triage_status
large_stringclasses 28
values | pmid
large_stringlengths 7
13
| abstract
large_stringlengths 49
3.69k
| citation
large_stringlengths 16
84
| token_count
int32 17
878
| label
int8 0
1
|
---|---|---|---|---|---|
Curatable | PMID:21330786 | The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I. | Cell Cycle 2011 Mar 15;10(6):951-5 | 202 | 1 |
Other | PMID:25377082 | A problem frequently occurring in making some kinds of wines, particularly Vitis quinquangularis Rehd wine, is the presence of malic acid at high concentrations, which is detrimental to the quality of wines. Thus, there is a need of the ways for effectively reducing the malic acid levels in wine. This study aimed to generate shuffled fusants of Schizosaccharomyces pombe with enhanced deacidification activity for reducing the excessive malic acid content in wine. Sz. pombe CGMCC 2.1628 was used as the original strain. The starting mutant population was generated by UV treatment. The mutants with higher deacidification activity were selected and subjected to recursive protoplast fusion. The resulting fusants were screened by using the indicator of malic acid concentration of fermentation supernatants on 96-well microtitre plates, measured with bromocresol green. After three rounds of genome shuffling, the best-performing fusant, named GS3-1, was obtained. Its deacidification activity (consumed 4.78 g/l malic acid within 10 days) was increased by 225.2% as compared to that of original strain. In the Vitis quinquangularis Rehd wine fermentation test, GS3-1 consumed 4.0 g/l malic acid during the whole cycle of fermentation, providing up to 185.7% improvement in malic acid consumption compared with that of the original strain. This study shows that GS3-1 has great potential for improving the quality of Vitis quinquangularis Rehd wine. | Yeast 2015 Feb;32(2):317-25 | 339 | 0 |
Curatable | PMID:22198627 | While the counterselectable Schizosaccharomyces pombe ura4(+) gene can be used to prepare a site in the S. pombe genome to receive an unmarked mutant allele (loss of ura4(+) confers 5FOA-resistant (5FOA(R)) growth), the desired unmarked knock-in strains are generally outnumbered by spontaneously arising 5FOA(R) mutants. Relative to the same approach using the homologous URA3(+) gene in Saccharomyces cerevisiae, knock-ins in S. pombe are harder to identify due to a lower efficiency of homologous recombination and a relatively high background of spontaneous 5FOA(R) colonies. To develop an improved method for identifying cells receiving unmarked mutant alleles, we first determined that 5FOA(R) strains carry mutations in either of two genes; ura4(+) and ura5(+). We then cloned the S. pombe ura5(+) orotate phosphoribosyltransferase gene and constructed a 2.1 kb cassette containing ura5(+) together with the S. pombe lys7(+) gene. Using this doubly marked cassette to disrupt the sck1(+) kinase gene, we can distinguish between strains created by homologous knock-in of unmarked wild-type or kinase-dead alleles and spontaneously arising ura4(-) and ura5(-) mutants by screening 5FOA(R) colonies for the loss of the lys7(+) marker. The utility of this system, especially when the phenotype for the strain carrying the knock-in allele is indistinguishable from that of the disruption strain, is borne out by the fact that ~95% of 5FOA(R) colonies in our studies arose from background ura4(-) and ura5(-) mutations. | Curr Genet 2012 Feb;58(1):59-64 | 397 | 1 |
Wrong organism | PMID:28954740 | After mitosis, nuclear reorganization occurs together with decondensation of mitotic chromosomes and reformation of the nuclear envelope, thereby restoring the Ran-GTP gradient between the nucleus and cytoplasm. The Ran-GTP gradient is dependent on Pim1/RCC1. Interestingly, a defect in Pim1/RCC1 in Schizosaccharomyces pombe causes postmitotic condensation of chromatin, namely hypercondensation, suggesting a relationship between the Ran-GTP gradient and chromosome decondensation. However, how Ran-GTP interacts with chromosome decondensation is unresolved. To examine this interaction, we used Schizosaccharomyces japonicus , which is known to undergo partial breakdown of the nuclear membrane during mitosis. We found that Pim1/RCC1 was localized on nuclear pores, but this localization failed in a temperature-sensitive mutant of Pim1/RCC1. The mutant cells exhibited hypercondensed chromatin after mitosis due to prolonged association of condensin on the chromosomes. Conceivably, a condensin-dephosphorylation defect might cause hypercondensed chromatin, since chromosomal localization of condensin is dependent on phosphorylation by cyclin-dependent kinase (CDK). Indeed, CDK-phospho-mimic mutation of condensin alone caused untimely condensin localization, resulting in hypercondensed chromatin. Together, these results suggest that dephosphorylation of CDK sites of condensin might require the Ran-GTP gradient produced by nuclear pore-localized Pim1/RCC1. | Biol Open 2017 Nov 15;6(11):1614-1628 | 351 | 0 |
Curatable | PMID:1756736 | The wis1+ gene encodes a newly identified mitotic control element in Schizosaccharomyces pombe. It was isolated by virtue of its interaction with the mitotic control genes cdc25, wee1 and win1. The wis1+ gene potentially encodes a 66 kDa protein with homology to the serine/threonine family of protein kinases. wis1+ plays an important role in the regulation of entry into mitosis, as it shares with cdc25+ and nim1+/cdr1+ the property of inducing mitosis in a dosage-dependent manner. Increased levels of wis1+ expression cause mitotic initiation to occur at a reduced cell size. Loss of wis1+ function does not prevent vegetative growth and division, though wis1- cells show an elongated morphology, indicating that their entry into mitosis and cell division is delayed relative to wild type cells. wis1- cells undergo a rapid reduction of viability upon entry into stationary phase, suggesting a role for wis1+ in the integration of nutritional sensing with the control over entry into mitosis. | EMBO J 1991 Dec;10(13):4291-9 | 238 | 1 |
Curatable | PMID:7504624 | The Wee1 protein kinase negatively regulates the entry into mitosis by catalyzing the inhibitory tyrosine phosphorylation of the Cdc2 protein. To examine the potential mechanisms for Wee1 regulation during the cell cycle, we have introduced a recombinant form of the fission yeast Wee1 protein kinase into Xenopus egg extracts. We find that the Wee1 protein undergoes dramatic changes in its phosphorylation state and kinase activity during the cell cycle. The Wee1 protein oscillates between an underphosphorylated 107 kDa form during interphase and a hyperphosphorylated 170 kDa version at mitosis. The mitosis-specific hyperphosphorylation of the Wee1 protein results in a substantial reduction in its activity as a Cdc2-specific tyrosine kinase. This phosphorylation occurs in the N-terminal region of the protein that lies outside the C-terminal catalytic domain, which was recently shown to be a substrate for the fission yeast Nim1 protein kinase. These experiments demonstrate the existence of a Wee1 regulatory system, consisting of both a Wee1-inhibitory kinase and a Wee1-stimulatory phosphatase, which controls the phosphorylation of the N-terminal region of the Wee1 protein. Moreover, these findings indicate that there are apparently two potential mechanisms for negative regulation of the Wee1 protein, one involving phosphorylation of its C-terminal domain by the Nim1 protein and the other involving phosphorylation of its N-terminal region by a different kinase. | EMBO J 1993 Sep;12(9):3427-36 | 326 | 1 |
Wrong organism | PMID:24395792 | The immune system plays an important role in the pathophysiology of many acute and chronic bone disorders, but the specific inflammatory networks that regulate individual bone disorders remain to be elucidated. Here, we characterized the osteoimmunological underpinnings of osteolytic bone disease in Pstpip2(cmo) mice. These mice carry a homozygous L98P missense mutation in the Pombe Cdc15 homology family phosphatase PSTPIP2 that is responsible for the development of a persistent autoinflammatory disease resembling chronic recurrent multifocal osteomyelitis in humans. We found that improper regulation of IL-1β production resulted in secondary induction of inflammatory cytokines, inflammatory cell infiltration in the bone, and unremitting bone inflammation. Aberrant Il1β expression precedes the development of osteolytic damage in young Pstpip2(cmo) mice, and genetic deletion of Il1r and Il1β, but not Il1α, rescued osteolytic bone disease in mutant mice. Intriguingly, caspase-1 and nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain containing 3 activation in the inflammasome complex were dispensable for Pstpip2(cmo)-mediated bone disease. Thus, our findings establish a critical role for inflammasome-independent production of IL-1β in osteolytic bone disease and identify PSTPIP2 as a negative regulator of caspase-1-autonomous IL-1β production. | Proc Natl Acad Sci U S A 2014 Jan 21;111(3):1066-71 | 324 | 0 |
Curatable | PMID:21035342 | From yeast to human, TOR (target of rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regulators. We have identified the Ryh1 GTPase, a human Rab6 ortholog, as an activator of TORC2 signaling in the fission yeast Schizosaccharomyces pombe. Mutational inactivation of Ryh1 or its guanine nucleotide exchange factor compromises the TORC2-dependent phosphorylation of the AGC-family Gad8 kinase. In addition, the effector domain of Ryh1 is important for its physical interaction with TORC2 and for stimulation of TORC2 signaling. Thus, GTP-bound Ryh1 is likely to be the active form stimulatory to TORC2-Gad8 signaling. Consistently, expression of the GTP-locked mutant Ryh1 is sufficient to promote interaction between TORC2 and Gad8 and to induce Gad8 hyperphosphorylation. The loss of functional Ryh1, TORC2, or Gad8 brings about similar vacuolar fragmentation and stress sensitivity, further corroborating their involvement in a common cellular process. Human Rab6 can substitute Ryh1 in S. pombe, and therefore Rab6 may be a potential activator of TORC2 in mammals. In its GTP-bound form, Ryh1, an evolutionarily conserved Rab GTPase, activates TORC2 signaling to the AGC kinase Gad8. The Ryh1 GTPase and the TORC2-Gad8 pathway are required for vacuolar integrity and cellular stress resistance in S. pombe. | Curr Biol 2010 Nov 23;20(22):1975-82 | 414 | 1 |
Wrong organism | PMID:17944317 | Bioassay-guided separation use of the fission yeast expressing NES of Rev, a HIV-1 viral regulatory protein, resulted in isolation of 1'-acetoxychavicol acetate (ACA) from Alpinia galanga as a new Rev-transport inhibitor from the nucleus to cytoplasm. Rational design and synthesis of eleven ACA derivatives containing systematic chemical variations were made, biological evaluation of inhibitory activities of these analogues provides the basis to formulate the structure-activity relationship (SAR). The key elements observed were: (1) The para substitution of the acetoxyl and 1'-acetoxypropenyl groups at the benzene ring was essential, (2) linear ethyl and propyl chain carbonates were more active than branching chain carbonates, (3) the substitution of acetoxyl groups with alkyl carbamate groups lost or reduced the activities. This study revealed a new salient pharmacophore features as potential drug leads against the HIV virus. | Pharmazie 2007 Sep;62(9):659-62 | 202 | 0 |
Curatable | PMID:31744872 | Members of the Pif1 family of helicases function in multiple pathways that involve DNA synthesis: DNA replication across G-quadruplexes; break-induced replication; and processing of long flaps during Okazaki fragment maturation. Furthermore, Pif1 increases strand-displacement DNA synthesis by DNA polymerase δ and allows DNA replication across arrays of proteins tightly bound to DNA. This is a surprising feat since DNA rewinding or annealing activities limit the amount of single-stranded DNA product that Pif1 can generate, leading to an apparently poorly processive helicase. In this work, using single-molecule Förster resonance energy transfer approaches, we show that 2 members of the Pif1 family of helicases, Pif1 from Saccharomyces cerevisiae and Pfh1 from Schizosaccharomyces pombe , unwind double-stranded DNA by a branched mechanism with 2 modes of activity. In the dominant mode, only short stretches of DNA can be processively and repetitively opened, with reclosure of the DNA occurring by mechanisms other than strand-switching. In the other less frequent mode, longer stretches of DNA are unwound via a path that is separate from the one leading to repetitive unwinding. Analysis of the kinetic partitioning between the 2 different modes suggests that the branching point in the mechanism is established by conformational selection, controlled by the interaction of the helicase with the 3' nontranslocating strand. The data suggest that the dominant and repetitive mode of DNA opening of the helicase can be used to allow efficient DNA replication, with DNA synthesis on the nontranslocating strand rectifying the DNA unwinding activity. | Proc Natl Acad Sci U S A 2019 12 03;116(49):24533-24541 | 356 | 1 |
Curatable | PMID:1937013 | The cdc2 gene product (p34cdc2) has been thought to play a central role in control of the mitotic cell cycle of yeasts and animals. To approach an understanding of the cell-cycle-control system in higher plants, we isolated, from an Arabidopsis thaliana cDNA library, two clones (CDC2a and CDC2b) similar to the Schizosaccharomyces pombe cdc2 gene. Genomic Southern-blot analysis with the CDC2a and CDC2b cDNA probes suggested that the A. thaliana genome contains several additional cdc2-like genes, which together with the CDC2a and CDC2b genes may constitute a CDC2 gene family. The CDC2a cDNA expressed in Sc. pombe corrected the elongated morphology, caused by the temperature-sensitive cdc2-33 mutation, to the normal shapes, indicating that the A. thaliana CDC2a gene product resembles Sc. pombe p34cdc2 functionally as well as structurally. These results support the view that the cell cycle of higher plants is controlled by an analogue of a p34cdc2-centered regulatory system like that of yeasts and animals. | Gene 1991 Sep 15;105(2):159-65 | 259 | 1 |
Modelling | PMID:19116660 | Formin For3p nucleates actin cables at the tips of fission yeast cells for polarized cell growth. The results of prior experiments have suggested a possible mechanism for actin cable assembly that involves association of For3p near cell tips, For3p-mediated actin polymerization, retrograde flow of actin cables toward the cell center, For3p dissociation from cell tips, and cable disassembly. We used analytical and computational modeling to test the validity and implications of the proposed coupled For3p/actin mechanism. We compared the model to prior experiments quantitatively and generated predictions for the expected behavior of the actin cable system upon changes of parameter values. We found that the model generates stable steady states with realistic values of rate constants and actin and For3p concentrations. Comparison of our results to previous experiments monitoring the FRAP of For3p-3GFP and the response of actin cables to treatments with actin depolymerizing drugs provided further support for the model. We identified the set of parameter values that produces results in agreement with experimental observations. We discuss future experiments that will help test the model's predictions and eliminate other possible mechanisms. The results of the model suggest that flow of actin cables may establish actin and For3p concentration gradients in the cytoplasm that could be important in global cell patterning. | PLoS One 2008;3(12):e4078 | 279 | 0 |
Curatable | PMID:7865880 | Precise chromosome transmission in cell division cycle is maintained by a number of genes. The attempt made in the present study was to isolate temperature-sensitive (ts) fission yeast mutants that display high loss rates of minichromosomes at permissive or semipermissive temperature (designated mis). By colony color assay of 539 ts strains that contain a minichromosome, we have identified 12 genetic loci (mis1-mis12) and determined their phenotypes at restrictive temperature. Seven of them are related to cell cycle block phenotype at restrictive temperature, three of them in mitosis. Unequal distribution of regular chromosomes in the daughters is extensive in mis6 and mis12. Cells become inviable after rounds of cell division due to missegregation. The phenotype of mis5 is DNA replication defect and hypersensitivity to UV ray and hydroxyurea. mis5+ encodes a novel member of the ubiquitous MCM family required for the onset of replication. The mis5+ gene is essential for viability and functionally distinct from other previously identified members in fission yeast, cdc21+, nda1+, and nda4+. The mis11 mutant phenotype was the cell division block with reduced cell size. Progression of the G1 and G2 phases is blocked in mis11. The cloned mis11+ gene is identical to prp2+, which is essential for RNA splicing and similar to a mammalian splicing factor U2AF65. | Mol Biol Cell 1994 Oct;5(10):1145-58 | 300 | 1 |
Curatable | PMID:15229228 | BRCT (BRCA1 C terminus) domains are frequently found as a tandem repeat in proteins involved in DNA damage responses, such as Saccharomyces cerevisiae Rad9, human 53BP1 and BRCA1. Tandem BRCT domains mediate protein-protein and protein-DNA interactions. However, the functional significance of these interactions is largely unknown. Here we report the oligomerization of Schizosaccharomyces pombe checkpoint protein Crb2 through its tandem BRCT domains. Truncated Crb2 without BRCT domains is defective in DNA damage checkpoint signaling. However, addition of either of two heterologous dimerization motifs largely restores the functions of truncated Crb2 without BRCT domains. Replacement of Crb2 BRCT domains with a dimerization motif also renders cells resistant to the dominant negative effect of overexpressing Crb2 BRCT domains. These results demonstrate that the crucial function of the tandem BRCT domains is to oligomerize Crb2. | J Biol Chem 2004 Sep 10;279(37):38409-14 | 214 | 1 |
Mutagenicity or toxicity study | PMID:23434529 | Nordihydroguaiaretic acid (NDGA) and its synthetic analogues are potentially useful in treating diseases related to cancers, diabetes, viral and bacterial infections, and inflammation. In this paper, we report the optimal synthetic methods and the bioactivity study of terameprocol 2, NDGA derivative 3, and its cyclized analogue 4. The IC50 of these three compounds 2, 3 and 4 on the growth metabolism of Schizosacchromyces pombe and K562 cell lines were determined by microcalorimetry. The preliminary results showed that the compounds 2, 3 and 4 possessed good inhibition activities on S. pombe and K562 cell lines, and exhibited bidirectional biological effect and Hormesis effect. In particular, terameprocol 2 was found to possess the most potent inhibitory effect on K562 cell lines. | Eur J Med Chem 2013 Apr;62:605-13 | 181 | 0 |
Curatable | PMID:18722173 | Progressive telomere shortening eventually results in chromosome fusions and genome instability as the cell's ability to distinguish chromosome ends from DNA double-strand breaks is compromised. In fission yeast, such events frequently produce stable survivors with all circular chromosomes. To shed light on the repair pathways that mediate chromosome end fusions and generate circular chromosomes, we have examined a diverse array of DNA repair factors. We show that telomere attrition-induced chromosome fusions are dependent on the fission yeast homologs of Rad52, the ERCC1/XPF endonuclease, the single-stranded DNA-binding protein RPA, and the Srs2 and Werner/Bloom helicases, but not Ku and ligase 4. Consistent with a recombinational mechanism of single-strand annealing, cloned junctions map to four of five homology regions in subtelomeric DNA. A comparison with telomere uncapping caused by the absence of the double-stranded telomere-binding protein Taz1 demonstrates that the circumstances and cause of telomere dysfunction profoundly affect which DNA repair pathway is engaged. | Mol Cell 2008 Aug 22;31(4):463-473 | 235 | 1 |
Curatable | PMID:33683349 | Commitment to mitosis is regulated by cyclin-dependent kinase (CDK) activity. In the fission yeast Schizosaccharomyces pombe, the major B-type cyclin, Cdc13, is necessary and sufficient to drive mitotic entry. Furthermore, Cdc13 is also sufficient to drive S phase, demonstrating that a single cyclin can regulate alternating rounds of replication and mitosis, and providing the foundation of the quantitative model of CDK function. It has been assumed that Cig2, a B-type cyclin expressed only during S phase and incapable of driving mitosis in wild-type cells, was specialized for S-phase regulation. Here, we show that Cig2 is capable of driving mitosis. Cig2/CDK activity drives mitotic catastrophe-lethal mitosis in inviably small cells-in cells that lack CDK inhibition by tyrosine-phosphorylation. Moreover, Cig2/CDK can drive mitosis in the absence of Cdc13/CDK activity and constitutive expression of Cig2 can rescue loss of Cdc13 activity. These results demonstrate that in fission yeast, not only can the presumptive M-phase cyclin drive S phase, but the presumptive S-phase cyclin can drive M phase, further supporting the quantitative model of CDK function. Furthermore, these results provide an explanation, previously proposed on the basis of computational analyses, for the surprising observation that cells expressing a single-chain Cdc13-Cdc2 CDK do not require Y15 phosphorylation for viability. Their viability is due to the fact that in such cells, which lack Cig2/CDK complexes, Cdc13/CDK activity is unable to drive mitotic catastrophe. | Genetics 2021 03 03;217(1):1-12 | 361 | 1 |
Method or reagent | PMID:31889253 | La proteins have well-established roles in the maturation of RNA polymerase III transcripts, including pre-tRNAs. In addition to protecting the 3' end of pre-tRNAs from exonuclease digestion, La proteins also promote the native fold of the pre-tRNA using RNA chaperone activity. tRNA-mediated suppression in the fission yeast S. pombe has been an invaluable tool in determining the mechanistic basis by which La proteins promote the maturation of defective pre-tRNAs that benefit from RNA chaperone activity. More recently, tRNA-mediated suppression has been adapted to test for RNA chaperone function in the La-related proteins and in the promoting of tRNA function by tRNA modification enzymes. Thus tRNA-mediated suppression can be a useful assay for the investigation of various proteins hypothesized to promote tRNA folding through RNA chaperone related activities. | Methods Mol Biol 2020;2106:107-120 | 188 | 0 |
Wrong organism | PMID:22085934 | The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution. | EMBO J 2012 Jan 18;31(2):279-90 | 287 | 0 |
Curatable | PMID:23962284 | Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, forming an atypical heterotrimeric decarboxylase (PPCDC) required for CoA biosynthesis, and regulating cation homeostasis by inhibition of the Ppz1 phosphatase. The Schizosaccharomyces pombe ORF SPAC15E1.04 (renamed as Sp hal3) encodes a protein whose amino-terminal half is similar to Sc Hal3 whereas its carboxyl-terminal half is related to thymidylate synthase (TS). We show that Sp Hal3 and/or its N-terminal domain retain the ability to bind to and modestly inhibit in vitro S. cerevisiae Ppz1 as well as its S. pombe homolog Pzh1, and also exhibit PPCDC activity in vitro and provide PPCDC function in vivo, indicating that Sp Hal3 is a monogenic PPCDC in fission yeast. Whereas the Sp Hal3 N-terminal domain partially mimics Sc Hal3 functions, the entire protein and its carboxyl-terminal domain rescue the S. cerevisiae cdc21 mutant, thus proving TS function. Additionally, we show that the 70 kDa Sp Hal3 protein is not proteolytically processed under diverse forms of stress and that, as predicted, Sp hal3 is an essential gene. Therefore, Sp hal3 represents a fusion event that joined three different functional activities in the same gene. The possible advantage derived from this surprising combination of essential proteins is discussed. | Mol Microbiol 2013 Oct;90(2):367-82 | 366 | 1 |
Curatable | PMID:21899677 | Fission yeast Cdc42 regulates polarized growth and is involved in For3 formin activation and actin cable assembly. We show here that a thermosensitive strain carrying the cdc42L160S allele has membrane traffic defects independent of the actin cable defects. This strain has decreased acid phosphatase (AP) secretion, intracellular accumulation of vesicles and fragmentation of vacuoles. In addition, the exocyst is not localized to the tips of these cells. Overproduction of the scaffold protein Pob1 suppressed cdc42L160S thermosensitive growth and restored exocyst localization and AP secretion. The GTPase Rho3 also suppressed cdc42L160S thermosensitivity, restored exocyst localization and AP secretion. However, Rho3 did not restore the actin cables in these cells as Pob1 does. Similarly, overexpression of psy1(+) , coding a syntaxin (t-SNARE) homolog, or of ypt2(+) , coding an SEC4 homolog in fission yeast, rescued growth at high temperature but did not restore actin cables, nor the exocyst-polarized localization. cdc42L160S cells also have defects in vacuole formation that were rescued by Pob1, Rho3 and Psy1. All together, we propose that Cdc42 and the scaffold Pob1 are required for membrane trafficking and fusion, contributing to polarized secretion, endosome recycling, vacuole formation and growth. | Traffic 2011 Dec;12(12):1744-58 | 319 | 1 |
Wrong organism | PMID:12974806 | A new Arabidopsis meiotic mutant has been isolated. Homozygous ahp2-1 (Arabidopsis homologue pairing 2) plants were sterile because of failure of both male and female gametophyte development. Fluorescent in situ hybridisation showed that in ahp2-1 male meiocytes, chromosomes did not form bivalents during prophase I and instead seemed to associate indiscriminately. Chromosome fragmentation, chromatin bridges and unbalanced segregation were seen in anaphase I and anaphase II. The ahp2-1 mutation was caused by a T-DNA insertion in an Arabidopsis homologue of meu13+, which has been implicated in homologous chromosome pairing during meiosis in Schizosaccharomyces pombe. Our results suggest that meu13+ function is conserved in higher eukaryotes and support the idea that Arabidopsis, yeast and mouse share a pairing pathway that is not present in Drosophila melanogaster and Caenorhabditis elegans. | Plant J 2003 Oct;36(1):1-11 | 219 | 0 |
Review or comment | PMID:19473886 | The cellular DNA damage response (DDR) is activated by many types of DNA lesions. Upon recognition of DNA damage by sensor proteins, an intricate signal transduction network is activated to coordinate diverse cellular outcomes that promote genome integrity. Key components of the DDR in mammalian cells are the checkpoint effector kinases Chk1 and Chk2 (referred to henceforth as the effector kinases; orthologous to spChk1 and spCds1 in the fission yeast S. pombe and scChk1 and scRad53 in the budding yeast S. cerevisiae). These evolutionarily conserved and structurally divergent kinases phosphorylate numerous substrates to regulate the DDR. This review will focus on recent advances in our understanding of the structure, regulation, and functions of the effector kinases in the DDR, as well as their potential roles in human disease. | DNA Repair (Amst) 2009 Sep 02;8(9):1047-54 | 185 | 0 |
Wrong organism | PMID:27783209 | Discovering the genes underlying fundamental processes that enable cells to live and reproduce is a technical challenge, because loss of gene function in mutants results in organisms that cannot survive. This study describes a forward genetics method to identify essential genes in fungi, based on the propensity for Agrobacterium tumefaciens to insert T-DNA molecules into the promoters or 5' untranslated regions of genes and by placing a conditional promoter within the T-DNA. Insertions of the promoter of the GAL7 gene were made in the human pathogen Cryptococcus neoformans. Nine strains of 960 T-DNA insertional mutants screened grew on media containing galactose, but had impaired growth on media containing glucose, which suppresses expression from GAL7. T-DNA insertions were found in the homologs of IDI1, MRPL37, NOC3, NOP56, PRE3 and RPL17, all of which are essential in ascomycete yeasts Saccharomyces cerevisiae or Schizosaccharomyces pombe. Altering the carbon source in the medium provided a system to identify phenotypes in response to stress agents. The pre3 proteasome subunit mutant was further characterized. The T-DNA insertion and phenotype co-segregate in progeny from a cross, and the growth defect is complemented by the reintroduction of the wild type gene into the insertional mutant. A deletion allele was generated in a diploid strain, this heterozygous strain was sporulated, and analysis of the progeny provided additional genetic evidence that PRE3 is essential. The experimental design is applicable to other fungi and has other forward genetic applications such as to isolate over-expression suppressors or enhance the production of traits of interest. | Curr Genet 2017 Jun;63(3):519-530 | 366 | 0 |
Curatable | PMID:9857181 | Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. ATM/ATR/cell-cycle checkpoints/Chk1/Rad3 | EMBO J 1998 Dec 15;17(24):7239-49 | 324 | 1 |
Loaded in error | PMID:1987335 | This case study illustrates the chronic nature of hyperlipidemia type IIa and the important contribution of the nurse in helping the client adjust life style, manage complex health regimes, and cope with the uncertainty of disease progression and its associated risks. | J Cardiovasc Nurs 1991 Jan;5(2):58-66 | 50 | 0 |
Curatable | PMID:19664060 | Replication factor C (RFC) plays a key role in eukaryotic chromosome replication by acting as a loading factor for the essential sliding clamp and polymerase processivity factor, proliferating cell nuclear antigen (PCNA). RFC is a pentamer comprising a large subunit, Rfc1, and four small subunits, Rfc2-Rfc5. Each RFC subunit is a member of the AAA+ family of ATPase and ATPase-like proteins, and the loading of PCNA onto double-stranded DNA is an ATP-dependent process. Here, we describe the properties of a collection of 38 mutant forms of the Rfc2 protein generated by pentapeptide-scanning mutagenesis of the fission yeast rfc2 gene. Each insertion was tested for its ability to support growth in fission yeast rfc2Delta cells lacking endogenous Rfc2 protein and the location of each insertion was mapped onto the 3D structure of budding yeast Rfc2. This analysis revealed that the majority of the inactivating mutations mapped in or adjacent to ATP sites C and D in Rfc2 (arginine finger and P-loop, respectively) or to the five-stranded beta sheet at the heart of the Rfc2 protein. By contrast, nonlethal mutations map predominantly to loop regions or to the outer surface of the RFC complex, often in highly conserved regions of the protein. Possible explanations for the effects of the various insertions are discussed. | FEBS J 2009 Sep;276(17):4803-13 | 304 | 1 |
Curatable | PMID:17347150 | The target genes of the heat shock transcription factor (HSF) contain a cis-acting sequence, the heat shock element (HSE), which consists of multiple inverted repeats of the sequence 5'-nGAAn-3'. Using data acquired in this and a previous study, we have identified the HSEs in 59 of 62 target genes of Saccharomyces cerevisiae Hsf1. The Hsf1 protein recognizes continuous and discontinuous repeats of the nGAAn unit; the nucleotide sequences and configuration of the units diverge slightly among functional HSEs. When Schizosaccharomyces pombe HSF was expressed in S. cerevisiae cells, heat shock induced S. pombe HSF to bind to various HSE types, which properly activated transcription from almost all target genes, suggesting that the S. pombe genome also contains divergent HSEs. Human HSF1 induced the heat shock response via HSEs with continuous units in S. cerevisiae cells but failed to do so via HSEs with discontinuous units. Binding of human HSF1 to the discontinuous type of HSE was observed in vitro but was significantly inhibited in vivo. These results show that human HSF1 recognizes HSEs in a slightly different way than yeast HSFs and suggest that the configuration of the unit is an important determinant for HSF-HSE interactions. | J Biol Chem 2007 May 04;282(18):13334-41 | 290 | 1 |
Method or reagent | PMID:3442827 | In the fission yeast, Schizosaccharomyces pombe, transformation with recombinant plasmids always results in a high proportion of mitotically unstable transformants. This suggested that specialised (ARS) sequences might not be required for autonomous replication of plasmids in S. pombe, contrary to the situation in Saccharomyces cerevisiae. We have shown that specialised ARS sequences, analogous to those in S. cerevisiae, do exist in S. pombe, supporting the view that ARS elements are a general feature of eukaryotes. In addition, there is a further mechanism of plasmid maintenance which involves homologous and non-homologous integration into, and excision from the genome. | Curr Genet 1986;10(7):503-8 | 160 | 0 |
Not physically mapped | PMID:8766925 | We have isolated mutants of fission yeast defective in correct positioning of septum. In visual screening, we obtained 16 clones showing unequal septation at restrictive temperature, which were classified into three complementation groups. At restrictive temperature, all the mutants underwent nuclear division normally. In cytokinesis, however, a contractile ring was formed at the site independent of the mitotic spindle. These results suggest that positional information for cytokinesis are not accurately transmitted to the cell equator. Furthermore, all the mutants frequently displayed incorrect orientation and/or distortion of septum, which suggests that the septum positioning is closely related to correct orientation and organization of septum. | Zoolog Sci 1996 Apr;13(2):235-9 | 140 | 0 |
Method or reagent | PMID:11599715 | This review describes the transformation systems including vectors, replicons, genetic markers, transformation methods, vector stability, and copy numbers of 13 genera and 31 species of non-Saccharomyces yeasts. Schizosaccharomyces pombe was the first non-Saccharomyces yeast studied for transformation and genetics. The replicons of non-Saccharomyces yeast vectors are from native plasmids, chromosomal DNA, and mitochondrial DNA of Saccharomyces cerevisiae, non-Saccharomyces yeasts, protozoan, plant, and animal. Vectors such as YAC, YCp, YEp, YIp, and YRp were developed for non-Saccharomyces yeasts. Forty-two types of genes from bacteria, yeasts, fungi, and plant were used as genetic markers that could be classified into biosynthetic, dominant, and colored groups to construct non-Saccharomyces yeasts vectors. The LEU2 gene and G418 resistance gene are the two most popular markers used in the yeast transformation. All known transformation methods such as spheroplast-mediating method, alkaline ion treatment method, electroporation, trans-kingdom conjugation, and biolistics have been developed successfully for non-Saccharomyces yeasts, among which the first three are most widely used. The highest copy number detected from non-Saccharomyces yeasts is 60 copies in Kluyveromyces lactis. No general rule is known to illustrate the transformation efficiency, vector stability, and copy number, although factors such as vector composition, host strain, transformation method, and selective pressure might influence them. | Crit Rev Biotechnol 2001;21(3):177-218 | 351 | 0 |
Curatable | PMID:12036080 | Replacement of the catalytic nucleophile Asp481 by glycine in Schizosaccharomyces pombe alpha-glucosidase eliminated the hydrolytic activity. The mutant enzyme (D481G) was found to catalyze the formation of an alpha-glucosidic linkage from beta-glucosyl fluoride and 4-nitrophenyl (PNP) alpha-glucoside to produce two kinds of PNP alpha-diglucosides, alpha-isomaltoside and alpha-maltoside. The two products were not hydrolyzed by D481G, giving 41 and 29% yields of PNP alpha-isomaltoside and alpha-maltoside, respectively. PNP monoglycosides, such as alpha-xyloside, alpha-mannoside, or beta-glucoside, acted as the substrate, but PNP alpha-galactoside and maltose could not. No detectable product was observed in the combination of alpha-glucosyl fluoride and PNP alpha-glucoside. This study is the first report on an "alpha-glycosynthase"-type reaction to form an alpha-glycosidic linkage. | Biosci Biotechnol Biochem 2002 Apr;66(4):928-33 | 266 | 1 |
Curatable | PMID:12383265 | In the fission yeast Schizosaccharomyces pombe the Wak1p/Win1p-Wis1p-Sty1p stress-activated protein kinase (SAPK) pathway relays environmental signals to the transcriptional machinery and modulates gene expression via a cascade of protein phosphorylation. Cells of S. pombe subjected to cold shock (transfer from 28 degrees C to 15 degrees C) transiently activated the Sty1p mitogen-activated protein kinase (MAPK) by phosphorylation. Induction of this response was completely abolished in cells disrupted in the upstream response regulator Mcs4p. The cold-triggered Sty1p activation was partially dependent on Wak1p MAPKKK and fully dependent on Wis1p MAPKK suggesting that the signal transmission follows a branched pathway, with the redundant MAPKKK Win1p as alternative transducer to Wis1p, which subsequently activates the effector Sty1p MAPK. Also, the bZIP transcription factor Atf1p became phosphorylated in a Sty1p-dependent way during the cold shock and this phosphorylation was found responsible for the increased expression of gpd1+, ctt1+, tps1+ and ntp1+ genes. Strains deleted in transcription factors Atf1p or Pcr1p were unable to grow upon incubation at low temperature whereas those disrupted in any member of the SAPK pathway were able to do so. These data reveal that S. pombe responds to cold by inducing the SAPK pathway. However, such activation is dispensable for yeast growth in cold conditions, supporting that the presence of Atf1/Pcr1 heterodimers, rather than an operative SAPK pathway, is critical to ensure yeast growth at low temperature by an as yet undefined mechanism. | Eur J Biochem 2002 Oct;269(20):5056-65 | 383 | 1 |
Wrong organism | PMID:19837062 | Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) exerts multiple effects on viral and host cellular activities during infection, including induction of cell cycle G(2) arrest and cell death in both human and the fission yeast Schizosaccharomyces pombe cells. In this study, a mutant derivative of Vpr (F34IVpr), which causes transient G2 arrest with little or no effect of cell killing, was used to study the molecular impact of Vpr on cellular oxidative stress responses in S. pombe. We demonstrated here that F34IVpr triggers low level of complex and atypical oxidative stress responses in comparison with its parental strain SP223 in early (14-h) and late (35-h) log phase cultures. Specifically, F34IVpr production in S. pombe causes significantly elevated levels of reactive oxygen species such as superoxide and peroxides; meanwhile, it also induces decreased levels of glutathione, hydroxyl radical concentrations and specific enzyme activities such as those of antioxidant enzymes including superoxide dismutases, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione transferase. These observations may provide functional insights into the significance of Vpr-induced oxidative stress as part of the multifaceted functions of Vpr, and contribute to the development of future new strategies aimed to reduce the adverse Vpr-mediated effects in HIV-infected patients. | Exp Mol Pathol 2010 Feb;88(1):38-44 | 322 | 0 |
Curatable | PMID:7565614 | A novel gene, brd1, has been cloned from the fission yeast Schizosaccharomyces pombe. The predicted brd1 product contains two copies of an imperfect repeat of 96 amino acid residues in its N-terminal half. These each include a region with high homology to the bromodomains found in transcriptional activator proteins from a diversity of eukaryotes. An in vivo deletion of the complete brd1 open reading frame is not lethal but cells exhibit thermosensitivity, with reductions in both cell growth and stationary phase survival at 36 degrees C. brd1 maps adjacent to the gene suc1, but is expressed separately to give a low abundance 2.1 kb mRNA. | Mol Gen Genet 1995 Aug 30;248(4):491-8 | 152 | 1 |
Curatable | PMID:8552193 | The six-subunit origin recognition complex (ORC) is essential for the initiation of DNA replication at specific origins in the budding yeast Saccharomyces cerevisiae. An important issue is whether DNA replication in higher eukaryotes, in which the characteristics of replication origins are poorly defined, occurs by an ORC-dependent mechanism. We have identified a Xenopus laevis Orc2-related protein (XORC2) by its ability to rescue a mitotic-catastrophe mutant of the fission yeast Schizosaccharomyces pombe. We show that immunodepletion of XORC2 from Xenopus egg extracts abolishes the replication of chromosomal DNA but not elongation synthesis on a single-stranded DNA template. Indirect immunofluorescence indicates that XORC2 binds to chromatin well before the commencement of DNA synthesis, and even under conditions that prevent the association of replication licensing factor(s) with the DNA. These findings suggest that Orc2 plays an important role at an early step of chromosomal replication in animal cells. | Nature 1996 Jan 25;379(6563):357-60 | 225 | 1 |
Wrong organism | PMID:28790927 | Coenzyme Q (CoQ) is a lipid present in all cell membranes. One of the multiple metabolic functions of CoQ is to transport electrons in the reaction catalyzed by sulfide:quinone oxidoreductase (SQOR), the first enzyme of the oxidation pathway of sulfides (hydrogen sulfide, H 2 S). Early evidence of a defect in the metabolism of H 2 S in primary CoQ deficiency came from yeast studies in Schizosaccharomyces pombe strains defective for dps1 and ppt1 (homologs of PDSS1 and COQ2 , respectively), which have H 2 S accumulation. Our recent studies in human skin fibroblasts and in murine models of primary CoQ deficiency show that, also in mammals, decreased CoQ levels cause impairment of H 2 S oxidation. Patient fibroblasts carrying different mutations in genes encoding proteins involved in CoQ biosynthesis show reduced SQOR activity and protein levels proportional to the levels of CoQ. In Pdss2 kd / kd mice, kidney, the only organ clinically affected, shows reduced SQOR levels and downstream enzymes, accumulation of H 2 S, and glutathione depletion. Pdss2 kd / kd mice have also low levels of thiosulfate in plasma and urine, and increased C4-C6 acylcarnitines in blood, due to inhibition of short-chain acyl-CoA dehydrogenase. Also in Coq9 R 239 X mice, the symptomatic organ, cerebrum, shows accumulation of H 2 S, reduced SQOR, increase in thiosulfate sulfurtransferase and sulfite oxidase, and reduction in the levels of glutathione and glutathione enzymes, leading to alteration of the biosynthetic pathways of glutamate, serotonin, and catecholamines. Coq9 R 239 X mice have also reduced blood pressure, possible consequence of H 2 S-induced vasorelaxation. Since liver is not clinically affected in Pdss2 and Coq9 mutant mice, the effects of the impairment of H 2 S oxidation in this organ were not investigated, despite its critical role in metabolism. In conclusion, in vitro and in vivo studies of CoQ deficient models provide evidence of tissue-specific H 2 S oxidation impairment, an additional pathomechanism that should be considered in the understanding and treatment of primary CoQ deficiency. | Front Physiol 2017;8:525 | 540 | 0 |
Curatable | PMID:18270439 | Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance. | Genes Genet Syst 2007 Dec;82(6):489-94 | 333 | 1 |
Wrong organism | PMID:1534750 | Previous work has shown that nimA encodes a cell cycle regulated protein kinase that is required along with the p34cdc2 histone H1 kinase (MPF) for mitosis in Aspergillus nidulans. We have now identified two other gene products required for mitosis in A.nidulans. nimT encodes a protein similar to the fission yeast cdc25 tyrosine phosphatase and is required for the conversion of pre-MPF to MPF and nimE encodes a B-type cyclin which is a subunit of MPF. A new genetic interaction between nimEcyclinB and nimTcdc25 type genes is reported. Increased copy number of nimEcyclinB can suppress mutation of nimTcdc25 and also lead to increased accumulation of tyrosine phosphorylated p34cdc2 (pre-MPF). This biochemical observation suggests an explanation for the genetic complementation. If nimEcyclinB recruits p34cdc2 for tyrosine phosphorylation to form pre-MPF it follows that increased expression of nimEcyclinB would increase the level of pre-MPF. The increased level of pre-MPF generated may then allow the mutant nimTcdc25 protein to convert enough pre-MPF to MPF and thus permit some mitotic progression. We also demonstrate that correct cell cycle regulation by the p34cdc2 protein kinase pathway is essential for correct developmental progression in A.nidulans. | EMBO J 1992 Jun;11(6):2139-49 | 329 | 0 |
Wrong organism | PMID:6877269 | Epichlorohydrin (ECH), a direct mutagen in vitro, did not induce chromosomal aberrations in bone-marrow cells of CD1 mice given single oral doses of 50 and 200 mg/kg in water. The ECH diol derivative (3-chloro-1,2-propanediol) was tested in vitro by a forward-mutation assay on the yeast Schizosaccharomyces pombe and showed a weak but significant mutagenic effect. The failure of ECH to induce mutagenic effects appears to be due to the rapid metabolic clearance of the compound in vivo. ECH blood kinetics at both doses, and at the same time the concentration of the diol, were determined. ECH rapidly disappeared from mouse blood, being no longer detectable 20 min after treatment. In contrast, 3-chloro-1,2-propanediol was measurable up to 5 h after dosage. No difference was observed in the kinetic and metabolic behavior of ECH after single and repeated doses (50 and 200 mg/kg/day for 7 days). When 3-chloro-1,2-propanediol was tested, neither glutathione depletion nor epoxide hydrolase inhibition (evaluated with both styrene-7,8-oxide and ECH as substrates) could be detected in mouse liver. Finally, no difference in ECH blood kinetics or metabolism were observed in experiments in which the compound was administered (200 mg/kg) intraperitoneally in water or orally as a solution in dimethyl sulfoxide. | Mutat Res 1983 Aug;118(3):213-26 | 329 | 0 |
Curatable | PMID:12102630 | ISU-type proteins mediate cluster transfer to apo protein targets. Rate constants have been determined for cluster transfer from ISU to apo Fd for both Homo sapiens and Schizosaccharomyces pombe proteins, and cross reactions have also been examined. Substitution of a key aspartate residue of ISU is found to decrease the rate of cluster transfer by at least an order of magnitude (for wild-type Hs ISU cluster transfer to Hs apo Fd, k(2) approximately 540 M(-1) min(-1), relative 56 M(-1) min(-1) for D37A ISU). This change in rate constant does not reflect any change in binding affinity of the ISU and Fd proteins. The pH dependencies of cluster transfer rates are similar for WT and D37A ISU, arguing against a role for Asp37 as a catalytic base, although evidence for general base catalysis mediating deprotonation of Cys from the apo target is supported by an observed pK(a) of 6.9 determined from the pH profiles for both WT and D37A ISU. Such a pK(a) value is at the lower limit for Cys and is common for solvent-accessible Cys thiols. The temperature dependence of the rate constant defining the cluster transfer reaction for wild type versus the aspartate derivative is distinct. Thermal activation parameters (DeltaH and DeltaS) are consistent with a solvent-accessible ISU-bound cluster, with desolvation as a principle barrier to cluster transfer. Experiments to determine the dependence of reaction rate constants on viscosity indicate cluster transfer to be rate-limiting. Fully oxidized cluster appears to be the natural state for transfer to target proteins. Reduced Fd does not readily reduce ISU-bound [2Fe-2S](2+) and does not promote cluster transfer to an apo Fd target. | Biochemistry 2002 Jul 16;41(28):8876-85 | 403 | 1 |
Curatable | PMID:11331883 | In meiosis, sister-chromatids move to the same spindle pole during the first division (MI) and to opposite poles during the second division (MII). This requires that MI sister kinetochores are co-orientated and form an apparent single functional unit that only interacts with microtubules from one pole, and that sister-chromatids remain associated through their centromeres until anaphase II. Here we investigate the function of Bub1 and Mad2, which are components of the mitotic-spindle checkpoint, on chromosome segregation during meiosis. Both proteins are required to prevent the occurrence of non-disjunction events in MI, which is consistent with recent findings that components of the mitotic-spindle checkpoint also operate during meiosis. However, Bub1 has several functions that are not shared with Mad2. When the bub1 gene is deleted, sister chromatids often move to opposite spindle poles during MI, indicating that sister kinetochores are disunited. Furthermore, the cohesin Rec8 is never retained at centromeres at anaphase I and sister-chromatid cohesion is lost. Our results show that Bub1, besides its functions in monitoring chromosome attachment, is essential for two other significant aspects of MI - unification of sister kinetochores and retention of centromeric cohesion. | Nat Cell Biol 2001 May;3(5):522-6 | 278 | 1 |
Curatable | PMID:17069919 | Ubiquinone (UQ), a component of the electron transfer system in many organisms, has been widely used for pharmaceuticals and cosmetics. In this study, we cloned and overexpressed the full-length ppt1 (MTppt1) gene, which encodes p-hydroxybenzoate:polyprenyltransferase and ERppt1 gene, which was modified to be localized on endoplasmic reticulum in fission yeast. The yeast MTppt1 and ERppt1 transgenic lines showed about 3.7 and 5.1 times increment in UQ content and the recombinant yeasts with a higher UQ level are more resistant to H(2)O(2), Cu(2+) and NaCl, and interestingly their growth was also faster than the wild type at lower temperature. For large-scale cultivation, the direct feedback control of glucose using an on-line ethanol concentration monitor for ubiquinone production of yeast ERppt1 by high-cell-density fermentation was investigated and the fermentation parameters (e.g., dissolved oxygen, pH, ethanol concentration, oxygen uptake rate, carbon dioxide evolution rate and respiration quotient) were also discussed. After 90 h cultures, the yeast dry cell weight reached 57 gl(-1) and the ubiquinone yield reached 23 mgl(-1). In addition, plasmid stability was maintained at high level throughout the fermentation. | J Biotechnol 2007 Jan 30;128(1):120-31 | 296 | 1 |
Wrong organism | PMID:15150265 | Checkpoint activation by DNA damage during G(2) prevents activation of cyclin B/Cdc2 complexes, and as a consequence, mitotic entry is blocked. Although initiation and maintenance of G(2) arrest are known to be regulated by at least two distinct signaling pathways, including those of p38MAPK and ataxia-telangiectasia-mutated (ATM)- and Rad3-related (ATR)-Chk1 in higher eukaryotes, the actual number of signaling pathways involved in this regulation is still elusive. In the present study, we identified human SAD1 (hsSAD1) by searching a sequence data base. The predicted hsSAD1 protein comprises 778 amino acids and shares significant homology with the fission yeast Cdr2, a mitosis-regulatory kinase, and Caenorhabditis elegans SAD1, a neuronal cell polarity regulator. HsSAD1 transcript was expressed ubiquitously with the highest levels of expression in brain and testis. HsSAD1 specifically phosphorylated Wee1A, Cdc25-C, and -B on Ser-642, Ser-216, and Ser-361 in vitro, respectively. Overexpression of hsSAD1 resulted in an increased phosphorylation of Cdc25C on Ser-216 in vivo. DNA damage induced by UV or methyl methane sulfonate but not by IR enhanced endogenous hsSAD1 kinase activity in a caffeine-sensitive manner and caused translocation of its protein from cytoplasm to nucleus. Overexpression of wild-type hsSAD1 induced G(2)/M arrest in HeLa S2 cells. Furthermore, UV-induced G(2)/M arrest was partially abrogated by the reduced expression of hsSAD1 using small interfering RNA. These results suggest that hsSAD1 acts as checkpoint kinase upon DNA damage induced by UV or methyl methane sulfonate. The identification of this new kinase suggests the existence of an alternative checkpoint pathway other than those of ATR-Chk1 and p38MAPK. | J Biol Chem 2004 Jul 23;279(30):31164-70 | 450 | 0 |
Curatable | PMID:31077324 | The relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence, and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the noncoding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3'- and 5'-untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary, and biochemical data can provide new insights into the relationship between genome function and molecular evolution. | Mol Biol Evol 2019 08 01;36(8):1612-1623 | 338 | 1 |
Wrong organism | PMID:15094838 | The Krr1 protein of Saccharomyces cerevisiae is involved in processing of pre-rRNA and assembly of pre-ribosomal 40S subunits. To further investigate the function of Krr1p we constructed a conditional cold sensitive mutant krr1-21, and isolated seven genes from Schizosaccharomyces pombe whose products suppressed the cold sensitive phenotype of krr1-21 cells. Among the multicopy suppressors we found genes coding for translation elongation factor EF-1alpha, a putative ribose methyltransferase and five genes encoding ribosomal proteins. Using the tandem affinity purification (TAP) method we identified thirteen S. cerevisiae ribosomal proteins interacting with Krr1p. Taken together, these results indicate that Krr1p interacts functionally as well as physically with ribosomal proteins. Northern blot analysis revealed that changes in the level of krr1-21 mRNA were accompanied by similar changes in the level of mRNAs of genes encoding ribosomal proteins. Thus, Krr1p and the genes encoding ribosomal proteins it interacts with seem to be coordinately regulated at the level of transcription. | Acta Biochim Pol 2004;51(1):173-87 | 245 | 0 |
Curatable | PMID:22561704 | Nitric oxide (NO) acts as a signaling molecule in numerous physiological processes but excess production generates nitrosative stress in cells. The exact protective mechanism used by cells to combat nitrosative stress is unclear. In this study, the fission yeast Schizosaccharomyces pombe has been used as a model system to explore cell cycle regulation and stress responses under nitrosative stress. Exposure to an NO donor results in mitotic delay in cells through G2/M checkpoint activation and initiates rereplication. Western blot analysis of phosphorylated Cdc2 revealed that the G2/M block in the cell cycle was due to retention of its inactive phosphorylated form. Interestingly, nitrosative stress results in inactivation of Cdc25 through S-nitrosylation that actually leads to cell cycle delay. From differential display analysis, we identified plo1, spn4, and rga5, three cell cycle-related genes found to be differentially expressed under nitrosative stress. Exposure to nitrosative stress also results in abnormal septation and cytokinesis in S. pombe. In summary we propose a novel molecular mechanism of cell cycle control under nitrosative stress based on our experimental results and bioinformatics analysis. | Free Radic Biol Med 2012 Jun 1;52(11-12):2186-200 | 263 | 1 |
Wrong organism | PMID:8067773 | (1,3)-beta-D-Glucan synthase, a major cell wall synthesis enzyme, is the target of antifungal drugs of the lipopeptide class. Aspergillus fumigatus (1,3)-beta-D-glucan synthase was prepared and its activity was measured by incorporation of [14C]glucose from UDP-[U-14C]glucose into an insoluble polymer in the presence of alpha-amylase. Solubilization of the (1,3)-beta-D-glucan synthase was attempted with several detergents, and the maximum percent solubilization was obtained with a polyoxyethylene ether detergent, W-1. Up to 70% of enzyme activity and 50% of total protein were recovered when 1-mg/ml membrane preparations were extracted with 0.045% W-1 at 4 degrees C overnight. Confirmation of the presence of a (1,3)-beta-D-glucose polymer synthesized by this glucan synthase was done by three methods. The first was enzymatic end product degradation by alpha-amylase (no degradation) and beta-glucanase (85 to 95% degradation). The second was gas chromatography-mass spectroscopy analysis of the partially methylated alditol acetate derivatives prepared from total carbohydrate polymers present in the sample. This method identified the presence of (1,3)- and (1,2)-glucosidic linkages. The third was high-performance anion exchange chromatography of radioactive oligosaccharides. This method allowed differentiation of the newly synthesized, radioactive polymers from the contaminating carbohydrates already present in the preparation. The results showed that the polymer synthesized comprised oligosaccharides consistent with beta-(1,3)-linked sugars. Maximal inhibition of the (1,3)-beta-D-glucan synthase by the lipopeptide antifungal agent cilofungin was 80%. Dose-response experiments with this inhibitor showed that the solubilized enzyme was maximally inhibited at a cilofungin concentration of 1.25 microgram/ml and showed <5% inhibition at 0.02 microgram/ml. The apparent K(m) (K(m app)) for the solubilized glucan synthase was 400 +/- 80 microM, and the apparent K(i) (K(i app)) for cilofungin was 0.19 +/- 0.03 microM. Inhibition of A.fumigatus (1,3)-beta-D-glucan synthase with cilofungin was noncompetitive, as it was for the Candida albicans (1,3)-beta-D-glucan synthase. | Antimicrob Agents Chemother 1994 May;38(5):937-44 | 597 | 0 |
Curatable | PMID:21297349 | ATP-binding cassette (ABC) transporter plays an important role for resistance against xenobiotics. There are eleven ABC transporter genes in the genome of fission yeast Schizosaccharomyces pombe. We examined the role of ABC transporter against the toxicity of tributyltin chloride (TBT), a widespread environmental pollutant, in cell growth. Among individual ABC transporter mutants, the growth of a mutant deficient in Bfr1p, a plasma membrane-embedded transporter, was extremely sensitive to TBT. The lethal TBT concentration inducing 50% of cell death (LC(50)) was 25 µM for the parent strain and 10.2 µM for the bfr1∆ mutant. Thus, Bfr1p was responsible for TBT resistance in S. pombe. | J Toxicol Sci 2011 Jan;36(1):117-20 | 168 | 1 |
Curatable | PMID:31000521 | Fission yeast Swi6 is a human HP1 homolog that plays important roles in multiple cellular processes. In addition to its role in maintaining heterochromatin silencing, Swi6 is required for cohesin enrichment at the pericentromere. Loss of Swi6 leads to abnormal mitosis, including defects in the establishment of bioriented sister kinetochores and microtubule attachment. Swi6 interacts with Dfp1, a regulatory subunit of DBF4-dependent kinase (DDK), and failure to recruit Dfp1 to the pericentromere results in late DNA replication. Using the dfp1-3A mutant allele, which specifically disrupts Swi6-Dfp1 association, we investigated how interaction between Swi6 and Dfp1 affects chromosome dynamics. We find that disrupting the interaction between Swi6 and Dfp1 delays mitotic progression in a spindle assembly checkpoint-dependent manner. Artificially tethering Dfp1 back to the pericentromere is sufficient to restore normal spindle length and rescue segregation defects in swi6 -deleted cells. However, Swi6 is necessary for centromeric localization of Rad21-GFP independent of DDK. Our data indicate that DDK contributes to mitotic chromosome segregation in pathways that partly overlap with, but can be separated from both, Swi6 and the other HP1 homolog, Chp2. | Genetics 2019 06;212(2):417-430 | 302 | 1 |
Wrong organism | PMID:7983071 | Synthesis of (1-->3)-beta-D-glucan, the major structural component of the yeast cell wall, is synchronized with the budding cycle. Membrane-bound, GTP-stimulated (1-->3)-beta-glucan synthase was dissociated by stepwise treatment with salt and detergents into two soluble fractions, A and B, both required for activity. Fraction A was purified about 800-fold by chromatography on Mono Q and Sephacryl S-300 columns. During purification, GTP binding to protein correlated with synthase complementing activity. A 20-kDa GTP-binding protein was identified by photolabeling in the purified preparation. This preparation no longer required GTP for activity, but incubation with another fraction from the Mono Q column (A1) led to hydrolysis of bound GTP to GDP with a concomitant return of the GTP requirement. Thus, fraction A1 appears to contain a GTPase-activating protein. These results show that the GTP-binding protein not only regulates glucan synthase activity but can be regulated in turn, constituting a potential link between cell cycle controls and wall morphogenesis. | J Biol Chem 1994 Dec 09;269(49):31267-74 | 255 | 0 |
Curatable | PMID:9822592 | The 26S proteasome is a large multisubunit complex involved in degrading both cytoplasmic and nuclear proteins. We have investigated the localization of this complex in the fission yeast, Schizosaccharomyces pombe. Immunofluorescence microscopy shows a striking localization pattern whereby the proteasome is found predominantly at the nuclear periphery, both in interphase and throughout mitosis. Electron microscopic analysis revealed a concentration of label near the inner side of the nuclear envelope. The localization of green fluorescent protein (GFP)-tagged 26S proteasomes was analyzed in live cells during mitosis and meiosis. Throughout mitosis the proteasome remained predominantly at the nuclear periphery. During meiosis the proteasome was found to undergo dramatic changes in its localization. Throughout the first meiotic division, the signal is more dispersed over the nucleus. During meiosis II, there was a dramatic re-localization, and the signal became restricted to the area between the separating DNA until the end of meiosis when the signal dispersed before returning to the nuclear periphery during spore formation. These findings strongly imply that the nuclear periphery is a major site of protein degradation in fission yeast both in interphase and throughout mitosis. Furthermore they raise interesting questions as to the spatial organization of protein degradation during meiosis. | EMBO J 1998 Nov 16;17(22):6465-76 | 273 | 1 |
Wrong organism | PMID:26365259 | Small-RNA-mediated chromatin modifications have been widely studied in plants and S. pombe. However, direct evidence of small-RNA-guided sequence-specific chromatin alterations is scarce in animals. In C. elegans, the nuclear RNAi defective (Nrde) pathway functions to transport siRNA from the cytoplasm to the nucleus, modulate transcription elongation, induce histone H3 lysine 9 (H3K9) trimethylation, and mediate transgenerational inheritance of RNAi. Here, we show that both exogenous RNAi and NRDE-bound endogenous 22G RNAs can direct sequence-specific histone H3 lysine 27 (H3K27) trimethylation at targeted loci through the Nrde pathway. The resulting H3K27me3 status can be inherited by progeny for multiple generations. piRNAs and WAGO-1-associated siRNAs induce H3K27 methylation as well. Interestingly, CSR-1-associated endogenous siRNAs fail to trigger H3K27 methylation, whereas exogenous provision of dsRNAs can induce H3K27 methylation at the CSR-1-targeted loci via the Nrde pathway. We further observed distinct genetic requirements of H3K9 and H3K27 trimethylation. Whereas set-25 and met-2 are required for K9 methylation, mes-2 is required for K27 methylation. The depletion of mes-2 leads to a nuclear RNAi defective phenotype. These results indicate that dsRNA-triggered chromatin modification is a sequence-specific response that engages the Nrde pathway in C. elegans. | Curr Biol 2015 Sep 21;25(18):2398-403 | 360 | 0 |
Wrong organism | PMID:9256449 | Among the numerous centrin isoforms identified by two-dimensional gel electrophoresis in human cells, an acidic and slow-migrating isoform is particularly enriched in a centrosome fraction. We report here that this isoform specifically reacts with antibodies raised against Saccharomyces cerevisiae Cdc31p and is present, as other centrin isoforms, in the distal lumen of centrioles. It is encoded by a new centrin gene, which we propose to name HsCEN3 (Homo sapiens centrin gene 3). This gene is more closely related to the yeast CDC31 gene, and shares less identity with algae centrin than HsCEN1 and HsCEN2. A murine CDC31-related gene was also found that shows 98% identity and 100% similarity with HsCEN3, demonstrating a higher interspecies conservation than the murine centrin gene MmCEN1 (Mus musculus centrin gene 1) with either HsCEN1, or HsCEN2. Finally, immunological data suggest that a CDC31-related gene could exist in amphibians and echinoderms as well. All together, our data suggest the existence of two divergent protein subfamilies in the current centrin family, which might be involved in distinct centrosome-associated functions. The possible implication of this new mammalian centrin gene in centrosome duplication is discussed. | Proc Natl Acad Sci U S A 1997 Aug 19;94(17):9141-6 | 302 | 0 |
Biotech | PMID:28471391 | The most popular methodology to make red wine is through the combined use of Saccharomyces cerevisiae yeast and lactic acid bacteria, for alcoholic fermentation and malolactic fermentation respectively. This classic winemaking practice produces stable red wines from a microbiological point of view. This study aims to investigate a recent red winemaking biotechnology, which through the combined use of Lachancea thermotolerans and Schizosaccharomyces pombe is used as an alternative to the classic malolactic fermentation. In this new methodology, Schizosaccharomyces pombe totally consumes malic acid, while Lachancea thermotolerans produces lactic acid, avoiding excessive deacidification of musts with low acidity in warm viticulture areas such as Spain. This new methodology has been reported to be a positive alternative to malolactic fermentation in low acidity wines, since it has the advantage to produce wines with a more fruity flavor, less acetic acid, less ethyl carbamate originators and less biogenic amines than the traditional wines produced via conventional fermentation techniques. The study focuses on unexplored facts related to this novel biotechnology such as color and anthocyanin profile. | Molecules 2017 May 04;22(5) | 265 | 0 |
Wrong organism | PMID:20348383 | Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization. | Eukaryot Cell 2010 May;9(5):795-805 | 353 | 0 |
Review or comment | PMID:17086156 | In Cryptococcus neoformans the DNA content of cells having tiny buds varied rather widely, depending on growth phases and strains used. Typically, buds of C. neoformans emerged soon after initiation of DNA synthesis in the early exponential phase. However, bud emergence was delayed to G2 during transition to the stationary phase, and in the early stationary phase budding scarcely occurred, although roughly half of the cells completed DNA synthesis. The timing of budding in C. neoformans was shifted to later cell cycle points with progression of the growth phase of the culture. Similarly, a deficit in oxygen was demonstrated to delay the timing of budding, prolong the G2 phase and cause accumulation of cells after DNA synthesis, but before commitment to budding. The C. neoformans homologue of the main cell cycle control gene CDC28/Cdc2 was isolated using degenerate RT-PCR. The full-length coding region was then amplified using primers to target the regions around the start and stop codons. The gene was called CnCdk1 and was found to have high homologies to S. cerevisiae CDC28 and S. pombe cdc2. To determine its function, its ability to rescue S. cerevisiae cdc28-temperature sensitive mutants was tested. S. cerevisiae cdc28-4 and cdc28-1N strains transformed with the pYES2-CnCdk1 construct exhibited growth at the restrictive temperature. Results of the sequence analysis and the ability of CnCdk1 to complement the S. cerevisiae cdc28-ts mutations support its assumed role as the CDC28/cdc2 homologue in C. neoformans. | Nihon Ishinkin Gakkai Zasshi 2006;47(4):257-62 | 351 | 0 |
Review or comment | PMID:30278108 | Every cell cycle iteration culminates with the resolution of a mitotic nucleus into a pair of daughter nuclei, which are distributed between the two daughter cells. In the fission yeast Schizosaccharomyces pombe, the faithful division of a mitotic nucleus depends on unperturbed lipogenesis. Upon genetically or chemically induced perturbation of lipid anabolism, S. pombe cells fail to separate the two daughter nuclei and subsequently initiate lethal cytokinesis resulting in the so-called "cut" terminal phenotype. Evidence supporting a critical role of lipid biogenesis in successful mitosis in S. pombe has been accumulating for almost two decades, but the exact mechanism explaining the reported observations had been elusive. Recently, several studies established a functional link between biosynthesis of structural phospholipids, nuclear membrane growth, and the fidelity of "closed" mitosis in S. pombe. These novel insights suggest a mechanistic explanation for the mitotic defects characteristic for some S. pombe mutants deficient in lipid anabolism and extend our knowledge of metabolic modulation within the context of the cell cycle. In this review, we cover the essential role of lipogenesis in "closed" mitosis, focusing mainly on S. pombe as a model system. | Yeast 2018 12;35(12):631-637 | 269 | 0 |
Wrong organism | PMID:12966088 | The Mre11/Rad50 complex is a critical component of the cellular response to DNA double-strand breaks, in organisms ranging from archaebacteria to humans. In mammalian cells, Mre11/Rad50 (M/R) associates with a third component, Nbs1, that regulates its activities and is targeted by signaling pathways that initiate DNA damage-induced checkpoint responses. Mutations in the genes that encode Nbs1 and Mre11 are responsible for the human radiation sensitivity disorders Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively, which are characterized by defective checkpoint responses and high levels of chromosomal abnormalities. Here we demonstrate nucleotide-dependent DNA binding by the human M/R complex that requires the Nbs1 protein and is specific for double-strand DNA duplexes. Efficient DNA binding is only observed with non-hydrolyzable analogs of ATP, suggesting that ATP hydrolysis normally effects DNA release. The alleles of MRE11 associated with ATLD and the C-terminal Nbs1 polypeptide associated with NBS were expressed with the other components and found to form triple complexes except in the case of ATLD 3/4, which exhibits variability in Nbs1 association. The ATLD 1/2, ATLD 3/4, and p70 M/R/N complexes exhibit nucleotide-dependent DNA binding and exonuclease activity equivalent to the wild-type enzyme, although the ATLD complexes both show reduced activity in endonuclease assays. Sedimentation equilibrium analysis of the recombinant human complexes indicates that Mre11 is a stable dimer, Mre11 and Nbs1 form a 1:1 complex, and both M/R and M/R/N form large multimeric assemblies of approximately 1.2 MDa. Models of M/R/N stoichiometry in light of this and previous data are discussed. | J Biol Chem 2003 Nov 14;278(46):45171-81 | 416 | 0 |
Review or comment | PMID:16153738 | This article focuses on new developments in the genome-wide analysis of histone deacetylase (HDAC) function in yeast. HDACs are highly conserved in many organisms; therefore, their basic functions can be investigated using experimentally tractable model organisms, such as the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. New microarray techniques have enabled the systematic study of HDACs by identifying their direct and indirect gene targets in addition to their physiological functions and enzymatic specificity. These new approaches have already provided new surprising insights into the basic function of HDACs. | Trends Genet 2005 Nov;21(11):608-15 | 135 | 0 |
Wrong organism | PMID:10705373 | 1,3-beta-D-glucan is a fungal cell wall polymer synthesized by the multi-subunit enzyme 1,3-beta-D-glucan synthase. A subunit of this integral membrane protein was first described as the product of the FKS1 gene from Saccharomyces cerevisiae using echinocandin mutants. Other FKS1 genes were also reported for Candida albicans, Aspergillus nidulans and Cryptococcus neoformans. Here, we report the nucleotide sequence of the first homologous FKS gene cloned from the pathogenic fungus Paracoccidioides brasiliensis. An open reading frame of 5942 bp was identified in the complete sequence, interrupted by two putative introns, the first close to the 5' end and the second close to the 3' end of the gene. A promoter region is also described containing consensus sequences such as canonical TATA and CAAT boxes and, possibly, multiple sites for glucose regulation by creA protein. The deduced sequence of 1926 amino acid show more than 85% similarity to FksAp from A. nidulans, and 71% to Fks1p and Fks2p from S. cerevisiae. Computational analysis of P. brasiliensis Fks1p suggests a similar structure to transmembrane proteins, such as FksAp, with the presence of two domains composed by hydrophobic helices that limit the putative highly hydrophilic catalytic domain within the cytoplasm. | Yeast 2000 Mar 30;16(5):451-62 | 329 | 0 |
Wrong organism | PMID:10092625 | The vacuolar ATPase subunit A structural gene VMA1 of the biotechnologically important riboflavin overproducer Ashbya gossypii was cloned and disrupted to prevent riboflavin retention in the vacuolar compartment and to redirect the riboflavin flux into the medium. Cloning was achieved by polymerase chain reaction using oligonucleotide primers derived form conserved sequences of the Vma1 proteins from yeast and filamentous fungi. The deduced polypeptide comprises 617 amino acids with a calculated molecular mass of 67.8 kDa. The deduced amino acid sequence is highly similar to that of the catalytic subunits of Saccharomyces cerevisiae (67 kDa), Candida tropicalis (67 kDa), and Neurospora crassa (67 kDa) with 89, 87, and 60% identity, respectively, and shows about 25% identity to the beta-subunit of the FoF1-ATPase of S. cerevisiae and Schizosaccharomyces pombe. In contrast to S. cerevisiae, however, where disruption of the VMA1 gene was conditionally lethal, and to N. crassa, where viable disruptants could not be isolated, disruption of the VMA1 gene in A. gossypii did not cause a lethal phenotype. Disruption of the AgVMA1 gene led to complete excretion of riboflavin into the medium instead of retention in the vacuolar compartment, as observed in the wild type. | J Biol Chem 1999 Apr 02;274(14):9442-8 | 329 | 0 |
Modelling | PMID:23005832 | Spin models of neural networks and genetic networks are considered elegant as they are accessible to statistical mechanics tools for spin glasses and magnetic systems. However, the conventional choice of variables in spin systems may cause problems in some models when parameter choices are unrealistic from a biological perspective. Obviously, this may limit the role of a model as a template model for biological systems. Perhaps less obviously, also ensembles of random networks are affected and may exhibit different critical properties. We consider here a prototypical network model that is biologically plausible in its local mechanisms. We study a discrete dynamical network with two characteristic properties: Nodes with binary states 0 and 1, and a modified threshold function with Θ(0)(0)=0. We explore the critical properties of random networks of such nodes and find a critical connectivity K(c)=2.0 with activity vanishing at the critical point. Finally, we observe that the present model allows a more natural implementation of recent models of budding yeast and fission yeast cell-cycle control networks. | Phys Rev E Stat Nonlin Soft Matter Phys 2012 Aug;86(2 Pt 2):026114 | 206 | 0 |
Curatable | PMID:8493104 | Fibrillarin is a nucleolar protein which is associated with small nucleolar RNAs, and is required for pre-rRNA processing. We have cloned and characterized the gene encoding fibrillarin in the fission yeast Schizosaccharomyces pombe and we have followed its expression under various conditions. Fission yeast fibrillarin is a 305 amino-acid protein which appears to be highly conserved throughout evolution. In Xenopus, human or Saccharomyces cerevisiae, a single fibrillarin mRNA is detected while, in S. pombe a single copy gene encodes different mRNAs which differ at the 3' ends. Under normal growth conditions, two mRNAs of 1.1 and 1.35 kb are detected with the 1.1 kb being the most abundant. Both the total amount and relative abundance of these two mRNAs are strongly affected by exposure to low temperature, namely the 1.1 kb mRNA almost disappears while the 1.35 kb is less markedly diminished. A new species of 3.2 kb accumulates in the cell, which contains an unusually long 3' untranslated region of 2 kb. We have found that exposure of the cells to a cold shock has a profound effect on 3' end formation in S.pombe since the transcription of several other mRNAs is also capable of skipping the normal 3' end site to terminate at a further downstream site. | Nucleic Acids Res 1993 Apr 25;21(8):1881-7 | 299 | 1 |
Curatable | PMID:8001162 | Investigations into sexual differentiation and pheromone response in the fission yeast Schizosaccharomyces pombe are complicated by the need to first starve the cells of nitrogen. Most mating-related experiments are therefore performed on non-dividing cells. Here we overcome this problem by using two mutants that bypass the nutritional requirements and respond to the M-factor mating pheromone in rich medium. The first mutant lacks the cyr1 gene which encodes adenylate cyclase and these cells contain no measurable amounts of cAMP. When M-factor is added to a growing h+ cyr1- strain it causes a transient G1 arrest of cell division, transcription of mat1-Pm, and elongation of the cells to form shmoos. The second mutant contains the temperature-sensitive pat1-114 allele. At 30 degrees C this mutant was previously shown not only to bypass the nutritional signal but also to stop growing in a state derepressed for pheromone-controlled functions. We now report that an h+ pat1-114 strain growing mitotically at 23 degrees C responds to M-factor. This shows that the pat1 protein kinase can be tuned to derepress nutritional signalling while repressing the other stages in the differentiation process. | Curr Genet 1994 Aug;26(2):105-12 | 269 | 1 |
Cell composition or WT feature | PMID:30668560 | In fungi, mating between partners depends on the molecular recognition of two peptidyl mating pheromones by their respective receptors. The fission yeast Schizosaccharomyces pombe (Sp) has two mating types, Plus (P) and Minus (M). The mating pheromones P-factor and M-factor, secreted by P and M cells, are recognized by the receptors mating type auxiliary minus 2 (Mam2) and mating type auxiliary plus 3 (Map3), respectively. Our recent study demonstrated that a few mutations in both M-factor and Map3 can trigger reproductive isolation in S. pombe. Here, we explored the mechanism underlying reproductive isolation through genetic changes of pheromones/receptors in nature. We investigated the diversity of genes encoding the pheromones and their receptor in 150 wild S. pombe strains. Whereas the amino acid sequences of M-factor and Map3 were completely conserved, those of P-factor and Mam2 were very diverse. In addition, the P-factor gene contained varying numbers of tandem repeats of P-factor (4-8 repeats). By exploring the recognition specificity of pheromones between S. pombe and its close relative Schizosaccharomyces octosporus (So), we found that So-M-factor did not have an effect on S. pombe P cells, but So-P-factor had a partial effect on S. pombe M cells. Thus, recognition of M-factor seems to be stringent, whereas that of P-factor is relatively relaxed. We speculate that asymmetric diversification of the two pheromones might be facilitated by the distinctly different specificities of the two receptors. Our findings suggest that M-factor communication plays an important role in defining the species, whereas P-factor communication is able to undergo a certain degree of flexible adaptation-perhaps as a first step toward prezygotic isolation in S. pombe. | PLoS Biol 2019 01;17(1):e3000101 | 414 | 0 |
Curatable | PMID:12582133 | beta-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of beta-glucan synthase-related genes. We describe here the cloning and characterization of bgs3(+), a new member of this family. bgs3(+) was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the beta-glucan, and raises the amount of alpha-glucan polymer. These cells finally died. bgs3(+) is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle. | Eukaryot Cell 2003 Feb;2(1):159-69 | 312 | 1 |
Curatable | PMID:14596912 | The kin1 protein kinase of the fission yeast Schizosaccharomyces pombe is a member of the PAR-1/MARK (partitioning-defective 1/microtubule-associated protein/microtubule affinity-regulating kinase) family important in eukaryotic cell polarity and cytoskeletal dynamics. We show here that kin1 plays a role in establishing the characteristic rod-shaped morphology of fission yeast. Cells in which kin1 was deleted are viable but are impaired in growth, and are rounded at one end or both ends. They are monopolar because after mitosis they fail to activate bipolar growth, and are delayed in cytokinesis, resulting in a high proportion of septated cells often with multiple septa. This phenotype can be partially rescued by heterologous expression of human MARKs, which restore bipolar growth in most cells, but do not correct the delay in cytokinesis. Using chromosomal epitope tagging, we show that kin1p localises to the cell ends, except during mitosis when it disappears from cell ends. After mitosis, kin1p first reappears at the new cell end. Overexpression of kin1 results in a loss of polarity, with partially or fully rounded cells. From these results we suggest that kin1 is required to direct the growth machinery to the cell ends. | FEBS Lett 2003 Nov 06;554(1-2):45-9 | 287 | 1 |
Curatable | PMID:20974849 | In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes. | J Biol Chem 2010 Dec 31;285(53):41366-73 | 337 | 1 |
Curatable | PMID:9348105 | When the aya1+ gene is mutated, Schizosaccharomyces pombe cells become unable to react appropriately to a delay in DNA replication. Instead of stalling the cell cycle to allow completion of DNA synthesis, they proceed unperturbed towards mitosis and attempt to segregate the still unreplicated chromosomes. As a result, the genetic material segregates unevenly and the nuclei assume a mitotic catastrophe phenotype, characterized by torn chromosomes (cut), anucleated cells and scattered chromosomes. Interestingly, the aya1 phenotype can be suppressed by overexpression of either the catalytic subunit of S. pombe DNA polymerase alpha or of a novel protein called hur1 +p. The latter bears significant homology to the core of the human Rab escort protein, which belongs to a family of factors necessary to the post-translational isoprenylation of proteins like Ras, Rab and lamin B. When isoprenylation is chemically inhibited with R-limonene (a monoterpene derived from orange rind), wild type S. pombe cells become insensitive to an S phase delay, in a manner strongly reminiscent of aya1 mutants. Moreover, overexpression of hur1 +p in wild type cells rescues the failing checkpoint function. We propose that there is a strong correlation between the aya1 phenotype, S-M phase checkpoint function, and isoprenylation events in fission yeast. | Biol Chem 1997 Sep;378(9):963-73 | 304 | 1 |
Phylogeny and evolutionary studies | PMID:12527786 | The fission yeasts are members of the fungal order Schizosaccharomycetales, a candidate deep-diverging group within Ascomycota. Although a great deal of molecular information is available from Schizosaccharomyces pombe, a model eukaryote, very little is available from other members of this group. In order to better characterize mitochondrial genome evolution in this fungal lineage, the mitochondrial DNA (mtDNA) of two additional fission yeasts, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus var. japonicus, was sequenced. Whereas the mtDNA of S.pombe is only 19 431 bp, the mtDNA of S.octosporus is 44 227 bp, and that of S.japonicus var. japonicus is over 80 kb. The size variation of these mtDNAs is due largely to non-coding regions. The gene content in the latter two mtDNAs is almost identical to that of the completely sequenced S.pombe mtDNA, which encodes 25 tRNA species, the large and small mitochondrial ribosomal RNAs (rnl and rns), the RNA component of mitochondrial RNaseP (rnpB), mitochondrial small subunit ribosomal protein 3 (rps3), cytochrome oxidase subunits 1, 2 and 3 (cox1, cox2 and cox3) and ATP-synthase subunits 6, 8 and 9 (atp6, atp8 and atp9). However, trnI2(cau) (C modified to lysidine) is absent in the S.octosporus mtDNA, as are corresponding ATA codons in its protein-coding genes, and rps3 and rnpB are not found in the mtDNA of S.japonicus var. japonicus. The mtDNA of S.octosporus contains five double hairpin elements, the first report of these elements in an ascomycete. This study provides further evidence in favor of the mobility of these elements, and supports their role in mitochondrial genome rearrangement. The results of our phylogenetic analysis support the monophyly of the Schizosaccharomycetales, but question their grouping within the Archiascomycota. | Nucleic Acids Res 2003 Jan 15;31(2):759-68 | 505 | 0 |
Mating-type related | PMID:12072458 | A transcriptionally silent chromosomal domain is found in the mating-type region of fission yeast. Here we show that this domain is delimited by 2-kb inverted repeats, IR-L and IR-R. IR-L and IR-R prevent the expansion of transcription-permissive chromatin into the silenced region and that of silenced chromatin into the expressed region. Their insulator activity is partially orientation dependent. The silencing defects that follow deletion or inversion of IR-R are suppressed by high dosage of the chromodomain protein Swi6. Combining chromosomal deletions and Swi6 overexpression shows that IR-L and IR-R provide firm borders in a region where competition between silencing and transcriptional competence occurs. IR-R possesses autonomously replicating sequence (ARS) activity, leading to a model where replication factors, or replication itself, participate in boundary formation. | Genetics 2002 Jun;161(2):611-22 | 187 | 0 |
Curatable | PMID:7334057 | Video-connected fluorescence microscopy was introduced to study the yeast nuclear chromatin region. It was defined as the nuclear area where a DNA-binding fluorescent probe 4',6-diamidino-2-phenylindole specifically bound and fluoresced. The 3-dimensional feature of the mitotic chromatin region was deduced by analysing the successive video images of a cell viewed at different angles. By investigating synchronous culture of the wild-type fission yeast Schizosaccharomyces pombe, we found sequential structural alterations in the chromatin region during mitosis. The steps found include the compaction of the chromatin region from the regular hemispherical form, the formation of a U-shaped intermediate and the rapid segregation into 2 daughter hemispherical forms. Six cs cdc mutants, apparently blocked in mitosis, were observed by fluorescence microscopy. Under the restrictive conditions their chromatin regions exhibited either hemispherical, compact, disk-like, U-shaped or partially segregated chromatin regions. Two mutants showed anomalous nuclear locations. The results of the temperature shift-up experiments of the highly reversible KM52 and KM108 strains supported the above scheme of sequential alterations in the chromatin region. | J Cell Sci 1981 Dec;52:271-87 | 254 | 1 |
Curatable | PMID:12815070 | Commitment to mitosis is regulated by a protein kinase complex called MPF. MPF is inhibited by Wee1-related kinases and activated by Cdc25 phosphatase. MPF activation further boosts Cdc25 and represses Wee1. This feedback control probably involves polo kinase. A dominant cut12.s11 mutation in the Schizosaccharomyces pombe spindle pole body (SPB) component Cut12 both suppresses the conditional lethal mitotic commitment defect of cdc25.22 and promotes premature association of the S. pombe polo kinase, Plo1, with the SPB. We now show that Cut12 associated with Plo1 in two hybrid and immunoprecipitation assays. Plo1 function was required for recognition of the mitotic SPB by the phospho-specific antibody MPM-2. In vivo MPM-2 staining and in vitro kinase assays established that the loss-of-function mutation, cut12.1, reduced mitotic activation of Plo1, whereas the gain-of-function mutation, cut12.s11, promoted higher levels of Plo1 activity than were normally seen in interphase. cut12.s11 could not promote mitotic commitment of cdc25.22 cells when Plo1 function was compromised. Expression of a constitutively active plo1 allele suppressed the mitotic commitment defect of cdc25.22. These data suggest that cut12.s11 suppresses cdc25.22 by promoting Plo1 activity. Furthermore, the delayed mitotic commitment of plo1.ts2 cells suggests that Plo1 is an integral part of the core controls that modulate MPF activation in S. pombe. | Genes Dev 2003 Jun 15;17(12):1507-23 | 370 | 1 |
Wrong organism | PMID:11884589 | The insulin-like growth factor type I (IGF-I) receptor (IGF-IR), activated by its ligands IGF-I and IGF-II, can initiate several signal transduction pathways that mediate suppression of apoptosis, proliferation, differentiation, and transformation. Here we investigated the regulation of IGF-IR activation and function by protein tyrosine phosphatase 1B (PTP-1B). Coexpression of PTP-1B with a beta-chain construct of the IGF-IR (betaWT) inhibited IGF-IR kinase activity in fission yeast Schizosaccharomyces pombe, in COS cells, and in IGF-IR-deficient fibroblasts. In both spontaneously immortalized and simian virus 40 T antigen-transformed embryonic fibroblast cell lines derived from PTP-1B knockout mice, IGF-I induced higher levels of IGF-IR autophosphorylation and kinase activity than were induced in PTP-1B-expressing control cells. PTP-1B-deficient cells exhibited enhanced IGF-I-mediated protection from apoptosis in response to serum withdrawal or etoposide killing, as well as enhanced plating efficiency and IGF-I-mediated motility. Reexpression of PTP-1B in spontaneously immortalized fibroblasts resulted in decreased IGF-IR and AKT activation, as well as decreased protection from apoptosis and decreased motility. These findings demonstrate that PTP-1B can regulate IGF-IR kinase activity and function and that loss of PTP-1B can enhance IGF-I-mediated cell survival, growth, and motility in transformed cells. | Mol Cell Biol 2002 Apr;22(7):1998-2010 | 350 | 0 |
Curatable, low priority | PMID:15459654 | Transcriptional regulation of the Schizosaccharomyces pombe gamma-glutamylcysteine synthetase (GCS) gene was examined using the two GCS-lacZ fusion plasmids pUGCS101 and pUGCS102, which harbor 607 bp and 447 bp upstream regions, respectively. The negatively-acting sequence was located in the -607 approximately -447 bp upstream region of the GCS gene. The upstream sequence responsible for induction by menadione (MD) and L-buthionine-(S, R)-sulfoximine (BSO) resides in the -607 approximately -447 bp region, whereas the sequence which codes for nitric oxide induction is located within the -447 bp region, measured from the translational initiation point. Carbon source-dependent regulation of the GCS gene appeared to be dependent on the nucleotide sequence within -447 bp region. The transcription factor Pap1 is involved in the induction of the GCS gene by MD and BSO, but not by nitric oxide. Induction of the GCS gene occurring due to low glucose concentration does not depend on the presence of Pap1. These data imply that induction by MD and BSO may be mediated by the Pap1 binding site, probably located in the -607 approximately -447 region, and also that the nitric oxide-mediated regulation of the S. pombe GCS gene may share a similar mechanism with its carbon-dependent induction. | J Microbiol 2004 Sep;42(3):233-8 | 314 | 1 |
Loaded in error | PMID:126785 | Two cell mouse and rat embryos are cultivated in vitro in the conditions described by Whitten, reducing the oxygen concentration in the gaseous phase at 5%. The first ones can become blastocysts while the second ones are stopped in their development. | C R Seances Soc Biol Fil 1975;169(2):449-51 | 51 | 0 |
Curatable | PMID:11513869 | In the fission yeast Schizosaccharomyces pombe Mik1p, in combination with Wee1p, is an important inhibitor of mitosis through direct phosphorylation of Cdc2p. Here we present the observation that mik1(+) is transcribed during G1- and S-phase in normally dividing cells. mik1(+) transcription is regulated by the MCB-DSC1 system, which controls expression of other genes at the G1-S interval. mik1(+) is shown to be an important target of MCB-DSC1 as it is epistatic for the mitotic delay phenotype displayed in cdc10-C4 cells, which are mutated in a component of DSC1. The mitotic delay in cdc10-C4 cells is bypassed by cdc2-1w, suggesting that mik1(+) acts directly on cdc2(+), with no checkpoint function involved. Thus, mik1(+) represents a new type of MCB-DSC1 regulated gene in fission yeast, whose gene product is exclusively expressed during G1- and S-phase to prevent premature mitosis during this cell cycle stage. | FEBS Lett 2001 Aug 17;503(2-3):131-4 | 251 | 1 |
Wrong organism | PMID:24353214 | Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus-host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor. | J Exp Biol 2014 Jan 01;217(Pt 1):144-55 | 357 | 0 |
Curatable | PMID:15358115 | Glutaredoxins are glutathione-specific thiol oxidoreductases. The regulation and the role of grx1(+) and grx2(+) genes encoding dithiol glutaredoxins were analyzed in Schizosaccharomyces pombe. When tested in the same genetic background including mating type, the grx1 null mutant became sensitive to hydrogen peroxide, whereas grx2 mutant became highly sensitive to paraquat, a superoxide generator. The grx1grx2 double mutant showed additive phenotype of each single mutant. The grx1(+) gene expression was induced by various stresses such as oxidants, salts, and heat, and increased in the stationary phase, whereas grx2(+) stayed constitutive. The induction was mediated via Spc1 MAP kinase path involving both Atf1 and Pap1 transcription factors. Sub-cellular fractionation as well as fluorescence microscopy revealed that Grx1 resides mainly in the cytosol, whereas Grx2 is in mitochondria. These results suggest distinct roles for Grx1 and Grx2 in S. pombe in mediating glutathione-dependent redox homeostasis. | Biochem Biophys Res Commun 2004 Sep 03;321(4):922-9 | 250 | 1 |
Curatable | PMID:16079177 | It has been postulated that creation of Man8GlcNAc2 isomer B (M8B) by endoplasmic reticulum (ER) alpha-mannosidase I constitutes a signal for driving irreparably misfolded glycoproteins to proteasomal degradation. Contrary to a previous report, we were able to detect in vivo (but not in vitro) an extremely feeble ER alpha-mannosidase activity in Schizosaccharomyces pombe. The enzyme yielded M8B on degradation of Man9GlcNAc2 and was inhibited by kifunensin. Live S. pombe cells showed an extremely limited capacity to demannosylate Man9GlcNAc2 present in misfolded glycoproteins even after a long residence in the ER. In addition, no preferential degradation of M8B-bearing species was detected. Nevertheless, disruption of the alpha-mannosidase encoding gene almost totally prevented degradation of a misfolded glycoprotein. This and other conflicting reports may be best explained by assuming that the role of ER mannosidase on glycoprotein degradation is independent of its enzymatic activity. The enzyme, behaving as a lectin binding polymannose glycans of varied structures, would belong together with its enzymatically inactive homologue Htm1p/Mnl1p/EDEM, to a transport chain responsible for delivering irreparably misfolded glycoproteins to proteasomes. Kifunensin and 1-deoxymannojirimycin, being mannose homologues, would behave as inhibitors of the ER mannosidase or/and Htm1p/Mnl1p/EDEM putative lectin properties. | Mol Biol Cell 2005 Oct;16(10):4714-24 | 373 | 1 |
Wrong organism | PMID:28424666 | The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H 2 O 2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of Δ gpxA , Δ tpxA , and Δ tpxB single, double and triple peroxiredoxin mutants in wild type or Δ napA backgrounds shows that none of these Prxs is required for NapA function in H 2 O 2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H 2 O 2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA , and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, Δ napA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show that SakA-AtfA, SrrA and NapA oxidative stress-sensing pathways regulate essential aspects of spore physiology (i.e., cell cycle arrest, dormancy, drug production and detoxification, and carbohydrate utilization). | Front Microbiol 2017;8:516 | 503 | 0 |
Curatable | PMID:23222840 | Activation of mitosis-promoting factor (MPF) drives mitotic commitment. In human cells active MPF appears first on centrosomes. We show that local activation of MPF on the equivalent organelle of fission yeast, the spindle pole body (SPB), promotes Polo kinase activity at the SPBs long before global MPF activation drives mitotic commitment. Artificially promoting MPF or Polo activity at various locations revealed that this local control of Plo1 activity on G2 phase SPBs dictates the timing of mitotic commitment. Cytokinesis of the rod-shaped fission yeast cell generates a naive, new, cell end. Growth is restricted to the experienced old end until a point in G2 phase called new end take off (NETO) when bipolar growth is triggered. NETO coincided with MPF activation of Plo1 on G2 phase SPBs (ref. 4). Both MPF and Polo activities were required for NETO and both induced NETO when ectopically activated at interphase SPBs. NETO promotion by MPF required polo. Thus, local MPF activation on G2 SPBs directs polo kinase to control at least two distinct and temporally separated, cell-cycle transitions at remote locations. | Nat Cell Biol 2013 Jan;15(1):88-95 | 263 | 1 |
Method or reagent | PMID:18592595 | A general model for aerobic yeast growth in batch culture is presented. It is based on the concept that the aerobic metabolism of all yeasts is determined by the relative sizes of the transport rate of sugar into the cell and the transport rate of respiratory intermediates into the mitochondrion. If the rate of sugar uptake rate exceeds the rate of transport of respiratory intermediates into the mitochondrion (as in Saccharomyces cerevisiae, S. uvarum, and S. pombe), the metabolism exhibits the features of ethanol excretion and limited specific oxygen uptake rate. If the rate of transport of respiratory intermediates into the mitochondrion is of the same order as the transport of sugar into the cell (as in Candida utilis), the metabolism is characterized by little or no ethanol excretion and a much higher specific oxygen uptake rate. Batch data from an extensive range of yeast and carbon sources is used to illustrate the use of this model. The ability of this model to fit such an extensive range of experimental data suggests that it can be used as a generalized model for aerobic yeast growth. | Biotechnol Bioeng 1990 Apr 15;35(9):907-20 | 225 | 0 |
Wrong organism | PMID:32881504 | Campafungin A is a polyketide that was recognized in the Candida albicans fitness test due to its antiproliferative and antihyphal activity. Its mode of action was hypothesized to involve inhibition of a cAMP-dependent PKA pathway. The originally proposed structure appeared to require a polyketide assembled in a somewhat unusual fashion. However, structural characterization data were never formally published. This background stimulated a reinvestigation in which campafungin A and three closely related minor constituents were purified from fermentations of a strain of the ascomycete fungus Plenodomus enteroleucus . Labeling studies, along with extensive NMR analysis, enabled assignment of a revised structure consistent with conventional polyketide synthetic machinery. The structure elucidation of campafungin A and new analogues encountered in this study, designated here as campafungins B, C, and D, is presented, along with a proposed biosynthetic route. The antimicrobial spectrum was expanded to methicillin-resistant Staphylococcus aureus , Candida tropicalis , Candida glabrata , Cryptococcus neoformans , Aspergillus fumigatus , and Schizosaccharomyces pombe , with MICs ranging as low as 4-8 μg mL -1 in C. neoformans . Mode-of-action studies employing libraries of C. neoformans mutants indicated that multiple pathways were affected, but mutants in PKA/cAMP pathways were unaffected, indicating that the mode of action was distinct from that observed in C. albicans. | J Nat Prod 2020 09 25;83(9):2718-2726 | 349 | 0 |
Wrong organism | PMID:26522472 | Cancer-predisposing genes associated with inherited cancer syndromes help explain mechanisms of sporadic carcinogenesis and often inform normal development. Cowden syndrome (CS) is an autosomal-dominant disorder characterized by high lifetime risks of epithelial cancers, such that ∼50% of affected individuals are wild-type for known cancer-predisposing genes. Using whole-exome and Sanger sequencing of a multi-generation CS family affected by thyroid and other cancers, we identified a pathogenic missense heterozygous SEC23B variant (c.1781T>G [p.Val594Gly]) that segregates with the phenotype. We also found germline heterozygous SEC23B variants in 3/96 (3%) unrelated mutation-negative CS probands with thyroid cancer and in The Cancer Genome Atlas (TCGA), representing apparently sporadic cancers. We note that the TCGA thyroid cancer dataset is enriched with unique germline deleterious SEC23B variants associated with a significantly younger age of onset. SEC23B encodes Sec23 homolog B (S. cerevisiae), a component of coat protein complex II (COPII), which transports proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Interestingly, germline homozygous or compound-heterozygous SEC23B mutations cause an unrelated disorder, congenital dyserythropoietic anemia type II, and SEC23B-deficient mice suffer from secretory organ degeneration due to ER-stress-associated apoptosis. By characterizing the p.Val594Gly variant in a normal thyroid cell line, we show that it is a functional alteration that results in ER-stress-mediated cell-colony formation and survival, growth, and invasion, which reflect aspects of a cancer phenotype. Our findings suggest a different role for SEC23B, whereby germline heterozygous variants associate with cancer predisposition potentially mediated by ER stress "addiction." | Am J Hum Genet 2015 Nov 05;97(5):661-76 | 407 | 0 |
Wrong organism | PMID:1532796 | In Saccharomyces cerevisiae, expression of functional F1-ATPase requires two proteins encoded by the ATP11 and ATP12 genes. Mutations in either gene block some crucial late step in assembly of F1, causing the alpha and beta subunits to accumulate in mitochondria as inactive aggregates (Ackerman, S. H., and Tzagoloff, A. (1991) Proc. Natl. Acad. Sci. U.S.A. 87, 4986-4990). In the present study we have cloned and determined the sequence of ATP11. The encoded product is protein of 37 kDa with no obvious homology to any known protein. In vitro import assays of ATP11 precursor and immunochemical evidence indicate that the protein is located in mitochondria. A fusion was made between ATP11 and a short sequence coding for 78 amino acids with the biotination signal of bacterial transcarboxylase. The protein expressed from this construct complements atp11 mutants, indicating that the addition of the extra 78 amino acids at the carboxyl terminus of the ATP11 protein does not compromise its function. The hybrid protein is detected in mitochondria with antibodies and with peroxidase-conjugated avidin. Biotinated ATP11 protein can be partially purified by affinity chromatography on monomeric or tetrameric avidin coupled to Sepharose. A fraction eluted from the avidin column and enriched for the biotinated ATP11 protein also contains the alpha and beta subunits of F1-ATPase. | J Biol Chem 1992 Apr 15;267(11):7386-94 | 325 | 0 |
Curatable | PMID:9605404 | DNA polymerase II (PolII), the homologue of mammalian DNA polymerase epsilon, is essential for chromosomal DNA replication in the budding yeast Saccharomyces cerevisiae and also participates in S-phase checkpoint control. An important issue is whether chromosomal DNA replication in other eukaryotes, including the fission yeast Schizosaccharomyces pombe--in which the characteristics of replication origins are poorly defined--also requires DNA polymerase epsilon. It has been shown that DNA polymerase epsilon is not required for the in vitro replication of SV40 DNA by human cell extracts. We have cloned and sequenced S. pombe pol2+, which is identical to the cell-cycle gene cdc20+, encoding the catalytic polypeptide of DNA polymerase epsilon (Pol epsilon). The predicted amino acid sequence of Pol epsilon is highly homologous to that of S. cerevisiae PolII and human Pol epsilon. Consistent with this, the Pol epsilon polypeptide was recognized by polyclonal antibodies against S. cerevisiae PolII holoenzyme (PolII*). The terminal morphology of cells containing the disrupted pol2 gene was similar to that of DNA replication mutant cells and cdc20 mutant cells. Furthermore, the Pol epsilon activity from temperature-sensitive S. pombe cdc20 mutant cells was temperature-sensitive, and chromosomal DNA replication in the mutant cells was inhibited at the restrictive temperatures. These data strongly suggest that Pol epsilon is required for normal chromosomal DNA replication in S. pombe, as is PolII in S. cerevisiae. Thus, eukaryotic chromosomal DNA is replicated differently from that of viral SV40 DNA. | Genes Cells 1998 Feb;3(2):99-110 | 373 | 1 |
Method or reagent | PMID:8904333 | The ability of yeast strains to perform both alcoholic and malolactic fermentation in winemaking was studied with a view to achieving a better control of malolactic fermentation in enology. The malolactic gene of Lactococcus lactis (mleS) was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The heterologous protein is expressed at a high level in cell extracts of a S. cerevisiae strain expressing the gene mleS under the control of the alcohol dehydrogenase (ADH1) promoter on a multicopy plasmid. Malolactic enzyme specific activity is three times higher than in L. lactis extracts. Saccharomyces cerevisiae expressing the malolactic enzyme produces significant amounts of L-lactate during fermentation on glucose-rich medium in the presence of malic acid. Isotopic filiation was used to demonstrate that 75% of the L-lactate produced originates from endogenous L-malate and 25% from exogenous L-malate. Moreover, although a small amount of exogenous L-malate was degraded by S. cerevisiae transformed or not by mleS, all the exogenous degraded L-malate was converted into L-lactate via a malolactic reaction in the recombinant strain, providing evidence for very efficient competition of malolactic enzyme with the endogenous malic acid pathways. These results indicate that the sole limiting step for S. cerevisiae in achieving malolactic fermentation is in malate transport. This was confirmed using a different model, S. pombe, which efficiently degrades L-malate. Total malolactic fermentation was obtained in this strain, with most of the L-malate converted into L-lactate and CO2. Moreover, L-malate was used preferentially by the malolactic enzyme in this strain also. | Yeast 1996 Mar 15;12(3):215-25 | 401 | 0 |
Wrong organism | PMID:10950868 | DDC2 is a novel component of the DNA integrity checkpoint pathway, which is required for proper checkpoint response to DNA damage and to incomplete DNA replication. Moreover, Ddc2 overproduction causes sensitivity to DNA-damaging agents and checkpoint defects. Ddc2 physically interacts with Mec1 and undergoes Mec1-dependent phosphorylation both in vitro and in vivo. The phosphorylation of Ddc2 takes place in late S phase and in G(2) phase during an unperturbed cell cycle and is further increased in response to DNA damage. Because Ddc2 phosphorylation does not require any other known tested checkpoint factors but Mec1, the Ddc2-Mec1 complex might respond to the presence of some DNA structures independently of the other known checkpoint proteins. Our findings suggest that Ddc2 may be the functional homolog of Schizosaccharomyces pombe Rad26, strengthening the hypothesis that the mechanisms leading to checkpoint activation are conserved throughout evolution. | Genes Dev 2000 Aug 15;14(16):2046-59 | 206 | 0 |
Curatable | PMID:12842472 | The PWWP domain is a ubiquitous eukaryotic protein module characterised by a region of sequence similarity of approximately 80 amino acids containing a highly conserved PWWP motif. It is frequently found in proteins associated with chromatin. We have determined the structure of a PWWP domain from the S. pombe protein SPBC215.07c using NMR spectroscopy. The structure is composed of a five stranded beta barrel followed by two alpha helices. Comparison to the recently reported structure of a homologous domain from the mammalian DNA methyltransferase Dnmt3b reveals substantial differences both in the C-terminal helical region and in the PWWP motif. | J Mol Biol 2003 Jul 11;330(3):571-6 | 144 | 1 |
Review or comment | PMID:32222413 | The formation of de novo centromeres on artificial chromosomes in humans (HACs) and fission yeast (SpYACs) has provided much insights to the epigenetic and genetic control on regional centromere establishment and maintenance. Similarly, the use of artificial chromosomes in point centromeric budding yeast Saccharomyces cerevisiae (ScYACs) and holocentric Caenorhabditis elegans (WACs) has revealed epigenetic regulation in the originally thought purely genetically-determined point centromeres and some centromeric DNA sequence features in holocentromeres, respectively. These relatively extreme and less characterized centromere organizations, on the endogenous chromosomes and artificial chromosomes, will be discussed and compared to the more well-studied regional centromere systems. This review will highlight some of the common epigenetic and genetic features in different centromere architectures, including the presence of the centromeric histone H3 variant, CENP-A or CenH3, centromeric and pericentric transcription, AT-richness and repetitiveness of centromeric DNA sequences. | Exp Cell Res 2020 05 15;390(2):111974 | 234 | 0 |
Wrong organism | PMID:8223615 | Expression of a human tumour-derived p53 His 273 cDNA induced growth arrest in fission yeast Schizosaccharomyces pombe. Based on the p53-induced growth arrest, we cloned an extragenic suppressor, termed tms1, by complementation. The open reading frame of the tms1 gene corresponded to a protein of 347 amino acids with a calculated mass of 37380 Da. The transcriptional start site of the tms1 gene was mapped and, in addition, the corresponding cDNA was isolated and expressed in Escherichia coli. Recombinant tms1 protein served as an antigen to produce specific polyclonal antibodies to aid identification of the tms1-gene-product in total yeast lysates. Comparison of the deduced amino acid sequence of tms1 with available databases revealed significant similarity to dehydrogenases, suggesting that the tms1 protein itself might possess dehydrogenase activity. | Eur J Biochem 1993 Oct 15;217(2):731-6 | 201 | 0 |
Curatable | PMID:16390871 | Cdc37 is a molecular chaperone whose clients are predominantly protein kinases, many of which are important in cell-cycle progression. Temperature-sensitive mutants of cdc37 in Schizosaccharomyces pombe are lethal at the restrictive temperature, arresting cell division within a single cell cycle. These mutant cells elongate during incubation at the restrictive temperature, consistent with a cell-cycle defect. The cell-cycle arrest arises from defective function of the mutant Cdc37 proteins rather than a reduction in Cdc37 protein levels. Around 80% of the arrested, elongated cells contain a single nucleus and replicated (2C) DNA content, indicating that these mutants arrest the cell cycle in G2 or mitosis (M). Cytological observations show that the majority of cells arrest in G2. In fission yeast, a G2 cell-cycle arrest can arise by inactivation of the cyclin-dependent kinase (Cdk) Cdc2 that regulates entry into mitosis. Studies of the cdc37 temperature-sensitive mutants show a genetic interaction with some cdc2 alleles and overexpression of cdc2 rescues the lethality of some cdc37 alleles at the restrictive temperature, suggesting that Cdc2 is a likely client for the Cdc37 molecular chaperone. In cdc37 temperature-sensitive mutants at the restrictive temperature, the level of Cdc2 protein remains constant but Cdc2 protein kinase activity is greatly reduced. Inactivation of Cdc2 appears to result from the inability to form complexes with its mitotic cyclin partner Cdc13. Further evidence for Cdc2 being a client of Cdc37 in S. pombe comes from the identification of genetic and biochemical interactions between these proteins. | J Cell Sci 2006 Jan 15;119(Pt 2):292-302 | 364 | 1 |
Method or reagent | PMID:29930079 | Life is dependent upon the ability of a cell to rapidly respond to changes in the environment. Small perturbations in local environments change the ability of molecules to interact and, hence, communicate. Hydrostatic pressure provides a rapid non-invasive, fully reversible method for modulating affinities between molecules both in vivo and in vitro We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures <200 bar in living cells. By using yeast, we investigated the impact of hydrostatic pressure upon cell growth and cell-cycle progression. While 100 bar has no effect upon viability, it induces a delay in chromosome segregation, resulting in the accumulation of long undivided cells that are also bent, consistent with disruption of the cytoskeletons. This delay is independent of stress signalling and induces synchronisation of cell-cycle progression. Equivalent effects were observed in Candida albicans , with pressure inducing a reversible cell-cycle delay and hyphal growth. We present a simple novel non-invasive fluorescence microscopy-based approach to transiently impact molecular dynamics in order to visualise, dissect and study signalling pathways and cellular processes in living cells. | J Cell Sci 2018 08 06;131(15) | 251 | 0 |
Method or reagent | PMID:24108582 | Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, time- and space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell. | J Biomed Opt 2014 Jan;19(1):011016 | 311 | 0 |
Curatable | PMID:24186301 | The complex locus ade10 of Schizosaccharomyces pombe was subjected to genetical fine structure analysis and characterized for enzymatic activities. Out of twenty alleles isolated, fifteen were found to complement and to be localized in two adjacent regions. Complementing alleles mapping in region I lack AICAR-formyltransferase activity while complementing alleles mapping in region II lack IMP-cyclohydrolase activity. In both cases, the remaining activity was generally normal. Three of these alleles were identified as missense and one as nonsense. Interallelic complementation was found to occur inside each region. The five other alleles are completely pleiotropic, suggesting that the two regions belong to a single transcription unit. These alleles are distributed over both regions. Two of them appear to be frameshift. The genetic map shows the occurrence of map expansion. | Curr Genet 1982 Aug;5(3):233-44 | 188 | 1 |
Method or reagent | PMID:16005294 | The position of the division plane affects cell shape and size, as well as tissue organization. Cells of the fission yeast Schizosaccharomyces pombe have a centrally placed nucleus and divide by fission at the cell center. Microtubules (MTs) are required for the central position of the nucleus. Genetic studies lead to the hypothesis that the position of the nucleus may determine the position of the division plane. Alternatively, the division plane may be positioned by the spindle or by morphogen gradients or reaction diffusion mechanisms. Here, we investigate the role of MTs in nuclear positioning and the role of the nucleus in division-plane positioning by displacing the nucleus with optical tweezers. A displaced nucleus returned to the cell center by MT pushing against the cell tips. Nuclear displacement during interphase or early prophase resulted in asymmetric cell division, whereas displacement during prometaphase resulted in symmetric division as in unmanipulated cells. These results suggest that the division plane is specified by the predividing nucleus. Because the yeast nucleus is centered by MTs during interphase but not in mitosis, we hypothesize that the establishment of the division plane at the beginning of mitosis is an optimal mechanism for accurate symmetric division in these cells. | Curr Biol 2005 Jul 12;15(13):1212-6 | 260 | 0 |
Wrong organism | PMID:9178502 | To investigate the role of Srp54p in protein translocation, the Yarrowia lipolytica SRP54 homolog was cloned. Sequencing revealed an open reading frame of 536 amino acids coding for a 57.2 kilodalton polypeptide with 55 to 57% sequence identity to Srp54ps of Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mouse. Like these Srp54ps, Y. lipolytica Srp54p has an N-terminal domain with a highly conserved GTP-binding site and a methionine-rich C-terminal domain. Differing results regarding the essentiality of SRP subunits were obtained. SRP54 is important but not essential for growth, but it was reconfirmed that at least one SRP RNA gene is essential. Cells with SRP54 deleted grow about six times more slowly than wild type; faster-growing colonies, still growing much slower than wild type, appeared quite frequently. In srp54 delta cells, no untranslocated alkaline extracellular protease precursor was detected. Therefore, to develop another reporter molecule the Y. lipolytica KAR2 homolog was cloned and Kar2p antibodies were produced. For Kar2p an untranslocated precursor was detected in srp54 delta but not in wild-type cells, suggesting that its translocation was defective in the srp54 delta cells. These results confirm an in vivo rule for SRP in protein translocation in Y. lipolytica, suggest that SRP RNA or an SRP core-particle has functions not shared by Srp54p, and show that, as in S. cerevisiae and Sz. pombe, reporter molecules differ in their dependency on SRP for translocation. | Yeast 1997 May;13(6):499-513 | 386 | 0 |
Curatable | PMID:18449558 | Meiotic recombination arises from Rec12/Spo11-dependent formation of DNA double-strand breaks (DSBs) and their subsequent repair. We identified Rec12-binding peaks across the Schizosaccharomyces pombe genome using chromatin immunoprecipitation after reversible formaldehyde cross-linking combined with whole-genome DNA microarrays. Strong Rec12 binding coincided with previously identified DSBs at the recombination hotspots ura4A, mbs1, and mbs2 and correlated with DSB formation at a new site. In addition, Rec12 binding corresponded to eight novel conversion hotspots and correlated with crossover density in segments of chromosome I. Notably, Rec12 binding inversely correlated with guanine-cytosine (GC) content, contrary to findings in Saccharomyces cerevisiae. Although both replication origins and Rec12-binding sites preferred AT-rich gene-free regions, they seemed to exclude each other. We also uncovered a connection between binding sites of Rec12 and meiotic cohesin Rec8. Rec12-binding peaks lay often within 2.5 kb of a Rec8-binding peak. Rec12 binding showed preference for large intergenic regions and was found to bind preferentially near to genes expressed strongly in meiosis. Surprisingly, Rec12 binding was also detected in centromeric core regions, which raises the intriguing possibility that Rec12 plays additional roles in meiotic chromosome dynamics. | Chromosoma 2008 Oct;117(5):431-44 | 305 | 1 |