Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-abstractive-qa
Languages:
English
Size:
100K - 1M
License:
"""TODO(break_data): Add a description here.""" | |
import csv | |
import json | |
import os | |
import textwrap | |
import datasets | |
# TODO(break): BibTeX citation | |
_CITATION = """\ | |
@article{Wolfson2020Break, | |
title={Break It Down: A Question Understanding Benchmark}, | |
author={Wolfson, Tomer and Geva, Mor and Gupta, Ankit and Gardner, Matt and Goldberg, Yoav and Deutch, Daniel and Berant, Jonathan}, | |
journal={Transactions of the Association for Computational Linguistics}, | |
year={2020}, | |
} | |
""" | |
# TODO(break): | |
_DESCRIPTION = """\ | |
Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations | |
(QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. | |
This repository contains the Break dataset along with information on the exact data format. | |
""" | |
_URL = "https://github.com/allenai/Break/raw/master/break_dataset/Break-dataset.zip" | |
class BreakDataConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Break""" | |
def __init__(self, text_features, lexicon_tokens, **kwargs): | |
""" | |
Args: | |
text_features: `dict[string, string]`, map from the name of the feature | |
dict for each text field to the name of the column in the tsv file | |
lexicon_tokens: to define if we want to load the lexicon_tokens files or not | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(BreakDataConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
self.text_features = text_features | |
self.lexicon_tokens = lexicon_tokens | |
class BreakData(datasets.GeneratorBasedBuilder): | |
"""TODO(break_data): Short description of my dataset.""" | |
# TODO(break_data): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
BUILDER_CONFIGS = [ | |
BreakDataConfig( | |
name="QDMR-high-level", | |
description=textwrap.dedent( | |
""" | |
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading | |
Comprehension tasks (Section 2). lexicon_tokens files are also provided.""" | |
), | |
text_features={ | |
"question_id": "question_id", | |
"question_text": "question_text", | |
"decomposition": "decomposition", | |
"operators": "operators", | |
"split": "split", | |
}, | |
lexicon_tokens=False, | |
), | |
BreakDataConfig( | |
name="QDMR-high-level-lexicon", | |
description=textwrap.dedent( | |
""" | |
Contains questions annotated with the high-level variant of QDMR. These decomposition are exclusive to Reading | |
Comprehension tasks (Section 2). lexicon_tokens files are also provided.""" | |
), | |
text_features={ | |
"source": "source", | |
"allowed_tokens": "allowed_tokens", | |
}, | |
lexicon_tokens=True, | |
), | |
BreakDataConfig( | |
name="QDMR", | |
description=textwrap.dedent( | |
""" | |
Contains questions over text, images and databases annotated with their Question Decomposition Meaning | |
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For | |
each question, the lexicon file contains the set of valid tokens that could potentially appear in its | |
decomposition """ | |
), | |
text_features={ | |
"question_id": "question_id", | |
"question_text": "question_text", | |
"decomposition": "decomposition", | |
"operators": "operators", | |
"split": "split", | |
}, | |
lexicon_tokens=False, | |
), | |
BreakDataConfig( | |
name="QDMR-lexicon", | |
description=textwrap.dedent( | |
""" | |
Contains questions over text, images and databases annotated with their Question Decomposition Meaning | |
Representation. In addition to the train, dev and (hidden) test sets we provide lexicon_tokens files. For | |
each question, the lexicon file contains the set of valid tokens that could potentially appear in its | |
decomposition """ | |
), | |
text_features={ | |
"source": "source", | |
"allowed_tokens": "allowed_tokens", | |
}, | |
lexicon_tokens=True, | |
), | |
BreakDataConfig( | |
name="logical-forms", | |
description=textwrap.dedent( | |
""" | |
Contains questions and QDMRs annotated with full logical-forms of QDMR operators + arguments. Full logical-forms | |
were inferred by the annotation-consistency algorithm described in """ | |
), | |
lexicon_tokens=False, | |
text_features={ | |
"question_id": "question_id", | |
"question_text": "question_text", | |
"decomposition": "decomposition", | |
"operators": "operators", | |
"split": "split", | |
"program": "program", | |
}, | |
), | |
] | |
def _info(self): | |
# TODO(break_data): Specifies the datasets.DatasetInfo object | |
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()} | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
features | |
# These are the features of your dataset like images, labels ... | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://github.com/allenai/Break", | |
citation=_CITATION, | |
) | |
# if | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(break_data): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_URL) | |
data_dir = os.path.join(dl_dir, "Break-dataset") | |
qdmr_high_level = os.path.join(data_dir, "QDMR-high-level") | |
qdmr = os.path.join(data_dir, "QDMR") | |
logical = os.path.join(data_dir, "logical-forms") | |
if self.config.name == "QDMR" or self.config.name == "QDMR-lexicon": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(qdmr, "train.csv") | |
if not self.config.lexicon_tokens | |
else os.path.join(qdmr, "train_lexicon_tokens.json") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(qdmr, "dev.csv") | |
if not self.config.lexicon_tokens | |
else os.path.join(qdmr, "dev_lexicon_tokens.json") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(qdmr, "test.csv") | |
if not self.config.lexicon_tokens | |
else os.path.join(qdmr, "test_lexicon_tokens.json") | |
}, | |
), | |
] | |
elif self.config.name == "QDMR-high-level" or self.config.name == "QDMR-high-level-lexicon": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(qdmr_high_level, "train.csv") | |
if not self.config.lexicon_tokens | |
else os.path.join(qdmr_high_level, "train_lexicon_tokens.json") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(qdmr_high_level, "dev.csv") | |
if not self.config.lexicon_tokens | |
else os.path.join(qdmr_high_level, "dev_lexicon_tokens.json") | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(qdmr_high_level, "test.csv") | |
if not self.config.lexicon_tokens | |
else os.path.join(qdmr_high_level, "test_lexicon_tokens.json") | |
}, | |
), | |
] | |
elif self.config.name == "logical-forms": | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(logical, "train.csv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(logical, "dev.csv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(logical, "test.csv")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(break_data): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
if ( | |
self.config.name == "QDMR-high-level" | |
or self.config.name == "QDMR" | |
or self.config.name == "logical-forms" | |
): | |
data = csv.DictReader(f) | |
for id_, row in enumerate(data): | |
yield id_, row | |
elif self.config.name == "QDMR-high-level-lexicon" or self.config.name == "QDMR-lexicon": | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
yield id_, data | |