File size: 7,582 Bytes
6c72393
 
 
d425305
6c72393
 
 
d425305
6c72393
 
 
d425305
8ef137f
 
f9c43d9
 
 
d425305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9c43d9
 
 
d425305
 
 
f9c43d9
d425305
 
 
 
f9c43d9
 
 
 
 
 
 
 
d425305
f9c43d9
 
 
 
 
 
 
 
 
 
 
 
d425305
f9c43d9
d425305
f9c43d9
d425305
 
 
 
 
 
26957cf
d425305
8cf350d
660ce40
 
8cf350d
660ce40
9691a02
d425305
 
 
9691a02
 
d425305
 
 
8cf350d
9691a02
d425305
 
8cf350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d425305
 
 
 
 
 
 
f9c43d9
d425305
 
 
 
 
8cf350d
d425305
 
 
 
 
 
8cf350d
 
 
 
d425305
 
8cf350d
 
 
 
 
 
 
 
 
 
d425305
9691a02
26957cf
d425305
26957cf
d425305
 
 
 
 
 
 
26957cf
d425305
 
 
 
f9c43d9
 
 
 
 
 
 
d425305
f9c43d9
d425305
f9c43d9
 
d425305
f9c43d9
d425305
7ea4dd8
2e1b751
6b3c5ef
bc624ce
bbedc9d
947ff53
 
 
d425305
f9c43d9
d425305
f9c43d9
d425305
f9c43d9
d425305
 
 
f9c43d9
 
 
 
 
 
 
 
 
d425305
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
license: mit
language:
- en,
tags:
- legal
- patents
pretty_name: PatClass2011
size_categories:
- 10B<n<100B
---
# PatClass2011 Dataset

![CLEFIP-2011](https://huggingface.co/datasets/amylonidis/PatClass2011/resolve/main/CLEFIP2011.png)

## Dataset Summary

The **PatClass2011** dataset is a comprehensive collection of approximately 719,000 patent documents from the CLEF-IP 2011 Test Collection,
focusing on patent classification tasks. Each entry encompasses detailed metadata and textual content, including titles, abstracts, descriptions, and claims.
The dataset is structured to facilitate research in patent classification, information retrieval, and natural language processing.

## Languages

The dataset contains English, French and German text.

## Domain

Patents (intellectual property).

## Dataset Curators

The dataset was created by Eleni Kamateri and Tasos Mylonidis

## Dataset Structure

The dataset consists of 28 folders which correspond to a specific year, ranging from 1978 to 2005. Within each yearly subdirectory, you'll find a CSV file named in the format
clefip2011_en_classification_<year>.csv. These files contain patent data that were all published that year.
This structure facilitates year-wise analysis, allowing researchers to study trends and patterns in patent classifications over time. In total, there are 19 data fields for each CSV


### Data Fields

The dataset is provided in CSV format and includes the aforementioned fields

- `ucid`: Unique identifier for the patent document.
- `doc_number`: Patent document number.
- `country`: Country code of the patent.
- `kind`: Kind code indicating the type of patent document.
- `lang`: Language of the patent document.
- `date`: Publication date of the patent.
- `application_date`: Date when the patent application was filed.
- `date_produced`: Date when the data was inserted in the dataset.
- `status`: Status of the patent document.
- `main_code`: Primary classification code assigned to the patent.
- `further_codes`: Additional classification codes.
- `ipcr_codes`: International Patent Classification codes.
- `ecla_codes`: European Classification codes.
- `title`: Title of the patent document.
- `abstract`: Abstract summarizing the patent.
- `description`: Detailed description of the patent.
- `claims`: Claims defining the scope of the patent protection.
- `applicants`: Entities or individuals who applied for the patent.
- `inventors`: Inventors credited in the patent document.

## Usage

## Loading the Dataset

### Sample ( 1985 March to April )

The following script can be used to load a sample version of the dataset, which contains all the patent applications
that were published from March until April in 1985.


```python

from datasets import load_dataset
import pandas as pd
from datetime import datetime
import gc

def load_csvs_from_huggingface(start_date, end_date):
    """
    Load only the necessary CSV files from a Hugging Face dataset repository.

    :param start_date: str, the start date in 'YYYY-MM-DD' format (inclusive)
    :param end_date: str, the end date in 'YYYY-MM-DD' format (inclusive)

    :return: pd.DataFrame, combined data from selected CSVs
    """

    huggingface_dataset_name = "amylonidis/PatClass2011"

    column_types = {
        "ucid": "string",
        "country": "category",
        "doc_number": "int64",
        "kind": "category",
        "lang": "category",
        "date": "int32",
        "application_date": "int32",
        "date_produced": "int32",
        "status": "category",
        "main_code": "string",
        "further_codes": "string",
        "ipcr_codes": "string",
        "ecla_codes": "string",
        "title": "string",
        "abstract": "string",
        "description": "string",
        "claims": "string",
        "applicants": "string",
        "inventors": "string",
    }

    dataset_years = ['1978', '1979', '1980', '1981', '1982', '1983', '1984', '1985', '1986',
                     '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995',
                     '1996','1997', '1998', '1999', '2000', '2001', '2002','2003', '2004', '2005']

    start_date_int = int(datetime.strptime(start_date, "%Y-%m-%d").strftime("%Y%m%d"))
    end_date_int = int(datetime.strptime(end_date, "%Y-%m-%d").strftime("%Y%m%d"))

    start_year, end_year = str(start_date_int)[:4], str(end_date_int)[:4]
    given_years = [str(year) for year in range(int(start_year), int(end_year) + 1)]
    matching_years = [f  for f in dataset_years for year in given_years if f==year]

    if not matching_years:
        raise ValueError(f"No matching CSV files found for {start_date} to {end_date}")

    df_list = []
    for year in matching_years:
        filepath = f"data/years/{year}/clefip2011_en_classification_{year}_validated.csv"

        try:
            dataset = load_dataset(huggingface_dataset_name, data_files=filepath, split="train")
            df = dataset.to_pandas().astype(column_types)
            mask = (df["date"] >= start_date_int) & (df["date"] <= end_date_int)
            df_filtered = df[mask].copy()


            if not df_filtered.empty:
                df_list.append(df_filtered)

            del df, dataset, df_filtered, mask
            gc.collect()

        except Exception as e:
            print(f"Error processing {filepath}: {e}")

    return pd.concat(df_list, ignore_index=True) if df_list else pd.DataFrame()


```

```python

start_date = "1985-03-01"
end_date = "1985-04-30"

df = load_csvs_from_huggingface(start_date, end_date)


```

### Full

To load the complete dataset using the Hugging Face `datasets` library:

```python
from datasets import load_dataset

dataset = load_dataset("amylonidis/PatClass2011")
```

This will load the dataset into a `DatasetDict` object, please make sure you have enough disk space.

## Google Colab Analytics


You can also use the following Google Colab notebooks to explore the Analytics that were performed to the dataset.

- [Date Analytics](https://colab.research.google.com/drive/1N2w5F1koWmZOyQaf0ZTB3gighPTXtUzD?usp=sharing)
- [Applicant - Inventor Name Analytics](https://colab.research.google.com/drive/1y1nEGrl40IjsUrFKgVsmYyuHyve40mfk?usp=sharing)
- [Main Codes Analytics](https://colab.research.google.com/drive/1fhAgrSAsO5Q2TzFlFywI6Bl0D2w-cfoL?usp=sharing)
- [Section Title Analytics](https://colab.research.google.com/drive/126zqwzdt2nZDF5N7mdl4n8XadCnwav12?usp=sharing)
- [Section Abstract Analytics](https://colab.research.google.com/drive/1Z9bviT14EbpBL7gz41fqby0yq8vU5-lE?usp=sharing)
- [Section Claims Analytics](https://colab.research.google.com/drive/1526ZNQeEgeteBFlPFa2VJUF3UaPFBGkc?usp=sharing)
- [Section Description Analytics](https://colab.research.google.com/drive/10ESV1Z7jyeVnmDgtPdRukpYUQVLgpo-Y?usp=sharing)


## Dataset Creation

### Source Data

The PatClass2011 dataset aggregates the patent documents from the CLEF-IP 2011 Test Collection using a parsing script. The data includes both metadata and full-text fields, facilitating a wide range of research applications.

### Annotations

The dataset does not contain any human-written or computer-generated annotations beyond those produced by patent documents of the Source Data.

## Licensing Information

This dataset is distributed under the [MIT License](https://opensource.org/licenses/MIT). Users are free to use, modify, and distribute the dataset, provided that the original authors are credited.

## Citation

If you utilize the PatClass2011 dataset in your research or applications, please cite it appropriately.

---