system HF staff commited on
Commit
f73fd1a
·
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"main": {"description": "OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic \n(with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In \nparticular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge, \nand rich text comprehension.\nOpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of\na subject. \n", "citation": "@inproceedings{OpenBookQA2018,\n title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},\n author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},\n booktitle={EMNLP},\n year={2018}\n}\n", "homepage": "https://allenai.org/data/open-book-qa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question_stem": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "answerKey": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "openbookqa", "config_name": "main", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 124295, "num_examples": 500, "dataset_name": "openbookqa"}, "train": {"name": "train", "num_bytes": 1186990, "num_examples": 4957, "dataset_name": "openbookqa"}, "validation": {"name": "validation", "num_bytes": 131304, "num_examples": 500, "dataset_name": "openbookqa"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/ai2-website/data/OpenBookQA-V1-Sep2018.zip": {"num_bytes": 1446098, "checksum": "82368cf05df2e3b309c17d162e10b888b4d768fad6e171e0a041954c8553be46"}}, "download_size": 1446098, "dataset_size": 1442589, "size_in_bytes": 2888687}, "additional": {"description": "OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic \n(with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In \nparticular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge, \nand rich text comprehension.\nOpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of\na subject. \n", "citation": "@inproceedings{OpenBookQA2018,\n title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},\n author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},\n booktitle={EMNLP},\n year={2018}\n}\n", "homepage": "https://allenai.org/data/open-book-qa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question_stem": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "answerKey": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "openbookqa", "config_name": "additional", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 124295, "num_examples": 500, "dataset_name": "openbookqa"}, "train": {"name": "train", "num_bytes": 1186990, "num_examples": 4957, "dataset_name": "openbookqa"}, "validation": {"name": "validation", "num_bytes": 131304, "num_examples": 500, "dataset_name": "openbookqa"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/ai2-website/data/OpenBookQA-V1-Sep2018.zip": {"num_bytes": 1446098, "checksum": "82368cf05df2e3b309c17d162e10b888b4d768fad6e171e0a041954c8553be46"}}, "download_size": 1446098, "dataset_size": 1442589, "size_in_bytes": 2888687}}
dummy/additional/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6df295e28a58f16936961c4602310580a1583cf4cffd19f71c6b4b01c1352a67
3
+ size 2748
dummy/main/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9d70bb37f78dd357b55d4b3b5e7a06fac382b793ab10a1cc006178a6bf7e863
3
+ size 2568
openbookqa.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(openBookQA): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+ import textwrap
8
+
9
+ import datasets
10
+
11
+
12
+ # TODO(openBookQA): BibTeX citation
13
+ _CITATION = """\
14
+ @inproceedings{OpenBookQA2018,
15
+ title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
16
+ author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
17
+ booktitle={EMNLP},
18
+ year={2018}
19
+ }
20
+ """
21
+
22
+ # TODO(openBookQA):
23
+ _DESCRIPTION = textwrap.dedent(
24
+ """\
25
+ OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic
26
+ (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In
27
+ particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge,
28
+ and rich text comprehension.
29
+ OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of
30
+ a subject.
31
+ """
32
+ )
33
+ _URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/OpenBookQA-V1-Sep2018.zip"
34
+
35
+
36
+ class OpenbookqaConfig(datasets.BuilderConfig):
37
+ def __init__(self, data_dir, **kwargs):
38
+ """BuilderConfig for openBookQA dataset
39
+
40
+ Args:
41
+ data_dir: directory for the given dataset name
42
+ **kwargs: keyword arguments forwarded to super.
43
+
44
+ """
45
+
46
+ super(OpenbookqaConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
47
+
48
+ self.data_dir = data_dir
49
+
50
+
51
+ class Openbookqa(datasets.GeneratorBasedBuilder):
52
+ """TODO(openBookQA): Short description of my dataset."""
53
+
54
+ # TODO(openBookQA): Set up version.
55
+ VERSION = datasets.Version("0.1.0")
56
+ BUILDER_CONFIGS = [
57
+ OpenbookqaConfig(
58
+ name="main",
59
+ description=textwrap.dedent(
60
+ """
61
+ It consists of 5,957 multiple-choice elementary-level science questions (4,957 train, 500 dev, 500 test),
62
+ which probe the understanding of a small “book” of 1,326 core science facts and the application of these facts to novel
63
+ situations. For training, the dataset includes a mapping from each question to the core science fact it was designed to
64
+ probe. Answering OpenBookQA questions requires additional broad common knowledge, not contained in the book. The questions,
65
+ by design, are answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm. Strong neural
66
+ baselines achieve around 50% on OpenBookQA, leaving a large gap to the 92% accuracy of crowd-workers.
67
+ """
68
+ ),
69
+ data_dir="Main",
70
+ ),
71
+ OpenbookqaConfig(
72
+ name="additional",
73
+ description=textwrap.dedent(
74
+ """
75
+ Additionally, we provide 5,167 crowd-sourced common knowledge facts, and an expanded version of the train/dev/test questions where
76
+ each question is associated with its originating core fact, a human accuracy score, a clarity score, and an anonymized crowd-worker
77
+ ID (in the “Additional” folder).
78
+ """
79
+ ),
80
+ data_dir="Additional",
81
+ ),
82
+ ]
83
+
84
+ def _info(self):
85
+ # TODO(openBookQA): Specifies the datasets.DatasetInfo object
86
+ return datasets.DatasetInfo(
87
+ # This is the description that will appear on the datasets page.
88
+ description=_DESCRIPTION,
89
+ # datasets.features.FeatureConnectors
90
+ features=datasets.Features(
91
+ {
92
+ # These are the features of your dataset like images, labels ...
93
+ "id": datasets.Value("string"),
94
+ "question_stem": datasets.Value("string"),
95
+ "choices": datasets.features.Sequence(
96
+ {"text": datasets.Value("string"), "label": datasets.Value("string")}
97
+ ),
98
+ "answerKey": datasets.Value("string"),
99
+ }
100
+ ),
101
+ # If there's a common (input, target) tuple from the features,
102
+ # specify them here. They'll be used if as_supervised=True in
103
+ # builder.as_dataset.
104
+ supervised_keys=None,
105
+ # Homepage of the dataset for documentation
106
+ homepage="https://allenai.org/data/open-book-qa",
107
+ citation=_CITATION,
108
+ )
109
+
110
+ def _split_generators(self, dl_manager):
111
+ """Returns SplitGenerators."""
112
+ # TODO(openBookQA): Downloads the data and defines the splits
113
+ # dl_manager is a datasets.download.DownloadManager that can be used to
114
+ # download and extract URLs
115
+ dl_dir = dl_manager.download_and_extract(_URL)
116
+ data_dir = os.path.join(dl_dir, "OpenBookQA-V1-Sep2018", "Data")
117
+ data_dir = os.path.join(data_dir, self.config.data_dir)
118
+ train_file = (
119
+ os.path.join(data_dir, "train.jsonl")
120
+ if self.config.name == "main"
121
+ else os.path.join(data_dir, "train_complete.jsonl")
122
+ )
123
+ test_file = (
124
+ os.path.join(data_dir, "test.jsonl")
125
+ if self.config.name == "main"
126
+ else os.path.join(data_dir, "test_complete.jsonl")
127
+ )
128
+ dev_file = (
129
+ os.path.join(data_dir, "dev.jsonl")
130
+ if self.config.name == "main"
131
+ else os.path.join(data_dir, "dev_complete.jsonl")
132
+ )
133
+ return [
134
+ datasets.SplitGenerator(
135
+ name=datasets.Split.TRAIN,
136
+ # These kwargs will be passed to _generate_examples
137
+ gen_kwargs={"filepath": train_file},
138
+ ),
139
+ datasets.SplitGenerator(
140
+ name=datasets.Split.TEST,
141
+ # These kwargs will be passed to _generate_examples
142
+ gen_kwargs={"filepath": test_file},
143
+ ),
144
+ datasets.SplitGenerator(
145
+ name=datasets.Split.VALIDATION,
146
+ # These kwargs will be passed to _generate_examples
147
+ gen_kwargs={"filepath": dev_file},
148
+ ),
149
+ ]
150
+
151
+ def _generate_examples(self, filepath):
152
+ """Yields examples."""
153
+ # TODO(openBookQA): Yields (key, example) tuples from the dataset
154
+ with open(filepath, encoding="utf-8") as f:
155
+ for row in f:
156
+ data = json.loads(row)
157
+ yield data["id"], {
158
+ "id": data["id"],
159
+ "question_stem": data["question"]["stem"],
160
+ "choices": {
161
+ "text": [choice["text"] for choice in data["question"]["choices"]],
162
+ "label": [choice["text"] for choice in data["question"]["choices"]],
163
+ },
164
+ "answerKey": data["answerKey"],
165
+ }