bodo_english_parallel / bodo_english_parallel.py
alayaran's picture
Update bodo_english_parallel.py
d19003d
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import os
import datasets
_DESCRIPTION = """\
Bodo and English Parallel Sentences
2 languages, 3 bitexts
;) @alayaran
"""
_HOMEPAGE_URL = "http://get.alayaran.com"
_CITATION = """\
In progress
"""
_VERSION = "1.0.0"
_BASE_NAME = "{}-parallel/{}.{}"
_BASE_URL = "http://get.alayaran.com/hf/{}-{}-parallel.zip"
_LANGUAGE_PAIRS = [
("brx", "eng"),
]
class BodoDatasetConfig(datasets.BuilderConfig):
def __init__(self, *args, lang1=None, lang2=None, **kwargs):
super().__init__(
*args,
name=f"{lang1}-{lang2}",
**kwargs,
)
self.lang1 = lang1
self.lang2 = lang2
class BodoDataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
BodoDatasetConfig(
lang1=lang1,
lang2=lang2,
description=f"Translating {lang1} to {lang2} or vice versa",
version=datasets.Version(_VERSION),
)
for lang1, lang2 in _LANGUAGE_PAIRS
]
BUILDER_CONFIG_CLASS = BodoDatasetConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
def _base_url(lang1, lang2):
return _BASE_URL.format(lang1, lang2)
download_url = _base_url(self.config.lang1, self.config.lang2)
path = dl_manager.download_and_extract(download_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"datapath": path},
)
]
def _generate_examples(self, datapath):
l1, l2 = self.config.lang1, self.config.lang2
folder = l1 + "-" + l2
l1_file = _BASE_NAME.format(folder, 'train', l1)
l2_file = _BASE_NAME.format(folder, 'train', l2)
l1_path = os.path.join(datapath, l1_file)
l2_path = os.path.join(datapath, l2_file)
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
for sentence_counter, (x, y) in enumerate(zip(f1, f2)):
x = x.strip()
y = y.strip()
result = (
sentence_counter,
{
"id": str(sentence_counter),
"translation": {l1: x, l2: y},
},
)
yield result