Datasets:

Modalities:
Text
Formats:
csv
Languages:
Polish
Libraries:
Datasets
pandas
License:
File size: 5,625 Bytes
6268549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
annotations_creators: 
- expert-generated 
language_creators: 
- other
language: 
- pl
license: 
- cc-by-sa-4.0
multilinguality: 
- monolingual
pretty_name: 'PolEmo2.0-IN'
size_categories: 
- 1K<n<10K
source_datasets: 
- original
task_categories: 
- text-classification
task_ids: 
- sentiment-classification
---

# klej-polemo2-in

## Description

The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. It comprises over 8000 reviews, about 85% from the medicine and hotel domains.

We use the PolEmo2.0 dataset to form two tasks. Both use the same training dataset, i.e., reviews from medicine and hotel domains, but are evaluated on a different test set. 

**In-Domain** is the first task, and we use accuracy to evaluate model performance within the in-domain context, i.e., on a test set of reviews from medicine and hotels domains. 

## Tasks (input, output, and metrics)

The task is to predict the correct label of the review.

**Input** ('*text'* column): sentence

**Output** ('*target'* column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous)

**Domain**: Online reviews

**Measurements**: Accuracy

**Example***: 
Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .* → a*mb*

## Data splits

| Subset     |   Cardinality |
|:-----------|--------------:|
| train      |          5783 |
| test       |           722 |
| validation |           723 |

## Class distribution in train

| Class | Sentiment | train | validation |  test |
|:------|:----------|------:|-----------:|------:|
| minus | positive  | 0.379 |      0.375 | 0.416 |
| plus  | negative  | 0.271 |      0.289 | 0.273 |
| amb   | ambiguous | 0.182 |      0.160 | 0.150 |
| zero  | neutral   | 0.168 |      0.176 | 0.162 |

## Citation

```
@inproceedings{kocon-etal-2019-multi,
    title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
    author = "Koco{\'n}, Jan  and
      Mi{\l}kowski, Piotr  and
      Za{\'s}ko-Zieli{\'n}ska, Monika",
    booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K19-1092",
    doi = "10.18653/v1/K19-1092",
    pages = "980--991",
    abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).",
}
```

## License

```
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
```

## Links

[HuggingFace](https://huggingface.co/datasets/allegro/klej-polemo2-in)

[Source](https://clarin-pl.eu/dspace/handle/11321/710)

[Paper](https://aclanthology.org/K19-1092/)

## Examples

### Loading

```python
from pprint import pprint

from datasets import load_dataset

dataset = load_dataset("allegro/klej-polemo2-in")
pprint(dataset['train'][0])

# {'sentence': 'Super lekarz i człowiek przez duże C . Bardzo duże doświadczenie '
#              'i trafne diagnozy . Wielka cierpliwość do ludzi starszych . Od '
#              'lat opiekuje się moją Mamą staruszką , i twierdzę , że mamy duże '
#              'szczęście , że mamy takiego lekarza . Naprawdę nie wiem cobyśmy '
#              'zrobili , gdyby nie Pan doktor . Dzięki temu , moja mama żyje . '
#              'Każda wizyta u specjalisty jest u niego konsultowana i uważam , '
#              'że jest lepszy od każdego z nich . Mamy do Niego prawie '
#              'nieograniczone zaufanie . Można wiele dobrego o Panu doktorze '
#              'jeszcze napisać . Niestety , ma bardzo dużo pacjentów , jest '
#              'przepracowany ( z tego powodu nawet obawiam się o jego zdrowie ) '
#              'i dostęp do niego jest trudny , ale zawsze możliwy .',
#  'target': '__label__meta_plus_m'}
```

### Evaluation

```python
import random
from pprint import pprint

from datasets import load_dataset, load_metric

dataset = load_dataset("allegro/klej-polemo2-in")
dataset = dataset.class_encode_column("target")
references = dataset["test"]["target"]

# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]

acc = load_metric("accuracy")
f1 = load_metric("f1")

acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average="macro")

pprint(acc_score)
pprint(f1_score)

# {'accuracy': 0.25069252077562326}
# {'f1': 0.23760962219870274}
```