Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
File size: 5,625 Bytes
6268549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: 'PolEmo2.0-IN'
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---
# klej-polemo2-in
## Description
The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. It comprises over 8000 reviews, about 85% from the medicine and hotel domains.
We use the PolEmo2.0 dataset to form two tasks. Both use the same training dataset, i.e., reviews from medicine and hotel domains, but are evaluated on a different test set.
**In-Domain** is the first task, and we use accuracy to evaluate model performance within the in-domain context, i.e., on a test set of reviews from medicine and hotels domains.
## Tasks (input, output, and metrics)
The task is to predict the correct label of the review.
**Input** ('*text'* column): sentence
**Output** ('*target'* column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous)
**Domain**: Online reviews
**Measurements**: Accuracy
**Example***:
Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .* → a*mb*
## Data splits
| Subset | Cardinality |
|:-----------|--------------:|
| train | 5783 |
| test | 722 |
| validation | 723 |
## Class distribution in train
| Class | Sentiment | train | validation | test |
|:------|:----------|------:|-----------:|------:|
| minus | positive | 0.379 | 0.375 | 0.416 |
| plus | negative | 0.271 | 0.289 | 0.273 |
| amb | ambiguous | 0.182 | 0.160 | 0.150 |
| zero | neutral | 0.168 | 0.176 | 0.162 |
## Citation
```
@inproceedings{kocon-etal-2019-multi,
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
author = "Koco{\'n}, Jan and
Mi{\l}kowski, Piotr and
Za{\'s}ko-Zieli{\'n}ska, Monika",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-1092",
doi = "10.18653/v1/K19-1092",
pages = "980--991",
abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).",
}
```
## License
```
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
```
## Links
[HuggingFace](https://huggingface.co/datasets/allegro/klej-polemo2-in)
[Source](https://clarin-pl.eu/dspace/handle/11321/710)
[Paper](https://aclanthology.org/K19-1092/)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("allegro/klej-polemo2-in")
pprint(dataset['train'][0])
# {'sentence': 'Super lekarz i człowiek przez duże C . Bardzo duże doświadczenie '
# 'i trafne diagnozy . Wielka cierpliwość do ludzi starszych . Od '
# 'lat opiekuje się moją Mamą staruszką , i twierdzę , że mamy duże '
# 'szczęście , że mamy takiego lekarza . Naprawdę nie wiem cobyśmy '
# 'zrobili , gdyby nie Pan doktor . Dzięki temu , moja mama żyje . '
# 'Każda wizyta u specjalisty jest u niego konsultowana i uważam , '
# 'że jest lepszy od każdego z nich . Mamy do Niego prawie '
# 'nieograniczone zaufanie . Można wiele dobrego o Panu doktorze '
# 'jeszcze napisać . Niestety , ma bardzo dużo pacjentów , jest '
# 'przepracowany ( z tego powodu nawet obawiam się o jego zdrowie ) '
# 'i dostęp do niego jest trudny , ale zawsze możliwy .',
# 'target': '__label__meta_plus_m'}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("allegro/klej-polemo2-in")
dataset = dataset.class_encode_column("target")
references = dataset["test"]["target"]
# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
acc = load_metric("accuracy")
f1 = load_metric("f1")
acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average="macro")
pprint(acc_score)
pprint(f1_score)
# {'accuracy': 0.25069252077562326}
# {'f1': 0.23760962219870274}
``` |