|
""" |
|
Adapted from https://github.com/allenai/qasper-led-baseline/blob/main/qasper_baselines/dataset_reader.py |
|
to get ride of allennlp dependencies. |
|
""" |
|
|
|
import json |
|
import logging |
|
import random |
|
from enum import Enum |
|
from collections import defaultdict |
|
from typing import Any, Dict, List, Optional, Iterable, Tuple |
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class AnswerType(Enum): |
|
EXTRACTIVE = 1 |
|
ABSTRACTIVE = 2 |
|
BOOLEAN = 3 |
|
NONE = 4 |
|
|
|
|
|
|
|
class QasperReader(object): |
|
""" |
|
Reads a JSON-formatted Qasper data file and returns a `Dataset` where the `Instances` have |
|
four fields: |
|
* `question_with_context`, a `TextField` that contains the concatenation of question and |
|
context, |
|
* `paragraph_indices`, a `ListField` of `IndexFields` indicating paragraph-start tokens |
|
in `question_with_context`. |
|
* `global_attention_mask`, a mask that can be used by a longformer to specify which tokens in |
|
`question_with_context` should have global attention (only present if |
|
`include_global_attention_mask` is `True`). |
|
* `evidence`, a 0/1 `TensorField` indicating whether each paragraph in `paragraph_indices` |
|
should be selected as evidence. |
|
* `answer`, a `TextField` that contains the (wordpiece-tokenized) answer to the question |
|
* A `MetadataField` that stores the instance's ID, paper ID, the original question, the |
|
original passage text, both of these in tokenized form, and the context also broken into |
|
paragraphs, and the gold evidence spans, accessible as `metadata['question_id']`, |
|
`metadata['article_id']`, `metadata['question']`, `metadata['context']`, |
|
`metadata['question_tokens']`, `metadata['context_tokens']`, |
|
`metadata['context_paragraphs']`, `metadata['all_evidence']`, `metadata['all_answers']`. |
|
|
|
Parameters |
|
---------- |
|
transformer_model_name : `str`, optional (default=`allenai/led-large-16384`) |
|
This reader chooses tokenizer and token indexer according to this setting. |
|
max_query_length : `int`, optional (default=128) |
|
The maximum number of wordpieces dedicated to the question. If the question is longer than |
|
this, it will be truncated. |
|
max_document_length : `int` , optional (default=16384) |
|
This is the maximum number of wordpieces allowed per one whole document (including the |
|
question, for simplicity). If the document is longer than this many word pieces, it will be |
|
truncated. |
|
paragraph_separator : `Optional[str]`, optional (default="</s>") |
|
If given, we will use this as a separator token in between paragraphs. Pass in `None` to |
|
have this not be used. |
|
include_global_attention_mask : `bool` (default = True) |
|
If `True`, we will include a field in the output containing a global attention mask for use |
|
with a longformer, which is `True` for all starts of paragraphs and question tokens, so |
|
attention will always be placed on those tokens. |
|
context : `str` (default = `full_text`) |
|
To reproduce the baselines from the paper that do not have access to the full text of the paper |
|
you can change this argument. Options are `question_only`, `question_and_abstract`, |
|
`question_and_introduction`, `question_and_evidence`. If this is set to `question_andevidence`, |
|
the reader will ignore answers that are `None`, and those that are boolean. |
|
for_training : `bool` (default = False) |
|
This flag affects how questions with multiple answers are handled. When set to True, this flag |
|
causes the reader to yield one instance per answer. When set to False, the instance will contain |
|
only the first answer. The metadata will always contain all the answers and evidence, which can be |
|
used at evaluation time to compute aggregated metrics. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
transformer_model_name: str = "allenai/led-base-16384", |
|
max_query_length: int = 128, |
|
max_document_length: int = 16384, |
|
paragraph_separator: Optional[str] = "</s>", |
|
include_global_attention_mask: bool = True, |
|
context: str = "full_text", |
|
for_training: bool = False, |
|
**kwargs, |
|
) -> None: |
|
|
|
|
|
|
|
|
|
|
|
self._transformer_model_name = transformer_model_name |
|
|
|
|
|
|
|
self._tokenizer = AutoTokenizer.from_pretrained(transformer_model_name) |
|
|
|
self._tokenizer.sequence_pair_start_tokens = [self._tokenizer.bos_token,] |
|
|
|
self._include_global_attention_mask = include_global_attention_mask |
|
|
|
|
|
|
|
self.max_query_length = max_query_length |
|
self.max_document_length = max_document_length |
|
self._paragraph_separator = paragraph_separator |
|
if context not in [ |
|
"full_text", |
|
"question_only", |
|
"question_and_abstract", |
|
"question_and_introduction", |
|
"question_and_evidence" |
|
]: |
|
raise RuntimeError(f"Unrecognized context type: {context}") |
|
self._context = context |
|
self._for_training = for_training |
|
self._stats = defaultdict(int) |
|
|
|
|
|
def _read(self, file_path: str): |
|
|
|
|
|
|
|
logger.info("Reading the dataset") |
|
if file_path.endswith(".json"): |
|
yield from self._read_json(file_path) |
|
elif file_path.endswith(".jsonl"): |
|
yield from self._read_json_lines(file_path) |
|
else: |
|
raise RuntimeError( |
|
f"Unsupported extension on file: {file_path}. Only json and jsonl are supported." |
|
) |
|
|
|
def _read_json(self, file_path: str): |
|
logger.info("Reading json file at %s", file_path) |
|
with open(file_path, 'r') as dataset_file: |
|
dataset = json.load(dataset_file) |
|
for article_id, article in dataset.items(): |
|
if not article["full_text"]: |
|
continue |
|
article["article_id"] = article_id |
|
yield from self._article_to_instances(article) |
|
self._log_stats() |
|
|
|
def _read_json_lines(self, file_path: str): |
|
logger.info("Reading json lines file at %s", file_path) |
|
with open(file_path, 'r') as dataset_file: |
|
for data_line in self.shard_iterable(dataset_file): |
|
data = json.loads(data_line) |
|
yield from self._article_to_instances(data) |
|
self._log_stats() |
|
|
|
def _log_stats(self) -> None: |
|
logger.info("Stats:") |
|
for key, value in self._stats.items(): |
|
logger.info("%s: %d", key, value) |
|
|
|
def _article_to_instances(self, article: Dict[str, Any]): |
|
paragraphs = self._get_paragraphs_from_article(article) |
|
tokenized_context = None |
|
paragraph_start_indices = None |
|
|
|
if not self._context == "question_and_evidence": |
|
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs( |
|
paragraphs |
|
) |
|
|
|
self._stats["number of documents"] += 1 |
|
for question_answer in article["qas"]: |
|
self._stats["number of questions"] += 1 |
|
self._stats["number of answers"] += len(question_answer["answers"]) |
|
if len(question_answer["answers"]) > 1: |
|
self._stats["questions with multiple answers"] += 1 |
|
|
|
all_answers = [] |
|
all_evidence = [] |
|
all_evidence_masks = [] |
|
for answer_annotation in question_answer["answers"]: |
|
answer, evidence, answer_type = self._extract_answer_and_evidence( |
|
answer_annotation["answer"] |
|
) |
|
all_answers.append({"text": answer, "type": answer_type}) |
|
all_evidence.append(evidence) |
|
evidence_mask = self._get_evidence_mask(evidence, paragraphs) |
|
all_evidence_masks.append(evidence_mask) |
|
|
|
additional_metadata = { |
|
"question_id": question_answer["question_id"], |
|
"article_id": article.get("article_id"), |
|
"all_answers": all_answers, |
|
"all_evidence": all_evidence, |
|
"all_evidence_masks": all_evidence_masks, |
|
} |
|
answers_to_yield = [x['text'] for x in all_answers] if self._for_training else [all_answers[0]['text']] |
|
evidence_masks_to_yield = all_evidence_masks if self._for_training else [all_evidence_masks[0]] |
|
evidence_to_yield = all_evidence if self._for_training else [all_evidence[0]] |
|
for answer, evidence, evidence_mask in zip(answers_to_yield, evidence_to_yield, evidence_masks_to_yield): |
|
if self._context == "question_and_evidence" and answer in ['Unanswerable', 'Yes', 'No']: |
|
continue |
|
yield self.text_to_instance( |
|
question_answer["question"], |
|
paragraphs, |
|
tokenized_context, |
|
paragraph_start_indices, |
|
evidence_mask, |
|
answer, |
|
evidence, |
|
additional_metadata, |
|
) |
|
|
|
@staticmethod |
|
def _get_evidence_mask(evidence: List[str], paragraphs: List[str]) -> List[int]: |
|
""" |
|
Takes a list of evidence snippets, and the list of all the paragraphs from the |
|
paper, and returns a list of indices of the paragraphs that contain the evidence. |
|
""" |
|
evidence_mask = [] |
|
for paragraph in paragraphs: |
|
for evidence_str in evidence: |
|
if evidence_str in paragraph: |
|
evidence_mask.append(1) |
|
break |
|
else: |
|
evidence_mask.append(0) |
|
return evidence_mask |
|
|
|
|
|
def text_to_instance( |
|
self, |
|
question: str, |
|
paragraphs: List[str], |
|
tokenized_context: List = None, |
|
paragraph_start_indices: List[int] = None, |
|
evidence_mask: List[int] = None, |
|
answer: str = None, |
|
evidence: List[str] = None, |
|
additional_metadata: Dict[str, Any] = None): |
|
fields = {} |
|
|
|
tokenized_question = self._tokenizer.tokenize(question) |
|
if len(tokenized_question) > self.max_query_length: |
|
self._stats["number of truncated questions"] += 1 |
|
tokenized_question = tokenized_question[:self.max_query_length] |
|
|
|
if tokenized_context is None or paragraph_start_indices is None: |
|
if self._context == "question_and_evidence": |
|
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs( |
|
evidence |
|
) |
|
else: |
|
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs( |
|
paragraphs |
|
) |
|
|
|
allowed_context_length = ( |
|
self.max_document_length |
|
- len(tokenized_question) |
|
- len(self._tokenizer.sequence_pair_start_tokens) |
|
- 1 |
|
) |
|
if len(tokenized_context) > allowed_context_length: |
|
self._stats["number of truncated contexts"] += 1 |
|
tokenized_context = tokenized_context[:allowed_context_length] |
|
paragraph_start_indices = [index for index in paragraph_start_indices |
|
if index <= allowed_context_length] |
|
if evidence_mask is not None: |
|
num_paragraphs = len(paragraph_start_indices) |
|
evidence_mask = evidence_mask[:num_paragraphs] |
|
|
|
|
|
question_and_context = ( |
|
self._tokenizer.sequence_pair_start_tokens |
|
+ tokenized_question |
|
+ [self._paragraph_separator] |
|
+ tokenized_context |
|
) |
|
|
|
question_field = question_and_context |
|
fields["question_with_context"] = question_field |
|
|
|
start_of_context = ( |
|
len(self._tokenizer.sequence_pair_start_tokens) |
|
+ len(tokenized_question) |
|
) |
|
|
|
paragraph_indices_list = [x + start_of_context for x in paragraph_start_indices] |
|
|
|
paragraph_indices_field = ( |
|
[x for x in paragraph_indices_list] if paragraph_indices_list else |
|
[-1] |
|
) |
|
|
|
fields["paragraph_indices"] = paragraph_indices_field |
|
|
|
if self._include_global_attention_mask: |
|
|
|
|
|
mask_indices = set(list(range(start_of_context)) + paragraph_indices_list) |
|
mask = [ |
|
True if i in mask_indices else False for i in range(len(question_field)) |
|
] |
|
fields["global_attention_mask"] = torch.tensor(mask) |
|
|
|
if evidence_mask is not None: |
|
|
|
evidence_field = evidence_mask |
|
fields["evidence"] = evidence_field |
|
|
|
if answer: |
|
|
|
|
|
|
|
fields["answer"] = self._tokenizer.tokenize(answer) |
|
|
|
|
|
metadata = { |
|
"question": question, |
|
"question_tokens": tokenized_question, |
|
"paragraphs": paragraphs, |
|
"context_tokens": tokenized_context, |
|
} |
|
if additional_metadata is not None: |
|
metadata.update(additional_metadata) |
|
fields["metadata"] = metadata |
|
return fields |
|
|
|
|
|
def apply_token_indexers(self, instance) -> None: |
|
instance.fields["question_with_context"].token_indexers = self._token_indexers |
|
instance.fields["answer"].token_indexers = self._token_indexers |
|
|
|
def _tokenize_paragraphs( |
|
self, paragraphs: List[str]): |
|
|
|
tokenized_context = [] |
|
paragraph_start_indices = [] |
|
for paragraph in paragraphs: |
|
tokenized_paragraph = self._tokenizer.tokenize(paragraph) |
|
paragraph_start_indices.append(len(tokenized_context)) |
|
tokenized_context.extend(tokenized_paragraph) |
|
if self._paragraph_separator: |
|
tokenized_context.append(self._paragraph_separator) |
|
if self._paragraph_separator: |
|
|
|
tokenized_context = tokenized_context[:-1] |
|
return tokenized_context, paragraph_start_indices |
|
|
|
def _extract_answer_and_evidence( |
|
self, answer: List |
|
) -> Tuple[str, List[str]]: |
|
evidence_spans = [x.replace("\n", " ").strip() for x in answer["evidence"]] |
|
evidence_spans = [x for x in evidence_spans if x != ""] |
|
if not evidence_spans: |
|
self._stats["answers with no evidence"] += 1 |
|
|
|
if any(["FLOAT SELECTED" in span for span in evidence_spans]): |
|
|
|
self._stats["answers with table or figure as evidence"] += 1 |
|
if len(evidence_spans) > 1: |
|
self._stats["multiple_evidence_spans_count"] += 1 |
|
|
|
answer_string = None |
|
answer_type = None |
|
if answer.get("unanswerable", False): |
|
self._stats["unanswerable questions"] += 1 |
|
answer_string = "Unanswerable" |
|
answer_type = AnswerType.NONE.name |
|
elif answer.get("yes_no") is not None: |
|
self._stats["yes/no questions"] += 1 |
|
answer_string = "Yes" if answer["yes_no"] else "No" |
|
answer_type = AnswerType.BOOLEAN.name |
|
elif answer.get("extractive_spans", []): |
|
self._stats["extractive questions"] += 1 |
|
if len(answer["extractive_spans"]) > 1: |
|
self._stats["extractive questions with multiple spans"] += 1 |
|
answer_string = ", ".join(answer["extractive_spans"]) |
|
answer_type = AnswerType.EXTRACTIVE.name |
|
else: |
|
answer_string = answer.get("free_form_answer", "") |
|
if not answer_string: |
|
self._stats["questions with empty answer"] += 1 |
|
else: |
|
self._stats["freeform answers"] += 1 |
|
answer_type = AnswerType.ABSTRACTIVE.name |
|
|
|
return answer_string, evidence_spans, answer_type |
|
|
|
def _get_paragraphs_from_article(self, article: Dict) -> List[str]: |
|
if self._context == "question_only": |
|
return [] |
|
if self._context == "question_and_abstract": |
|
return [article["abstract"]] |
|
full_text = article["full_text"] |
|
paragraphs = [] |
|
for section_info in full_text: |
|
|
|
|
|
if section_info["section_name"] is not None: |
|
paragraphs.append(section_info["section_name"]) |
|
for paragraph in section_info["paragraphs"]: |
|
paragraph_text = paragraph.replace("\n", " ").strip() |
|
if paragraph_text: |
|
paragraphs.append(paragraph_text) |
|
if self._context == "question_and_introduction": |
|
|
|
break |
|
return paragraphs |