which biases plunger 246 into engagement with the periphery of support 230. Normally, all plungers 246 are biased to a position illustrated in Fig. 5 wherein the flange 248 of each plunger 246 is in engagement with a surface of ring 242 around opening 247. This arrangement defines an extremely accurate centered position of the opening 234 with respect to path P. However, should there be any misalignment between the axis of the punch and path P, one or more of the springs 252 will be compressed and support 230 moves radially of path P to allow the axis of opening 234 to be aligned with the axis of the punch. During such radial movement, only a selected number, less than all, of the springs 252 are compressed, while the remaining springs located on the side opposite the direction of movement of support 230 will remain in their prestressed condition illustrated in Fig. 5. This arrangement insures that there is no resistance to having the die ring moved to a centered position with respect to path P after a cup has been forced through redraw ring 232 by punch 24. This arrangement also eliminates the possibility of having the redraw assembly off-center with respect to path P because of varying forces applied by the respective springs. According to another aspect of the invention, a fluid bearing is interposed between cooperating surfaces 236 and 238 to reduce the friction forces that must be overcome to allow radial movement of support 230 with respect to path P. For this purpose, support surface 236 has one or more annular recesses 260 defined therein and recesses 260 are in communication with a bore 262 which is defined in frame 225. A supply of pressurized fluid, such as air, is connected to the inlet end of bore 262 and is delivered to the respective annular recesses 260. Since the only exit from recesses 260 is along the surfaces 236 and 238, the fluid will act as a bearing surface to tend to separate these surfaces when external forces are applied to the redraw die assembly which will assist in allowing the opening 234 to move to a predetermined centered position with respect to punch 24. According to a further aspect of the invention, the redraw die assembly also includes a centered mechanism for centering the cup 12 with respect to redraw ring 232 prior to having the punch enter the cup. This centering mechanism consists of a resting ring 266 that has ar. opening 268 which is larder than opening 234. Nesting ring 266 is held in a fixed position with respect to redraw ring 232 through a support ring 270 which is held in a fixed position with respect to support 230 by sc::ews 272 and thus forns a part of support 230. The diameter of opening 268 is subsra & 7 tially equal to the peripheral diameter of cup 12 as it is received by the redraw die assembly and is larger than the diameter of opening 234 so that a portion of the surface of ring 232 is exposed. Thus, as the cup holder sleeve enters cup 12 and moves towards redraw die assembly 26, the nesting ring 266 aids in centering the center of the cup with respect to the center of redraw ring 232 before punch 14 enters sleeve 20. This movement is in part assured by the fact that the lower peripheral end of cup 12 normally has a radiused portion 274 and the radiused portion will aid in guiding the periphery of cup 12 into opening 268 of centering ring 266. Of course, if there is axial misalignment between the center of openings 268 and 234 with respect to the center or axis of cup 12, biasing means 240 will allow the entire redraw die assembly to move radially with respect to path P. The diameter of bore 22 in sleeve 20 is slightly larger than the diameter of punch 14 so that redraw die assembly 26 and sleeve 20 with cup 12 clamped between them can move radially and the center of opening 234 will align with the axis of punch 14. According to a further aspect of the invention, the nexting ring 266 also incorporates means for supplying lubricant between the exposed surface of redraw ring 232, which initially supports the cup and the adjacent surface of cup 12. As most clearly illustrated in Fig. 7, the lower surface of support ring 270 has an annular recess 280 defined therein and recess 280 is closed by a surface of support 230 to produce a channel. The channel is in communication with the periphery of support 230 through openings 282. A pressurized lubricant is supplied to openings 282 through an opening 284 in frame 225. Annular recess or channel 280 is in communication with opening 268 through a plurality of non-radial recesses 288 in one surface of nesting ring 266 and recesses 288 are circumferentially spaced around the perimeter of opening 268. The recesses are closed by adjacent surfaces of support 230 and redraw ring 232 to produce flow paths. As illustrated in Fig. 7, all of the recesses or flow paths are generally linear and the axes of the flow paths are radially offset from the center of opening 268 in nesting ring 266. This arrangement insures that there is non-radial flow of the fluid from channel 280 through flow paths 288 into opening 268. Also, the radiused peripheral lower edge 274 of cup 12 (Fig. 5) will cooperate with the upper exposed surface of redraw ring 232 and the annular inner surface of opening 268 to produce a small channel for lubricant flow around the perimeter of the cup to all areas of the exposed surface of redraw ring 232. Thus, the lubricant that is received into annular recess 280 flows through the respective recesses 288 into the channel created by the radius portion 274 and results in a circumferential flow of the lubricant within the channel during the redraw operation. Stated another way, the non-radial recesses or slots 288 distribute the lubricant, which also acts as a coolant, in a vortex pattern across the redraw die surface during the redraw operation. The lubricant also cleans and cools the redraw die surface after the cup has been redrawn. Each of the ironing assemblies 28 is generally identical in construction and again provides a floating arrangement for the ironing ring to accommodate radial movement of the ironing ring with respect to the path P and thereby insure more uniform wall thickness of the finished container. The details of one ironing assembly are illustrated in Fig, 5 and include an ironing die 300 that has a land 302 which cooperates with the peripheral surface of the punch 24 to reduce the sidewall thickness of a cup as it passes through the ironing die 300. Ironing die 300 is supported in a circular support 304 which has a recess 306 for receiving and supporting die 300. In the illustrated embodiment, the ironing die assembly also has a locator die 310 supported on a circular plate 312 which acts as a guide for the cup as it leaves the ironing die 300. Support 302 and plate 312 have a peripheral band 314 engaging the peripheral surfaces thereof so that the ironing die and locator die 300 and 310 move as a unit when external forces are applied thereto. The lower surface 320 of support 312 is in sliding contact with a radial surface 322 defined on a support structure 324 for the ironing die. Likewise, the upper surface 326 of upper ironing die support 302 is in sliding contact with a radial surface 328 that is also part of the support 324. The entire ironing die assembly 28 is again maintained in a predetermined position by a plurality of centering means 330 that are circumferentially spaced around the peripheral surface of ring or band 314 and are carried by support 324. Each centering means or spring assembly includes a cup 332 that has a base thereof in juxtaposed relation to the peripheral surface of band 314 and has a radially extending flange 334 at the opposite open end thereof. A spring 336 is telescoped into the cup and the outer end thereof engages a cover portion 338 that is removably secured to support 324 through suitable retaining means 340. Again, preferably there are four such spring assemblies 330 equally spaced at 90 degrees around the perimeter of band 314 and are dimensioned such that when flanges 334 engage adjacent shoulders defined on the support 324 the ironing land 304 is accurately centered with respect to the path of punch 24. However, if the center of the opening defined by land 304 is slightly offset with respect to the axis of the punch 24, at least some, but not all, of the spring assemblies will be compressed and allow radial movement of the entire die assembly 28 to center the land opening with respect to the punch and insure a uniform wall thickness for the finished container. Again, in order to reduce friction and accommodate this radial movement, a fluid bearing is interposed between surfaces 320 and 322 and consists of annular recesses 346 that are in communication with an air supply through one or more openings 348. While only one such die assembly has been disclosed, it will be appreciated that in most instances more than one ironing die assembly will be used so that a sidewall of a cup will be reduced in thickness in stages to increase the overall efficiency of the system. Accoring to a further aspect of the present invention, stripper assembly 32 is also designed to accommodate radial movement of the assembly with respect to path P during a drawing and ironing operation. The stripper assembly 32 is illustrated in greater detail in Fig. 6 and includes a stripper support element 410 that has an enlarged portion 412 received into a recess 414 defined in support 425. A plurality of pivoted jaws 416 are located around the perimeter of path P and the lower edges of jaws 416 cooperate to define an opening 418 through which the finished container and punch 24 pass during the last part of the stroke of a drawing and ironing process. The respective jaws or segments 416 are held in a predetermined position through a resilient support member 422 and support ring 423 as well as an elastomeric member 424 as illustrated in Fig. 6. The jaws are biased to a position wherein the opening 418 is slightly smaller than the peripheral diameter of the finished container which passes therethrough. Thus, as the container and punch pass through opening 418, the lower edges of pivoted jaws 416 are moved outwardly slightly to accommodate the movement of the container therethrough. However, after the upper free edge of the container moves beyond the lower edge of the pivoted jaws 416, the jaws will move inwardly into the path of return movement of the upper free end of the container. Stripper assembly 32 is again held in a centered position with respect to path P through biasing means 430 which can be identical to the biasing or centering means 240 described above. Thus, should for any reason, the axis of punch 24 with the finished container on it be offset somewhat from path P during the downward movement of the punch and container, the biasing means 430 will again accommodate radial movement of the entire stripper assembly with respect to path P to insure that there is no substantial interference between the container and the stripper jaws. Again, support 410 and frame 425 have flat radially extending cooperating surfaces that accommodate such radial movement. This arrangement insures that all of the jaws are located in the same position with respect to the periphery of the punch. This insures that the jaws which engage the free edge will engage across the entire width of the edge for more reliable stripping and less damage to the free edge. As illustrated in Fig. 6, the lower surface of enlarged portion 412 has a flat annular surface 432 which is supported on an annular flat surface 434 that is defined on frame structure 425. Frame structure 425 also has an upper annular surface 436 which cooperates with flat upper surface 438 of support member 410. It has been found that the use of the floating redraw ring and stripper in combination with the plurality of floating ironing assemblies and the floating redraw assembly substantially increases the productivity of a bodymaker of this type and produces containers that have a better finished appearance and have a uniform wall thickness throughout the entire diameter of each container as well as throughout the length thereof. As was indicated above, one of the problems in producing satisfactory containers utilizing a process such as that described above, is to maintain extremely accurate alignment between the axis of punch 14 and the center or axis of domer assembly 34. Any misalignment of these two elements with respect to each other by even a small increment will result in a defect in the end wall of the container which in turn will impair the strength of the container. According to the present invention, the domer assembly 34 is constructed in such a fashion that the domer element which forms part of the assembly can readily be moved in any direction radially of the axis or path P to move into a position in exact alignment with the center of punch 24 should the punch be offset from the path for any reason. For this purpose, domer assembly 34 (Fig. 8) consists of a support 530 which may be accurately positioned with respect to the remainder of the frame structure of the bodymaker 10 and is supported on a cushion such as air, for axial movement (not shown). Support 530 has a recess or opening 532 extending from the upper surface 534 and recess 532 has an enlarged portion 536 and a reduced portion 538 with a generally flat bottom wall or surface 540 defined in the reduced portion 538. The center of circular opening 532 is accurately positioned and centered with respect to path P. Domer assembly 34 also includes a support element or member 542 which has an enlarged portion 544 received into enlarged portion 536 of recess 532 and a reduced portion 546 with reduced portion 546 having a bottom surface 548 which is in extended engagement with bottom wall or surface 540 for recess 532. Recess 532 and carrier element 542 are both circular in cross section and carrier element 542 is smaller in dimension than the recess 532, as will be described later. The remainder of domer assembly 34 consists of a domer element or tool 550 which is supported in an opening 552 in carrier element 542 and is secured thereto by a bolt 554. The threaded bolt or stud 554 extends through an opening 556 in carrier element 552 and is threaded into an opening in the domer element 550 so that the carrier element 542 and domer element 550 move as a unit in a radial direction with respect to path P. The domer assembly also includes biasing means 560 between support 530 and carrier element 542. Biasing means 560 consists of four or more circumferentially equally spaced spring assemblies that each consist of a spring 562 having one end received into a cup 564 which is reciprocated in a bore 566 in carrier element 542 and the opposite end received into a reduded portion of bore 566. The inner end of each cup 564 is received into the enlarged portion of bore 566 and is biased into engagement with the sidewall of the reduced portion 538 of recess 532. Thus, the four or more spring assemblies will always maintain the domer assembly, particularly domer element 550, in a predetermined position with respect to the axis or path P. However, should the axis of punch 24 be slightly offset from the path P, the various spring assemblies will allow carrier element 542 and domer element 550 to move radially with respect to the punch and to accurately align itself with the axis of the punch to produce a satisfactory finished container having a reformed end wall of any particular configuration. According to another aspect of the invention, domer assembly 526 also includes prestressing means cooperating with the respective spring assemblies for insuring that the domer element 550 is always moved to a same exact centered position with respect to path P when the external forces are removed. For this purpose, a circular or annular ring 570 extends around and is spaced from the periphery of the reduced portion 546 of support carrier 542 and cooperates with the respective spring assemblies to maintain all of the springs in a certain prestressed condition at all times. Ring 570 is accurately positioned with respect to carrier element 542 by a cooperating offset portion 572 and a recess 574 respectively defined on the ring 570 and carrier element 542. Ring 570 is releasably secured to carrier element 542 through a plurality of threaded studs 576. With this arrangement, the various springs 562 and cups 564 can be positioned into openings 566 and ring 570 can then be telescoped to the position illustrated in Fig. 8 and secured to carrier element 542 through bolts or studs 572. The outer free edge of each of the cups, which is generally spherically shaped, thus cooperates partially with the inner surface of ring 570 to maintain all of the springs in a prestressed condition, regardless of variations in spring force. If there is a need for the carrier element to move radially with respect to path P, only a certain number of spring assemblies, less than all, are further compressed, while the remainder of the spring assemblies remain in the same prestressed condition. Thus, when an external force is removed, after the carrier assembly has been moved off its normally centered position, there is no interference by certain springs preventing the carrier element 542 and domer 550 from moving to the predetermined centered position. According to a further aspect of the invention, domer assembly 526 also includes fluid means for supplying a bearing fluid between surfaces 540 and 548 of carrier element 542 and support 530. This fluid supply consists of a bore 580 extending through support 530 and in communication at its inner end with an annular recess or opening 582 that extends from surface 540. A pressurized fluid supply, such as air, is attached to the outer end of bore 580 and supplies a constant flow of air to annular recess 582 which must then flow between bearing surfaces 540 and 548 which results in a fluid bearing between the surfaces. Such arrangement reduces the frictional forces encountered when carrier element 542 is attempted to be moved radially of path P. The carrier element 542 is releasably retained in recess 532 by a cap 590 secured to support 530 by screws 592. It should also be noted that while not specifically shown, lubricating means could also be provided between surfaces 432, 434, 436, and 438 of stripper assembly 32, if desired. In summary, having all the components, except the punch, that come into contact with the cup during the drawing and ironing process movable radially will result in a finished container having a more uniform wall thickness and will minimize tool damage in case of jams.
Claims: 1. In a drawing and ironing machine including a frame (30) having a redraw die assembly (26), at least one ironing assembly (28), and a stripper assembly (32) arranged in series and each having an opening to define a path with a punch (24) movable along said path through said openings, at least one of said assemblies including a ring (230, 300, A12) defining said opening and centering means between said frame and said ring, characterized by said centering means including a plurality of circumferentially spaced biasing means (230, 240, 330) producing radial forces on said ring at circumferentially spaced locations, each of said biasing means having a first position when said ring is in a centered position, at least some and less than all of said biasing means moving from said first position to accommodate radial movement of said ring with respect to said path. 2. A drawing and ironing machine as defined in claim 1, in which said ring is an ironing ring (300) carried by a support (304, 312). 3. A drawing and ironing machine as defined in claim 1, in which said ring is a stripper ring (412) carried by a support (410) and having a plurality of stripping jaws (416) pivoted thereon. 4. A drawing and ironing machine as defined in claim 1, in which said ring is a redraw ring (230) carried by a support (410). 5. A drawing and ironing machine as defined in any one of claims 2-4, in which said support and said frame have cooperating surfaces (236, 238, 326, 328, 436, 438) extending radially of said path further characterized by means (260, 346, 348) for introducing a fluid between at least one pair of cooperating surfaces. 6. A drawing and ironing machine as defined in any one of claims 1-5, and including a domer assembly spaced from said stripper assembly, further characterized by said domer assembly including a support (530) having a recess (532) with the base of the recess defining a support surface (540), a carrier element (542) received in said recess and having a cooperating surface (548), a domer element (550) on said carrier element, means (580, 582) for supplying a bearing fluid between said surfaces, and biasing means (560) between said support and carrier element normally maintaining said surfaces in a predetermined position with respect to each other and accommodating movement of said carrier element in all directions within said recess. 7. A drawing and ironing machine as defined in any one of claims 1-6 and including a cup holder sleeve (20) interposed between said punch and said redraw die assembly and having an axial bore (22) for receiving said punch and a sleeve support for said cup holder sleeve, characterized by said sleeve support including a first member (60) having an opening (40) therein aligned with said opening in said redraw assembly and having a circumferential recess (52) extending from the periphery thereof, a movable support element (60) having a peripheral portion (62) received in said recess and cooperating with one end of said cup holder sleeve, and biasing means (70) between said first member and said support element normally maintaining said support element centered with respect to said opening in said first member and accommodating radial movement of said one end of said cup holder sleeve and said support element with respect to said first member. 8. A drawing and ironing machine as defined in claim 7, further characterized by additional means (90, 92, 102-108) between said support element and said cup holder sleeve accommodating tilting of said axis of said bore with respect to said path. 9. A drawing and ironing assembly as defined in claim 8, further characterized by said additional means including confronting arcuate surfaces (90, 92) between said support element and said cup holder sleeve with at least one of said surfaces having a continuous recess (120) therein and lubricating means (110, 112, 122) for supplying lubricant to said recess. 10. A drawing and ironing machine as defined in any one of claims 1-9, characterized by said biasing means (230, 240, 330) including four circumferentially spaced spring assemblies each including a plunger having a shoulder with a spring normally biasing said shoulder into engagement with a stop defining said centered position.
NATIONAL CAN CORPORATION
MAEDER, EDWARD G.
EP-0005088-B1
5,088
EP
B1
FR
19,811,014
1,979
20,100,220
new
G01H5
E02B17, G09B25, G01M10
E02B17, G01M5, G09B25
G09B 25/04, E02B 17/00, G01M 5/00
PROCESS AND APPARATUS FOR TESTING STRUCTURES AND CONSTRUCTIONS OF GREAT DIMENSIONS, ESPECIALLY METALLIC STRUCTURES, ON A MODEL
1. Method for the study on models of the elastic deformations of large structures, works and buildings under load, the method consisting of : building the model in the form of a plurality of separate sections, each model section being built in the form of an individual rigid component substantially free of elasticity, assembling the model sections together to reproduce the complete structure to be studied, assembling each section with the neighboring sections by load measuring elastic link components of determined flexibility localizing the elastic deformations of the whole model at assembly points, measuring the amplitude of the local deformations of each of the said link components when the model is being subjected to determined stresses, and cumulating these measurements to deduce the overall deformations to which the model has been subjected and, consequently, the deformations to which the real structure will undergo under equivalent stress conditions.
Procédé et installation pour l'essai, sur maquette, des structures, ouvrages et constructions, notamment des structures métalliques, de grandes dimensions. La présente invention concerne un procédé et une installation pour l'étude sur marquette des déformations élastiques subies sous charges par des structures, ouvrages et constructions de grandes dimenSions. L'invention s'applique en particulier à l'étude sur modèles du comportement à la mer de structures métalliques fixes (pylônes, portiques reposant sur le fond de la mer) ou mobiles (navires, pylônes d'amarrage). L'invention trouve une application particulièrement intéressante dans l'étude sur maquette des structures métalliques utilisées pour les forages pétroliers sous-marins. On sait que pour ces exploitations pétro lières en mer, on a besoin de tours ou pylônes, généralement en treillis metalliques, supportant des platesformes de forage ou de chargement, des torchères ou d'autres installations. Ces tours ou pylônes peuvent avoir une hauteur de plus de 150 mètres et, pour celles qui reposent au fond de la mer, leur forme est généralement pyramidale ou conique avec une base pouvant atteindre 50 mètres. Le sommet de ces tours peut culminer à 20, 30 mètres au-dessus du niveau de la mer. I1 s'agit donc de constructions extrêment couteuses, qu'il est difficile d'amener à pied d'oeuvre et de mettre en place. Il est donc capital a'étudier à l'avance le comportement de telles constructions sous l'effet des vagues, de la houle, du vent et des efforts qui pourront leur être imposés en service par les installations de forage, par les accostages de navires, etc... De telles études peuvent être faites en bassin, sur un modèle réduit de la construction envisagée. Mais, jusqu'à présent, les resultats obtenus par ces études sur maquette étaient insuffisamment précis et laissaient échapper certains phénomènes de déformations élastiques, par exemple ceux dus aux efforts alternés, auxquels risquait d'être soumise la construction réelle. En effet, pour que la maquette d'une structure complexe soit fiable, les divers paramètres doivent être homogènes et le modèle doit être hydroélastiquement semblable au téel. C'est ainsi que si on choisit pour la maquette par exemple une échelle = 1/1000, ce qui conduit à une maquette de 1 m 50 à 2 m. de haut dans le cas précité), les masses et les élasticités doivent être respectivement dans les rapports 3 et Si la construction réelle est une structure treillis en tubes soudés, on peut déjà rencontrer de sérieuses difficultés de réalisation de la maquette, car les épaisseurs des tubes sur la maquette deviennent infimes et la maquette est incapable de résister aux efforts de flambage qui peuvent lui etre appliqués, ne serait-ce que sous l'effet du poids des plates-formes que supporte la construction. On a pu remédier, au moins partiellement, à ces difficultes en utilisant des matériaux suffisamment légers et pouvant donc présenter une épaisseur suffisante. Mais il n'en va pas de même pour les respect de la similitude des élasticités qui obligerait à réaliser un modèle à partir d'éléments composites formés d'un matériau de très faible module d'élasticité et d'un noyau ayant un modèle d'élasticité beaucoup plus grand. La construction d'un tel modèle, ou équipement en instruments de mesure et son maniement seraient très délicats. On,sait par ailleurs (article BAINBRIDGE extrait de la revue Petroleum Engineer, vol. Vol. 45, r 5, mai 1974 )étudier des déformations d'une plateforme métallique utilisable pour les forages pétroliers sousmarins en construisant une maquette à l'aide de tubes en acrylic dans l'épaisseur desquels sont noyées des jauges de contrainte. .Le brevet français 2 289 987 divulgue lui aussi un procédé de réalisation de maquettes hydroélastiques à l'aide d'éléments constitués d'une âme centrale métallique recouverte par un enrobage en matériau peu rigide. Les déformations de la structure réalisée sont mesurées à l'aide de jauges de contrainte incorporées dans 1 'âme métallique. La construction de tels modèles est complexe. La présente invention permet de remédier à ces divers inconvénients, grâce à l'utilisation de maquettes de construction plus simple et fournissant cependant des informations plus exactes sur le comportement sous charges de la structure réelle. Le procédé suivant l'invention, pour l'étude sur maquette des déformations élastiques subies sous charge par des structures, ouvrages et constructions de grandes dimensions, consiste à établir la maquette sous la forme d'une pluralité de tronçons séparés; à réaliser chaque tronçon de maquette sous la forme d'un élément individuel rigide sensiblement exempt d'élasticité; à assembler les tronçons de maquette les uns aux autres pour reproduire la structure complête à étudier; l'assemblage de chaque tronçon avec les tronçons voisins étant fait au moyen d'organes de liaison élastiques dynamométriques de souplesse déterminée localisant aux points d'assemblage les déformations élastiques de l'ensemble de la maquette, à mesurer l'ampli- tude des déformations locales de chacun desdits organes de liaison lorsque la maquette est soumise à des contraintes déterminées; et à cumuler ces mesures pour en déduire les déformations globales subies par la maquette et, partant, les déformations que subira la structure réelle dans des conditions de contraintes équivalentes. Grâce à ce procédé, la souplesse de la maquette est localisée en un certain nombre de points précis, sur la plus grande dimension de la maquette, au lieu d'être répartie en une infinité de points sur cette dimension. Dans le cas où le procédé suivant l'invention est appliqué à l'étude sur maquette du comportement à la mer d'une structure hydroélastiquement déformable de grandes dimensions, notamment d'une structure métallique verticale de grande hauteur pour forages sous-marins, on utilise une installation caractérisée : en ce que la maquette est réalisée au moyen de tronçons séparés divisant la structure en une pluralité de tranches horizontales qui sont superposées; en ce que chaque tronçon est assemblé au tronçon immédiatement inférieur par un système de suspension travaillant en traction associé aux organes de liaison élastiques précités; et en ce que des capteurs de déplacement sont interposés entre chaque tronçon et le tronçon immédiatement adjacent, lesdits capteurs détectant les déformations locales entre chaque paire de tronçons. Grâce à cette disposition, les organes de liaison dynamométriques interposés entre les tronçons peuvent supporter, sans modification notable de la précision des mesures recueillies par les capteurs précités, les efforts alternes de compression variable qui peuvent résulter soit des efforts verticaux soit des moments fléchissants imposés à l'ensemble de la structure pendant l'essai. L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre et à l'examen des dessins annexés qui représentent à titre d'exemple non limitatif, un mode de réalisation de l'invention. La fig. 1 est une vue schématique en perspective de la maquette d'essai d'une tour ou pylône métallique pour l'exploitation de pétrole en mer. La fig. 2 est une vue de détail en coupe verticale de l'un des systèmes de raccordement et de mesure de déformation entre deux tronçons adjacents. La fig. 3 est une vue en plan du même système. La structure à étudier, représentée sur la fig.l est par exemple un pylône 1 en treillis métallique pour exploitation de pétrole en mer. Un tel pylône peut avoir une hauteur de 150 mètres et peut dépasser au-dessus du niveau de la mer de 20 à 30 mètres. On a représenté sur la figure un pylône tripode dont les trois pieds P1,P2,P3 reposent ou sont ancrés sur le fond de la mer, l'écartement entre les pieds pouvant atteindre 50 mètres par exemple. Bien entendu, l'invention s'applique également à l'étude de structure ayant toute autre section horizontale que triangulaire. Le pylône 1 peut être destiné à supporter une plate-forme 5 sur laquelle peuvent être montées toutes installations (non représentées), nécessaire à l'exploitation envisagée. Le pylône une fois en place sur le lieu choisi sera soumis aux effets de la mer (houle, vagues, courants), du vent, des efforts produits par le matériel de forage ou d'exploitation monté sur la plate-forme 5, et éventuellement des navires qui pourraient venir s'amarrer ou accoster. Ce sont les déformations imposées au pylône pour ces différents efforts que le procédé suivant l'invention permet d'étudier sur une maquette, par exemple à l'échelle 1/100. Pour établir la maquette, on divise la structure en un certain nombre de tronçons, par exemple 6, T1, T2.. T6 dont chacun est construit séparément à l'échelle choisie, chacun des tronçons constituant par luimême un ensemble rigide. Pour respecter la proportionnalité des longueurs et des masses, il est avantageux d'utiliser, pour la construction des éléments de la maquette, des matériaux légers, par exemple des tubes ou profiles en matière plastique renforcée de fibre de verre, en remplacement des tubes ou profilés en acier de la structure grandeur nature. Dans le cas representé, chacun des tronçons rigides constitue donc une tranche de la structure ayant la forme d'un tronc de pyramide. Tous les tronçons de la maquette sont ensuite superposés, pour former la maquette complète, 1 assemblage de chaque tronçon aux tronçons adjacents étant fait au moyen d'organes de liaison déformables islasti- quement L1,L1,, L 1, L2, L'2 L 2 cui seront décrits en détail à propos des figures 2 et 3 et sur-thacuti desquels la déformation individuelle sous effort peut être mesurée à chaque instant. La maquette assemblée est ensuite immergée dans un bassin d'essai où l'on reproduit les diverses conditions auxquelles la structure grandeur nature pourra être soumise. On a représenté en coupe sur la fig.2, et en élé- vation sur la fig.3, l'un des angles supérieurs de l'un des tronçons. Cet angle supérieur comprend : un profilé ou tube 7 formant l'arête sensiblement verticale du tronçon considéré et deux tubes ou profilés 9-9' formant deux arêtes horizontales du tronçon. Sur la maquette, ces tubes sont en alliage léger ou, de préférence, en matière plastique renforcée et ils sont assemblés rigidement entre eux, par exemple, au moyen d'une plaque d'équerrage 11, de forme triangulaire dans le cas d'un pylône tripode, cette plaque étant fixée par des vis 13 dans les tubes 9-9' et par des vis 15 dans un garnissage 17 emmanché au sommet du tube 7. Bien entendu, les deux autres angles supérieurs du tronçon considéré sont assemblés rigidement de fa çon analogue et le croisillonnement de la structure réelle est reproduit sur la maquette de façon que chaque tronçon de la maquette pris individuellement forme un ensemble indéformable rigide sous les efforts qui lui seront appliqués. Sur la fig. 2, on a représenté également l'angle inférieur du tronçon de maquette suivant, placé immédiatement au-dessus du tronçon précédent. Le tronçon de maquette suivant est construit de la façon qui vient d'être décrite et on voit sur la fig.2, l'extrémité inférieure du tube ou profilé 7' qui forme l'une des arêtes sensiblement verticales de ce tronçon et qui viendra dans le prolongement du tube 7 une fois les deux tronçons assemblés. L'assemblage élastique déformable entre deux tron çons adjacents, qui va être décrit maintenant, est réalisé de façon telle qu'il existe un jeu entre les éléments correspondants en regard des deux tronçons considérés et, notamment, un jeu entre l'extrémité du tube 7' et la face supérieure de la plaque d'équerrage 11, ce jeu autorisant les déplacements localisés d'un tronçon par rapport à son voisin sous l'effet des efforts appliqués. Le système d'assemblage élastique utilise, comme point d'appui sur le tronçon inférieur, la plaque dlequerrage 11 et, plus précisément, un prolongement 21-23 solidaire de cette plaque et il utilise, comme point d'appui sur le tronçon supérieur, une pièce support 25, de préférence en forme de potence, solidaire de l'extrémité inférieure du tube 7', cette pièce étant par exemple maintenue sur le tube par des vis 27 qui se vissent dans un garnissage intérieur 29 du tube 7'. Le système d'assemblage entre les tronçons est réalisé sous la forme d'une liaison élastique à lames tendues réalisant, à chaque point d'assemblage de la maquette, un dynamomètre à déplacement parallèle du point d'application, dynamomètre qui va être décrit maintenant. L'assemblage comprend un premier organe de suspension constitué par une mince lampe métallique fle xible tendue 31 dont l'extrémité inférieure est fixée, par des vis 33, à la partie inférieure de la pièce support 25 et dont l'extrémité supérieure est fixée, par des vis 35, à la partie supérieure de la potence 23 solidaire de la plaque d equerrage 11. Des décrochements et ajourages convenables dans les pièces 25 et 23 permettent le libre débatt.ement de la lame 31 qui assure la résistance de la maquette aux efforts de compression. L'assemblage élastique comprend également un élément dynamomètrique constitué par une seconde lame élastique 37 disposée inversement par rapport à la lame 31, c'est à dire que son extrémité inférieure est fixée, par des vis 39, sur le pied 41 du prolongement 23 solidaire de la plaque d'equerrage 11 et que son extrémité supérieure est fixée, par des vis 43, sur la face extérieure de la potence 25. La lame 37 est facilement accessible et interchangeable, si bien qu'on peut disposer d'un jeu de lames de flexibilités différentes formant des dynamomètres de sensibilités différentes suivant les essais effectués. Enfin, le système d'assemblage comprend un capteur détectant les déplacements relatifs entre les deux tronçons adjacents. N'importe quel type de capteur de déplacement classique, notamment ceux transformant un déplacement en une grandeur électrique, peut être utilisé. On a représenté à titre d'exemple un capteur-transducteur du type à reluctance variable qui comprend une bobine 45 qui est fixée par des vis 46 sur la plaque d'équerrage 11 (et par conséquent, solidaire du tronçon inférieur) et dans laquelle se déplace un noyau 47 rendu solidaire par une tige 49, de la pièce support 25 (et par conséquent, du tronçon supérieur). Le système d'assemblage qui vient d'être décrit constitue donc un dynamomètre à déplacement parallèle du point d'application permettant de mesurer, en chacun des points localisés sur la maquette, des déplacements ou des forces indépendamment du point d'application de la force appliquée et avec une influence négligeable d'un couple éventuel. Grâce au système à double lame à disposition inversée, chaque dynamomètre peut supporter, sans modification notable de la précision des mesures, les efforts alternés de traction et de compression qui peuvent résulter soit des efforts verticaux soit des moments fléchissants imposés à l'ensemble de la structure pendant l'essai. Pour chacun des essais au bassin, les résultats des mesures des capteurs sont comparés pour en -:tirer les informations sur le comportement à la mer et en service de la structure réelle. Bien entendu, l'agencement des liaisons élastiques peut être différent de celui qui a été décrit et, notamment les systèmes de fixation des lames élastiques à support et potence peuvent être inversés, c'est à dire que l'ensemble des lames peut se trouver au niveau de l'extrémité supérieure du tronçon inférieur ou bien encore au niveau de l'intervalle existant entre les deux tronçons. Les éléments élastiques qui forment un système de raideur donnée ne sont pas nécessairement identiques entre eux; ils peuvent être de longueurs et de formes différentes (sections et profils) en fonction des limites imposées (amplitude des mouvements relatifs, linéarité, etc...) et de la distribution des charges (statiques et dynamiques), les éléments supports pouvant eux-mêmes être conçus de manière à contribuer à la distribution des tensions dans les éléments élastiques de liaison.
REVENDICATIONS 1 - Procédé pour l'étude sur maquette des déformations élastiques subies sous charges par des structures, ouvrages et constructions de grandes dimensions, caractérisé en ce qu'il consiste : à établir la maquette sous la forme d'une pluralité de tronçons séparés; à réaliser chaque tronçon de maquette sous la forme d'un élément individuel rigide sensiblement exempt d'élasticité; à assembler les tronçons de maquette les uns aux autres pour reproduire la structure complète à étudier, l'assemblage de chaque tronçon avec les tronçons voisins étant fait au moyen d'organes de liaison élastiques dynamométriques de souplesse déterminée localisant aux points d'assemblage les déformations élastiques de l'ensemble de la maquette; à mesurer l'amplitude des déformations locales de chacun desdits organes de liaison lorsque la maquette est soumise à des contraintes déterminées; et à cumuler ces mesures pour en déduire les déformations globales sur bies par la maquette et, partant, les déformations que subira la structure réelle dans des conditions de contraintes équivalentes. 2 - Installation pour la mise en oeuvre du procédé, suivant la revendication 1, pour l'étude sur une maquette du comportement à la mer d'une structure hydro-élastiquement déformable de grandes dimensions, notamment d'une structure métallique verticale de grande hauteur pour forages sous-marins, caractérisée; en ce que la maquette est réalisée au moyen de tronçons séparés divisant la structure en une pluralité de tranches horizontales qui sont superposées; en ce que chaque tronçon est assemblé au tronçon immédiatement inférieur par un système de suspension travaillant en traction associé aux organes de liaison élastiques précités; et en ce que des capteurs de déplacement sont interposés entre chaque tronçon et le tronçon immédiatement adjacent; lesdits capteurs détectant les déformations locales entre chaque paire de tronçons. 3 - Installation suivant la revendication 2, caractérisée en ce que chaque tronçon est raccordé au tronçon adjacent par au moins trois ensembles de raccordement et de détection de déformation, situés sensiblement dans un plan horizontal, et comprenant chacun un organe de suspension travaillant en traction, un organe élastique dynamomètrique travaillant en opposition du précédent dans le sens vertical et un capteur de déplacement. 4 - Installation suivant la revendication 3, caractérisée en ce que l'organe de suspension précité comprend une lame verticale tendue solidaire, par son extrémité supérieure d'un tronçon de la maquette et solidaire, par son extrémité inférieure, du tronçon immédatement supérieur. 5 - Installation suivant les revendications 3 et 4, caractériséEeen en ce que chaque ensemble de rac- cordement et de détection de déformation comprend au moins un élément en forme de potence solidaire de l'un au moins des tronçons adjacents, ledit élément constituant le point de fixation de l'une au moins des extrémités de la lame tendue précitée.
ETAT-FRANCAIS REPRESENTE PAR LE DELEGUE GENERAL POUR L'ARMEMENT
LE GUET, PIERRE-LOIC ERICK
EP-0005089-B1
5,089
EP
B1
FR
19,810,701
1,979
20,100,220
new
B60P3
B61D3
B61D3, B60P3
B61D 3/18, B60P 3/08
VEHICLE FOR TRANSPORTING OTHER VEHICLES
1. Wheeled vehicle intended for transporting other vehicles on at least two levels, in particular motor vehicles, of the type comprising a chassis (4), a fixed lower platform (5), a superstructure (1), at least one upper platform (10) movable vertically and of which height adjustment is carried out by a raising device (11) acting, via a remote transmission system (12 to 16), at one single location (17) on said movable platform, characterised in that the superstructure (1) is rigidly connected to the chassis (4) by two pairs of uprights (2, 3) at least one (3) of said pairs being retracted with respect to the corresponding end of the vehicle and being provided with super-posed locating passages (8) for said movable upper platform, said movable platform extending over the whole length of the vehicle, and in that said point of action (17) of said raising device is situated between the centre of gravity of the movable platform and the vehicle end at which said pair of retracted uprights (3) is located, and in that the raising device includes a winch (11), or similar device, fixed to said lower platform (5), the associated remotely-located transmission device being made up by at least one raising cable (12) which winds around said winch, then around at least one first pulley (14) for discharging said cable horizontally, this pulley being located on the superstructure (1) between said pair of retracted uprights (3) and the corresponding end of the vehicle, the cable then passing, after following a horizontal path, around at least one second pulley (15) for directing said cable downwardly, said second pulley being vertically in line with said place of action (17).
Véhicule pour le transport d'autres véhicules La présente invention se rapporte à un véhicule à au moins deux supérieur (s) ponts, le ou les pont(s)1etant mobiles, destiné au transport d'autres véhicules, en particulier d'automobiles. Dans le domaine ferroviaire par exemple, on connait les wagons porte-automobiles à deux ponts dont le pont supérieur comporte à ses deux extrémités un plancher articulé d'une certaine longueur qui peut stincli- ner pour permettre le chargement des automobiles à partir d'un quai en bout et au moyen de passerelles de raccordement. On connait également les wagons à deux ponts dont le pont supérieur est entièrement mobile ; cette mobilité est obtenue au moyen d'engins de levage appropriés, tels que paire de treuils, vérins hydrauliques, etc. Dans tous les cas, les engins de levage agissent aux deux extrémités du pont. Ces dispositifs connus présentent l'avantage de pouvoir changer le réglage du plancher supérieur une lorsque celui-ci est chargé de véhicules. Par contre, ils entrainent des manoeuvres longues, souvent pénibles, et le véhicule porte-automobiles qui les utilise est compliqué puisque deux treuil s indépendants sont nécessaires à chaque extrémité d'un pont mobile. L'invention se rapporte à un véhicule à pont supérieur mobile de conception plus simple que les dispositifs connus jusqu'alors. Elle se base sur le fait qu'en réalité le réglage de la hauteur du plancher supérieur est une opération peu fréquente et qu'en fait elle peut aisément être effectuée à vide puisque le programme de chargement des véhicules est connu à l'avance. Le véhicule roulant porte-véhicules conforme à l'invention est du type comportant un plancher inférieur fixe, au moins deux paires de montants placés chacun au voisinage de chaque extrémité du véhicule, et munis de points d'ancrage superposés d'au moins un plancher mobile supérieur, et est caractérisé en ce qu'il comporte un dispositif de levage agissant sur un seul endroit dudit plancher mobile. L'invention sera mieux comprise à l'aide de la description suivante d'un exemple de réalisation, en référence aux dessins annexés dans lesquels : - la figure 1 est une vue en élévation latérale d'un demi-wagon articulé porte-automobiles selon 1 l'invention - la figure 2 est une vue de l'arrière du demi-wagon de la figure 1. Sur les figures, on reconnait un demi-wagon articulé porte-automobiles comportant - une superstructure 1 comprenant deux montants médians 2 et deux montants arrieres 3 ; avantageusement, les montants médians 2 sont minces et per- mettent de ce fait le chargement de petits véhicules même au droit de ces montants, - un châssis 4 sur lequel repose le plancher inférieur fixe 5, - un essieu médian 6 et un essieu arrière 7. Au droit de chacun des montants sont percés des orifices superposés 8, destinés à recevoir des broches- de verrouillage 9 du pont supérieur mobile 10 que lton a représenté, sur la figure 1 dans une première position verrouillée en traits pleins, et dans une position inclinée intermédiaire non verrouillée en traits mixtes. La référence 11 désigne un treuil classique qui agit, par l'in- termédiaire de cables (12, 13) et de poulies de renvoi (14, 15, 18, 16), sur un seul endroit 17 du pont 10, constitué par une largeur de celui-ci et, situé préférentiellement, par rapport au centre de gravité G du pont 10, du c8té du treuil 11 en un point choisi pour pouvoir effectuer au mieux les manoeuvres qui seront explicitées ci-dessous, et préférentiellement aux environs du tiers de la partie du pont 10 située entre le point G et la partie arrière dudit pont. Le fonctionnement du dispositif de l'invention est le suivant Le pont 10 étant verrouillé dans une de ses positions horizontales, par exemple celle de la figure 1, si l'on veut par exemple le descendre, on déverrouille un des catés sans déverrouiller l'autre, on le fait descendre jusqu'aux orifices 8 correspondant à la position désirée, en le faisant pivoter autour du c8té verrouillé, on le fixe par ses broches dans ces nouveaux orifices, puis on déverrouille l'autre côté, on le fait descendre et on le broche pareillement. Avantageusement, le pont 10 comporte > au droit des montants, des butées 19, qui permettent son guidage lors de son déplacement vertical. On remarquera que le pont supérieur 10 peut pivoter autour d'une ou plusieurs positions situées sur le montant central 2 jusqu'à venir toucher le quai en bout à son autre extrémité et servir ainsi de rampe de chargement : la position représentée en traits mixtes est une position intermédiaire correspondant à cette manoeuvre. En raison des angles minimes necessaires pour passer d'une position du pont à une autre, au cours de chaque pivotement, il ne sera pas en général nécessaire d'ovaliser les trous 8, la faible déviation étant largement compensée par les jeux. Par ailleurs, comme on le voit sur la figure 2, l'invention permet de conserver une structure telle qu'elle coopère à la résistance du châssis dans les efforts de flexion, de charge verticale, ou de compression. En effet, les axes d'articulation du pont supérieur sont en m2me temps des points d'appui et de verrouillage, ce qui permet de reconstituer deux anneaux rigides au droit des montants, chaque anneau étant composé de la partie correspondante du châssis, des deux montants, du pont supérieur et des deux verrouillages qui sont serrés lorsque le pont est à la position désirée. L'invention est destinée au transport de véhicules, en particulier d'automobiles, par voie routière ou ferroviaire.
REVENDICATIONS 1. Véhicule destiné au transport d'autres véhicules, en particulier d'automobiles, du type comportant un plancher inférieur fixe, au moins derur paires de montants placés au voisinage de chaque extrémité du véhicule et munis de points d'ancrage superposés d'un plancher mobile supérieur. caractérisé en ce qu'il comporte un dispositif de levage (11) agissant, par itintermédiaire d'un dispositif de transmission à distance (12, 13, 14, 15, 18, 16), sur un seul endroit (17) dudit plancher mobile (10), et en ce que ledit endroit d'action dudit dispositif de levage est situé entre le centre de gravité (G) du pont mobile et ledit dispositif de levage. 2. Véhicule selon la revendication 1, caractérisé en ce que le dispositif de levage est constitué par un engin unique. 3. Véhicule selon la revendication 1 ou la revendication 2, ca taetéiisé en ce que l'endroit (17) d'action du dispositif de levage (11) est situé aux environs du tiers de la partie du pont mobile située entre le centre de gravité (G) du pont mobile et ledit dispositif de levage (11). 4. Procédé de mise en oeuvre du dispositif de changement de position du plancher mobile pour véhicule selon l'une quelconque des revendications 1 à 3, caractérisé en ce qutil consiste à déverrouiller les points d'ancrage situés sur une des paires de montantes, à faire pivoter, à l'aide du dispositif de levage, le pont mobile jusqu'à amener l'extrémité déverrouillée à la position désirée, puis, si nécessaire, à la reverrouiller à sa nouvelle position et refaire la m'eme manoeuvre sur l'autre extrémité.
SOCIETE NOUVELLE DES ATELIERS DE VENISSIEUX
DURAND, ROGER
EP-0005090-B1
5,090
EP
B1
FR
19,801,001
1,979
20,100,220
new
C07C93
null
null
124BG5B3B5C, 124BG5B3M
PROCESS FOR THE PREPARATION OF TRIS(8-HYDROXY-3,6-DIOXA-OCTYL)-AMINE, AND THE COMPOUND OBTAINED BY THIS PROCESS
1. Process for the preparation of tris-(8-hydroxy-3,6-dioxaoctyl)-amine, characterised in that an alkali metal is reacted with diethylene glycol in a molar ratio alkali metal/diethylene glycol of between 1/3 and 1/20, in that the alkali metal 5-hydroxy-3-oxapentanolate formed is condensed, in solution in diethylene glycol, with a tris-(halogenoethyl)-amine chosen from amongst tris-(2-chloroethyl)-amine hydrochloride, tris-(2-chloroethyl)-amine or tris-(2-bromoethyl)-amine, in a molar ratio alkali metal 5-hydroxy-3-oxapentanolate/tris-(halogenoethyl)-amine of between 3 and 5, and in that the resulting tris-(8-hydroxy-3,6-dioxaoctyl)-amine is recovered.
NOUVEAU PROCEDE DE PREPARATION DE LA TRIS(HYDROXY-8 DIOKA-3,6 OCTYL)AMINE La présente invention a pour objet un nouveau procédé de préparation de la tris (hydroxy-8 dioxa-3,6 octyl)amine. Il est connu d'après le brevet anglais n 364.000 de préparer des éthers hydroxylés d'hydroxylalkylamines de formule EMI1.1 dans laquelle - X représente un radical 4R - o) - R1 - OH où R et R1 sont des radi n caux alcoyle et n un nombre entier - Y et Z sont semblables à X ou sont des radicaux alcoyle, cycloalcoyle, etc... par action d'un oxyde d'alkylène sur un composé aminé contenant au moins un atome d'hydrogène actif en présence d'un diluant aqueux. Un tel procédé présente l'inconvénient de ne pas être sélectif et de ne conduire qutà des mélanges d'éthers hydroxylés. La demanderesse a trouvé un nouveau procédé permettant d'obtenir d'une manière sélective la tris (hydroxy-8 dioxa-3,6 octyl)amine de formule EMI1.2 Le nouveau procédé, objet de l'invention, est caractérisé en ce que - l'on fait réagir un métal alcalin sur du diéthylèneglycol selon un rapport molaire métal alcalin/diéthylèneglycol, compris entre 1/3, et 1/20 - en ce que l'on condense lthydroxy-5 oxa-3 pentanolate de métal alcalin formé, en solution dans le diéthylèneglycol, sur une tris (halogénoéthyl)amine choisie parmi le chlorhydrate de tris (chloro-2 éthyl)amine, la tris(chloro-2 éthyl)amine ou la tris(bromo-2 éthyl)amine, selon un rapport molaire hydroxy-5 oxa-3 pentanolate de métal alcalin/ tris (halogénoéthyl)amine compris entre 3 et 5 et en ce que l'on récupère la tris(hydroxy-8 dioxa-3,6 octyl)amine obtenue. La première étape est réalisée de préférence à partir de sodium ou de potassium avec un rapport molaire métal alcalin!diéthylèneglycol compris entre 1/3 et 1/10. Cette étape est réalisée préférentiellement à température ambiante. L'étape de condensation peut être réalisée à une température comprise entre 80 et 180, de préférence entre 80 et1S C pendant 1 à 20 heures, de préférence pendant 1 à 10 heures. Lorsque l'amine tertiaire halogénée mise en oeuvre est la tris(bromo-2 éthyl)amine ou la tris(chloro-2 éthyl)amine, le rapport molaire hydroxy-5 oxa-3 pentanolate de métal alcalinltris (bromo-2 éthyl) amine ou tris(chloro-2 ethyl)amine, est de préférence compris entre 3 et 4. Lorsque l'amine tertiaire halogénée mise en oeuvre est le chlorhydrate de tris(chloro-2 éthyl)amine, le rapport molaire hydroxy-5 oxa-3 pentanolate de métal alcalin/chlorhydrate est de préférence compris entre 4 et 5. Le schéma réactionnel du procédé objet de l'invention, en mettant en oeuvre du sodium à la 1ère étape et du chlorhydrate de tris (chloro-2 éthyl)amine à l'étape de condensation, est le suivant EMI2.1 2) Cl- H4CH2-C-Cl)3 + 4 Na+0-CH2-CH2-O-CH2-CH2-OH EMI2.2 N-4-CH2-CH -O-CH -CH -O-CH2-CH OH) + 4 C1Na Le chlorhydrate de tris(chloro-2 éthyl)amine à mettre en oeuvre peut être préparé d'une manière connue à partir de chlorhydrate de triéthanolamine et de chlorure de thionyle selon la méthode décrite par K.WARD dans JACS 57,914,1935 ou par J.P.MASON et D.J.GASCH dans JACS 60, 2816,1938. La tris(chloro-2 éthyl)amine à mettre en oeuvre peut être préparée par décomposition du chlorhydrate de tris(chloro-2 éthyl)amine par du bicarbonate de sodium. La tris(bromo-2 éthyl)amine à mettre en oeuvre peut être préparée d'une manière connue à partir de la triéthanolamine et du tribromure de phosphore. La tris(hydroxy-8 dioxa-3,6 octyl)amine préparée selon le procédé de l'invention peut être utilisée dans les applications classiques des aminopolyols. L'exemple suivant est donné à titre indicatif et ne peut être considéré comme une limite du domaine et de l'esprit de l'invention. Exemple 1 Dans un ballon tricol de 2 litres, on introduit 636 g de diéthylèneglycol (6 moles) puis 23 g de sodium (1 mole) par petites portions pendant 3 heures à température ambiante afin de former lthydroxy-5 oxa-3 pentanolate de sodium. Après totale disparition du sodium, on ajoute 55 g (0,2 mole) de chlorhydrate de tris(chloro-2 éthyl)amine puis on chauffe le mélange réactionnel à 130 C pendant 4 heures, puis après refroidissement du mélange, on neutralise l'alcoolate en excès par une solution aqueuse d'acide chlorhydrique à 10 . Le diéthylèneglycol en excès est alors distillé et le chlorure de sodium est éliminé par filtration. On obtient ainsi 90 g de tris(hydroxy-8 dioxa-3,6 octyl)amine qui est purifiée par traitement sur charbon actif en solution dans le chlorure de méthylène. L'analyse élémentaire du produit obtenu est la suivante - théorie % mesuré % C 55,38 55,40 H 9,89 9,90 N 3,08 3,06 0 31,65 31,64
REVENDICATIONS l)Nouveau procédé de préparation de la tris(hydroxy-8 dioxa3,6 octyl)amine, caractérisé en ce que - l'on fait réagir un métal alcalin sur du diéthylèneglycol selon un rapport molaire métal alcalin/diéthylèneglycol compris entre 1/3 et 1/20. - en ce que l'on condense l'hydroxy-5 oxa-3 pentanolate de métal alcalin formé en solution dans le diéthylèneglycol sur une tris (halogénoéthyl)amine choisie parmi le chlorhydrate de tris (chloro-2 éthyl)amine, la tris(chloro-2 éthyl)amine ou la tris(bromo2 éthyl)amine, selon un rapport molaire hvdroxy-5.oxa-3 pentanolate de métal alcalin/tris (halogénoéthyl)amine, compris entre 3 et 5, et en ce que l'on récupère la tris(hydroxy-8 dioxa-3,6 octyl)amine obtenue. 2) Procédé selon la revendication 1 caractérisé en ce que le métal alcalin mis en oeuvre est choisi parmi le sodium et le potassium, et en ce que le rapport molaire métal alcalin/diéthylèneglycol est compris entre 1/3 et 1/10. 3) Procédé selon la revendication 1 caractérisé en ce que l'étape de condensation est réalisée à une température comprise entre 80 et 180 C pendant 1 à 20 heures. 4) Procédé selon la revendication 3 caractérisé en ce que l'étape de condensation est réalisée à une température comprise entre 80 et 150 C pendant 1 à 10 heures. 5) Procédé selon l'une quelconque des revendications 1, 3 ou 4, caractérisé en ce que la tris(halogénoéthyl)amine mise en oeuvre est choisie parmi la tris(chloro-2 éthyl)amine et la tris (bromo-2 éthyl)amine et en ce que le rapport molaire hydroxy-5 oxa-3 pentanolate de métal alcalin/tris (halogénoéthyl)amine est compris entre 3 et 4. 6) Procédé selon l'une quelconque des revendications 1, 3 ou 4, caractérisé en ce que la tris(halogénoéthyl)amine mise en oeuvre est le chlorhydrate de tris(chloro-2 éthyl)amine et en ce que le rapport molaire hydroxy-5 oxa-3 pentanolate de métal alcalin/chlorhydrate est compris entre 4 et 5. 7) Tris(hydroxy-8 dioxa-3,6 octyl)amine obtenue par le procédé de l'une quelconque des revendications précédentes.
RHONE-POULENC RECHERCHES
SOULA, GERARD; Soula, Gérard
EP-0005092-B1
5,092
EP
B1
FR
19,830,330
1,979
20,100,220
new
E04C2
E04C5
E04C5
E04C 5/06
CONSTRUCTION ELEMENT IN THE FORM OF A SLAB AND STRUCTURE COMPRISING SUCH AN ELEMENT
1. Self-supporting, pre-fabricated, plank-like building element in reinforced concrete, characterized in that it comprises a criss-cross reinforcement (12) extending over substantially all the length and width of the element (1) and over at least half the thickness thereof, the said reinforcement (12) defining, in manner known per se, contiguous alveoli (13), evenly distributed through the whole reinforcement (12) and defined by a strip-like material (21, 22; 30; 40) substantially perpendicular to the large faces of the element (1), the said criss-cross reinforcement (12) being completely embedded in the concrete which fills the alveoli (13) and in that the concrete embedding the criss-cross reinforcement (12) is itself reinforced by a skin armature (15) surrounding the said criss-cross reinforcement (12) over its entire periphery.
Elément de construction en forme de planche et structure comportant un tel élément. La présente invention concerne un élément de construction en forme de planche et une structure comportant un tel élément. Par éléments de construction en forme de planche, on entend ici des éléments d'épaisseur relativement faible, généralement inférieure d 10 cm, de largeur supérieure a l'épaisseur mais généralement inférieure a 50 cm, et de longueur de l'ordre de plusieurs mètres. De tels éléments sont utilisés dans l'industrie du bâtiment pour réaliser des structures telles que charpentes, échafaudages,..,.. L'invention a pour but de fournir un élément de construction en forme de planche maniable et d'un cott voisin des matériaux de construction habituels. Ce but est atteint, conformément a l'invention, du fait que l'élément est réalisé en béton renforcé par une armature réticulée s'étendant sensiblement sur toute la longueur et la largeur de l'élément et sur au moins la moitié de l'épaisseur de celui-ci, ladite armature comportant, comme connu en soi, une résille dont les alvéoles sont délimités par une paroi latérale en forme de bande sensiblement perpendiculaire aux grandes faces de l'élément, le béton enrobant complètement la résille et remplissant les alvéoles. Par béton, on entend ici un matériau constitué par des granulats liés entre eux par un liant. Cet élément présente une résistance élevée aux efforts dirigés parallèlement au grand côté de sa section transversale et une résistance mécanique régulière vis à-vis des efforts appliqués suivant les autres directions de l'espace. Ceci est dA au fait que, grâce a la résistance a la compression du béton, les déformations en traction et en flexion de la résille sont limitées par les noyaux résistants de béton qui remplissent les alvéoles. C'est en fait, de façon surprenante, un matériau nouveau que l'on obtient, matériau qui se comporte de façon homogène et avec des propriétés mécaniques particulières. D'une façon générale, la structure de la résille et, en particulier, les dimensions et la forme des alvéoles, sont déterminées de façon à permettre un cheminement correct des contraintes et a procurer aux noyaux de béton remplissant les alvéoles une résistance suffisante aux efforts qui leur sont appliqués. C'est ainsi que la taille des alvéoles doit entre telle que les noyaux de béton qu'elle délimite soient capables, sans désagrégation, de résister aux efforts qui leur sont communiqués par la résille. On conçoit que d'autres paramètres ont aussi une influence sur la valeur optimale de la taille des alvéoles, en particulier la nature du liant utilisé et la granulo métrite des agrégats éventuellement présents dans le béton. A titre indicatif, de préférence, la paroi en forme de bande de chaque alvéole a une largeur au moins égale à 1 cm. Dans le cas d'un élément épais à fabriquer, on utilisera de préférence plusieurs résilles superposées occupant ensemble plus de la moitié de l'épaisseur de l'élément. En général, la dimension de l'alvéole, mesurée perpendiculairement a sa paroi, reste inférieure a 10 cm. Ce maximum pourra être relevé dans le cas d'un béton chargé par des granulats de forte granulométrie. Pour ce qui concerne la forme de l'alvéole, il s'avère souhaitable que celui-ci soit délimité par une surface en forme de bande restant parallèle a l'axe de l'alvéole et présentant, en section transversale, un contour fermé polygonal ou courbe symétrique par rapport à son centre. En outre, de préférence, les alvéoles de la résille sont identiques et régulièrement distribués dans la résille. L'invention concerne aussi une structure comportant plusieurs éléments en forme de planche. Ceux-ci peuvent être disposés les uns sur les autres et assemblés les uns aux autres pour former une structure lamellaire. On peut aussi assembler les éléments entre eux par des pièces de liaison sensiblement perpendiculaires aux grandes faces des éléments, pour former une structure de charpente. Il est encore possible d'augmenter la résistance de ces éléments par des parties en béton renforcées par des armatures de liaison reliées aux armatures réticulées desdits éléments. D'autres particularités et avantages des éléments de construction conformes a l'invention et des structures les utilisant ressortiront a la lecture de la description faite ci-après, a titre indicatif mais non limitatif, en référence aux dessins joints sur lesquels - la figure 1 est une vue partielle en perspective et en partie arrachée illustrant un élément conforme à l'invention, - les figures 2 et 3 sont des vues partielles en plan d'armatures réticulées pour des éléments conformes a l'invention, - les figures 4 a 6 illustrent très schématiquement différents procédés de fabrication d'armatures pour des éléments conformes a l'invention. - la figure 7 est une vue en coupe transversale d'un élément en forme de planche conforme a l'invention, - la figure 8 est une vue en plan de détail de l'armature réticulée de l'élément illustré par la figure 7, - les figures 9 à 11 illustrent des essais effectués sur l'élément illustré par la figure 7, et - les figures 12 a 15 illustrent différentes structures comportant des éléments conformes a l'invention. L'élément 1 illustré par la figure 1 comporte une armature réticulée 10 noyée dans du béton 14. L'armature 10 comporte un cadre rectangulaire 11 et une résille 12 remplissant ce cadre, tous deux étant formés au moyen d'un matériau en bande. La résille 12 délimite des alvéoles 13 au contour fermé sur lui-même, ces alvéoles étant tous identiques, a l'exception peutcétre de ceux bordant le cadre 11, et étant régulièrement distribués dans la résille. Les parois des alvéoles 13 sont parallèles aux axes de ces alvéoles et, comme les côtés du cadre 11, perpendiculaires aux faces de ce dernier. Sur la figure 1, les alvéoles 13 sont délimités par une surface de section transversale hexagonale. La section transversale de chaque alvéole pourra prendre la forme d'autres polygones (figure 2) ou être courbe (figure 3), tout en conservant, de préférence, une forme symétrique par rapport a son centre. Pour la fabrication de l'armature, on utilise un matériau en bande compatible avec le béton utilisé et présentant une résistance a la traction élevée et une rigidité suffisante. Peuvent convenir, par exemple, des feuillards métalliques ou des rubans de matériaux non métalliques, rigides ou rigidifiés. La figure 4 illustre un mode particulier de réali sation d'une armature réticulée. Des feuillards d'acier 20, 21, 22, sont dévidés de rouleaux 23, 24, 25 Le feuillard 20 est destine a constituer le cadre 11. Les feuillards 21, 22 22,..... sont soumis a une opération de formage pour réaliser des parties en creux 21a, 22a, qui, par assemblage de deux feuillards constituent les alvéoles 13. Cet assemblage est réalisé par soudage ou mécanique ment par rivetage ou agrafage. I1 est a noter que cet assemblage doit être réalisé avec soin car il doit résister aux efforts de traction et de cisaillement qui se développent a l'interface entre alvéoles contigus lorsque l'élément contenant l'armature est soumis a des contraintes. A titre de variante, on pourra utiliser, pour former les alvéoles, des feuillards 30 (figure 5) qui sont soumis chacun à une opération de découpage pour former des découpes 32, parallèles aux bords du feuillard, qui partagent en trois bandes égales 33a, 33b, 33c des segments de feuillard repartis le long de celui-ci en étant sEpa- rés les uns des autres par des intervalles 31 non prédécoupés. Le feuillard est ensuite soumis à une opération de déployage consistant à replier les bandes 33a, 33b, 33c alternativement d'un côté et de l'autre du plan du feuillard, les bandes 33a et 33c situées le long des bords du feuillard étant à chaque fois repliées du côté du feuillard opposé a celui du cbté duquel est repliée la bande centrale 33b située initialement entre ces deux bandes. Des méplats 34 sont formés aux sommets des parties repliées pour permettre la construction de la résille par assemblage des feuillards déployés,l'assemblage étant réalisé par exemple par soudage. La figure 6 illustre un autre mode de fabrication d'une armature conforme a l'invention. La résille est obtenue à partir d'une tresse 40 tissée de façon à former les alvéoles et rigidifiée par immersion dans un matériau, par exemple une résine, qui se rigidifie en se solidifiant. A titre de variante,on pourra utiliser des tresses assemblées entre elles, comme les feuillards 21, 22 illustrés par la figure 4, après avoir été plissées ou ondulées et rigidifiées. L'armature est enrobée sur toute sa périphérie par une couche de béton 14. Cet enrobage vise, d'une part, a protéger l'armature d'une éventuelle corrosion et, dlau- tre part, à résister aux poussées exercées par les noyaux, en particulier par bombement de ceux-ci, lorsque l'armature est soumise a des efforts. Si l'enrobage s'avère insuffisant pour remplir cette dernière fonction, il est possible de renforcer le béton d'enrobage au moyen d'une armature de peau 15 constituée par un treillis métallique a mailles fines et serrées entourant l'armature réticulée sur toute sa périphérie. L'épaisseur du béton d'enrobage 14, notamment s'il est renforcé, peut mètre limitée a valeur de l'ordre du cm, par exemple comprise entre 0,5 et 2 cm. I1 faut noter aussi que l'armature doit occuper au moins la moitié de l'épaisseur de 1'6lCment pour que les propriétés mécaniques de cet élément soient aussi proches que possible de celles d'un matériau homogène. Pour la fabrication de l'élément, l'armature est mise en place dans un moule avant ou après remplissage de celui-ci par le béton . Le béton utilisé est un béton de liant hydraulique ou autre présentant une bonne résistance à la compression. I1 est important que le béton remplisse totalement les alvéoles de l'armature de manière à ne pas laisser de jeu entre les parois des alvéoles et les noyaux de béton contenus dans ceux-ci. Ce remplissage correct des alvéoles est obtenu par vibration ou tassement du béton dans le moule. La vibration peut en particulier être réalisée au moyen de l'armature elle-même. On donne ci-après un exemple de réalisation d'un é 1 é m e n t conforme à l'invention en forme de planche. On se référera aux figures 7 a 11. Exemple La résille est fabriquée en feuillard d'acier de largeur de 20 mm, l'acier étant un acier de classe A33 ayant une limite élastique égale a 18hbars et un allongement rémanent de 18 %. Le cadre rectangulaire 11 (figure 8) est en feuillard d'épaisseur 3 mm. Sa longueur et sa largeur sont respectivement égales a s m et 18,6 cm. Les alvéoles 13 sont en feuillard d'épaisseur 2 mm et à section transversale hexagonale. Les dimensions référencées a, b et c sur la figure 8 sont respectivement égales a 75 mm, 60 mm et 15 mm. Des soudures sont réalisées entre tous les côtés adjacents des alvéoles. Autour de la résille, on dispose, en tant qutarma- ture de peau, un treillis 15 métallique en fil d'acier de 1 mm de diamètre et a mailles carrées de 15 mm de côté. Le béton est réalisé avec un dosage en ciment de 500 kg/m et des granulats de dimension maximale égale a 8 mm. La résistance a la compression mesurée a 28 jours est 550 bars et la résistance a la traction mesurée a 28 jours est 42 bars. L'armature est positionnée dans un moule a l'aide de distanciers avant coulage du béton. La mise en place du béton est effectuée à l'aide d'une règle vibrante. La planche 50 obtenue, représentée en coupe transversale sur la figure 7 a une longueur égale a 5,05 m, une hauteur h égale à 23 cm et une épaisseur e égale à 4 cm. Des essais de transport ont démontré que la planche peut être, sans problème, soulevée a ses extrémités ou en son milieu en étant tenue horizontalement avec ses faces verticales ou horizontales. Des essais de flexion ont ensuite été effectués. Deux planches 50 identiques ont été boulonnées en trois points, à leurs extrémités et en leur milieu (figure 9) avec interposition de cales 56 en bois. Un essai de flexion de cet assemblage suivant le sens de la hauteur a été effectué comme illustré par la figure 10, les planches reposant horizontalement de chant sur deux points d'appui distants d'une longueur L1 égale à 4,80 m. Une charge verticale F1 appliquée sur les planches en étant répartie par moitié ## en deux points situés symétriquement par rapport au milieu des planches et distants l'un de l'autre d'une longueur 11 égale d 1,45 m. Un essai de flexion d'une planche dans le sens transversal a ensuite été effectué comme représenté sur la figure 11, la planche reposant horizontalement a plat sur deux points d'appui distants d'une longueur L2 et étant soumise à une charge verticale F2 en un point situé a égales distances des points d'appui. Les résultats des essais de flexion sont donnés dans dans le tableau suivant. EMI8.1 <tb> <SEP> Essai <SEP> : <SEP> suivant <SEP> le <SEP> : <SEP> suivant <SEP> le <tb> <SEP> de <SEP> : <SEP> sens <SEP> de <SEP> la <SEP> : <SEP> sens <tb> <SEP> flexion <SEP> : <SEP> hauteur <SEP> transversal <tb> <SEP> Portée <SEP> : <SEP> L1 <SEP> = <SEP> 4,80 <SEP> m: <SEP> L1=1;77m <SEP> : <SEP> L2=2,10m <tb> <SEP> Fissuration <tb> <SEP> de <SEP> l'élément <SEP> : <SEP> : <SEP> : <SEP> ; <SEP> <tb> - <SEP> charge <SEP> F1 <SEP> en <SEP> daN <SEP> : <SEP> 1.600 <SEP> 250 <SEP> : <SEP> <SEP> 250 <tb> - <SEP> moment <SEP> en <SEP> m.daN <SEP> : <SEP> 1.300 <SEP> : <SEP> 111 <SEP> <SEP> 131 <tb> - <SEP> flèche <SEP> a <SEP> mi- <SEP> 30 <SEP> : <SEP> 38 <SEP> : <SEP> 56 <tb> <SEP> portée <SEP> (en <SEP> mm) <tb> <SEP> Rupture <SEP> : <tb> - <SEP> charge <SEP> F2 <SEP> en <SEP> daN <SEP> : <SEP> 2.000 <SEP> : <SEP> 350 <SEP> : <SEP> 350 <tb> - <SEP> moment <SEP> en <SEP> m.daN <SEP> : <SEP> 1.700 <SEP> : <SEP> 155 <SEP> 183 <tb> La planche présente une bonne résistance aux efforts exercés suivant le grand axe de sa section transversale. En outre, bien que dans l'essai de flexion dans le sens de la hauteur, la rupture soit imputable a une soudure défectueuse entre deux alvéoles contigus, les résultats des essais montrent que l'élément de béton conforme à l'invention présente un comportement mécanique semblable a celui d'un matériau homogène pour des valeurs de charges assez élevées. En effet, le rapport entre charge de rupture et charge de fissuration est de 1,40 dans le sens transversal. On peut encore noter que l'élément en forme de planche conforme a l'invention présente des caractéristiques mécaniques en flexion tout d fait acceptables eu égard a l'utilisation que l'on peut envisager pour de tels éléments. L'élément en forme de planche conforme a l'invention peut convenir pour la réalisation de glissières de sécurité le long de voies de circulation routière, de coffrage perdu, d'échafaudage,..... Le cas échéant, l'élément conforme a l'invention peut être renforcé de façon supplémentaire par des procédés connus, par exemple par la mise en place d'armatures rectilignes a section circulaire le long des grands cotés de l'armature réticulée. L'élément peut être imprégné d'une résine qui durcit en polymérisant. Il pourrait aussi être précontraint. On notera notamment que le renforcement du béton d'enrobage entourant l'armature réticulée pourra être réalisé par imprégnation au moyen d'une résine polymérisable. Les figures 12 a 15 illustrent des structures comportant plusieurs planches assemblées entre elles. L'assemblage peut être réalisé en disposant les planches 60 les unes sur les autres et en les assemblant, par exemple, par collage pour former une membrane lamel laire (figure 12) ou un arc de cercle de grande portée (figure 13). Dans le cas illustré par la figure 14, les planches 70 sont assemblées en elles et, éventuellement, a des éléments intermédiaires, au moyen de goupilles ou boulons 76 traversant les planches perpendiculairement Åa leurs grandes faces. I1 est à noter que le perçage d'un trou dans une planche, au travers d'un alvéole, n'engendre pas de fissures et n'amoindrit en rien les propriétés mécaniques de la planche. Les planches ainsi assemblées peuvent etre utilisées pour la réalisation de charpente ou de plancher. La figure 15 illustre une autre structure comportant des éléments 80 conformes a l'invention. Ceux-ci forment les flancs d'un profil monolithe creux et sont reliés par des parties de liaison en béton 86. Des armatures de liaison reliées aux armatures réticulées des éléments 80 peuvent être prévues dans les parties de liaison 86.
Revendications 1. Elément de construction en forme de planche, caractérisé en ce qu'il est réalise en béton renforcé par une armature réticulée s'étendant sensiblement sur toute la longueur et la largeur de l'élément et sur au moins la moitié de l'épaisseur de celui-ci, ladite armature comportant, comme connu en soi, une résille dont les alvéoles sont délimités par une paroi latérale en forme de bande sensiblement perpendiculaire aux grandes faces de l'élément, le béton enrobant complètement la résille et remplissant les alvéoles. 2. Elément de construction selon la revendication 1, caractérisé en ce que la résille est entourée et délimitée par un cadre rectangulaire en forme de bande. 3. Elément de construction selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'armature réticulée est renforcé par des armatures rectilignes suivant sa plus grande dimension. 4. Elément de consstruction selon l'une quelconque des revendications 1 a 3, caractérisé en ce que la résille est constituée par un assemblage de feuillards découpés et déployés pour former chacun une rangée d'alvéoles. 5. Elément de construction selon l'une quelconque des revendications 1 a 3, caractérisé en ce que la résille est constituée par une tresse tissée rigidifiée par imprégnation d'un matériau et formant les parois des alvéoles. 6. Elément de construction selon l'une quelconque des revendications 1 a S, caractérisé en ce que le béton enrobant l'armature réticulée est renforcé par une armature de peau entourant cette armature sur toute sa périphérie. 7. Elément de construction selon l'une quelconque des revendications 1 a 5, caractérisé en ce que le béton enrobant l'armature réticulée est renforcé par imprégnation au moyen d'une résine polymérisable. 8. Structure comportant plusieurs éléments de construction selon l'une quelconque des revendications 1 a 7. 9. Structure selon la revendication 8, caractérisée en ce que les éléments en forme de planche sont disposés les uns sur les autres et assemblés les uns aux autres pour former une structure lamellaire. 10. Structure selon la revendication 8, caractérisée en ce que les éléments en forme de planche sont assemblés entre eux par des pièces de liaison perpendiculaires aux grandes faces des éléments, pour former une structure de charpente. 11. Structure selon la revendication 8, caractérisée en ce que les éléments en forme de planche sont reliés par des parties en béton renforcées par des armatures de liaison reliées aux armatures réticulées desdits éléments.
CERIB CENTRE ET RECH IND BETON MANUFACTURE
DARDARE, JACQUES