Datasets:
File size: 7,007 Bytes
27ea105 18c0514 27ea105 3efd2bb 27ea105 3efd2bb 9dc3cee 27ea105 17ad675 05c461f bf0e508 05c461f c3bf57b 27ea105 bf0e508 27ea105 bf0e508 27ea105 77de19d 27ea105 24288cf 27ea105 77de19d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
pretty_name: ATOMIC
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: atomic
tags:
- common-sense-if-then-reasoning
dataset_info:
features:
- name: event
dtype: string
- name: oEffect
sequence: string
- name: oReact
sequence: string
- name: oWant
sequence: string
- name: xAttr
sequence: string
- name: xEffect
sequence: string
- name: xIntent
sequence: string
- name: xNeed
sequence: string
- name: xReact
sequence: string
- name: xWant
sequence: string
- name: prefix
sequence: string
- name: split
dtype: string
config_name: atomic
splits:
- name: test
num_bytes: 3995624
num_examples: 24856
- name: train
num_bytes: 32441878
num_examples: 202271
- name: validation
num_bytes: 3629768
num_examples: 22620
download_size: 19083782
dataset_size: 40067270
---
# Dataset Card for An Atlas of Machine Commonsense for If-Then Reasoning - Atomic Common Sense Dataset
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
https://homes.cs.washington.edu/~msap/atomic/
- **Repository:**
https://homes.cs.washington.edu/~msap/atomic/
- **Paper:**
Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith & Yejin Choi (2019). ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning. AAAI
### Dataset Summary
This dataset provides the template sentences and
relationships defined in the ATOMIC common sense dataset. There are
three splits - train, test, and dev.
From the authors.
Disclaimer/Content warning: the events in atomic have been
automatically extracted from blogs, stories and books written at
various times. The events might depict violent or problematic actions,
which we left in the corpus for the sake of learning the (probably
negative but still important) commonsense implications associated with
the events. We removed a small set of truly out-dated events, but
might have missed some so please email us ([email protected]) if
you have any concerns.
For more information, see: https://homes.cs.washington.edu/~msap/atomic/
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
en
## Dataset Structure
### Data Instances
Here is one example from the atomic dataset:
``
{'event': "PersonX uses PersonX's ___ to obtain", 'oEffect': [], 'oReact': ['annoyed', 'angry', 'worried'], 'oWant': [], 'prefix': ['uses', 'obtain'], 'split': 'trn', 'xAttr': [], 'xEffect': [], 'xIntent': ['to have an advantage', 'to fulfill a desire', 'to get out of trouble'], 'xNeed': [], 'xReact': ['pleased', 'smug', 'excited'], 'xWant': []}
``
### Data Fields
Notes from the authors:
* event: just a string representation of the event.
* oEffect,oReact,oWant,xAttr,xEffect,xIntent,xNeed,xReact,xWant: annotations for each of the dimensions, stored in a json-dumped string.
Note: "none" means the worker explicitly responded with the empty response, whereas [] means the worker did not annotate this dimension.
* prefix: json-dumped string that represents the prefix of content words (used to make a better trn/dev/tst split).
* split: string rep of which split the event belongs to.
### Data Splits
The atomic dataset has three splits: test, train and dev of the form:
## Dataset Creation
### Curation Rationale
This dataset was gathered and created over to assist in common sense reasoning.
### Source Data
#### Initial Data Collection and Normalization
See the reaserch paper and website for more detail. The dataset was
created by the University of Washington using crowd sourced data
#### Who are the source language producers?
The Atomic authors and crowd source.
### Annotations
#### Annotation process
Human annotations directed by forms.
#### Who are the annotators?
Human annotations.
### Personal and Sensitive Information
Unkown, but likely none.
## Considerations for Using the Data
### Social Impact of Dataset
The goal for the work is to help machines understand common sense.
### Discussion of Biases
Since the data is human annotators, there is likely to be baised. From the authors:
Disclaimer/Content warning: the events in atomic have been automatically extracted from blogs, stories and books written at various times. The events might depict violent or problematic actions, which we left in the corpus for the sake of learning the (probably negative but still important) commonsense implications associated with the events. We removed a small set of truly out-dated events, but might have missed some so please email us ([email protected]) if you have any concerns.
### Other Known Limitations
While there are many relationships, the data is quite sparse. Also, each item of the dataset could be expanded into multiple sentences along the vsrious dimensions, oEffect, oRect, etc.
For example, given event: "PersonX uses PersonX's ___ to obtain" and dimension oReact: "annoyed", this could be transformed into an entry:
"PersonX uses PersonX's ___ to obtain => PersonY is annoyed"
## Additional Information
### Dataset Curators
The authors of Aotmic at The University of Washington
### Licensing Information
The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/
### Citation Information
@article{Sap2019ATOMICAA,
title={ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning},
author={Maarten Sap and Ronan Le Bras and Emily Allaway and Chandra Bhagavatula and Nicholas Lourie and Hannah Rashkin and Brendan Roof and Noah A. Smith and Yejin Choi},
journal={ArXiv},
year={2019},
volume={abs/1811.00146}
}
### Contributions
Thanks to [@ontocord](https://github.com/ontocord) for adding this dataset. |