system HF staff commited on
Commit
a9f99ad
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "Social Bias Frames is a new way of representing the biases and offensiveness that are implied in language. \nFor example, these frames are meant to distill the implication that \"women (candidates) are less qualified\" \nbehind the statement \"we shouldn\u2019t lower our standards to hire more women.\"\n", "citation": "@inproceedings{sap2020socialbiasframes,\n title={Social Bias Frames: Reasoning about Social and Power Implications of Language},\n author={Sap, Maarten and Gabriel, Saadia and Qin, Lianhui and Jurafsky, Dan and Smith, Noah A and Choi, Yejin},\n year={2020},\n booktitle={ACL},\n}\n", "homepage": "https://homes.cs.washington.edu/~msap/social-bias-frames/", "license": "", "features": {"whoTarget": {"dtype": "string", "id": null, "_type": "Value"}, "intentYN": {"dtype": "string", "id": null, "_type": "Value"}, "sexYN": {"dtype": "string", "id": null, "_type": "Value"}, "sexReason": {"dtype": "string", "id": null, "_type": "Value"}, "offensiveYN": {"dtype": "string", "id": null, "_type": "Value"}, "annotatorGender": {"dtype": "string", "id": null, "_type": "Value"}, "annotatorMinority": {"dtype": "string", "id": null, "_type": "Value"}, "sexPhrase": {"dtype": "string", "id": null, "_type": "Value"}, "speakerMinorityYN": {"dtype": "string", "id": null, "_type": "Value"}, "WorkerId": {"dtype": "string", "id": null, "_type": "Value"}, "HITId": {"dtype": "string", "id": null, "_type": "Value"}, "annotatorPolitics": {"dtype": "string", "id": null, "_type": "Value"}, "annotatorRace": {"dtype": "string", "id": null, "_type": "Value"}, "annotatorAge": {"dtype": "string", "id": null, "_type": "Value"}, "post": {"dtype": "string", "id": null, "_type": "Value"}, "targetMinority": {"dtype": "string", "id": null, "_type": "Value"}, "targetCategory": {"dtype": "string", "id": null, "_type": "Value"}, "targetStereotype": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "social_bias_frames", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 5169855, "num_examples": 17501, "dataset_name": "social_bias_frames"}, "validation": {"name": "validation", "num_bytes": 4904733, "num_examples": 16738, "dataset_name": "social_bias_frames"}, "train": {"name": "train", "num_bytes": 32739659, "num_examples": 112900, "dataset_name": "social_bias_frames"}}, "download_checksums": {"https://homes.cs.washington.edu/~msap/social-bias-frames/SocialBiasFrames_v2.tgz": {"num_bytes": 6250039, "checksum": "9d572fc25530789602c58b433ac8a4d3c8e4962e3ba09cab5d135e851b8cec78"}}, "download_size": 6250039, "dataset_size": 42814247, "size_in_bytes": 49064286}}
dummy/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9e85caa0f8d436bc287363b98c65197f109cb680b2f514d68ac6ec8288ee28d
3
+ size 1953
social_bias_frames.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Social Bias Frames"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import csv
22
+ import os
23
+
24
+ import datasets
25
+
26
+
27
+ _CITATION = """\
28
+ @inproceedings{sap2020socialbiasframes,
29
+ title={Social Bias Frames: Reasoning about Social and Power Implications of Language},
30
+ author={Sap, Maarten and Gabriel, Saadia and Qin, Lianhui and Jurafsky, Dan and Smith, Noah A and Choi, Yejin},
31
+ year={2020},
32
+ booktitle={ACL},
33
+ }
34
+ """
35
+
36
+ _DESCRIPTION = """\
37
+ Social Bias Frames is a new way of representing the biases and offensiveness that are implied in language.
38
+ For example, these frames are meant to distill the implication that "women (candidates) are less qualified"
39
+ behind the statement "we shouldn’t lower our standards to hire more women."
40
+ """
41
+
42
+ _DATA_URL = "https://homes.cs.washington.edu/~msap/social-bias-frames/SocialBiasFrames_v2.tgz"
43
+
44
+
45
+ class SocialBiasFrames(datasets.GeneratorBasedBuilder):
46
+ """TSocial Bias Frame"""
47
+
48
+ def _info(self):
49
+ return datasets.DatasetInfo(
50
+ description=_DESCRIPTION,
51
+ features=datasets.Features(
52
+ {
53
+ "whoTarget": datasets.Value("string"),
54
+ "intentYN": datasets.Value("string"),
55
+ "sexYN": datasets.Value("string"),
56
+ "sexReason": datasets.Value("string"),
57
+ "offensiveYN": datasets.Value("string"),
58
+ "annotatorGender": datasets.Value("string"),
59
+ "annotatorMinority": datasets.Value("string"),
60
+ "sexPhrase": datasets.Value("string"),
61
+ "speakerMinorityYN": datasets.Value("string"),
62
+ "WorkerId": datasets.Value("string"),
63
+ "HITId": datasets.Value("string"),
64
+ "annotatorPolitics": datasets.Value("string"),
65
+ "annotatorRace": datasets.Value("string"),
66
+ "annotatorAge": datasets.Value("string"),
67
+ "post": datasets.Value("string"),
68
+ "targetMinority": datasets.Value("string"),
69
+ "targetCategory": datasets.Value("string"),
70
+ "targetStereotype": datasets.Value("string"),
71
+ }
72
+ ),
73
+ # No default supervised_keys (as we have to pass both premise
74
+ # and hypothesis as input).
75
+ supervised_keys=None,
76
+ homepage="https://homes.cs.washington.edu/~msap/social-bias-frames/",
77
+ citation=_CITATION,
78
+ )
79
+
80
+ def _split_generators(self, dl_manager):
81
+ dl_dir = dl_manager.download_and_extract(_DATA_URL)
82
+ return [
83
+ datasets.SplitGenerator(
84
+ name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dl_dir, "SBFv2.tst.csv")}
85
+ ),
86
+ datasets.SplitGenerator(
87
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dl_dir, "SBFv2.dev.csv")}
88
+ ),
89
+ datasets.SplitGenerator(
90
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir, "SBFv2.trn.csv")}
91
+ ),
92
+ ]
93
+
94
+ def _generate_examples(self, filepath):
95
+ """This function returns the examples in the raw (text) form."""
96
+ with open(filepath, encoding="utf-8") as f:
97
+ reader = csv.DictReader(f)
98
+ for idx, row in enumerate(reader):
99
+ yield idx, row