Datasets:
File size: 4,475 Bytes
164b418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
"""TODO(xquad): Add a description here."""
import json
import datasets
from datasets.tasks import QuestionAnsweringExtractive
_CITATION = """\
"""
_DESCRIPTION = """\
"""
_URL = "https://huggingface.co/datasets/ai4bharat/IndicQA/resolve/main/data/"
_LANG = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"]
class IndicqaConfig(datasets.BuilderConfig):
"""BuilderConfig for Indicqa"""
def __init__(self, lang, **kwargs):
"""
Args:
lang: string, language for the input text
**kwargs: keyword arguments forwarded to super.
"""
super(IndicqaConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.lang = lang
class Xquad(datasets.GeneratorBasedBuilder):
"""TODO(indicqa): Short description of my dataset."""
# TODO(indicqa): Set up version.
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [IndicqaConfig(name=f"indicqa.{lang}", description=_DESCRIPTION, lang=lang) for lang in _LANG]
def _info(self):
# TODO(indicqa): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"id": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question", context_column="context", answers_column="answers"
)
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(indicqa): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
urls_to_download = {lang: _URL + f"indicqa.{lang}.json" for lang in _LANG}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": downloaded_files[self.config.lang]},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(indicqa): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
indicqa = json.load(f)
id_ = 0
for article in indicqa["data"]:
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"context": context,
"question": question,
"id": qa["id"],
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
id_ += 1 |