Datasets:

Modalities:
Text
Formats:
csv
Languages:
Polish
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
aae56f3
1 Parent(s): 9843af3

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,156 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language_creators:
5
- - other
6
- language:
7
- - pl
8
- license:
9
- - cc-by-sa-4.0
10
- multilinguality:
11
- - monolingual
12
- pretty_name: 'PolEmo2.0-IN'
13
- size_categories:
14
- - 1K<n<10K
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - text-classification
19
- task_ids:
20
- - sentiment-classification
21
- ---
22
-
23
- # klej-polemo2-in
24
-
25
- ## Description
26
-
27
- The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. It comprises over 8000 reviews, about 85% from the medicine and hotel domains.
28
-
29
- We use the PolEmo2.0 dataset to form two tasks. Both use the same training dataset, i.e., reviews from medicine and hotel domains, but are evaluated on a different test set.
30
-
31
- **In-Domain** is the first task, and we use accuracy to evaluate model performance within the in-domain context, i.e., on a test set of reviews from medicine and hotels domains.
32
-
33
- ## Tasks (input, output, and metrics)
34
-
35
- The task is to predict the correct label of the review.
36
-
37
- **Input** ('*text'* column): sentence
38
-
39
- **Output** ('*target'* column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous)
40
-
41
- **Domain**: Online reviews
42
-
43
- **Measurements**: Accuracy
44
-
45
- **Example**:
46
-
47
- Input: `Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .`
48
-
49
- Input (translated by DeepL): `The doctor recommended me an alternative treatment to the current one , so I do not yet give the highest rating ( we will see how effective it turns out to be ) . To the doctor I have no reservations : very professional and cultured . The only minus is about the office , which is not modern , which may discourage patients .`
50
-
51
- Output: `amb` (ambiguous)
52
-
53
- ## Data splits
54
-
55
- | Subset | Cardinality |
56
- |:-----------|--------------:|
57
- | train | 5783 |
58
- | test | 722 |
59
- | validation | 723 |
60
-
61
- ## Class distribution in train
62
-
63
- | Class | Sentiment | train | validation | test |
64
- |:------|:----------|------:|-----------:|------:|
65
- | minus | positive | 0.379 | 0.375 | 0.416 |
66
- | plus | negative | 0.271 | 0.289 | 0.273 |
67
- | amb | ambiguous | 0.182 | 0.160 | 0.150 |
68
- | zero | neutral | 0.168 | 0.176 | 0.162 |
69
-
70
- ## Citation
71
-
72
- ```
73
- @inproceedings{kocon-etal-2019-multi,
74
- title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
75
- author = "Koco{\'n}, Jan and
76
- Mi{\l}kowski, Piotr and
77
- Za{\'s}ko-Zieli{\'n}ska, Monika",
78
- booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
79
- month = nov,
80
- year = "2019",
81
- address = "Hong Kong, China",
82
- publisher = "Association for Computational Linguistics",
83
- url = "https://aclanthology.org/K19-1092",
84
- doi = "10.18653/v1/K19-1092",
85
- pages = "980--991",
86
- abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).",
87
- }
88
- ```
89
-
90
- ## License
91
-
92
- ```
93
- Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
94
- ```
95
-
96
- ## Links
97
-
98
- [HuggingFace](https://huggingface.co/datasets/allegro/klej-polemo2-in)
99
-
100
- [Source](https://clarin-pl.eu/dspace/handle/11321/710)
101
-
102
- [Paper](https://aclanthology.org/K19-1092/)
103
-
104
- ## Examples
105
-
106
- ### Loading
107
-
108
- ```python
109
- from pprint import pprint
110
-
111
- from datasets import load_dataset
112
-
113
- dataset = load_dataset("allegro/klej-polemo2-in")
114
- pprint(dataset['train'][0])
115
-
116
- # {'sentence': 'Super lekarz i człowiek przez duże C . Bardzo duże doświadczenie '
117
- # 'i trafne diagnozy . Wielka cierpliwość do ludzi starszych . Od '
118
- # 'lat opiekuje się moją Mamą staruszką , i twierdzę , że mamy duże '
119
- # 'szczęście , że mamy takiego lekarza . Naprawdę nie wiem cobyśmy '
120
- # 'zrobili , gdyby nie Pan doktor . Dzięki temu , moja mama żyje . '
121
- # 'Każda wizyta u specjalisty jest u niego konsultowana i uważam , '
122
- # 'że jest lepszy od każdego z nich . Mamy do Niego prawie '
123
- # 'nieograniczone zaufanie . Można wiele dobrego o Panu doktorze '
124
- # 'jeszcze napisać . Niestety , ma bardzo dużo pacjentów , jest '
125
- # 'przepracowany ( z tego powodu nawet obawiam się o jego zdrowie ) '
126
- # 'i dostęp do niego jest trudny , ale zawsze możliwy .',
127
- # 'target': '__label__meta_plus_m'}
128
- ```
129
-
130
- ### Evaluation
131
-
132
- ```python
133
- import random
134
- from pprint import pprint
135
-
136
- from datasets import load_dataset, load_metric
137
-
138
- dataset = load_dataset("allegro/klej-polemo2-in")
139
- dataset = dataset.class_encode_column("target")
140
- references = dataset["test"]["target"]
141
-
142
- # generate random predictions
143
- predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
144
-
145
- acc = load_metric("accuracy")
146
- f1 = load_metric("f1")
147
-
148
- acc_score = acc.compute(predictions=predictions, references=references)
149
- f1_score = f1.compute(predictions=predictions, references=references, average="macro")
150
-
151
- pprint(acc_score)
152
- pprint(f1_score)
153
-
154
- # {'accuracy': 0.25069252077562326}
155
- # {'f1': 0.23760962219870274}
156
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
allegro--klej-polemo2-in/csv-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9201ccbabce9473920ef0961308d755a7a0d5e4662d6c6a6a24e1a2cc581a7d
3
+ size 390836
allegro--klej-polemo2-in/csv-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c84d4371c18130f524a41fb3cfe83e638707088438dfdb588bb1b3562b5dd7f3
3
+ size 3213782
allegro--klej-polemo2-in/csv-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e613fb50b44d8ac99a29719c6ee3633a96aa70b43223ecfb746cd0a720a8835f
3
+ size 396573
test.csv DELETED
The diff for this file is too large to render. See raw diff
 
train.csv DELETED
The diff for this file is too large to render. See raw diff
 
valid.csv DELETED
The diff for this file is too large to render. See raw diff