File size: 8,249 Bytes
3ea3e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2023 Natural Synthetics Inc.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys

sys.path.append("/")
import os
import argparse
import torch
from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline
from hotshot_xl.pipelines.hotshot_xl_controlnet_pipeline import HotshotXLControlNetPipeline
from hotshot_xl.models.unet import UNet3DConditionModel
import torchvision.transforms as transforms
from einops import rearrange
from hotshot_xl.utils import save_as_gif, extract_gif_frames_from_midpoint, scale_aspect_fill
from torch import autocast
from diffusers import ControlNetModel
from contextlib import contextmanager
from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler

SCHEDULERS = {
    'EulerAncestralDiscreteScheduler': EulerAncestralDiscreteScheduler,
    'EulerDiscreteScheduler': EulerDiscreteScheduler,
    'default': None,
    # add more here
}


def parse_args():
    parser = argparse.ArgumentParser(description="Hotshot-XL inference")
    parser.add_argument("--pretrained_path", type=str, default="hotshotco/Hotshot-XL")
    parser.add_argument("--xformers", action="store_true")
    parser.add_argument("--spatial_unet_base", type=str)
    parser.add_argument("--lora", type=str)
    parser.add_argument("--output", type=str, required=True)
    parser.add_argument("--steps", type=int, default=30)
    parser.add_argument("--prompt", type=str,
                        default="a bulldog in the captains chair of a spaceship, hd, high quality")
    parser.add_argument("--negative_prompt", type=str, default="blurry")
    parser.add_argument("--seed", type=int, default=455)
    parser.add_argument("--width", type=int, default=672)
    parser.add_argument("--height", type=int, default=384)
    parser.add_argument("--target_width", type=int, default=512)
    parser.add_argument("--target_height", type=int, default=512)
    parser.add_argument("--og_width", type=int, default=1920)
    parser.add_argument("--og_height", type=int, default=1080)
    parser.add_argument("--video_length", type=int, default=8)
    parser.add_argument("--video_duration", type=int, default=1000)
    parser.add_argument('--scheduler', type=str, default='EulerAncestralDiscreteScheduler',
                        help='Name of the scheduler to use')

    parser.add_argument("--control_type", type=str, default=None, choices=["depth", "canny"])
    parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7)
    parser.add_argument("--control_guidance_start", type=float, default=0.0)
    parser.add_argument("--control_guidance_end", type=float, default=1.0)
    parser.add_argument("--gif", type=str, default=None)
    parser.add_argument("--precision", type=str, default='f16', choices=[
        'f16', 'f32', 'bf16'
    ])
    parser.add_argument("--autocast", type=str, default=None, choices=[
        'f16', 'bf16'
    ])

    return parser.parse_args()


to_pil = transforms.ToPILImage()


def to_pil_images(video_frames: torch.Tensor, output_type='pil'):
    video_frames = rearrange(video_frames, "b c f w h -> b f c w h")
    bsz = video_frames.shape[0]
    images = []
    for i in range(bsz):
        video = video_frames[i]
        for j in range(video.shape[0]):
            if output_type == "pil":
                images.append(to_pil(video[j]))
            else:
                images.append(video[j])
    return images

@contextmanager
def maybe_auto_cast(data_type):
    if data_type:
        with autocast("cuda", dtype=data_type):
            yield
    else:
        yield


def main():
    args = parse_args()

    if args.control_type and not args.gif:
        raise ValueError("Controlnet specified but you didn't specify a gif!")

    if args.gif and not args.control_type:
        print("warning: gif was specified but no control type was specified. gif will be ignored.")

    output_dir = os.path.dirname(args.output)
    if output_dir:
        os.makedirs(output_dir, exist_ok=True)

    device = torch.device("cuda")

    control_net_model_pretrained_path = None
    if args.control_type:
        control_type_to_model_map = {
            "canny": "diffusers/controlnet-canny-sdxl-1.0",
            "depth": "diffusers/controlnet-depth-sdxl-1.0",
        }
        control_net_model_pretrained_path = control_type_to_model_map[args.control_type]

    data_type = torch.float32

    if args.precision == 'f16':
        data_type = torch.half
    elif args.precision == 'f32':
        data_type = torch.float32
    elif args.precision == 'bf16':
        data_type = torch.bfloat16

    pipe_line_args = {
        "torch_dtype": data_type,
        "use_safetensors": True
    }

    PipelineClass = HotshotXLPipeline

    if control_net_model_pretrained_path:
        PipelineClass = HotshotXLControlNetPipeline
        pipe_line_args['controlnet'] = \
            ControlNetModel.from_pretrained(control_net_model_pretrained_path, torch_dtype=data_type)

    if args.spatial_unet_base:

        unet_3d = UNet3DConditionModel.from_pretrained(args.pretrained_path, subfolder="unet").to(device)

        unet = UNet3DConditionModel.from_pretrained_spatial(args.spatial_unet_base).to(device)

        temporal_layers = {}
        unet_3d_sd = unet_3d.state_dict()

        for k, v in unet_3d_sd.items():
            if 'temporal' in k:
                temporal_layers[k] = v

        unet.load_state_dict(temporal_layers, strict=False)

        pipe_line_args['unet'] = unet

        del unet_3d_sd
        del unet_3d
        del temporal_layers

    pipe = PipelineClass.from_pretrained(args.pretrained_path, **pipe_line_args).to(device)

    if args.lora:
        pipe.load_lora_weights(args.lora)

    SchedulerClass = SCHEDULERS[args.scheduler]
    if SchedulerClass is not None:
        pipe.scheduler = SchedulerClass.from_config(pipe.scheduler.config)
 
    if args.xformers:
        pipe.enable_xformers_memory_efficient_attention()

    generator = torch.Generator().manual_seed(args.seed) if args.seed else None

    autocast_type = None
    if args.autocast == 'f16':
        autocast_type = torch.half
    elif args.autocast == 'bf16':
        autocast_type = torch.bfloat16

    kwargs = {}

    if args.gif and type(pipe) is HotshotXLControlNetPipeline:
        kwargs['control_images'] = [
            scale_aspect_fill(img, args.width, args.height).convert("RGB") \
            for img in
            extract_gif_frames_from_midpoint(args.gif, fps=args.video_length, target_duration=args.video_duration)
        ]
        kwargs['controlnet_conditioning_scale'] = args.controlnet_conditioning_scale
        kwargs['control_guidance_start'] = args.control_guidance_start
        kwargs['control_guidance_end'] = args.control_guidance_end

    with maybe_auto_cast(autocast_type):

        images = pipe(args.prompt,
                      negative_prompt=args.negative_prompt,
                      width=args.width,
                      height=args.height,
                      original_size=(args.og_width, args.og_height),
                      target_size=(args.target_width, args.target_height),
                      num_inference_steps=args.steps,
                      video_length=args.video_length,
                      generator=generator,
                      output_type="tensor", **kwargs).videos

    images = to_pil_images(images, output_type="pil")

    if args.video_length > 1:
        save_as_gif(images, args.output, duration=args.video_duration // args.video_length)
    else:
        images[0].save(args.output, format='JPEG', quality=95)


if __name__ == "__main__":
    main()