Datasets:

Modalities:
Text
Formats:
csv
Languages:
Polish
Libraries:
Datasets
pandas
License:
piotr-rybak asawczyn commited on
Commit
96f2c19
1 Parent(s): eb79c2e

Create README.md (#1)

Browse files

- Create README.md (62685496ec2956de365297558e6079e0017106d9)


Co-authored-by: Albert Sawczyn <[email protected]>

Files changed (1) hide show
  1. README.md +151 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - other
6
+ language:
7
+ - pl
8
+ license:
9
+ - cc-by-sa-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: 'PolEmo2.0-IN'
13
+ size_categories:
14
+ - 1K<n<10K
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - text-classification
19
+ task_ids:
20
+ - sentiment-classification
21
+ ---
22
+
23
+ # klej-polemo2-in
24
+
25
+ ## Description
26
+
27
+ The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. It comprises over 8000 reviews, about 85% from the medicine and hotel domains.
28
+
29
+ We use the PolEmo2.0 dataset to form two tasks. Both use the same training dataset, i.e., reviews from medicine and hotel domains, but are evaluated on a different test set.
30
+
31
+ **In-Domain** is the first task, and we use accuracy to evaluate model performance within the in-domain context, i.e., on a test set of reviews from medicine and hotels domains.
32
+
33
+ ## Tasks (input, output, and metrics)
34
+
35
+ The task is to predict the correct label of the review.
36
+
37
+ **Input** ('*text'* column): sentence
38
+
39
+ **Output** ('*target'* column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous)
40
+
41
+ **Domain**: Online reviews
42
+
43
+ **Measurements**: Accuracy
44
+
45
+ **Example***:
46
+ Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .* → a*mb*
47
+
48
+ ## Data splits
49
+
50
+ | Subset | Cardinality |
51
+ |:-----------|--------------:|
52
+ | train | 5783 |
53
+ | test | 722 |
54
+ | validation | 723 |
55
+
56
+ ## Class distribution in train
57
+
58
+ | Class | Sentiment | train | validation | test |
59
+ |:------|:----------|------:|-----------:|------:|
60
+ | minus | positive | 0.379 | 0.375 | 0.416 |
61
+ | plus | negative | 0.271 | 0.289 | 0.273 |
62
+ | amb | ambiguous | 0.182 | 0.160 | 0.150 |
63
+ | zero | neutral | 0.168 | 0.176 | 0.162 |
64
+
65
+ ## Citation
66
+
67
+ ```
68
+ @inproceedings{kocon-etal-2019-multi,
69
+ title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
70
+ author = "Koco{\'n}, Jan and
71
+ Mi{\l}kowski, Piotr and
72
+ Za{\'s}ko-Zieli{\'n}ska, Monika",
73
+ booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
74
+ month = nov,
75
+ year = "2019",
76
+ address = "Hong Kong, China",
77
+ publisher = "Association for Computational Linguistics",
78
+ url = "https://aclanthology.org/K19-1092",
79
+ doi = "10.18653/v1/K19-1092",
80
+ pages = "980--991",
81
+ abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).",
82
+ }
83
+ ```
84
+
85
+ ## License
86
+
87
+ ```
88
+ Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
89
+ ```
90
+
91
+ ## Links
92
+
93
+ [HuggingFace](https://huggingface.co/datasets/allegro/klej-polemo2-in)
94
+
95
+ [Source](https://clarin-pl.eu/dspace/handle/11321/710)
96
+
97
+ [Paper](https://aclanthology.org/K19-1092/)
98
+
99
+ ## Examples
100
+
101
+ ### Loading
102
+
103
+ ```python
104
+ from pprint import pprint
105
+
106
+ from datasets import load_dataset
107
+
108
+ dataset = load_dataset("allegro/klej-polemo2-in")
109
+ pprint(dataset['train'][0])
110
+
111
+ # {'sentence': 'Super lekarz i człowiek przez duże C . Bardzo duże doświadczenie '
112
+ # 'i trafne diagnozy . Wielka cierpliwość do ludzi starszych . Od '
113
+ # 'lat opiekuje się moją Mamą staruszką , i twierdzę , że mamy duże '
114
+ # 'szczęście , że mamy takiego lekarza . Naprawdę nie wiem cobyśmy '
115
+ # 'zrobili , gdyby nie Pan doktor . Dzięki temu , moja mama żyje . '
116
+ # 'Każda wizyta u specjalisty jest u niego konsultowana i uważam , '
117
+ # 'że jest lepszy od każdego z nich . Mamy do Niego prawie '
118
+ # 'nieograniczone zaufanie . Można wiele dobrego o Panu doktorze '
119
+ # 'jeszcze napisać . Niestety , ma bardzo dużo pacjentów , jest '
120
+ # 'przepracowany ( z tego powodu nawet obawiam się o jego zdrowie ) '
121
+ # 'i dostęp do niego jest trudny , ale zawsze możliwy .',
122
+ # 'target': '__label__meta_plus_m'}
123
+ ```
124
+
125
+ ### Evaluation
126
+
127
+ ```python
128
+ import random
129
+ from pprint import pprint
130
+
131
+ from datasets import load_dataset, load_metric
132
+
133
+ dataset = load_dataset("allegro/klej-polemo2-in")
134
+ dataset = dataset.class_encode_column("target")
135
+ references = dataset["test"]["target"]
136
+
137
+ # generate random predictions
138
+ predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
139
+
140
+ acc = load_metric("accuracy")
141
+ f1 = load_metric("f1")
142
+
143
+ acc_score = acc.compute(predictions=predictions, references=references)
144
+ f1_score = f1.compute(predictions=predictions, references=references, average="macro")
145
+
146
+ pprint(acc_score)
147
+ pprint(f1_score)
148
+
149
+ # {'accuracy': 0.25069252077562326}
150
+ # {'f1': 0.23760962219870274}
151
+ ```