File size: 18,808 Bytes
a8de101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
Adapted from https://github.com/allenai/qasper-led-baseline/blob/main/qasper_baselines/dataset_reader.py
to get ride of allennlp dependencies.
"""
import json
import logging
import random
from enum import Enum
from collections import defaultdict
from typing import Any, Dict, List, Optional, Iterable, Tuple
# from overrides import overrides
# import spacy
import torch
# from allennlp.common.util import JsonDict
# from allennlp.data.fields import (
# MetadataField,
# TextField,
# IndexField,
# ListField,
# TensorField,
# )
# from allennlp.common.file_utils import cached_path, open_compressed
# from allennlp.data.dataset_readers.dataset_reader import DatasetReader
# from allennlp.data.instance import Instance
# from allennlp.data.token_indexers import PretrainedTransformerIndexer
# from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer
from transformers import AutoTokenizer
logger = logging.getLogger(__name__)
class AnswerType(Enum):
EXTRACTIVE = 1
ABSTRACTIVE = 2
BOOLEAN = 3
NONE = 4
# @DatasetReader.register("qasper")
class QasperReader(object):
"""
Reads a JSON-formatted Qasper data file and returns a `Dataset` where the `Instances` have
four fields:
* `question_with_context`, a `TextField` that contains the concatenation of question and
context,
* `paragraph_indices`, a `ListField` of `IndexFields` indicating paragraph-start tokens
in `question_with_context`.
* `global_attention_mask`, a mask that can be used by a longformer to specify which tokens in
`question_with_context` should have global attention (only present if
`include_global_attention_mask` is `True`).
* `evidence`, a 0/1 `TensorField` indicating whether each paragraph in `paragraph_indices`
should be selected as evidence.
* `answer`, a `TextField` that contains the (wordpiece-tokenized) answer to the question
* A `MetadataField` that stores the instance's ID, paper ID, the original question, the
original passage text, both of these in tokenized form, and the context also broken into
paragraphs, and the gold evidence spans, accessible as `metadata['question_id']`,
`metadata['article_id']`, `metadata['question']`, `metadata['context']`,
`metadata['question_tokens']`, `metadata['context_tokens']`,
`metadata['context_paragraphs']`, `metadata['all_evidence']`, `metadata['all_answers']`.
Parameters
----------
transformer_model_name : `str`, optional (default=`allenai/led-large-16384`)
This reader chooses tokenizer and token indexer according to this setting.
max_query_length : `int`, optional (default=128)
The maximum number of wordpieces dedicated to the question. If the question is longer than
this, it will be truncated.
max_document_length : `int` , optional (default=16384)
This is the maximum number of wordpieces allowed per one whole document (including the
question, for simplicity). If the document is longer than this many word pieces, it will be
truncated.
paragraph_separator : `Optional[str]`, optional (default="</s>")
If given, we will use this as a separator token in between paragraphs. Pass in `None` to
have this not be used.
include_global_attention_mask : `bool` (default = True)
If `True`, we will include a field in the output containing a global attention mask for use
with a longformer, which is `True` for all starts of paragraphs and question tokens, so
attention will always be placed on those tokens.
context : `str` (default = `full_text`)
To reproduce the baselines from the paper that do not have access to the full text of the paper
you can change this argument. Options are `question_only`, `question_and_abstract`,
`question_and_introduction`, `question_and_evidence`. If this is set to `question_andevidence`,
the reader will ignore answers that are `None`, and those that are boolean.
for_training : `bool` (default = False)
This flag affects how questions with multiple answers are handled. When set to True, this flag
causes the reader to yield one instance per answer. When set to False, the instance will contain
only the first answer. The metadata will always contain all the answers and evidence, which can be
used at evaluation time to compute aggregated metrics.
"""
def __init__(
self,
transformer_model_name: str = "allenai/led-base-16384",
max_query_length: int = 128,
max_document_length: int = 16384,
paragraph_separator: Optional[str] = "</s>",
include_global_attention_mask: bool = True,
context: str = "full_text",
for_training: bool = False,
**kwargs,
) -> None:
# super().__init__(
# manual_distributed_sharding=True,
# manual_multiprocess_sharding=True,
# **kwargs,
# )
self._transformer_model_name = transformer_model_name
# self._tokenizer = PretrainedTransformerTokenizer(
# transformer_model_name, add_special_tokens=False
# )
self._tokenizer = AutoTokenizer.from_pretrained(transformer_model_name)
# Albert: hack
self._tokenizer.sequence_pair_start_tokens = [self._tokenizer.bos_token,]
self._include_global_attention_mask = include_global_attention_mask
# self._token_indexers = {
# "tokens": PretrainedTransformerIndexer(transformer_model_name)
# }
self.max_query_length = max_query_length
self.max_document_length = max_document_length
self._paragraph_separator = paragraph_separator
if context not in [
"full_text",
"question_only",
"question_and_abstract",
"question_and_introduction",
"question_and_evidence"
]:
raise RuntimeError(f"Unrecognized context type: {context}")
self._context = context
self._for_training = for_training
self._stats = defaultdict(int)
# @overrides
def _read(self, file_path: str):
# if `file_path` is a URL, redirect to the cache
# file_path = cached_path(file_path)
logger.info("Reading the dataset")
if file_path.endswith(".json"):
yield from self._read_json(file_path)
elif file_path.endswith(".jsonl"):
yield from self._read_json_lines(file_path)
else:
raise RuntimeError(
f"Unsupported extension on file: {file_path}. Only json and jsonl are supported."
)
def _read_json(self, file_path: str):
logger.info("Reading json file at %s", file_path)
with open(file_path, 'r') as dataset_file:
dataset = json.load(dataset_file)
for article_id, article in dataset.items():
if not article["full_text"]:
continue
article["article_id"] = article_id
yield from self._article_to_instances(article)
self._log_stats()
def _read_json_lines(self, file_path: str):
logger.info("Reading json lines file at %s", file_path)
with open(file_path, 'r') as dataset_file:
for data_line in self.shard_iterable(dataset_file):
data = json.loads(data_line)
yield from self._article_to_instances(data)
self._log_stats()
def _log_stats(self) -> None:
logger.info("Stats:")
for key, value in self._stats.items():
logger.info("%s: %d", key, value)
def _article_to_instances(self, article: Dict[str, Any]):
paragraphs = self._get_paragraphs_from_article(article)
tokenized_context = None
paragraph_start_indices = None
# If the context is evidence, text_to_instance will make the appropriate tokenized_context.
if not self._context == "question_and_evidence":
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs(
paragraphs
)
self._stats["number of documents"] += 1
for question_answer in article["qas"]:
self._stats["number of questions"] += 1
self._stats["number of answers"] += len(question_answer["answers"])
if len(question_answer["answers"]) > 1:
self._stats["questions with multiple answers"] += 1
all_answers = []
all_evidence = []
all_evidence_masks = []
for answer_annotation in question_answer["answers"]:
answer, evidence, answer_type = self._extract_answer_and_evidence(
answer_annotation["answer"]
)
all_answers.append({"text": answer, "type": answer_type})
all_evidence.append(evidence)
evidence_mask = self._get_evidence_mask(evidence, paragraphs)
all_evidence_masks.append(evidence_mask)
additional_metadata = {
"question_id": question_answer["question_id"],
"article_id": article.get("article_id"),
"all_answers": all_answers,
"all_evidence": all_evidence,
"all_evidence_masks": all_evidence_masks,
}
answers_to_yield = [x['text'] for x in all_answers] if self._for_training else [all_answers[0]['text']]
evidence_masks_to_yield = all_evidence_masks if self._for_training else [all_evidence_masks[0]]
evidence_to_yield = all_evidence if self._for_training else [all_evidence[0]]
for answer, evidence, evidence_mask in zip(answers_to_yield, evidence_to_yield, evidence_masks_to_yield):
if self._context == "question_and_evidence" and answer in ['Unanswerable', 'Yes', 'No']:
continue
yield self.text_to_instance(
question_answer["question"],
paragraphs,
tokenized_context,
paragraph_start_indices,
evidence_mask,
answer,
evidence,
additional_metadata,
)
@staticmethod
def _get_evidence_mask(evidence: List[str], paragraphs: List[str]) -> List[int]:
"""
Takes a list of evidence snippets, and the list of all the paragraphs from the
paper, and returns a list of indices of the paragraphs that contain the evidence.
"""
evidence_mask = []
for paragraph in paragraphs:
for evidence_str in evidence:
if evidence_str in paragraph:
evidence_mask.append(1)
break
else:
evidence_mask.append(0)
return evidence_mask
# @overrides
def text_to_instance(
self, # type: ignore # pylint: disable=arguments-differ
question: str,
paragraphs: List[str],
tokenized_context: List = None,
paragraph_start_indices: List[int] = None,
evidence_mask: List[int] = None,
answer: str = None,
evidence: List[str] = None,
additional_metadata: Dict[str, Any] = None):
fields = {}
tokenized_question = self._tokenizer.tokenize(question)
if len(tokenized_question) > self.max_query_length:
self._stats["number of truncated questions"] += 1
tokenized_question = tokenized_question[:self.max_query_length]
if tokenized_context is None or paragraph_start_indices is None:
if self._context == "question_and_evidence":
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs(
evidence
)
else:
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs(
paragraphs
)
allowed_context_length = (
self.max_document_length
- len(tokenized_question)
- len(self._tokenizer.sequence_pair_start_tokens)
- 1 # for paragraph seperator
)
if len(tokenized_context) > allowed_context_length:
self._stats["number of truncated contexts"] += 1
tokenized_context = tokenized_context[:allowed_context_length]
paragraph_start_indices = [index for index in paragraph_start_indices
if index <= allowed_context_length]
if evidence_mask is not None:
num_paragraphs = len(paragraph_start_indices)
evidence_mask = evidence_mask[:num_paragraphs]
# This is what Iz's code does.
question_and_context = (
self._tokenizer.sequence_pair_start_tokens
+ tokenized_question
+ [self._paragraph_separator]
+ tokenized_context
)
# make the question field
question_field = question_and_context
fields["question_with_context"] = question_field
start_of_context = (
len(self._tokenizer.sequence_pair_start_tokens)
+ len(tokenized_question)
)
paragraph_indices_list = [x + start_of_context for x in paragraph_start_indices]
paragraph_indices_field = (
[x for x in paragraph_indices_list] if paragraph_indices_list else
[-1]
)
fields["paragraph_indices"] = paragraph_indices_field
if self._include_global_attention_mask:
# We need to make a global attention array. We'll use all the paragraph indices and the
# indices of question tokens.
mask_indices = set(list(range(start_of_context)) + paragraph_indices_list)
mask = [
True if i in mask_indices else False for i in range(len(question_field))
]
fields["global_attention_mask"] = torch.tensor(mask)
if evidence_mask is not None:
# evidence_field = torch.tensor(evidence_mask)
evidence_field = evidence_mask
fields["evidence"] = evidence_field
if answer:
# fields["answer"] = (
# self._tokenizer.add_special_tokens(self._tokenizer.tokenize(answer))
# )
fields["answer"] = self._tokenizer.tokenize(answer) #, add_special_tokens=True)
# make the metadata
metadata = {
"question": question,
"question_tokens": tokenized_question,
"paragraphs": paragraphs,
"context_tokens": tokenized_context,
}
if additional_metadata is not None:
metadata.update(additional_metadata)
fields["metadata"] = metadata
return fields
# @overrides
def apply_token_indexers(self, instance) -> None:
instance.fields["question_with_context"].token_indexers = self._token_indexers
instance.fields["answer"].token_indexers = self._token_indexers
def _tokenize_paragraphs(
self, paragraphs: List[str]):
tokenized_context = []
paragraph_start_indices = []
for paragraph in paragraphs:
tokenized_paragraph = self._tokenizer.tokenize(paragraph)
paragraph_start_indices.append(len(tokenized_context))
tokenized_context.extend(tokenized_paragraph)
if self._paragraph_separator:
tokenized_context.append(self._paragraph_separator)
if self._paragraph_separator:
# We added the separator after every paragraph, so we remove it after the last one.
tokenized_context = tokenized_context[:-1]
return tokenized_context, paragraph_start_indices
def _extract_answer_and_evidence(
self, answer: List
) -> Tuple[str, List[str]]:
evidence_spans = [x.replace("\n", " ").strip() for x in answer["evidence"]]
evidence_spans = [x for x in evidence_spans if x != ""]
if not evidence_spans:
self._stats["answers with no evidence"] += 1
# TODO (pradeep): Deal with figures and tables.
if any(["FLOAT SELECTED" in span for span in evidence_spans]):
# Ignoring question if any of the selected evidence is a table or a figure.
self._stats["answers with table or figure as evidence"] += 1
if len(evidence_spans) > 1:
self._stats["multiple_evidence_spans_count"] += 1
answer_string = None
answer_type = None
if answer.get("unanswerable", False):
self._stats["unanswerable questions"] += 1
answer_string = "Unanswerable"
answer_type = AnswerType.NONE.name
elif answer.get("yes_no") is not None:
self._stats["yes/no questions"] += 1
answer_string = "Yes" if answer["yes_no"] else "No"
answer_type = AnswerType.BOOLEAN.name
elif answer.get("extractive_spans", []):
self._stats["extractive questions"] += 1
if len(answer["extractive_spans"]) > 1:
self._stats["extractive questions with multiple spans"] += 1
answer_string = ", ".join(answer["extractive_spans"])
answer_type = AnswerType.EXTRACTIVE.name
else:
answer_string = answer.get("free_form_answer", "")
if not answer_string:
self._stats["questions with empty answer"] += 1
else:
self._stats["freeform answers"] += 1
answer_type = AnswerType.ABSTRACTIVE.name
return answer_string, evidence_spans, answer_type
def _get_paragraphs_from_article(self, article: Dict) -> List[str]:
if self._context == "question_only":
return []
if self._context == "question_and_abstract":
return [article["abstract"]]
full_text = article["full_text"]
paragraphs = []
for section_info in full_text:
# TODO (pradeep): It is possible there are other discrepancies between plain text, LaTeX and HTML.
# Do a thorough investigation and add tests.
if section_info["section_name"] is not None:
paragraphs.append(section_info["section_name"])
for paragraph in section_info["paragraphs"]:
paragraph_text = paragraph.replace("\n", " ").strip()
if paragraph_text:
paragraphs.append(paragraph_text)
if self._context == "question_and_introduction":
# Assuming the first section is the introduction and stopping here.
break
return paragraphs |