|
from typing import List, Union, Dict, Any, Tuple |
|
import json |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import Summarization |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
def _load_jsonl(filename): |
|
with open(filename, "r") as fp: |
|
jsonl_content = fp.read() |
|
|
|
result = [json.loads(jline) for jline in jsonl_content.splitlines()] |
|
return result |
|
|
|
|
|
def _load_json(filepath): |
|
|
|
with open(filepath, "r") as fp: |
|
res = json.load(fp) |
|
return res |
|
|
|
|
|
_CITATION = """ |
|
@article{Shen2022MultiLexSum, |
|
author = {Zejiang Shen and |
|
Kyle Lo and |
|
Lauren Yu and |
|
Nathan Dahlberg and |
|
Margo Schlanger and |
|
Doug Downey}, |
|
title = {Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities}, |
|
journal = {CoRR}, |
|
volume = {abs/2206.10883}, |
|
year = {2022}, |
|
url = {https://doi.org/10.48550/arXiv.2206.10883}, |
|
doi = {10.48550/arXiv.2206.10883} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Multi-LexSum is a multi-doc summarization dataset for civil rights litigation lawsuits with summaries of three granularities. |
|
""" |
|
|
|
_HOMEPAGE = "https://multilexsum.github.io" |
|
|
|
|
|
_BASE_URL = "https://huggingface.co/datasets/allenai/multi_lexsum/resolve/main/releases" |
|
_FILES = { |
|
"train": "train.json", |
|
"dev": "dev.json", |
|
"test": "test.json", |
|
"sources": "sources.json", |
|
} |
|
|
|
|
|
class MultiLexsumConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for LexSum.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for LexSum. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MultiLexsumConfig, self).__init__(**kwargs) |
|
|
|
|
|
class MultiLexsum(datasets.GeneratorBasedBuilder): |
|
"""MultiLexSum Dataset: a multi-doc summarization dataset for |
|
civil rights litigation lawsuits with summaries of three granularities. |
|
""" |
|
|
|
BUILDER_CONFIGS = [ |
|
MultiLexsumConfig( |
|
name="v20220616", |
|
version=datasets.Version("1.0.0", "Public v1.0 release."), |
|
description="The v1.0 Multi-LexSum dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sources": datasets.Sequence(datasets.Value("string")), |
|
"summary/long": datasets.Value("string"), |
|
"summary/short": datasets.Value("string"), |
|
"summary/tiny": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ |
|
Summarization(text_column="source", summary_column="summary/long") |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
base_url = _BASE_URL if self.config.data_dir is None else self.config.data_dir |
|
downloaded_files = dl_manager.download_and_extract( |
|
{ |
|
name: f"{base_url}/{self.config.name}/{filename}" |
|
for name, filename in _FILES.items() |
|
} |
|
) |
|
|
|
sources = _load_json(downloaded_files["sources"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"subset_file": downloaded_files["train"], |
|
"sources": sources, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"subset_file": downloaded_files["dev"], |
|
"sources": sources, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"subset_file": downloaded_files["test"], |
|
"sources": sources, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, subset_file: str, sources: Dict[str, Dict]): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info(f"generating examples from = {subset_file}") |
|
|
|
subset_cases = _load_jsonl(subset_file) |
|
for case_data in subset_cases: |
|
case_sources = [ |
|
sources[source_id]["doc_text"] |
|
for source_id in case_data["case_documents"] |
|
] |
|
yield case_data["case_id"], { |
|
"id": case_data["case_id"], |
|
"sources": case_sources, |
|
"summary/long": case_data["summary/long"], |
|
"summary/short": case_data["summary/short"], |
|
"summary/tiny": case_data["summary/tiny"], |
|
} |