Datasets:
Tasks:
Question Answering
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
License:
File size: 8,690 Bytes
2a607ac ffefa2b 2fc280d 8805795 2fc280d ffefa2b 72ca7de ffefa2b 076385e c62cfde 076385e c62cfde 076385e 2a607ac ffefa2b 2a607ac 99a02c6 2a607ac 99a02c6 2a607ac 430c4bf 2a607ac 1c468ff 2a607ac 430c4bf 2a607ac 99a02c6 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac dd6edb0 2a607ac 1c468ff 2a607ac dd6edb0 2a607ac dd6edb0 2a607ac dd6edb0 2a607ac 1c468ff 2a607ac dd6edb0 2a607ac dd6edb0 2a607ac 430c4bf 2a607ac dd6edb0 2a607ac dd6edb0 2a607ac dd6edb0 2a607ac 99a02c6 2a607ac dd6edb0 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 99a02c6 2a607ac 430c4bf 2a607ac 99a02c6 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 430c4bf 2a607ac 076385e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: OpenBookQA
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: openbookqa
dataset_info:
- config_name: main
features:
- name: id
dtype: string
- name: question_stem
dtype: string
- name: choices
sequence:
- name: text
dtype: string
- name: label
dtype: string
- name: answerKey
dtype: string
splits:
- name: train
num_bytes: 896034
num_examples: 4957
- name: validation
num_bytes: 95519
num_examples: 500
- name: test
num_bytes: 91850
num_examples: 500
download_size: 1446098
dataset_size: 1083403
- config_name: additional
features:
- name: id
dtype: string
- name: question_stem
dtype: string
- name: choices
sequence:
- name: text
dtype: string
- name: label
dtype: string
- name: answerKey
dtype: string
- name: fact1
dtype: string
- name: humanScore
dtype: float32
- name: clarity
dtype: float32
- name: turkIdAnonymized
dtype: string
splits:
- name: train
num_bytes: 1290473
num_examples: 4957
- name: validation
num_bytes: 136141
num_examples: 500
- name: test
num_bytes: 130926
num_examples: 500
download_size: 1446098
dataset_size: 1557540
---
# Dataset Card for OpenBookQA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://allenai.org/data/open-book-qa](https://allenai.org/data/open-book-qa)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 2.89 MB
- **Size of the generated dataset:** 2.88 MB
- **Total amount of disk used:** 5.78 MB
### Dataset Summary
OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic
(with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. In
particular, it contains questions that require multi-step reasoning, use of additional common and commonsense knowledge,
and rich text comprehension.
OpenBookQA is a new kind of question-answering dataset modeled after open book exams for assessing human understanding of
a subject.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### main
- **Size of downloaded dataset files:** 1.45 MB
- **Size of the generated dataset:** 1.45 MB
- **Total amount of disk used:** 2.88 MB
An example of 'train' looks as follows:
```
{'id': '7-980',
'question_stem': 'The sun is responsible for',
'choices': {'text': ['puppies learning new tricks',
'children growing up and getting old',
'flowers wilting in a vase',
'plants sprouting, blooming and wilting'],
'label': ['A', 'B', 'C', 'D']},
'answerKey': 'D'}
```
#### additional
- **Size of downloaded dataset files:** 1.45 MB
- **Size of the generated dataset:** 1.45 MB
- **Total amount of disk used:** 2.88 MB
An example of 'train' looks as follows:
```
{'id': '7-980',
'question_stem': 'The sun is responsible for',
'choices': {'text': ['puppies learning new tricks',
'children growing up and getting old',
'flowers wilting in a vase',
'plants sprouting, blooming and wilting'],
'label': ['A', 'B', 'C', 'D']},
'answerKey': 'D',
'fact1': 'the sun is the source of energy for physical cycles on Earth',
'humanScore': 1.0,
'clarity': 2.0,
'turkIdAnonymized': 'b356d338b7'}
```
### Data Fields
The data fields are the same among all splits.
#### main
- `id`: a `string` feature.
- `question_stem`: a `string` feature.
- `choices`: a dictionary feature containing:
- `text`: a `string` feature.
- `label`: a `string` feature.
- `answerKey`: a `string` feature.
#### additional
- `id`: a `string` feature.
- `question_stem`: a `string` feature.
- `choices`: a dictionary feature containing:
- `text`: a `string` feature.
- `label`: a `string` feature.
- `answerKey`: a `string` feature.
- `fact1` (`str`): oOriginating common knowledge core fact associated to the question.
- `humanScore` (`float`): Human accuracy score.
- `clarity` (`float`): Clarity score.
- `turkIdAnonymized` (`str`): Anonymized crowd-worker ID.
### Data Splits
| name | train | validation | test |
|------------|------:|-----------:|-----:|
| main | 4957 | 500 | 500 |
| additional | 4957 | 500 | 500 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{OpenBookQA2018,
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
booktitle={EMNLP},
year={2018}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset. |