Datasets:

Languages:
English
ArXiv:
Libraries:
Datasets
License:
scitldr / scitldr.py
system's picture
system HF staff
Update files from the datasets library (from 1.13.0)
988152f
raw
history blame
7.21 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset for TLDR: Extreme Summarization of Scientific Documents"""
import json
import os
import datasets
_SOURCE = "source"
_TARGET = "target"
_CITATION = """\
@article{cachola2020tldr,
title={{TLDR}: Extreme Summarization of Scientific Documents},
author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
journal={arXiv:2004.15011},
year={2020},
}
"""
_DESCRIPTION = """\
A new multi-target dataset of 5.4K TLDRs over 3.2K papers.
SCITLDR contains both author-written and expert-derived TLDRs,
where the latter are collected using a novel annotation protocol
that produces high-quality summaries while minimizing annotation burden.
"""
_LICENSE = "Apache License 2.0"
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"Abstract": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-A/",
"AIC": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-AIC/",
"FullText": "https://raw.githubusercontent.com/allenai/scitldr/master/SciTLDR-Data/SciTLDR-FullText/",
}
_TRAIN_DATA = "train.jsonl"
_TEST_DATA = "test.jsonl"
_VALID_DATA = "dev.jsonl"
# There are several preprocessing scripts given in the original SciTLDR GitHub repository to preprocess this data.
class Scitldr(datasets.GeneratorBasedBuilder):
"""Dataset for TLDR: Extreme Summarization of Scientific Documents."""
VERSION = datasets.Version("1.1.0")
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('scitldr', 'Abstract')
# data = datasets.load_dataset('scitldr', 'AIC')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="Abstract", description="This part contains only abstracts of the paper"),
datasets.BuilderConfig(
name="AIC",
description="This part contains Abstracts, Introduction and Conclusion (AIC) sections of the paper",
),
datasets.BuilderConfig(name="FullText", description="This part contains the full text of the paper"),
]
DEFAULT_CONFIG_NAME = (
"Abstract" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
if self.config.name == "AIC": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"source": datasets.Sequence(datasets.Value("string")),
"source_labels": datasets.Sequence(datasets.ClassLabel(num_classes=2, names=[0, 1])),
"rouge_scores": datasets.Sequence(datasets.Value("float32")),
"paper_id": datasets.Value("string"),
"ic": datasets.Value("bool_"),
"target": datasets.features.Sequence(datasets.Value("string"))
# These are the features of your dataset like images, labels ...
}
)
else:
features = datasets.Features(
{
"source": datasets.Sequence(datasets.Value("string")),
"source_labels": datasets.Sequence(
datasets.ClassLabel(num_classes=2, names=["non-oracle", "oracle"])
),
"rouge_scores": datasets.Sequence(datasets.Value("float32")),
"paper_id": datasets.Value("string"),
"target": datasets.Sequence(datasets.Value("string"))
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=(_SOURCE, _TARGET),
# Homepage of the dataset for documentation
homepage="https://github.com/allenai/scitldr",
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls = {
"train": _URLs[self.config.name] + _TRAIN_DATA,
"valid": _URLs[self.config.name] + _VALID_DATA,
"test": _URLs[self.config.name] + _TEST_DATA,
}
data_dir = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir["train"])},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir["test"])},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir["valid"])},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
if self.config.name == "AIC":
yield id_, {
"source": data["source"],
"source_labels": data["source_labels"],
"rouge_scores": data["rouge_scores"],
"paper_id": data["paper_id"],
"ic": True if data["ic"] else False,
"target": data["target"],
}
else:
yield id_, {
"source": data["source"],
"source_labels": data["source_labels"],
"rouge_scores": data["rouge_scores"],
"paper_id": data["paper_id"],
"target": data["target"],
}