Update README.md
Browse files
README.md
CHANGED
@@ -77,23 +77,23 @@ that were published from March until April in 1985.
|
|
77 |
import pandas as pd
|
78 |
from datetime import datetime
|
79 |
|
80 |
-
def load_csvs_from_huggingface(
|
81 |
"""
|
82 |
Load only the necessary CSV files from a Hugging Face dataset repository.
|
83 |
|
84 |
-
:param
|
85 |
-
:param
|
86 |
|
87 |
:return: pd.DataFrame, combined data from selected CSVs
|
88 |
"""
|
89 |
-
|
90 |
|
91 |
column_types = {
|
92 |
"ucid": "string",
|
93 |
"country": "category",
|
94 |
"doc_number": "int64",
|
95 |
"kind": "category",
|
96 |
-
"lang": "category"
|
97 |
"date": "int32",
|
98 |
"application_date": "int32",
|
99 |
"date_produced": "int32",
|
@@ -119,9 +119,7 @@ def load_csvs_from_huggingface( start_date, end_date):
|
|
119 |
end_date_int = int(datetime.strptime(end_date, "%Y-%m-%d").strftime("%Y%m%d"))
|
120 |
|
121 |
start_year, end_year = str(start_date_int)[:4], str(end_date_int)[:4]
|
122 |
-
|
123 |
given_years = [str(year) for year in range(int(start_year), int(end_year) + 1)]
|
124 |
-
|
125 |
matching_years = [f for f in dataset_years for year in given_years if f==year]
|
126 |
|
127 |
if not matching_years:
|
@@ -130,10 +128,9 @@ def load_csvs_from_huggingface( start_date, end_date):
|
|
130 |
df_list = []
|
131 |
for year in matching_years:
|
132 |
filepath = f"data/years/{year}/clefip2011_en_classification_{year}_validated.csv"
|
133 |
-
print(filepath)
|
134 |
|
135 |
try:
|
136 |
-
dataset = load_dataset(
|
137 |
df = dataset["train"].to_pandas().astype(column_types)
|
138 |
df_list.append(df)
|
139 |
except Exception as e:
|
@@ -148,6 +145,7 @@ def load_csvs_from_huggingface( start_date, end_date):
|
|
148 |
else:
|
149 |
return pd.DataFrame()
|
150 |
|
|
|
151 |
```
|
152 |
|
153 |
```python
|
|
|
77 |
import pandas as pd
|
78 |
from datetime import datetime
|
79 |
|
80 |
+
def load_csvs_from_huggingface(start_date, end_date):
|
81 |
"""
|
82 |
Load only the necessary CSV files from a Hugging Face dataset repository.
|
83 |
|
84 |
+
:param start_date: str, the start date in 'YYYY-MM-DD' format (inclusive)
|
85 |
+
:param end_date: str, the end date in 'YYYY-MM-DD' format (inclusive)
|
86 |
|
87 |
:return: pd.DataFrame, combined data from selected CSVs
|
88 |
"""
|
89 |
+
huggingface_dataset_name = "amylonidis/PatClass2011"
|
90 |
|
91 |
column_types = {
|
92 |
"ucid": "string",
|
93 |
"country": "category",
|
94 |
"doc_number": "int64",
|
95 |
"kind": "category",
|
96 |
+
"lang": "category",
|
97 |
"date": "int32",
|
98 |
"application_date": "int32",
|
99 |
"date_produced": "int32",
|
|
|
119 |
end_date_int = int(datetime.strptime(end_date, "%Y-%m-%d").strftime("%Y%m%d"))
|
120 |
|
121 |
start_year, end_year = str(start_date_int)[:4], str(end_date_int)[:4]
|
|
|
122 |
given_years = [str(year) for year in range(int(start_year), int(end_year) + 1)]
|
|
|
123 |
matching_years = [f for f in dataset_years for year in given_years if f==year]
|
124 |
|
125 |
if not matching_years:
|
|
|
128 |
df_list = []
|
129 |
for year in matching_years:
|
130 |
filepath = f"data/years/{year}/clefip2011_en_classification_{year}_validated.csv"
|
|
|
131 |
|
132 |
try:
|
133 |
+
dataset = load_dataset(huggingface_dataset_name, data_files=filepath)
|
134 |
df = dataset["train"].to_pandas().astype(column_types)
|
135 |
df_list.append(df)
|
136 |
except Exception as e:
|
|
|
145 |
else:
|
146 |
return pd.DataFrame()
|
147 |
|
148 |
+
|
149 |
```
|
150 |
|
151 |
```python
|