File size: 8,166 Bytes
e700b36
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
7a7c05b
e700b36
7a7c05b
e700b36
 
 
 
7a7c05b
e700b36
7a7c05b
e700b36
7a7c05b
e700b36
 
7a7c05b
e700b36
7a7c05b
e700b36
7a7c05b
e700b36
 
 
a9ae5c1
e700b36
 
a9ae5c1
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
7a7c05b
e700b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ae5c1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
  Ade_corpus_v2_classification:
  - 10K<n<100K
  Ade_corpus_v2_drug_ade_relation:
  - 1K<n<10K
  Ade_corpus_v2_drug_dosage_relation:
  - n<1K
source_datasets:
- original
task_categories:
  Ade_corpus_v2_classification:
    - text-classification
  Ade_corpus_v2_drug_ade_relation:
    - structure-prediction
  Ade_corpus_v2_drug_dosage_relation:
    - structure-prediction
task_ids:
  Ade_corpus_v2_classification:
    - fact-checking
  Ade_corpus_v2_drug_ade_relation:
    - coreference-resolution
  Ade_corpus_v2_drug_dosage_relation:
    - coreference-resolution
---

# Dataset Card for Adverse Drug Reaction Data v2

## Table of Contents
- [Dataset Card for Adverse Drug Reaction Data v2](#dataset-card-for-adverse-drug-reaction-data-v2)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://www.sciencedirect.com/science/article/pii/S1532046412000615
- **Repository:** [Needs More Information]
- **Paper:** https://www.sciencedirect.com/science/article/pii/S1532046412000615
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

ADE-Corpus-V2  Dataset: Adverse Drug Reaction Data.
 This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.
 DRUG-AE.rel provides relations between drugs and adverse effects.
 DRUG-DOSE.rel provides relations between drugs and dosages.
 ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.

### Supported Tasks and Leaderboards

Sentiment classification, Relation Extraction

### Languages

English

## Dataset Structure

### Data Instances

#### Config - `Ade_corpus_v2_classification`
```
{
      'label': 1, 
      'text': 'Intravenous azithromycin-induced ototoxicity.'
}

```

#### Config - `Ade_corpus_v2_drug_ade_relation`

```
{ 
    'drug': 'azithromycin', 
    'effect': 'ototoxicity', 
    'indexes': {
                  'drug': {
                            'end_char': [24], 
                            'start_char': [12]
                          }, 
                  'effect': {
                            'end_char': [44], 
                            'start_char': [33]
                            }
                }, 
    'text': 'Intravenous azithromycin-induced ototoxicity.'
    
}

```

#### Config - `Ade_corpus_v2_drug_dosage_relation`

```
{
    'dosage': '4 times per day', 
    'drug': 'insulin', 
    'indexes': {
                'dosage': {
                            'end_char': [56], 
                            'start_char': [41]
                        }, 
                'drug': {
                          'end_char': [40], 
                          'start_char': [33]}
                        }, 
    'text': 'She continued to receive regular insulin 4 times per day over the following 3 years with only occasional hives.'
}

```


### Data Fields

#### Config - `Ade_corpus_v2_classification`

- `text` - Input text.
- `label` - Whether the adverse drug effect(ADE) related (1) or not (0).
- 
#### Config - `Ade_corpus_v2_drug_ade_relation`

- `text` - Input text.
- `drug` - Name of drug.
- `effect` - Effect caused by the drug.
- `indexes.drug.start_char` - Start index of `drug` string in text.
- `indexes.drug.end_char` - End index of `drug` string in text.
- `indexes.effect.start_char` - Start index of `effect` string in text.
- `indexes.effect.end_char` - End index of `effect` string in text.

#### Config - `Ade_corpus_v2_drug_dosage_relation`

- `text` - Input text.
- `drug` - Name of drug.
- `dosage` - Dosage of the drug.
- `indexes.drug.start_char` - Start index of `drug` string in text.
- `indexes.drug.end_char` - End index of `drug` string in text.
- `indexes.dosage.start_char` - Start index of `dosage` string in text.
- `indexes.dosage.end_char` - End index of `dosage` string in text.


### Data Splits

| Train  |
| ------ | 
| 23516  |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

[Needs More Information]

### Citation Information

```
@article{GURULINGAPPA2012885,
title = "Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports",
journal = "Journal of Biomedical Informatics",
volume = "45",
number = "5",
pages = "885 - 892",
year = "2012",
note = "Text Mining and Natural Language Processing in Pharmacogenomics",
issn = "1532-0464",
doi = "https://doi.org/10.1016/j.jbi.2012.04.008",
url = "http://www.sciencedirect.com/science/article/pii/S1532046412000615",
author = "Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo",
keywords = "Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification",
abstract = "A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus."
}
```

### Contributions

Thanks to [@Nilanshrajput](https://github.com/Nilanshrajput), [@lhoestq](https://github.com/lhoestq) for adding this dataset.