Datasets:
dataset_info:
features:
- name: utterance_id
dtype: string
- name: speaker_gender
dtype: string
- name: sentence
dtype: string
- name: speaker_id
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
splits:
- name: train
num_bytes: 209434570129.268
num_examples: 995677
- name: dev_balanced
num_bytes: 579692770.829
num_examples: 2601
- name: dev_other
num_bytes: 1725502342.095
num_examples: 7595
- name: test_balanced
num_bytes: 1158740779.222
num_examples: 5534
- name: test_other
num_bytes: 1254987645.527
num_examples: 5837
download_size: 101776974871
dataset_size: 214153493666.941
task_categories:
- automatic-speech-recognition
language:
- da
pretty_name: FT Speech
size_categories:
- 100K<n<1M
license: other
Dataset Card for FT Speech
Dataset Description
- Repository: https://ftspeech.github.io/
- Point of Contact: Dan Saattrup Nielsen
- Size of downloaded dataset files: 101.78 GB
- Size of the generated dataset: 214.15 GB
- Total amount of disk used: 315.93 GB
Dataset Summary
This dataset is an upload of the FT Speech dataset.
The training, validation and test splits are the original ones.
Supported Tasks and Leaderboards
Training automatic speech recognition is the intended task for this dataset. No leaderboard is active at this point.
Languages
The dataset is available in Danish (da
).
Dataset Structure
Data Instances
- Size of downloaded dataset files: 101.78 GB
- Size of the generated dataset: 214.15 GB
- Total amount of disk used: 315.93 GB
An example from the dataset looks as follows.
{
'utterance_id': 'S001_20151_M012_P00034-2',
'speaker_gender': 'F',
'sentence': 'alle de fem tekniske justeringer der er en del af lovforslaget',
'speaker_id': 'S001',
'audio': {
'path': 'S001_20151_M012_P00034-2.wav',
'array': array([-3.75366211e-03, -5.27954102e-03, -3.87573242e-03, ...,
9.15527344e-05, -1.52587891e-04, 5.79833984e-04]),
'sampling_rate': 16000
}
}
Data Fields
The data fields are the same among all splits.
utterance_id
: astring
feature.speaker_gender
: astring
feature.sentence
: astring
feature.speaker_id
: astring
feature.audio
: anAudio
feature.
Dataset Statistics
Speakers
There are 57 unique speakers in the training dataset and 25 unique speakers in the test dataset. All speakers in the test dataset appear in the training dataset.
Gender Distribution
Transcription Length Distribution
Dataset Creation
Curation Rationale
There are not many large-scale ASR datasets in Danish.
Source Data
The data constitutes public recordings of sessions from the Danish Parliament, along with manual transcriptions.
Additional Information
Dataset Curators
Dan Saattrup Nielsen from the The Alexandra Institute reorganised the dataset and uploaded it to the Hugging Face Hub.
Licensing Information
The dataset is licensed under this custom license.
Citation
@inproceedings{ftspeech,
author = {Kirkedal, Andreas and Stepanović, Marija and Plank, Barbara},
title = {{FT Speech: Danish Parliament Speech Corpus}},
booktitle = {Proc. Interspeech 2020},
year = {2020}
}