prompt
stringlengths
70
19.8k
completion
stringlengths
8
1.03k
api
stringlengths
23
93
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter =
SentenceSplitter(chunk_size=1024)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west4-gcp-free") import os import getpass import openai openai.api_key = "sk-<your-key>" try: pinecone.create_index( "quickstart-index", dimension=1536, metric="euclidean", pod_type="p1" ) except Exception: pass pinecone_index = pinecone.Index("quickstart-index") pinecone_index.delete(deleteAll=True, namespace="test") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", "gender": "male", "born": 1963, }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", "gender": "female", "born": 1975, }, ), TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." ), metadata={ "category": "Business", "country": "United States", "gender": "male", "born": 1971, }, ), TextNode( text=( "Rihanna is a Barbadian singer, actress, and businesswoman. She" " has achieved significant success in the music industry and is" " known for her versatile musical style." ), metadata={ "category": "Music", "country": "Barbados", "gender": "female", "born": 1988, }, ), TextNode( text=( "Cristiano Ronaldo is a Portuguese professional footballer who is" " considered one of the greatest football players of all time. He" " has won numerous awards and set multiple records during his" " career." ), metadata={ "category": "Sports", "country": "Portugal", "gender": "male", "born": 1985, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.tools import FunctionTool from llama_index.core.vector_stores import ( VectorStoreInfo, MetadataInfo, MetadataFilter, MetadataFilters, FilterCondition, FilterOperator, ) from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.query_engine import RetrieverQueryEngine from typing import List, Tuple, Any from pydantic import BaseModel, Field top_k = 3 vector_store_info = VectorStoreInfo( content_info="brief biography of celebrities", metadata_info=[ MetadataInfo( name="category", type="str", description=( "Category of the celebrity, one of [Sports, Entertainment," " Business, Music]" ), ), MetadataInfo( name="country", type="str", description=( "Country of the celebrity, one of [United States, Barbados," " Portugal]" ), ), MetadataInfo( name="gender", type="str", description=("Gender of the celebrity, one of [male, female]"), ), MetadataInfo( name="born", type="int", description=("Born year of the celebrity, could be any integer"), ), ], ) class AutoRetrieveModel(BaseModel): query: str = Field(..., description="natural language query string") filter_key_list: List[str] = Field( ..., description="List of metadata filter field names" ) filter_value_list: List[Any] = Field( ..., description=( "List of metadata filter field values (corresponding to names" " specified in filter_key_list)" ), ) filter_operator_list: List[str] = Field( ..., description=( "Metadata filters conditions (could be one of <, <=, >, >=, ==, !=)" ), ) filter_condition: str = Field( ..., description=("Metadata filters condition values (could be AND or OR)"), ) description = f"""\ Use this tool to look up biographical information about celebrities. The vector database schema is given below: {vector_store_info.json()} """ def auto_retrieve_fn( query: str, filter_key_list: List[str], filter_value_list: List[any], filter_operator_list: List[str], filter_condition: str, ): """Auto retrieval function. Performs auto-retrieval from a vector database, and then applies a set of filters. """ query = query or "Query" metadata_filters = [ MetadataFilter(key=k, value=v, operator=op) for k, v, op in zip( filter_key_list, filter_value_list, filter_operator_list ) ] retriever = VectorIndexRetriever( index, filters=MetadataFilters( filters=metadata_filters, condition=filter_condition ), top_k=top_k, ) query_engine = RetrieverQueryEngine.from_args(retriever) response = query_engine.query(query) return str(response) auto_retrieve_tool = FunctionTool.from_defaults( fn=auto_retrieve_fn, name="celebrity_bios", description=description, fn_schema=AutoRetrieveModel, ) from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI agent = OpenAIAgent.from_tools( [auto_retrieve_tool], llm=OpenAI(temperature=0, model="gpt-4-0613"), verbose=True, ) response = agent.chat("Tell me about two celebrities from the United States. ") print(str(response)) response = agent.chat("Tell me about two celebrities born after 1980. ") print(str(response)) response = agent.chat( "Tell me about few celebrities under category business and born after 1950. " ) print(str(response)) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) from llama_index.core import SQLDatabase from llama_index.core.indices import SQLStructStoreIndex engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from llama_index.core.query_engine import NLSQLTableQueryEngine query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], ) get_ipython().system('pip install wikipedia') from llama_index.readers.wikipedia import WikipediaReader from llama_index.core import SimpleDirectoryReader, VectorStoreIndex cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.core import Settings from llama_index.core import StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.node_parser import TokenTextSplitter from llama_index.llms.openai import OpenAI Settings.llm = OpenAI(temperature=0, model="gpt-4") Settings.node_parser = TokenTextSplitter(chunk_size=1024) vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="wiki_cities" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) vector_index = VectorStoreIndex([], storage_context=storage_context) for city, wiki_doc in zip(cities, wiki_docs): nodes = Settings.node_parser.get_nodes_from_documents([wiki_doc]) for node in nodes: node.metadata = {"title": city} vector_index.insert_nodes(nodes) from llama_index.core.retrievers import VectorIndexAutoRetriever from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.tools import QueryEngineTool vector_store_info = VectorStoreInfo( content_info="articles about different cities", metadata_info=[ MetadataInfo( name="title", type="str", description="The name of the city" ), ], ) vector_auto_retriever = VectorIndexAutoRetriever( vector_index, vector_store_info=vector_store_info ) retriever_query_engine = RetrieverQueryEngine.from_args( vector_auto_retriever, ) sql_tool = QueryEngineTool.from_defaults( query_engine=query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query over" " a table containing: city_stats, containing the population/country of" " each city" ), ) vector_tool = QueryEngineTool.from_defaults( query_engine=retriever_query_engine, name="vector_tool", description=( f"Useful for answering semantic questions about different cities" ), ) from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI agent = OpenAIAgent.from_tools( [sql_tool, vector_tool], llm=
OpenAI(temperature=0, model="gpt-4-0613")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-faiss') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import faiss d = 1536 faiss_index = faiss.IndexFlatL2(d) from llama_index.core import ( SimpleDirectoryReader, load_index_from_storage, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.faiss import FaissVectorStore from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store = FaissVectorStore(faiss_index=faiss_index) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) index.storage_context.persist() vector_store =
FaissVectorStore.from_persist_dir("./storage")
llama_index.vector_stores.faiss.FaissVectorStore.from_persist_dir
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import TimeWeightedPostprocessor from llama_index.core.node_parser import SentenceSplitter from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.core.response.notebook_utils import display_response from datetime import datetime, timedelta from llama_index.core import StorageContext now = datetime.now() key = "__last_accessed__" doc1 = SimpleDirectoryReader( input_files=["./test_versioned_data/paul_graham_essay_v1.txt"] ).load_data()[0] doc2 = SimpleDirectoryReader( input_files=["./test_versioned_data/paul_graham_essay_v2.txt"] ).load_data()[0] doc3 = SimpleDirectoryReader( input_files=["./test_versioned_data/paul_graham_essay_v3.txt"] ).load_data()[0] from llama_index.core import Settings Settings.text_splitter = SentenceSplitter(chunk_size=512) nodes1 = Settings.text_splitter.get_nodes_from_documents([doc1]) nodes2 = Settings.text_splitter.get_nodes_from_documents([doc2]) nodes3 = Settings.text_splitter.get_nodes_from_documents([doc3]) nodes1[14].metadata[key] = (now - timedelta(hours=3)).timestamp() nodes1[14].excluded_llm_metadata_keys = [key] nodes2[14].metadata[key] = (now - timedelta(hours=2)).timestamp() nodes2[14].excluded_llm_metadata_keys = [key] nodes3[14].metadata[key] = (now - timedelta(hours=1)).timestamp() nodes2[14].excluded_llm_metadata_keys = [key] docstore = SimpleDocumentStore() nodes = [nodes1[14], nodes2[14], nodes3[14]] docstore.add_documents(nodes) storage_context = StorageContext.from_defaults(docstore=docstore) index = VectorStoreIndex(nodes, storage_context=storage_context) node_postprocessor = TimeWeightedPostprocessor( time_decay=0.5, time_access_refresh=False, top_k=1 ) query_engine = index.as_query_engine( similarity_top_k=3, ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) display_response(response) query_engine = index.as_query_engine( similarity_top_k=3, node_postprocessors=[node_postprocessor] ) response = query_engine.query( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?", ) display_response(response) from llama_index.core import SummaryIndex query_str = ( "How much did the author raise in seed funding from Idelle's husband" " (Julian) for Viaweb?" ) query_engine = index.as_query_engine( similarity_top_k=3, response_mode="no_text" ) init_response = query_engine.query( query_str, ) resp_nodes = [n for n in init_response.source_nodes] new_resp_nodes = node_postprocessor.postprocess_nodes(resp_nodes) summary_index =
SummaryIndex([n.node for n in new_resp_nodes])
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-callbacks-uptrain') get_ipython().run_line_magic('pip', 'install -q html2text llama-index pandas tqdm uptrain torch sentence-transformers') from llama_index.core import Settings, VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.readers.web import SimpleWebPageReader from llama_index.core.callbacks import CallbackManager from llama_index.callbacks.uptrain.base import UpTrainCallbackHandler from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.postprocessor import SentenceTransformerRerank from llama_index.llms.openai import OpenAI import os os.environ[ "OPENAI_API_KEY" ] = "sk-************" # Replace with your OpenAI API key callback_handler = UpTrainCallbackHandler( key_type="openai", api_key=os.environ["OPENAI_API_KEY"], project_name_prefix="llama", ) Settings.callback_manager = CallbackManager([callback_handler]) documents = SimpleWebPageReader().load_data( [ "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt" ] ) parser =
SentenceSplitter()
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext splitter =
SentenceSplitter(chunk_size=1024)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SQLDatabase from llama_index.readers.wikipedia import WikipediaReader from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) get_ipython().system('pip install wikipedia') cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from llama_index.core.query_engine import NLSQLTableQueryEngine sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], ) vector_indices = [] for wiki_doc in wiki_docs: vector_index =
VectorStoreIndex.from_documents([wiki_doc])
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla') get_ipython().system('pip/pip3 install pyepsilla') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.epsilla import EpsillaVectorStore import textwrap import openai import getpass OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") from pyepsilla import vectordb client = vectordb.Client() vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("How did the author learn about AI?") print(textwrap.fill(str(response), 100)) vector_store = EpsillaVectorStore(client=client, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) single_doc = Document(text="Epsilla is the vector database we are using.") index = VectorStoreIndex.from_documents( [single_doc], storage_context=storage_context, ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What vector database is being used?") print(textwrap.fill(str(response), 100)) vector_store = EpsillaVectorStore(client=client, overwrite=False) index =
VectorStoreIndex.from_vector_store(vector_store=vector_store)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-wandb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os from getpass import getpass if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = getpass( "Paste your OpenAI key from:" " https://platform.openai.com/account/api-keys\n" ) assert os.getenv("OPENAI_API_KEY", "").startswith( "sk-" ), "This doesn't look like a valid OpenAI API key" print("OpenAI API key configured") from llama_index.core.callbacks import CallbackManager from llama_index.core.callbacks import LlamaDebugHandler from llama_index.callbacks.wandb import WandbCallbackHandler from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, SimpleKeywordTableIndex, StorageContext, ) from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-4", temperature=0) import llama_index.core from llama_index.core import set_global_handler
set_global_handler("wandb", run_args={"project": "llamaindex"})
llama_index.core.set_global_handler
get_ipython().run_line_magic('pip', 'install llama-index-readers-twitter') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex from llama_index.readers.twitter import TwitterTweetReader from IPython.display import Markdown, display import os BEARER_TOKEN = "<bearer_token>" reader =
TwitterTweetReader(BEARER_TOKEN)
llama_index.readers.twitter.TwitterTweetReader
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('mkdir -p data') get_ipython().system('echo "This is a test file: one!" > data/test1.txt') get_ipython().system('echo "This is a test file: two!" > data/test2.txt') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.core.node_parser import SentenceSplitter pipeline = IngestionPipeline( transformations=[ SentenceSplitter(), HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), ], docstore=SimpleDocumentStore(), ) nodes = pipeline.run(documents=documents) print(f"Ingested {len(nodes)} Nodes") pipeline.persist("./pipeline_storage") pipeline = IngestionPipeline( transformations=[ SentenceSplitter(),
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
llama_index.embeddings.huggingface.HuggingFaceEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-fireworks') get_ipython().run_line_magic('pip', 'install llama-index') from llama_index.llms.fireworks import Fireworks resp = Fireworks().complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.fireworks import Fireworks messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = Fireworks().chat(messages) print(resp) from llama_index.llms.fireworks import Fireworks llm = Fireworks() resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.fireworks import Fireworks from llama_index.core.llms import ChatMessage llm = Fireworks() messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.stream_chat(messages) for r in resp: print(r.delta, end="") from llama_index.llms.fireworks import Fireworks llm =
Fireworks(model="accounts/fireworks/models/firefunction-v1")
llama_index.llms.fireworks.Fireworks
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2) Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(vector_store_query_mode="mmr") response = query_engine.query("What did the author do growing up?") print(response) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-cohere') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') import nest_asyncio nest_asyncio.apply() get_ipython().system('pip install "google-generativeai" -q') from llama_index.core.llama_dataset import download_llama_dataset evaluator_dataset, _ = download_llama_dataset( "MiniMtBenchSingleGradingDataset", "./mini_mt_bench_data" ) evaluator_dataset.to_pandas()[:5] from llama_index.core.evaluation import CorrectnessEvaluator from llama_index.llms.openai import OpenAI from llama_index.llms.gemini import Gemini from llama_index.llms.cohere import Cohere llm_gpt4 =
OpenAI(temperature=0, model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-neo4jvector') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY" openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.vector_stores.neo4jvector import Neo4jVectorStore username = "neo4j" password = "pleaseletmein" url = "bolt://localhost:7687" embed_dim = 1536 neo4j_vector = Neo4jVectorStore(username, password, url, embed_dim) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(vector_store=neo4j_vector) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What happened at interleaf?") display(Markdown(f"<b>{response}</b>")) neo4j_vector_hybrid = Neo4jVectorStore( username, password, url, embed_dim, hybrid_search=True ) storage_context = StorageContext.from_defaults( vector_store=neo4j_vector_hybrid ) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What happened at interleaf?") display(Markdown(f"<b>{response}</b>")) index_name = "existing_index" text_node_property = "text" existing_vector = Neo4jVectorStore( username, password, url, embed_dim, index_name=index_name, text_node_property=text_node_property, ) loaded_index =
VectorStoreIndex.from_vector_store(existing_vector)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [ SentenceSplitter(chunk_size=c, chunk_overlap=20) for c in sub_chunk_sizes ] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [ IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes ] all_nodes.extend(sub_inodes) original_node = IndexNode.from_text_node(base_node, base_node.node_id) all_nodes.append(original_node) all_nodes_dict = {n.node_id: n for n in all_nodes} vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model) vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2) retriever_chunk = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_chunk}, node_dict=all_nodes_dict, verbose=True, ) nodes = retriever_chunk.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for node in nodes:
display_source_node(node, source_length=2000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.core import SummaryIndex get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index =
SummaryIndex(nodes, storage_context=storage_context)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.retrievers.bm25 import BM25Retriever from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() llm = OpenAI(model="gpt-4") splitter =
SentenceSplitter(chunk_size=1024)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-mistralai') get_ipython().system('pip install llama-index') from llama_index.llms.mistralai import MistralAI llm = MistralAI() resp = llm.complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [
ChatMessage(role="system", content="You are CEO of MistralAI.")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.core.storage.docstore import SimpleDocumentStore docstore = SimpleDocumentStore() docstore.add_documents(nodes) from llama_index.core import StorageContext storage_context =
StorageContext.from_defaults(docstore=docstore)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('pip install llama-index') from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.evaluation.benchmarks import BeirEvaluator from llama_index.core import VectorStoreIndex def create_retriever(documents): embed_model =
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
llama_index.embeddings.huggingface.HuggingFaceEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import ( FaithfulnessEvaluator, RelevancyEvaluator, CorrectnessEvaluator, ) from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") faithfulness_gpt4 = FaithfulnessEvaluator(llm=gpt4) relevancy_gpt4 = RelevancyEvaluator(llm=gpt4) correctness_gpt4 = CorrectnessEvaluator(llm=gpt4) documents = SimpleDirectoryReader("./test_wiki_data/").load_data() llm =
OpenAI(temperature=0.3, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-milvus') get_ipython().system(' pip install llama-index') import logging import sys from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.milvus import MilvusVectorStore from IPython.display import Markdown, display import textwrap import openai openai.api_key = "sk-" get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-cohere') get_ipython().system('pip install llama-index cohere pypdf') openai_api_key = "YOUR OPENAI API KEY" cohere_api_key = "YOUR COHEREAI API KEY" import os os.environ["OPENAI_API_KEY"] = openai_api_key os.environ["COHERE_API_KEY"] = cohere_api_key from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.node_parser import SimpleNodeParser from llama_index.llms.openai import OpenAI from llama_index.embeddings.cohere import CohereEmbedding from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever from llama_index.core import QueryBundle from llama_index.core.indices.query.schema import QueryType from llama_index.core.schema import NodeWithScore from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.evaluation import EmbeddingQAFinetuneDataset from llama_index.finetuning import generate_cohere_reranker_finetuning_dataset from llama_index.core.evaluation import generate_question_context_pairs from llama_index.core.evaluation import RetrieverEvaluator from llama_index.finetuning import CohereRerankerFinetuneEngine from typing import List import pandas as pd import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() node_parser = SimpleNodeParser.from_defaults(chunk_size=400) lyft_nodes = node_parser.get_nodes_from_documents(lyft_docs) uber_nodes = node_parser.get_nodes_from_documents(uber_docs) llm = OpenAI(temperature=0, model="gpt-4") qa_generate_prompt_tmpl = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge. generate only questions based on the below query. You are a Professor. Your task is to setup \ {num_questions_per_chunk} questions for an upcoming \ quiz/examination. The questions should be diverse in nature \ across the document. The questions should not contain options, not start with Q1/ Q2. \ Restrict the questions to the context information provided.\ """ qa_dataset_lyft_train = generate_question_context_pairs( lyft_nodes[:256], llm=llm, num_questions_per_chunk=1, qa_generate_prompt_tmpl=qa_generate_prompt_tmpl, ) qa_dataset_lyft_train.save_json("lyft_train_dataset.json") qa_dataset_lyft_val = generate_question_context_pairs( lyft_nodes[257:321], llm=llm, num_questions_per_chunk=1, qa_generate_prompt_tmpl=qa_generate_prompt_tmpl, ) qa_dataset_lyft_val.save_json("lyft_val_dataset.json") qa_dataset_uber_val = generate_question_context_pairs( uber_nodes[:150], llm=llm, num_questions_per_chunk=1, qa_generate_prompt_tmpl=qa_generate_prompt_tmpl, ) qa_dataset_uber_val.save_json("uber_val_dataset.json") embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_document", ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_train, finetune_dataset_file_name="train.jsonl" ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_val, finetune_dataset_file_name="val.jsonl" ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_train, num_negatives=5, hard_negatives_gen_method="random", finetune_dataset_file_name="train_5_random.jsonl", embed_model=embed_model, ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_val, num_negatives=5, hard_negatives_gen_method="random", finetune_dataset_file_name="val_5_random.jsonl", embed_model=embed_model, ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_train, num_negatives=5, hard_negatives_gen_method="cosine_similarity", finetune_dataset_file_name="train_5_cosine_similarity.jsonl", embed_model=embed_model, ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_val, num_negatives=5, hard_negatives_gen_method="cosine_similarity", finetune_dataset_file_name="val_5_cosine_similarity.jsonl", embed_model=embed_model, ) finetune_model_no_hard_negatives = CohereRerankerFinetuneEngine( train_file_name="train.jsonl", val_file_name="val.jsonl", model_name="lyft_reranker_0_hard_negatives", model_type="RERANK", base_model="english", ) finetune_model_no_hard_negatives.finetune() finetune_model_random_hard_negatives = CohereRerankerFinetuneEngine( train_file_name="train_5_random.jsonl", val_file_name="val_5_random.jsonl", model_name="lyft_reranker_5_random_hard_negatives", model_type="RERANK", base_model="english", ) finetune_model_random_hard_negatives.finetune() finetune_model_cosine_hard_negatives = CohereRerankerFinetuneEngine( train_file_name="train_5_cosine_similarity.jsonl", val_file_name="val_5_cosine_similarity.jsonl", model_name="lyft_reranker_5_cosine_hard_negatives", model_type="RERANK", base_model="english", ) finetune_model_cosine_hard_negatives.finetune() reranker_base = CohereRerank(top_n=5) reranker_model_0 = finetune_model_no_hard_negatives.get_finetuned_model( top_n=5 ) reranker_model_5_random = ( finetune_model_random_hard_negatives.get_finetuned_model(top_n=5) ) reranker_model_5_cosine = ( finetune_model_cosine_hard_negatives.get_finetuned_model(top_n=5) ) RERANKERS = { "WithoutReranker": "None", "CohereRerank": reranker_base, "CohereRerank_0": reranker_model_0, "CohereRerank_5_random": reranker_model_5_random, "CohereRerank_5_cosine": reranker_model_5_cosine, } def display_results(embedding_name, reranker_name, eval_results): """Display results from evaluate.""" metric_dicts = [] for eval_result in eval_results: metric_dict = eval_result.metric_vals_dict metric_dicts.append(metric_dict) full_df = pd.DataFrame(metric_dicts) hit_rate = full_df["hit_rate"].mean() mrr = full_df["mrr"].mean() metric_df = pd.DataFrame( { "Embedding": [embedding_name], "Reranker": [reranker_name], "hit_rate": [hit_rate], "mrr": [mrr], } ) return metric_df index_embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_document", ) query_embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_query", ) vector_index = VectorStoreIndex( uber_nodes[:150], embed_model=index_embed_model, ) vector_retriever = VectorIndexRetriever( index=vector_index, similarity_top_k=10, embed_model=query_embed_model, ) results_df = pd.DataFrame() embed_name = "CohereEmbedding" for rerank_name, reranker in RERANKERS.items(): print(f"Running Evaluation for Reranker: {rerank_name}") class CustomRetriever(BaseRetriever): """Custom retriever that performs both Vector search and Knowledge Graph search""" def __init__( self, vector_retriever: VectorIndexRetriever, ) -> None: """Init params.""" self._vector_retriever = vector_retriever super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" retrieved_nodes = self._vector_retriever.retrieve(query_bundle) if reranker != "None": retrieved_nodes = reranker.postprocess_nodes( retrieved_nodes, query_bundle ) else: retrieved_nodes = retrieved_nodes[:5] return retrieved_nodes async def _aretrieve( self, query_bundle: QueryBundle ) -> List[NodeWithScore]: """Asynchronously retrieve nodes given query. Implemented by the user. """ return self._retrieve(query_bundle) async def aretrieve( self, str_or_query_bundle: QueryType ) -> List[NodeWithScore]: if isinstance(str_or_query_bundle, str): str_or_query_bundle =
QueryBundle(str_or_query_bundle)
llama_index.core.QueryBundle
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import DatasetGenerator documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() import random random.seed(42) random.shuffle(documents) gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) question_gen_query = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context from a " "report on climate change and the oceans, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) dataset_generator = DatasetGenerator.from_documents( documents[:50], question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("train_questions.txt", "w") as f: for question in questions: f.write(question + "\n") dataset_generator = DatasetGenerator.from_documents( documents[ 50: ], # since we generated ~1 question for 40 documents, we can skip the first 40 question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("eval_questions.txt", "w") as f: for question in questions: f.write(question + "\n") questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex, Settings Settings.context_window = 2048 gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt_35_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm = OpenAI(model="gpt-4", temperature=0.3) Settings.callback_manager = (callback_manager,) questions = [] with open("train_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-4") Settings.embed_model =
OpenAIEmbedding(model="text-embedding-3-small")
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index llama-index-vector-stores-qdrant -q') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data') get_ipython().system('wget "https://arxiv.org/pdf/2402.09353.pdf" -O "./data/dorav1.pdf"') from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4") response = llm.complete("What is DoRA?") print(response.text) """Load the data. With llama-index, before any transformations are applied, data is loaded in the `Document` abstraction, which is a container that holds the text of the document. """ from llama_index.core import SimpleDirectoryReader loader = SimpleDirectoryReader(input_dir="./data") documents = loader.load_data() """Chunk, Encode, and Store into a Vector Store. To streamline the process, we can make use of the IngestionPipeline class that will apply your specified transformations to the Document's. """ from llama_index.core.ingestion import IngestionPipeline from llama_index.core.node_parser import SentenceSplitter from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.vector_stores.qdrant import QdrantVectorStore import qdrant_client client = qdrant_client.QdrantClient(location=":memory:") vector_store = QdrantVectorStore(client=client, collection_name="test_store") pipeline = IngestionPipeline( transformations=[ SentenceSplitter(), OpenAIEmbedding(), ], vector_store=vector_store, ) _nodes = pipeline.run(documents=documents, num_workers=4) """Create a llama-index... wait for it... Index. After uploading your encoded documents into your vector store of choice, you can connect to it with a VectorStoreIndex which then gives you access to all of the llama-index functionality. """ from llama_index.core import VectorStoreIndex index =
VectorStoreIndex.from_vector_store(vector_store=vector_store)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.llama_dataset import download_llama_dataset rag_dataset, documents = download_llama_dataset( "PaulGrahamEssayDataset", "./paul_graham" ) rag_dataset.to_pandas()[:5] from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents=documents) query_engine = index.as_query_engine() import nest_asyncio nest_asyncio.apply() prediction_dataset = await rag_dataset.amake_predictions_with( query_engine=query_engine, show_progress=True ) prediction_dataset.to_pandas()[:5] import tqdm from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import ( CorrectnessEvaluator, FaithfulnessEvaluator, RelevancyEvaluator, SemanticSimilarityEvaluator, ) judges = {} judges["correctness"] = CorrectnessEvaluator( llm=
OpenAI(temperature=0, model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("Who won best Director in the 1972 Academy Awards?") str(response.response) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/42.csv") df query_engine = ChainOfTableQueryEngine(df, llm=llm, verbose=True) response = query_engine.query("What was the precipitation in inches during June?") str(response) from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline prompt_str = """\ Here's a serialized table. {serialized_table} Given this table please answer the question: {question} Answer: """ prompt = PromptTemplate(prompt_str) prompt_c = prompt.as_query_component(partial={"serialized_table": serialize_table(df)}) qp = QueryPipeline(chain=[prompt_c, llm]) response = qp.run("What was the precipitation in inches during June?") print(str(response)) import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/203-csv/114.csv") df query_engine =
ChainOfTableQueryEngine(df, llm=llm, verbose=True)
llama_index.packs.tables.chain_of_table.base.ChainOfTableQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) MONGO_URI = os.environ["MONGO_URI"] from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.index_store.mongodb import MongoIndexStore storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) summary_index = load_index_from_storage( storage_context=storage_context, index_id=list_id ) vector_index = load_index_from_storage( storage_context=storage_context, vector_id=vector_id ) keyword_table_index = load_index_from_storage( storage_context=storage_context, keyword_id=keyword_id ) chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = chatgpt Settings.chunk_size = 1024 query_engine = summary_index.as_query_engine() list_response = query_engine.query("What is a summary of this document?") display_response(list_response) query_engine = vector_index.as_query_engine() vector_response = query_engine.query("What did the author do growing up?") display_response(vector_response) query_engine = keyword_table_index.as_query_engine() keyword_response = query_engine.query( "What did the author do after his time at YC?" )
display_response(keyword_response)
llama_index.core.response.notebook_utils.display_response
import os print(os.listdir("./discord_dumps")) import json with open("./discord_dumps/help_channel_dump_05_25_23.json", "r") as f: data = json.load(f) print("JSON keys: ", data.keys(), "\n") print("Message Count: ", len(data["messages"]), "\n") print("Sample Message Keys: ", data["messages"][0].keys(), "\n") print("First Message: ", data["messages"][0]["content"], "\n") print("Last Message: ", data["messages"][-1]["content"]) get_ipython().system('python ./group_conversations.py ./discord_dumps/help_channel_dump_05_25_23.json') with open("conversation_docs.json", "r") as f: threads = json.load(f) print("Thread keys: ", threads[0].keys(), "\n") print(threads[0]["metadata"], "\n") print(threads[0]["thread"], "\n") from llama_index.core import Document documents = [] for thread in threads: thread_text = thread["thread"] thread_id = thread["metadata"]["id"] timestamp = thread["metadata"]["timestamp"] documents.append( Document(text=thread_text, id_=thread_id, metadata={"date": timestamp}) ) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) print("ref_docs ingested: ", len(index.ref_doc_info)) print("number of input documents: ", len(documents)) thread_id = threads[0]["metadata"]["id"] print(index.ref_doc_info[thread_id]) index.storage_context.persist(persist_dir="./storage") from llama_index.core import StorageContext, load_index_from_storage index = load_index_from_storage(
StorageContext.from_defaults(persist_dir="./storage")
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().system('pip install -q llama-index google-generativeai') get_ipython().run_line_magic('env', 'GOOGLE_API_KEY=...') import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.llms.gemini import Gemini resp = Gemini().complete("Write a poem about a magic backpack") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.gemini import Gemini messages = [ ChatMessage(role="user", content="Hello friend!"), ChatMessage(role="assistant", content="Yarr what is shakin' matey?"), ChatMessage( role="user", content="Help me decide what to have for dinner." ), ] resp = Gemini().chat(messages) print(resp) from llama_index.llms.gemini import Gemini llm = Gemini() resp = llm.stream_complete( "The story of Sourcrust, the bread creature, is really interesting. It all started when..." ) for r in resp: print(r.text, end="") from llama_index.llms.gemini import Gemini from llama_index.core.llms import ChatMessage llm = Gemini() messages = [ ChatMessage(role="user", content="Hello friend!"), ChatMessage(role="assistant", content="Yarr what is shakin' matey?"), ChatMessage( role="user", content="Help me decide what to have for dinner." ), ] resp = llm.stream_chat(messages) for r in resp: print(r.delta, end="") import google.generativeai as genai for m in genai.list_models(): if "generateContent" in m.supported_generation_methods: print(m.name) from llama_index.llms.gemini import Gemini llm = Gemini(model="models/gemini-pro") resp = llm.complete("Write a short, but joyous, ode to LlamaIndex") print(resp) from llama_index.llms.gemini import Gemini llm =
Gemini()
llama_index.llms.gemini.Gemini
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.callbacks import ( CallbackManager, LlamaDebugHandler, CBEventType, ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader docs = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo", temperature=0) llama_debug =
LlamaDebugHandler(print_trace_on_end=True)
llama_index.core.callbacks.LlamaDebugHandler
get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.core.query_engine import TransformQueryEngine from IPython.display import Markdown, display documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(documents) query_str = "what did paul graham do after going to RISD" query_engine = index.as_query_engine() response = query_engine.query(query_str) display(Markdown(f"<b>{response}</b>")) hyde =
HyDEQueryTransform(include_original=True)
llama_index.core.indices.query.query_transform.HyDEQueryTransform
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass import openai openai.api_key = "sk-" import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex from llama_index.vector_stores.chroma import ChromaVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Mafia"), MetadataFilter(key="year", value=1972), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[
MetadataFilter(key="theme", value="Fiction")
llama_index.core.vector_stores.MetadataFilter
get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader( input_files=["./data/paul_graham/paul_graham_essay.txt"] ) docs = reader.load_data() text = docs[0].text from llama_index.core import PromptTemplate qa_prompt_tmpl = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the query.\n" "Please also write the answer in the style of {tone_name}.\n" "Query: {query_str}\n" "Answer: " ) qa_prompt = PromptTemplate(qa_prompt_tmpl) refine_prompt_tmpl = ( "The original query is as follows: {query_str}\n" "We have provided an existing answer: {existing_answer}\n" "We have the opportunity to refine the existing answer " "(only if needed) with some more context below.\n" "------------\n" "{context_msg}\n" "------------\n" "Given the new context, refine the original answer to better " "answer the query. " "Please also write the answer in the style of {tone_name}.\n" "If the context isn't useful, return the original answer.\n" "Refined Answer: " ) refine_prompt = PromptTemplate(refine_prompt_tmpl) from llama_index.core.response_synthesizers import TreeSummarize, Refine from llama_index.core.types import BaseModel from typing import List summarizer =
TreeSummarize(verbose=True, summary_template=qa_prompt)
llama_index.core.response_synthesizers.TreeSummarize
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().system('pip install llama-index weaviate-client') import os import openai os.environ["OPENAI_API_KEY"] = "sk-<your key here>" openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import weaviate resource_owner_config = weaviate.AuthClientPassword( username="", password="", ) client = weaviate.Client( "https://test.weaviate.network", auth_client_secret=resource_owner_config, ) from llama_index.core import VectorStoreIndex from llama_index.vector_stores.weaviate import WeaviateVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name="LlamaIndex_filter" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) retriever = index.as_retriever() retriever.retrieve("What is inception?") from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Mafia"), MetadataFilter(key="year", value=1972), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Fiction"),
MetadataFilter(key="year", value=1997, operator=FilterOperator.GT)
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-llms-monsterapi') get_ipython().system('python3 -m pip install llama-index --quiet -y') get_ipython().system('python3 -m pip install monsterapi --quiet') get_ipython().system('python3 -m pip install sentence_transformers --quiet') import os from llama_index.llms.monsterapi import MonsterLLM from llama_index.core.embeddings import resolve_embed_model from llama_index.core.node_parser import SentenceSplitter from llama_index.core import VectorStoreIndex, SimpleDirectoryReader os.environ["MONSTER_API_KEY"] = "" model = "llama2-7b-chat" llm = MonsterLLM(model=model, temperature=0.75) result = llm.complete("Who are you?") print(result) from llama_index.core.llms import ChatMessage history_message = ChatMessage( **{ "role": "user", "content": ( "When asked 'who are you?' respond as 'I am qblocks llm model'" " everytime." ), } ) current_message =
ChatMessage(**{"role": "user", "content": "Who are you?"})
llama_index.core.llms.ChatMessage
get_ipython().system('pip install llama-index') import openai import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" openai.api_key = os.environ["OPENAI_API_KEY"] from typing import Any, List from InstructorEmbedding import INSTRUCTOR from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.embeddings import BaseEmbedding class InstructorEmbeddings(BaseEmbedding): _model: INSTRUCTOR = PrivateAttr() _instruction: str = PrivateAttr() def __init__( self, instructor_model_name: str = "hkunlp/instructor-large", instruction: str = "Represent a document for semantic search:", **kwargs: Any, ) -> None: self._model = INSTRUCTOR(instructor_model_name) self._instruction = instruction super().__init__(**kwargs) @classmethod def class_name(cls) -> str: return "instructor" async def _aget_query_embedding(self, query: str) -> List[float]: return self._get_query_embedding(query) async def _aget_text_embedding(self, text: str) -> List[float]: return self._get_text_embedding(text) def _get_query_embedding(self, query: str) -> List[float]: embeddings = self._model.encode([[self._instruction, query]]) return embeddings[0] def _get_text_embedding(self, text: str) -> List[float]: embeddings = self._model.encode([[self._instruction, text]]) return embeddings[0] def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]: embeddings = self._model.encode( [[self._instruction, text] for text in texts] ) return embeddings from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() embed_model = InstructorEmbeddings(embed_batch_size=2) Settings.embed_model = embed_model Settings.chunk_size = 512 index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla') get_ipython().system('pip/pip3 install pyepsilla') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.epsilla import EpsillaVectorStore import textwrap import openai import getpass OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") from pyepsilla import vectordb client = vectordb.Client() vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("How did the author learn about AI?") print(textwrap.fill(str(response), 100)) vector_store = EpsillaVectorStore(client=client, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) single_doc = Document(text="Epsilla is the vector database we are using.") index = VectorStoreIndex.from_documents( [single_doc], storage_context=storage_context, ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What vector database is being used?") print(textwrap.fill(str(response), 100)) vector_store =
EpsillaVectorStore(client=client, overwrite=False)
llama_index.vector_stores.epsilla.EpsillaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode docs0 = PyMuPDFReader().load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") index = VectorStoreIndex(base_nodes) query_engine = index.as_query_engine(similarity_top_k=2) get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) from llama_index.core.evaluation.eval_utils import get_responses from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner evaluator_c = CorrectnessEvaluator() evaluator_dict = {"correctness": evaluator_c} batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True) import numpy as np async def get_correctness(query_engine, eval_qa_pairs, batch_runner): eval_qs = [q for q, _ in eval_qa_pairs] eval_answers = [a for _, a in eval_qa_pairs] pred_responses = get_responses(eval_qs, query_engine, show_progress=True) eval_results = await batch_runner.aevaluate_responses( eval_qs, responses=pred_responses, reference=eval_answers ) avg_correctness = np.array( [r.score for r in eval_results["correctness"]] ).mean() return avg_correctness emotion_stimuli_dict = { "ep01": "Write your answer and give me a confidence score between 0-1 for your answer. ", "ep02": "This is very important to my career. ", "ep03": "You'd better be sure.", } emotion_stimuli_dict["ep06"] = ( emotion_stimuli_dict["ep01"] + emotion_stimuli_dict["ep02"] + emotion_stimuli_dict["ep03"] ) QA_PROMPT_KEY = "response_synthesizer:text_qa_template" from llama_index.core import PromptTemplate qa_tmpl_str = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, \ answer the query. {emotion_str} Query: {query_str} Answer: \ """ qa_tmpl =
PromptTemplate(qa_tmpl_str)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( TreeIndex, VectorStoreIndex, SimpleDirectoryReader, Response, ) from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import RelevancyEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt3 = OpenAI(temperature=0, model="gpt-3.5-turbo") gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator = RelevancyEvaluator(llm=gpt3) evaluator_gpt4 =
RelevancyEvaluator(llm=gpt4)
llama_index.core.evaluation.RelevancyEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import openai import os os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") data =
SimpleDirectoryReader(input_dir="./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
import cProfile, pstats from pstats import SortKey get_ipython().system('llamaindex-cli download-llamadataset PatronusAIFinanceBenchDataset --download-dir ./data') from llama_index.core import SimpleDirectoryReader reader =
SimpleDirectoryReader(input_dir="./data/source_files")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.2) Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("../data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SummaryIndex from llama_index.core import VectorStoreIndex summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) list_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", use_async=True, ) vector_query_engine = vector_index.as_query_engine() from llama_index.core.tools import QueryEngineTool list_tool = QueryEngineTool.from_defaults( query_engine=list_query_engine, description=( "Useful for summarization questions related to Paul Graham eassy on" " What I Worked On." ), ) vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) from llama_index.core.query_engine import RouterQueryEngine from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) query_engine = RouterQueryEngine( selector=
PydanticSingleSelector.from_defaults()
llama_index.core.selectors.PydanticSingleSelector.from_defaults
from utils import get_train_str, get_train_and_eval_data, get_eval_preds, train_prompt import warnings warnings.filterwarnings("ignore") warnings.simplefilter("ignore") train_df, train_labels, eval_df, eval_labels = get_train_and_eval_data("data/train.csv") print(train_prompt.template) train_n = 10 eval_n = 40 train_str = get_train_str(train_df, train_labels, train_n=train_n) print(f"Example datapoints in `train_str`: \n{train_str}") from sklearn.metrics import accuracy_score import numpy as np eval_preds = get_eval_preds(train_prompt, train_str, eval_df, n=eval_n) eval_label_chunk = eval_labels[:eval_n] acc = accuracy_score(eval_label_chunk, np.array(eval_preds).round()) print(f"ACCURACY: {acc}") from sklearn.metrics import accuracy_score import numpy as np eval_preds_null = get_eval_preds(train_prompt, "", eval_df, n=eval_n) eval_label_chunk = eval_labels[:eval_n] acc_null = accuracy_score(eval_label_chunk, np.array(eval_preds_null).round()) print(f"ACCURACY: {acc_null}") from llama_index import SummaryIndex from llama_index.schema import Document index = SummaryIndex([]) batch_size = 40 num_train_chunks = 5 for i in range(num_train_chunks): print(f"Inserting chunk: {i}/{num_train_chunks}") start_idx = i * batch_size end_idx = (i + 1) * batch_size train_batch = train_df.iloc[start_idx : end_idx + batch_size] labels_batch = train_labels.iloc[start_idx : end_idx + batch_size] all_train_str = get_train_str(train_batch, labels_batch, train_n=batch_size) index.insert(
Document(text=all_train_str)
llama_index.schema.Document
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool = AgentFnComponent(fn=run_tool_fn) def process_response_fn( task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep ): """Process response.""" state["current_reasoning"].append(response_step) response_str = response_step.response state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER)) state["memory"].put( ChatMessage(content=response_str, role=MessageRole.ASSISTANT) ) return {"response_str": response_str, "is_done": True} process_response =
AgentFnComponent(fn=process_response_fn)
llama_index.core.query_pipeline.AgentFnComponent
get_ipython().run_line_magic('pip', 'install llama-index-readers-elasticsearch') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-opensearch') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-ollama') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from os import getenv from llama_index.core import SimpleDirectoryReader from llama_index.vector_stores.opensearch import ( OpensearchVectorStore, OpensearchVectorClient, ) from llama_index.core import VectorStoreIndex, StorageContext endpoint = getenv("OPENSEARCH_ENDPOINT", "http://localhost:9200") idx = getenv("OPENSEARCH_INDEX", "gpt-index-demo") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() text_field = "content" embedding_field = "embedding" client = OpensearchVectorClient( endpoint, idx, 1536, embedding_field=embedding_field, text_field=text_field ) vector_store = OpensearchVectorStore(client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents=documents, storage_context=storage_context ) query_engine = index.as_query_engine() res = query_engine.query("What did the author do growing up?") res.response from llama_index.core import Document from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter import regex as re text_chunks = documents[0].text.split("\n\n") footnotes = [ Document( text=chunk, id=documents[0].doc_id, metadata={"is_footnote": bool(re.search(r"^\s*\[\d+\]\s*", chunk))}, ) for chunk in text_chunks if bool(re.search(r"^\s*\[\d+\]\s*", chunk)) ] for f in footnotes: index.insert(f) footnote_query_engine = index.as_query_engine( filters=MetadataFilters( filters=[ ExactMatchFilter( key="term", value='{"metadata.is_footnote": "true"}' ), ExactMatchFilter( key="query_string", value='{"query": "content: space AND content: lisp"}', ), ] ) ) res = footnote_query_engine.query( "What did the author about space aliens and lisp?" ) res.response from llama_index.readers.elasticsearch import ElasticsearchReader rdr = ElasticsearchReader(endpoint, idx) docs = rdr.load_data(text_field, embedding_field=embedding_field) print("embedding dimension:", len(docs[0].embedding)) print("all fields in index:", docs[0].metadata.keys()) print("total number of chunks created:", len(docs)) docs = rdr.load_data(text_field, {"query": {"match": {text_field: "Lisp"}}}) print("chunks that mention Lisp:", len(docs)) docs = rdr.load_data(text_field, {"query": {"match": {text_field: "Yahoo"}}}) print("chunks that mention Yahoo:", len(docs)) from os import getenv from llama_index.vector_stores.opensearch import ( OpensearchVectorStore, OpensearchVectorClient, ) endpoint = getenv("OPENSEARCH_ENDPOINT", "http://localhost:9200") idx = getenv("OPENSEARCH_INDEX", "auto_retriever_movies") text_field = "content" embedding_field = "embedding" client = OpensearchVectorClient( endpoint, idx, 4096, embedding_field=embedding_field, text_field=text_field, search_pipeline="hybrid-search-pipeline", ) from llama_index.embeddings.ollama import OllamaEmbedding embed_model = OllamaEmbedding(model_name="llama2") vector_store =
OpensearchVectorStore(client)
llama_index.vector_stores.opensearch.OpensearchVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('mkdir -p data') get_ipython().system('echo "This is a test file: one!" > data/test1.txt') get_ipython().system('echo "This is a test file: two!" > data/test2.txt') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.core.node_parser import SentenceSplitter pipeline = IngestionPipeline( transformations=[ SentenceSplitter(), HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), ], docstore=
SimpleDocumentStore()
llama_index.core.storage.docstore.SimpleDocumentStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-watsonx') from llama_index.llms.watsonx import WatsonX credentials = { "url": "https://enter.your-ibm.url", "apikey": "insert_your_api_key", } project_id = "insert_your_project_id" resp = WatsonX(credentials=credentials, project_id=project_id).complete( "Paul Graham is" ) print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.watsonx import WatsonX messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = WatsonX( model_id="meta-llama/llama-2-70b-chat", credentials=credentials, project_id=project_id, ).chat(messages) print(resp) from llama_index.llms.watsonx import WatsonX llm = WatsonX(credentials=credentials, project_id=project_id) resp = llm.stream_complete("Paul Graham is") for r in resp: print(r.delta, end="") from llama_index.llms.watsonx import WatsonX llm = WatsonX( model_id="meta-llama/llama-2-70b-chat", credentials=credentials, project_id=project_id, ) messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ),
ChatMessage(role="user", content="Tell me a story")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.core import Document, VectorStoreIndex from llama_index.readers.file import PyMuPDFReader from llama_index.core.node_parser import SimpleNodeParser from llama_index.llms.openai import OpenAI loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [
Document(text=doc_text)
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client = genaix.build_semantic_retriever() genaix.delete_corpus(corpus_id=corpus_id, client=client) def cleanup_colab_corpora(): for corpus in list_corpora(): if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX): try: delete_corpus(corpus_id=corpus.corpus_id) print(f"Deleted corpus {corpus.corpus_id}.") except Exception: pass cleanup_colab_corpora() from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex from llama_index.core import Response import time index = GoogleIndex.create_corpus( corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!" ) print(f"Newly created corpus ID is {index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index.insert_documents(documents) for corpus in list_corpora(): print(corpus) query_engine = index.as_query_engine() response = query_engine.query("What did Paul Graham do growing up?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine() response = query_engine.query("Which company did Paul Graham build?") assert isinstance(response, Response) print(f"Response is {response.response}") from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) index.insert_nodes( [ TextNode( text="It was the best of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="It was the worst of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="Bugs Bunny: Wassup doc?", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="456", metadata={"file_name": "Bugs Bunny Adventure"}, ) }, ), ] ) from google.ai.generativelanguage import ( GenerateAnswerRequest, HarmCategory, SafetySetting, ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, safety_setting=[ SafetySetting( category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=SafetySetting.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, ), SafetySetting( category=HarmCategory.HARM_CATEGORY_VIOLENCE, threshold=SafetySetting.HarmBlockThreshold.BLOCK_ONLY_HIGH, ), ], ) response = query_engine.query("What was Bugs Bunny's favorite saying?") print(response) from llama_index.core import Response response = query_engine.query("What were Paul Graham's achievements?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) from llama_index.llms.gemini import Gemini GEMINI_API_KEY = "" # @param {type:"string"} gemini = Gemini(api_key=GEMINI_API_KEY) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) reranker = LLMRerank( top_n=10, llm=gemini, ) query_engine = RetrieverQueryEngine.from_args( retriever=VectorIndexRetriever( index=index, similarity_top_k=20, ), node_postprocessors=[reranker], response_synthesizer=response_synthesizer, ) response = query_engine.query("What were Paul Graham's achievements?") print(response) from llama_index.core.indices.query.query_transform.base import ( StepDecomposeQueryTransform, ) from llama_index.core.query_engine import MultiStepQueryEngine store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) single_step_query_engine = index.as_query_engine( similarity_top_k=10, response_synthesizer=response_synthesizer, ) step_decompose_transform = StepDecomposeQueryTransform( llm=gemini, verbose=True, ) query_engine = MultiStepQueryEngine( query_engine=single_step_query_engine, query_transform=step_decompose_transform, response_synthesizer=response_synthesizer, index_summary="Ask me anything.", num_steps=6, ) response = query_engine.query("What were Paul Graham's achievements?") print(response) from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.core.query_engine import TransformQueryEngine store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) base_query_engine = index.as_query_engine( similarity_top_k=10, response_synthesizer=response_synthesizer, ) hyde = HyDEQueryTransform( llm=gemini, include_original=False, ) hyde_query_engine = TransformQueryEngine(base_query_engine, hyde) response = query_engine.query("What were Paul Graham's achievements?") print(response) store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) reranker = LLMRerank( top_n=10, llm=gemini, ) single_step_query_engine = index.as_query_engine( similarity_top_k=20, node_postprocessors=[reranker], response_synthesizer=response_synthesizer, ) hyde = HyDEQueryTransform( llm=gemini, include_original=False, ) hyde_query_engine =
TransformQueryEngine(single_step_query_engine, hyde)
llama_index.core.query_engine.TransformQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm = OpenAI(model="gpt-3.5-turbo") output_parser = PydanticOutputParser(Movies) json_prompt_str = """\ Please generate related movies to {movie_name}. Output with the following JSON format: """ json_prompt_str = output_parser.format(json_prompt_str) json_prompt_tmpl = PromptTemplate(json_prompt_str) p = QueryPipeline(chain=[json_prompt_tmpl, llm, output_parser], verbose=True) output = p.run(movie_name="Toy Story") output prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) prompt_str2 = """\ Here's some text: {text} Can you rewrite this with a summary of each movie? """ prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") llm_c = llm.as_query_component(streaming=True) p = QueryPipeline( chain=[prompt_tmpl, llm_c, prompt_tmpl2, llm_c], verbose=True ) output = p.run(movie_name="The Dark Knight") for o in output: print(o.delta, end="") p = QueryPipeline( chain=[ json_prompt_tmpl, llm.as_query_component(streaming=True), output_parser, ], verbose=True, ) output = p.run(movie_name="Toy Story") print(output) from llama_index.postprocessor.cohere_rerank import CohereRerank prompt_str1 = "Please generate a concise question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl1 = PromptTemplate(prompt_str1) prompt_str2 = ( "Please write a passage to answer the question\n" "Try to include as many key details as possible.\n" "\n" "\n" "{query_str}\n" "\n" "\n" 'Passage:"""\n' ) prompt_tmpl2 = PromptTemplate(prompt_str2) llm = OpenAI(model="gpt-3.5-turbo") retriever = index.as_retriever(similarity_top_k=5) p = QueryPipeline( chain=[prompt_tmpl1, llm, prompt_tmpl2, llm, retriever], verbose=True ) nodes = p.run(topic="college") len(nodes) from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.response_synthesizers import TreeSummarize prompt_str = "Please generate a question about Paul Graham's life regarding the following topic {topic}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") retriever = index.as_retriever(similarity_top_k=3) reranker = CohereRerank() summarizer = TreeSummarize(llm=llm) p = QueryPipeline(verbose=True) p.add_modules( { "llm": llm, "prompt_tmpl": prompt_tmpl, "retriever": retriever, "summarizer": summarizer, "reranker": reranker, } ) p.add_link("prompt_tmpl", "llm") p.add_link("llm", "retriever") p.add_link("retriever", "reranker", dest_key="nodes") p.add_link("llm", "reranker", dest_key="query_str") p.add_link("reranker", "summarizer", dest_key="nodes") p.add_link("llm", "summarizer", dest_key="query_str") print(summarizer.as_query_component().input_keys) from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(p.dag) net.show("rag_dag.html") response = p.run(topic="YC") print(str(response)) response = await p.arun(topic="YC") print(str(response)) from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.response_synthesizers import TreeSummarize from llama_index.core.query_pipeline import InputComponent retriever = index.as_retriever(similarity_top_k=5) summarizer = TreeSummarize(llm=OpenAI(model="gpt-3.5-turbo")) reranker = CohereRerank() p = QueryPipeline(verbose=True) p.add_modules( { "input": InputComponent(), "retriever": retriever, "summarizer": summarizer, } ) p.add_link("input", "retriever") p.add_link("input", "summarizer", dest_key="query_str") p.add_link("retriever", "summarizer", dest_key="nodes") output = p.run(input="what did the author do in YC") print(str(output)) from llama_index.core.query_pipeline import ( CustomQueryComponent, InputKeys, OutputKeys, ) from typing import Dict, Any from llama_index.core.llms.llm import LLM from pydantic import Field class RelatedMovieComponent(CustomQueryComponent): """Related movie component.""" llm: LLM = Field(..., description="OpenAI LLM") def _validate_component_inputs( self, input: Dict[str, Any] ) -> Dict[str, Any]: """Validate component inputs during run_component.""" return input @property def _input_keys(self) -> set: """Input keys dict.""" return {"movie"} @property def _output_keys(self) -> set: return {"output"} def _run_component(self, **kwargs) -> Dict[str, Any]: """Run the component.""" prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) p = QueryPipeline(chain=[prompt_tmpl, llm]) return {"output": p.run(movie_name=kwargs["movie"])} llm = OpenAI(model="gpt-3.5-turbo") component = RelatedMovieComponent(llm=llm) prompt_str = """\ Here's some text: {text} Can you rewrite this in the voice of Shakespeare? """ prompt_tmpl = PromptTemplate(prompt_str) p =
QueryPipeline(chain=[component, prompt_tmpl, llm], verbose=True)
llama_index.core.query_pipeline.QueryPipeline
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) get_ipython().system('pip install wikipedia') from llama_index.readers.wikipedia import WikipediaReader cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) from llama_index.core import SQLDatabase sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from llama_index.llms.openai import OpenAI from llama_index.core import VectorStoreIndex vector_indices = {} vector_query_engines = {} for city, wiki_doc in zip(cities, wiki_docs): vector_index =
VectorStoreIndex.from_documents([wiki_doc])
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client = genaix.build_semantic_retriever() genaix.delete_corpus(corpus_id=corpus_id, client=client) def cleanup_colab_corpora(): for corpus in list_corpora(): if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX): try: delete_corpus(corpus_id=corpus.corpus_id) print(f"Deleted corpus {corpus.corpus_id}.") except Exception: pass cleanup_colab_corpora() from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex from llama_index.core import Response import time index = GoogleIndex.create_corpus( corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!" ) print(f"Newly created corpus ID is {index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index.insert_documents(documents) for corpus in list_corpora(): print(corpus) query_engine = index.as_query_engine() response = query_engine.query("What did Paul Graham do growing up?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine() response = query_engine.query("Which company did Paul Graham build?") assert isinstance(response, Response) print(f"Response is {response.response}") from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) index.insert_nodes( [ TextNode( text="It was the best of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="It was the worst of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="Bugs Bunny: Wassup doc?", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="456", metadata={"file_name": "Bugs Bunny Adventure"}, ) }, ), ] ) from google.ai.generativelanguage import ( GenerateAnswerRequest, HarmCategory, SafetySetting, ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, safety_setting=[ SafetySetting( category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=SafetySetting.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, ), SafetySetting( category=HarmCategory.HARM_CATEGORY_VIOLENCE, threshold=SafetySetting.HarmBlockThreshold.BLOCK_ONLY_HIGH, ), ], ) response = query_engine.query("What was Bugs Bunny's favorite saying?") print(response) from llama_index.core import Response response = query_engine.query("What were Paul Graham's achievements?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) from llama_index.llms.gemini import Gemini GEMINI_API_KEY = "" # @param {type:"string"} gemini = Gemini(api_key=GEMINI_API_KEY) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) reranker = LLMRerank( top_n=10, llm=gemini, ) query_engine = RetrieverQueryEngine.from_args( retriever=VectorIndexRetriever( index=index, similarity_top_k=20, ), node_postprocessors=[reranker], response_synthesizer=response_synthesizer, ) response = query_engine.query("What were Paul Graham's achievements?") print(response) from llama_index.core.indices.query.query_transform.base import ( StepDecomposeQueryTransform, ) from llama_index.core.query_engine import MultiStepQueryEngine store =
GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID)
llama_index.vector_stores.google.GoogleVectorStore.from_corpus
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core import Settings from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.storage.kvstore.firestore import FirestoreKVStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.index_store.firestore import FirestoreIndexStore kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=FirestoreDocumentStore(kvstore), index_store=FirestoreIndexStore(kvstore), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage kvstore =
FirestoreKVStore()
llama_index.storage.kvstore.firestore.FirestoreKVStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-mongodb') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index pymongo') from llama_index.core import SummaryIndex from llama_index.readers.mongodb import SimpleMongoReader from IPython.display import Markdown, display import os host = "<host>" port = "<port>" db_name = "<db_name>" collection_name = "<collection_name>" query_dict = {} field_names = ["text"] reader = SimpleMongoReader(host, port) documents = reader.load_data( db_name, collection_name, field_names, query_dict=query_dict ) index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().system('pip install llama-index yfinance') import openai from llama_index.agent import OpenAIAgent openai.api_key = "sk-..." from llama_index.tools.yahoo_finance.base import YahooFinanceToolSpec finance_tool =
YahooFinanceToolSpec()
llama_index.tools.yahoo_finance.base.YahooFinanceToolSpec
from llama_hub.semanticscholar.base import SemanticScholarReader import os import openai from llama_index.llms import OpenAI from llama_index.query_engine import CitationQueryEngine from llama_index import ( VectorStoreIndex, StorageContext, load_index_from_storage, ServiceContext, ) from llama_index.response.notebook_utils import display_response s2reader = SemanticScholarReader() openai.api_key = os.environ["OPENAI_API_KEY"] service_context = ServiceContext.from_defaults( llm=
OpenAI(model="gpt-3.5-turbo", temperature=0)
llama_index.llms.OpenAI
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.wolfram_alpha.base import WolframAlphaToolSpec wolfram_spec = WolframAlphaToolSpec(app_id="your-key") tools = wolfram_spec.to_tool_list() agent =
OpenAIAgent.from_tools(tools, verbose=True)
llama_index.agent.OpenAIAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode docs0 = PyMuPDFReader().load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") index = VectorStoreIndex(base_nodes) query_engine = index.as_query_engine(similarity_top_k=2) get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) from llama_index.core.evaluation.eval_utils import get_responses from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner evaluator_c =
CorrectnessEvaluator()
llama_index.core.evaluation.CorrectnessEvaluator
get_ipython().system('pip install llama-index-multi-modal-llms-anthropic') get_ipython().system('pip install llama-index-vector-stores-qdrant') get_ipython().system('pip install matplotlib') import os os.environ["ANTHROPIC_API_KEY"] = "" # Your ANTHROPIC API key here from PIL import Image import matplotlib.pyplot as plt img = Image.open("../data/images/prometheus_paper_card.png") plt.imshow(img) from llama_index.core import SimpleDirectoryReader from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal image_documents = SimpleDirectoryReader( input_files=["../data/images/prometheus_paper_card.png"] ).load_data() anthropic_mm_llm = AnthropicMultiModal(max_tokens=300) response = anthropic_mm_llm.complete( prompt="Describe the images as an alternative text", image_documents=image_documents, ) print(response) from PIL import Image import requests from io import BytesIO import matplotlib.pyplot as plt from llama_index.core.multi_modal_llms.generic_utils import load_image_urls image_urls = [ "https://venturebeat.com/wp-content/uploads/2024/03/Screenshot-2024-03-04-at-12.49.41%E2%80%AFAM.png", ] img_response = requests.get(image_urls[0]) img = Image.open(BytesIO(img_response.content)) plt.imshow(img) image_url_documents = load_image_urls(image_urls) response = anthropic_mm_llm.complete( prompt="Describe the images as an alternative text", image_documents=image_url_documents, ) print(response) from llama_index.core import SimpleDirectoryReader image_documents = SimpleDirectoryReader( input_files=["../data/images/ark_email_sample.PNG"] ).load_data() from PIL import Image import matplotlib.pyplot as plt img = Image.open("../data/images/ark_email_sample.PNG") plt.imshow(img) from pydantic import BaseModel from typing import List class TickerInfo(BaseModel): """List of ticker info.""" direction: str ticker: str company: str shares_traded: int percent_of_total_etf: float class TickerList(BaseModel): """List of stock tickers.""" fund: str tickers: List[TickerInfo] from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal from llama_index.core.program import MultiModalLLMCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser prompt_template_str = """\ Can you get the stock information in the image \ and return the answer? Pick just one fund. Make sure the answer is a JSON format corresponding to a Pydantic schema. The Pydantic schema is given below. """ anthropic_mm_llm = AnthropicMultiModal(max_tokens=300) llm_program = MultiModalLLMCompletionProgram.from_defaults( output_cls=TickerList, image_documents=image_documents, prompt_template_str=prompt_template_str, multi_modal_llm=anthropic_mm_llm, verbose=True, ) response = llm_program() print(str(response)) get_ipython().system('wget "https://www.dropbox.com/scl/fi/c1ec6osn0r2ggnitijqhl/mixed_wiki_images_small.zip?rlkey=swwxc7h4qtwlnhmby5fsnderd&dl=1" -O mixed_wiki_images_small.zip') get_ipython().system('unzip mixed_wiki_images_small.zip') from llama_index.multi_modal_llms.anthropic import AnthropicMultiModal anthropic_mm_llm = AnthropicMultiModal(max_tokens=300) from llama_index.core.schema import TextNode from pathlib import Path from llama_index.core import SimpleDirectoryReader nodes = [] for img_file in Path("mixed_wiki_images_small").glob("*.png"): print(img_file) image_documents = SimpleDirectoryReader(input_files=[img_file]).load_data() response = anthropic_mm_llm.complete( prompt="Describe the images as an alternative text", image_documents=image_documents, ) metadata = {"img_file": img_file} nodes.append(TextNode(text=str(response), metadata=metadata)) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.anthropic import Anthropic from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import Settings from llama_index.core import StorageContext import qdrant_client client = qdrant_client.QdrantClient(path="qdrant_mixed_img") vector_store = QdrantVectorStore(client=client, collection_name="collection") embed_model = OpenAIEmbedding() anthropic_mm_llm =
AnthropicMultiModal(max_tokens=300)
llama_index.multi_modal_llms.anthropic.AnthropicMultiModal
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.llms.openai import OpenAI resp = OpenAI().complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.openai import OpenAI messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = OpenAI().chat(messages) print(resp) from llama_index.llms.openai import OpenAI llm = OpenAI() resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage llm = OpenAI() messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.stream_chat(messages) for r in resp: print(r.delta, end="") from llama_index.llms.openai import OpenAI llm = OpenAI(model="text-davinci-003") resp = llm.complete("Paul Graham is ") print(resp) messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = llm.chat(messages) print(resp) from pydantic import BaseModel from llama_index.core.llms.openai_utils import to_openai_tool class Song(BaseModel): """A song with name and artist""" name: str artist: str song_fn = to_openai_tool(Song) from llama_index.llms.openai import OpenAI response =
OpenAI()
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client =
genaix.build_semantic_retriever()
llama_index.core.vector_stores.google.generativeai.genai_extension.build_semantic_retriever
get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.program.openai import OpenAIPydanticProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm = OpenAI(model="gpt-4", callback_manager=callback_manager) prompt_template_str = """\ Generate an example album, with an artist and a list of songs. \ Using the movie {movie_name} as inspiration.\ """ program = OpenAIPydanticProgram.from_defaults( output_cls=Album, prompt_template_str=prompt_template_str, llm=llm, verbose=False, ) movie_names = [ "The Shining", "The Departed", "Titanic", "Goodfellas", "Pretty Woman", "Home Alone", "Caged Fury", "Edward Scissorhands", "Total Recall", "Ghost", "Tremors", "RoboCop", "Rocky V", ] from tqdm.notebook import tqdm for movie_name in tqdm(movie_names): output = program(movie_name=movie_name) print(output.json()) finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl") get_ipython().system('cat mock_finetune_songs.jsonl') from llama_index.finetuning import OpenAIFinetuneEngine finetune_engine = OpenAIFinetuneEngine( "gpt-3.5-turbo", "mock_finetune_songs.jsonl", validate_json=False, # openai validate json code doesn't support function calling yet ) finetune_engine.finetune() finetune_engine.get_current_job() ft_llm = finetune_engine.get_finetuned_model(temperature=0.3) ft_program = OpenAIPydanticProgram.from_defaults( output_cls=Album, prompt_template_str=prompt_template_str, llm=ft_llm, verbose=False, ) ft_program(movie_name="Goodfellas") get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pydantic import Field from typing import List class Citation(BaseModel): """Citation class.""" author: str = Field( ..., description="Inferred first author (usually last name" ) year: int = Field(..., description="Inferred year") desc: str = Field( ..., description=( "Inferred description from the text of the work that the author is" " cited for" ), ) class Response(BaseModel): """List of author citations. Extracted over unstructured text. """ citations: List[Citation] = Field( ..., description=( "List of author citations (organized by author, year, and" " description)." ), ) from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SentenceSplitter from pathlib import Path loader = PyMuPDFReader() docs0 = loader.load(file_path=Path("./data/llama2.pdf")) doc_text = "\n\n".join([d.get_content() for d in docs0]) metadata = { "paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models" } docs = [Document(text=doc_text, metadata=metadata)] chunk_size = 1024 node_parser =
SentenceSplitter(chunk_size=chunk_size)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from IPython.display import HTML, display def set_css(): display( HTML( """ <style> pre { white-space: pre-wrap; } </style> """ ) ) get_ipython().events.register("pre_run_cell", set_css) get_ipython().system('mkdir data') get_ipython().system('wget "https://www.dropbox.com/s/948jr9cfs7fgj99/UBER.zip?dl=1" -O data/UBER.zip') get_ipython().system('unzip data/UBER.zip -d data') from llama_index.readers.file import UnstructuredReader from pathlib import Path years = [2022, 2021, 2020, 2019] loader = UnstructuredReader() doc_set = {} all_docs = [] for year in years: year_docs = loader.load_data( file=Path(f"./data/UBER/UBER_{year}.html"), split_documents=False ) for d in year_docs: d.metadata = {"year": year} doc_set[year] = year_docs all_docs.extend(year_docs) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.chunk_size = 512 Settings.chunk_overlap = 64 Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") index_set = {} for year in years: storage_context =
StorageContext.from_defaults()
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().system('pip install llama-index') from llama_index.llms.anthropic import Anthropic from llama_index.core import Settings tokenizer = Anthropic().tokenizer Settings.tokenizer = tokenizer import os os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY" from llama_index.llms.anthropic import Anthropic llm = Anthropic(model="claude-3-opus-20240229") resp = llm.complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.anthropic import Anthropic messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = Anthropic(model="claude-3-opus-20240229").chat(messages) print(resp) from llama_index.llms.anthropic import Anthropic llm =
Anthropic(model="claude-3-opus-20240229", max_tokens=100)
llama_index.llms.anthropic.Anthropic
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import ( VectorStoreIndex, SimpleKeywordTableIndex, SimpleDirectoryReader, ) from llama_index.core import SummaryIndex from llama_index.core.schema import IndexNode from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.callbacks import CallbackManager from llama_index.llms.openai import OpenAI wiki_titles = [ "Toronto", "Seattle", "Chicago", "Boston", "Houston", ] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() llm = OpenAI(temperature=0, model="gpt-3.5-turbo") callback_manager =
CallbackManager([])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import openai import os os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index =
VectorStoreIndex.from_documents(data)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().system('pip install llama-index') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/uber" ) uber_index = load_index_from_storage(storage_context) index_loaded = True except: index_loaded = False get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") if not index_loaded: lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() lyft_index =
VectorStoreIndex.from_documents(lyft_docs)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) MONGO_URI = os.environ["MONGO_URI"] from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.index_store.mongodb import MongoIndexStore storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=
MongoIndexStore.from_uri(uri=MONGO_URI)
llama_index.storage.index_store.mongodb.MongoIndexStore.from_uri
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-tools-google') from llama_index.readers.web import SimpleWebPageReader reader = SimpleWebPageReader(html_to_text=True) docs = reader.load_data(urls=["https://eugeneyan.com/writing/llm-patterns/"]) print(docs[0].get_content()[:400]) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(docs) query_engine = index.as_query_engine() response = query_engine.query("What are ways to evaluate LLMs?") print(str(response)) from llama_index.tools.google import GmailToolSpec tool_spec =
GmailToolSpec()
llama_index.tools.google.GmailToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-elasticsearch') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.elasticsearch import ElasticsearchStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "A bunch of scientists bring back dinosaurs and mayhem breaks" " loose" ), metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ), TextNode( text=( "Leo DiCaprio gets lost in a dream within a dream within a dream" " within a ..." ), metadata={ "year": 2010, "director": "Christopher Nolan", "rating": 8.2, }, ), TextNode( text=( "A psychologist / detective gets lost in a series of dreams within" " dreams within dreams and Inception reused the idea" ), metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}, ),
TextNode( text=( "A bunch of normal-sized women are supremely wholesome and some" " men pine after them" )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-deeplake') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio import os import getpass nest_asyncio.apply() get_ipython().system('pip install deeplake beautifulsoup4 html2text tiktoken openai llama-index python-dotenv') import requests from bs4 import BeautifulSoup from urllib.parse import urljoin def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links from langchain.document_loaders import AsyncHtmlLoader from langchain.document_transformers import Html2TextTransformer from llama_index.core import Document def load_documents(url): all_links = get_all_links(url) loader = AsyncHtmlLoader(all_links) docs = loader.load() html2text = Html2TextTransformer() docs_transformed = html2text.transform_documents(docs) docs = [Document.from_langchain_format(doc) for doc in docs_transformed] return docs docs = load_documents("https://docs.deeplake.ai/en/latest/") len(docs) from llama_index.core.evaluation import generate_question_context_pairs from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.vector_stores.deeplake import DeepLakeVectorStore from llama_index.core.node_parser import SimpleNodeParser from llama_index.llms.openai import OpenAI os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ") os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass( "Enter your ActiveLoop API token: " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens" token = os.getenv("ACTIVELOOP_TOKEN") vector_store = DeepLakeVectorStore( dataset_path="hub://activeloop-test/deeplake_docs_deepmemory2", overwrite=False, # set to True to overwrite the existing dataset runtime={"tensor_db": True}, token=token, ) def create_modules(vector_store, docs=[], populate_vector_store=True): if populate_vector_store: node_parser = SimpleNodeParser.from_defaults(chunk_size=512) nodes = node_parser.get_nodes_from_documents(docs) else: nodes = [] for idx, node in enumerate(nodes): node.id_ = f"node_{idx}" llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PyMuPDFReader from llama_index.core import Document from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode docs0 =
PyMuPDFReader()
llama_index.readers.file.PyMuPDFReader
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter(chunk_size=256) nodes = node_parser.get_nodes_from_documents(documents) from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() for node in nodes: node_embedding = embed_model.get_text_embedding( node.get_content(metadata_mode="all") ) node.embedding = node_embedding from llama_index.core.vector_stores.types import VectorStore from llama_index.core.vector_stores import ( VectorStoreQuery, VectorStoreQueryResult, ) from typing import List, Any, Optional, Dict from llama_index.core.schema import TextNode, BaseNode import os class BaseVectorStore(VectorStore): """Simple custom Vector Store. Stores documents in a simple in-memory dict. """ stores_text: bool = True def get(self, text_id: str) -> List[float]: """Get embedding.""" pass def add( self, nodes: List[BaseNode], ) -> List[str]: """Add nodes to index.""" pass def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None: """ Delete nodes using with ref_doc_id. Args: ref_doc_id (str): The doc_id of the document to delete. """ pass def query( self, query: VectorStoreQuery, **kwargs: Any, ) -> VectorStoreQueryResult: """Get nodes for response.""" pass def persist(self, persist_path, fs=None) -> None: """Persist the SimpleVectorStore to a directory. NOTE: we are not implementing this for now. """ pass from dataclasses import fields {f.name: f.type for f in fields(VectorStoreQuery)} {f.name: f.type for f in fields(VectorStoreQueryResult)} class VectorStore2(BaseVectorStore): """VectorStore2 (add/get/delete implemented).""" stores_text: bool = True def __init__(self) -> None: """Init params.""" self.node_dict: Dict[str, BaseNode] = {} def get(self, text_id: str) -> List[float]: """Get embedding.""" return self.node_dict[text_id] def add( self, nodes: List[BaseNode], ) -> List[str]: """Add nodes to index.""" for node in nodes: self.node_dict[node.node_id] = node def delete(self, node_id: str, **delete_kwargs: Any) -> None: """ Delete nodes using with node_id. Args: node_id: str """ del self.node_dict[node_id] test_node = TextNode(id_="id1", text="hello world") test_node2 = TextNode(id_="id2", text="foo bar") test_nodes = [test_node, test_node2] vector_store = VectorStore2() vector_store.add(test_nodes) node = vector_store.get("id1") print(str(node)) from typing import Tuple import numpy as np def get_top_k_embeddings( query_embedding: List[float], doc_embeddings: List[List[float]], doc_ids: List[str], similarity_top_k: int = 5, ) -> Tuple[List[float], List]: """Get top nodes by similarity to the query.""" qembed_np = np.array(query_embedding) dembed_np = np.array(doc_embeddings) dproduct_arr = np.dot(dembed_np, qembed_np) norm_arr = np.linalg.norm(qembed_np) * np.linalg.norm( dembed_np, axis=1, keepdims=False ) cos_sim_arr = dproduct_arr / norm_arr tups = [(cos_sim_arr[i], doc_ids[i]) for i in range(len(doc_ids))] sorted_tups = sorted(tups, key=lambda t: t[0], reverse=True) sorted_tups = sorted_tups[:similarity_top_k] result_similarities = [s for s, _ in sorted_tups] result_ids = [n for _, n in sorted_tups] return result_similarities, result_ids class VectorStore3A(VectorStore2): """Implements semantic/dense search.""" def query( self, query: VectorStoreQuery, **kwargs: Any, ) -> VectorStoreQueryResult: """Get nodes for response.""" query_embedding = cast(List[float], query.query_embedding) doc_embeddings = [n.embedding for n in self.node_dict.values()] doc_ids = [n.node_id for n in self.node_dict.values()] similarities, node_ids = get_top_k_embeddings( query_embedding, embeddings, doc_ids, similarity_top_k=query.similarity_top_k, ) result_nodes = [self.node_dict[node_id] for node_id in node_ids] return VectorStoreQueryResult( nodes=result_nodes, similarities=similarities, ids=node_ids ) from llama_index.core.vector_stores import MetadataFilters from llama_index.core.schema import BaseNode from typing import cast def filter_nodes(nodes: List[BaseNode], filters: MetadataFilters): filtered_nodes = [] for node in nodes: matches = True for f in filters.filters: if f.key not in node.metadata: matches = False continue if f.value != node.metadata[f.key]: matches = False continue if matches: filtered_nodes.append(node) return filtered_nodes def dense_search(query: VectorStoreQuery, nodes: List[BaseNode]): """Dense search.""" query_embedding = cast(List[float], query.query_embedding) doc_embeddings = [n.embedding for n in nodes] doc_ids = [n.node_id for n in nodes] return get_top_k_embeddings( query_embedding, doc_embeddings, doc_ids, similarity_top_k=query.similarity_top_k, ) class VectorStore3B(VectorStore2): """Implements Metadata Filtering.""" def query( self, query: VectorStoreQuery, **kwargs: Any, ) -> VectorStoreQueryResult: """Get nodes for response.""" nodes = self.node_dict.values() if query.filters is not None: nodes = filter_nodes(nodes, query.filters) if len(nodes) == 0: result_nodes = [] similarities = [] node_ids = [] else: similarities, node_ids = dense_search(query, nodes) result_nodes = [self.node_dict[node_id] for node_id in node_ids] return VectorStoreQueryResult( nodes=result_nodes, similarities=similarities, ids=node_ids ) vector_store = VectorStore3B() vector_store.add(nodes) query_str = "Can you tell me about the key concepts for safety finetuning" query_embedding = embed_model.get_query_embedding(query_str) query_obj = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=2 ) query_result = vector_store.query(query_obj) for similarity, node in zip(query_result.similarities, query_result.nodes): print( "\n----------------\n" f"[Node ID {node.node_id}] Similarity: {similarity}\n\n" f"{node.get_content(metadata_mode='all')}" "\n----------------\n\n" ) filters = MetadataFilters.from_dict({"source": "24"}) query_obj = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=2, filters=filters ) query_result = vector_store.query(query_obj) for similarity, node in zip(query_result.similarities, query_result.nodes): print( "\n----------------\n" f"[Node ID {node.node_id}] Similarity: {similarity}\n\n" f"{node.get_content(metadata_mode='all')}" "\n----------------\n\n" ) from llama_index.core import VectorStoreIndex index =
VectorStoreIndex.from_vector_store(vector_store)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os from llama_index.llms.openai import OpenAI from llama_index.core.query_engine import CitationQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, load_index_from_storage, ) from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") if not os.path.exists("./citation"): documents = SimpleDirectoryReader("./data/paul_graham").load_data() index = VectorStoreIndex.from_documents( documents, ) index.storage_context.persist(persist_dir="./citation") else: index = load_index_from_storage(
StorageContext.from_defaults(persist_dir="./citation")
llama_index.core.StorageContext.from_defaults
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool = AgentFnComponent(fn=run_tool_fn) def process_response_fn( task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep ): """Process response.""" state["current_reasoning"].append(response_step) response_str = response_step.response state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER)) state["memory"].put( ChatMessage(content=response_str, role=MessageRole.ASSISTANT) ) return {"response_str": response_str, "is_done": True} process_response = AgentFnComponent(fn=process_response_fn) def process_agent_response_fn( task: Task, state: Dict[str, Any], response_dict: dict ): """Process agent response.""" return ( AgentChatResponse(response_dict["response_str"]), response_dict["is_done"], ) process_agent_response = AgentFnComponent(fn=process_agent_response_fn) from llama_index.core.query_pipeline import QueryPipeline as QP from llama_index.llms.openai import OpenAI qp.add_modules( { "agent_input": agent_input_component, "react_prompt": react_prompt_component, "llm": OpenAI(model="gpt-4-1106-preview"), "react_output_parser": parse_react_output, "run_tool": run_tool, "process_response": process_response, "process_agent_response": process_agent_response, } ) qp.add_chain(["agent_input", "react_prompt", "llm", "react_output_parser"]) qp.add_link( "react_output_parser", "run_tool", condition_fn=lambda x: not x["done"], input_fn=lambda x: x["reasoning_step"], ) qp.add_link( "react_output_parser", "process_response", condition_fn=lambda x: x["done"], input_fn=lambda x: x["reasoning_step"], ) qp.add_link("process_response", "process_agent_response") qp.add_link("run_tool", "process_agent_response") from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(qp.clean_dag) net.show("agent_dag.html") from llama_index.core.agent import QueryPipelineAgentWorker, AgentRunner from llama_index.core.callbacks import CallbackManager agent_worker = QueryPipelineAgentWorker(qp) agent = AgentRunner( agent_worker, callback_manager=
CallbackManager([])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-packs-node-parser-semantic-chunking') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-node-parser-semantic-chunking-base') from llama_index.core import SimpleDirectoryReader get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'pg_essay.txt'") documents = SimpleDirectoryReader(input_files=["pg_essay.txt"]).load_data() from llama_index.packs.node_parser_semantic_chunking.base import SemanticChunker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "SemanticChunkingQueryEnginePack", "./semantic_chunking_pack", skip_load=True, ) from semantic_chunking_pack.base import SemanticChunker from llama_index.core.node_parser import SentenceSplitter from llama_index.embeddings.openai import OpenAIEmbedding embed_model =
OpenAIEmbedding()
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-replicate') get_ipython().system('pip install llama-index') from llama_index.llms.replicate import Replicate from llama_index.core.llms.llama_utils import messages_to_prompt llm_13b = Replicate( model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5", context_window=4096, messages_to_prompt=messages_to_prompt, # override message representation for llama 2 ) llm_70b = Replicate( model="replicate/llama70b-v2-chat:e951f18578850b652510200860fc4ea62b3b16fac280f83ff32282f87bbd2e48", context_window=4096, messages_to_prompt=messages_to_prompt, # override message representation for llama 2 ) from llama_index.core.chat_engine import SimpleChatEngine from llama_index.core.memory import ChatMemoryBuffer from llama_index.core.llms import ChatMessage bot_70b = SimpleChatEngine( llm=llm_70b, memory=ChatMemoryBuffer.from_defaults(llm=llm_70b), prefix_messages=[ ChatMessage( role="system", content="You are a rapper with an ENTJ personality" ) ], ) bot_13b = SimpleChatEngine( llm=llm_13b, memory=
ChatMemoryBuffer.from_defaults(llm=llm_13b)
llama_index.core.memory.ChatMemoryBuffer.from_defaults
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import DatasetGenerator documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() import random random.seed(42) random.shuffle(documents) gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) question_gen_query = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context from a " "report on climate change and the oceans, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) dataset_generator = DatasetGenerator.from_documents( documents[:50], question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("train_questions.txt", "w") as f: for question in questions: f.write(question + "\n") dataset_generator = DatasetGenerator.from_documents( documents[ 50: ], # since we generated ~1 question for 40 documents, we can skip the first 40 question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("eval_questions.txt", "w") as f: for question in questions: f.write(question + "\n") questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex, Settings Settings.context_window = 2048 gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt_35_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm = OpenAI(model="gpt-4", temperature=0.3) Settings.callback_manager = (callback_manager,) questions = [] with open("train_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=llm) for question in questions: response = query_engine.query(question) finetuning_handler.save_finetuning_events("finetuning_events.jsonl") get_ipython().system('python ./launch_training.py ./finetuning_events.jsonl') ft_model_name = "ft:gpt-3.5-turbo-0613:..." from llama_index.llms.openai import OpenAI ft_llm = OpenAI(model=ft_model_name, temperature=0.3) questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=ft_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) print(questions[12]) from llama_index.core.response.notebook_utils import display_response from llama_index.llms.openai import OpenAI gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) query_engine = index.as_query_engine(llm=gpt_35_llm) response = query_engine.query(questions[12]) display_response(response) from llama_index.llms.openai import OpenAI ft_llm = OpenAI(model=ft_model_name, temperature=0.3) query_engine = index.as_query_engine(llm=ft_llm) response = query_engine.query(questions[12])
display_response(response)
llama_index.core.response.notebook_utils.display_response
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import openai import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(data) from llama_index.core.memory import ChatMemoryBuffer memory = ChatMemoryBuffer.from_defaults(token_limit=1500) chat_engine = index.as_chat_engine( chat_mode="context", memory=memory, system_prompt=( "You are a chatbot, able to have normal interactions, as well as talk" " about an essay discussing Paul Grahams life." ), ) response = chat_engine.chat("Hello!") print(response) response = chat_engine.chat("What did Paul Graham do growing up?") print(response) response = chat_engine.chat("Can you tell me more?") print(response) chat_engine.reset() response = chat_engine.chat("Hello! What do you know?") print(response) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo", temperature=0) data =
SimpleDirectoryReader(input_dir="./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.huggingface import HuggingFaceEmbedding from IPython.display import Markdown, display import chromadb import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") display(Markdown(f"<b>{response}</b>")) db = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db.get_or_create_collection("quickstart") vector_store =
ChromaVectorStore(chroma_collection=chroma_collection)
llama_index.vector_stores.chroma.ChromaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=') get_ipython().run_line_magic('env', 'BRAINTRUST_API_KEY=') get_ipython().run_line_magic('env', 'TOKENIZERS_PARALLELISM=true # This is needed to avoid a warning message from Chroma') get_ipython().run_line_magic('pip', 'install -U llama_hub llama_index braintrust autoevals pypdf pillow transformers torch torchvision') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [SentenceSplitter(chunk_size=c) for c in sub_chunk_sizes] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [ IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes ] all_nodes.extend(sub_inodes) original_node = IndexNode.from_text_node(base_node, base_node.node_id) all_nodes.append(original_node) all_nodes_dict = {n.node_id: n for n in all_nodes} vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model) vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2) retriever_chunk = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_chunk}, node_dict=all_nodes_dict, verbose=True, ) nodes = retriever_chunk.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for node in nodes: display_source_node(node, source_length=2000) query_engine_chunk =
RetrieverQueryEngine.from_args(retriever_chunk, llm=llm)
llama_index.core.query_engine.RetrieverQueryEngine.from_args
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import DatasetGenerator documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() import random random.seed(42) random.shuffle(documents) gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) question_gen_query = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context from a " "report on climate change and the oceans, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) dataset_generator = DatasetGenerator.from_documents( documents[:50], question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("train_questions.txt", "w") as f: for question in questions: f.write(question + "\n") dataset_generator = DatasetGenerator.from_documents( documents[ 50: ], # since we generated ~1 question for 40 documents, we can skip the first 40 question_gen_query=question_gen_query, llm=gpt_35_llm, ) questions = dataset_generator.generate_questions_from_nodes(num=40) print("Generated ", len(questions), " questions") with open("eval_questions.txt", "w") as f: for question in questions: f.write(question + "\n") questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex, Settings Settings.context_window = 2048 gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt_35_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) llm = OpenAI(model="gpt-4", temperature=0.3) Settings.callback_manager = (callback_manager,) questions = [] with open("train_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=llm) for question in questions: response = query_engine.query(question) finetuning_handler.save_finetuning_events("finetuning_events.jsonl") get_ipython().system('python ./launch_training.py ./finetuning_events.jsonl') ft_model_name = "ft:gpt-3.5-turbo-0613:..." from llama_index.llms.openai import OpenAI ft_llm = OpenAI(model=ft_model_name, temperature=0.3) questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=2, llm=ft_llm) contexts = [] answers = [] for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset from ragas import evaluate from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } ) result = evaluate(ds, [answer_relevancy, faithfulness]) print(result) from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents) questions = [] with open("eval_questions.txt", "r") as f: for line in f: questions.append(line.strip()) print(questions[12]) from llama_index.core.response.notebook_utils import display_response from llama_index.llms.openai import OpenAI gpt_35_llm =
OpenAI(model="gpt-3.5-turbo", temperature=0.3)
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import PairwiseComparisonEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4 = PairwiseComparisonEvaluator(llm=gpt4) documents = SimpleDirectoryReader("./test_wiki_data/").load_data() splitter_512 =
SentenceSplitter(chunk_size=512)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.llms.openai import OpenAI from llama_index.core.tools import QueryEngineTool, ToolMetadata llm_35 = OpenAI(model="gpt-3.5-turbo-0613", temperature=0.3) llm_4 = OpenAI(model="gpt-4-0613", temperature=0.3) try: storage_context = StorageContext.from_defaults( persist_dir="./storage/march" ) march_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/june" ) june_index =
load_index_from_storage(storage_context)
llama_index.core.load_index_from_storage
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.2) Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader documents =
SimpleDirectoryReader("../data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.readers.file import PDFReader reader = PDFReader() get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") docs = reader.load_data("./data/10k/lyft_2021.pdf") from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter() nodes = node_parser.get_nodes_from_documents(docs) print(nodes[8].get_content(metadata_mode="all")) get_ipython().system('pip install psycopg2-binary pgvector asyncpg "sqlalchemy[asyncio]" greenlet') from pgvector.sqlalchemy import Vector from sqlalchemy import insert, create_engine, String, text, Integer from sqlalchemy.orm import declarative_base, mapped_column engine = create_engine("postgresql+psycopg2://localhost/postgres") with engine.connect() as conn: conn.execute(text("CREATE EXTENSION IF NOT EXISTS vector")) conn.commit() Base = declarative_base() class SECTextChunk(Base): __tablename__ = "sec_text_chunk" id = mapped_column(Integer, primary_key=True) page_label = mapped_column(Integer) file_name = mapped_column(String) text = mapped_column(String) embedding = mapped_column(Vector(384)) Base.metadata.drop_all(engine) Base.metadata.create_all(engine) from llama_index.embeddings.huggingface import HuggingFaceEmbedding embed_model =
HuggingFaceEmbedding(model_name="BAAI/bge-small-en")
llama_index.embeddings.huggingface.HuggingFaceEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.llama_dataset import download_llama_dataset rag_dataset, documents = download_llama_dataset( "PaulGrahamEssayDataset", "./paul_graham" ) rag_dataset.to_pandas()[:5] from llama_index.core import VectorStoreIndex index = VectorStoreIndex.from_documents(documents=documents) query_engine = index.as_query_engine() import nest_asyncio nest_asyncio.apply() prediction_dataset = await rag_dataset.amake_predictions_with( query_engine=query_engine, show_progress=True ) prediction_dataset.to_pandas()[:5] import tqdm from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import ( CorrectnessEvaluator, FaithfulnessEvaluator, RelevancyEvaluator, SemanticSimilarityEvaluator, ) judges = {} judges["correctness"] = CorrectnessEvaluator( llm=OpenAI(temperature=0, model="gpt-4"), ) judges["relevancy"] = RelevancyEvaluator( llm=OpenAI(temperature=0, model="gpt-4"), ) judges["faithfulness"] = FaithfulnessEvaluator( llm=OpenAI(temperature=0, model="gpt-4"), ) judges["semantic_similarity"] = SemanticSimilarityEvaluator() evals = { "correctness": [], "relevancy": [], "faithfulness": [], "context_similarity": [], } for example, prediction in tqdm.tqdm( zip(rag_dataset.examples, prediction_dataset.predictions) ): correctness_result = judges["correctness"].evaluate( query=example.query, response=prediction.response, reference=example.reference_answer, ) relevancy_result = judges["relevancy"].evaluate( query=example.query, response=prediction.response, contexts=prediction.contexts, ) faithfulness_result = judges["faithfulness"].evaluate( query=example.query, response=prediction.response, contexts=prediction.contexts, ) semantic_similarity_result = judges["semantic_similarity"].evaluate( query=example.query, response="\n".join(prediction.contexts), reference="\n".join(example.reference_contexts), ) evals["correctness"].append(correctness_result) evals["relevancy"].append(relevancy_result) evals["faithfulness"].append(faithfulness_result) evals["context_similarity"].append(semantic_similarity_result) import json evaluations_objects = { "context_similarity": [e.dict() for e in evals["context_similarity"]], "correctness": [e.dict() for e in evals["correctness"]], "faithfulness": [e.dict() for e in evals["faithfulness"]], "relevancy": [e.dict() for e in evals["relevancy"]], } with open("evaluations.json", "w") as json_file: json.dump(evaluations_objects, json_file) import pandas as pd from llama_index.core.evaluation.notebook_utils import get_eval_results_df deep_eval_df, mean_correctness_df = get_eval_results_df( ["base_rag"] * len(evals["correctness"]), evals["correctness"], metric="correctness", ) deep_eval_df, mean_relevancy_df = get_eval_results_df( ["base_rag"] * len(evals["relevancy"]), evals["relevancy"], metric="relevancy", ) _, mean_faithfulness_df = get_eval_results_df( ["base_rag"] * len(evals["faithfulness"]), evals["faithfulness"], metric="faithfulness", ) _, mean_context_similarity_df = get_eval_results_df( ["base_rag"] * len(evals["context_similarity"]), evals["context_similarity"], metric="context_similarity", ) mean_scores_df = pd.concat( [ mean_correctness_df.reset_index(), mean_relevancy_df.reset_index(), mean_faithfulness_df.reset_index(), mean_context_similarity_df.reset_index(), ], axis=0, ignore_index=True, ) mean_scores_df = mean_scores_df.set_index("index") mean_scores_df.index = mean_scores_df.index.set_names(["metrics"]) mean_scores_df from llama_index.core.llama_pack import download_llama_pack RagEvaluatorPack =
download_llama_pack("RagEvaluatorPack", "./pack")
llama_index.core.llama_pack.download_llama_pack
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4") node_parser = SentenceSplitter(chunk_size=1024) nodes = node_parser.get_nodes_from_documents(documents) index = VectorStoreIndex(nodes) query_engine = index.as_query_engine(llm=llm) from llama_index.core.schema import BaseNode from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage, MessageRole from llama_index.core import ChatPromptTemplate, PromptTemplate from typing import Tuple, List import re llm = OpenAI(model="gpt-4") QA_PROMPT = PromptTemplate( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the query.\n" "Query: {query_str}\n" "Answer: " ) def generate_answers_for_questions( questions: List[str], context: str, llm: OpenAI ) -> str: """Generate answers for questions given context.""" answers = [] for question in questions: fmt_qa_prompt = QA_PROMPT.format( context_str=context, query_str=question ) response_obj = llm.complete(fmt_qa_prompt) answers.append(str(response_obj)) return answers QUESTION_GEN_USER_TMPL = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "generate the relevant questions. " ) QUESTION_GEN_SYS_TMPL = """\ You are a Teacher/ Professor. Your task is to setup \ {num_questions_per_chunk} questions for an upcoming \ quiz/examination. The questions should be diverse in nature \ across the document. Restrict the questions to the \ context information provided.\ """ question_gen_template = ChatPromptTemplate( message_templates=[ ChatMessage(role=MessageRole.SYSTEM, content=QUESTION_GEN_SYS_TMPL),
ChatMessage(role=MessageRole.USER, content=QUESTION_GEN_USER_TMPL)
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-docarray') get_ipython().system('pip install llama-index') import os import sys import logging import textwrap import warnings warnings.filterwarnings("ignore") os.environ["TOKENIZERS_PARALLELISM"] = "false" from llama_index.core import ( GPTVectorStoreIndex, SimpleDirectoryReader, Document, ) from llama_index.vector_stores.docarray import DocArrayHnswVectorStore from IPython.display import Markdown, display import os os.environ["OPENAI_API_KEY"] = "<your openai key>" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) from llama_index.core import StorageContext vector_store = DocArrayHnswVectorStore(work_dir="hnsw_index") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = GPTVectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", }, ), ] from llama_index.core import StorageContext vector_store = DocArrayHnswVectorStore(work_dir="hnsw_filters") storage_context = StorageContext.from_defaults(vector_store=vector_store) index =
GPTVectorStoreIndex(nodes, storage_context=storage_context)
llama_index.core.GPTVectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('pip install llama-index') get_ipython().run_cell_magic('bash', '', 'wget -e robots=off --no-clobber --page-requisites \\\n --html-extension --convert-links --restrict-file-names=windows \\\n --domains docs.ray.io --no-parent --accept=html \\\n -P data/ https://docs.ray.io/en/master/ray-overview/installation.html\n') from llama_index.readers.file import HTMLTagReader reader =
HTMLTagReader(tag="section", ignore_no_id=True)
llama_index.readers.file.HTMLTagReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-program-evaporate') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) from llama_index.core import SimpleDirectoryReader city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.chunk_size = 512 city_nodes = {} for wiki_title in wiki_titles: docs = city_docs[wiki_title] nodes = Settings.node_parser.get_nodes_from_documents(docs) city_nodes[wiki_title] = nodes from llama_index.program.evaporate import DFEvaporateProgram program = DFEvaporateProgram.from_defaults( fields_to_extract=["population"], ) program.fit_fields(city_nodes["Toronto"][:1]) print(program.get_function_str("population")) seattle_df = program(nodes=city_nodes["Seattle"][:1]) seattle_df Settings.llm =
OpenAI(temperature=0, model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) class YourOpenAIAgent: def __init__( self, tools: Sequence[BaseTool] = [], llm: OpenAI = OpenAI(temperature=0, model="gpt-3.5-turbo-0613"), chat_history: List[ChatMessage] = [], ) -> None: self._llm = llm self._tools = {tool.metadata.name: tool for tool in tools} self._chat_history = chat_history def reset(self) -> None: self._chat_history = [] def chat(self, message: str) -> str: chat_history = self._chat_history chat_history.append(ChatMessage(role="user", content=message)) tools = [ tool.metadata.to_openai_tool() for _, tool in self._tools.items() ] ai_message = self._llm.chat(chat_history, tools=tools).message additional_kwargs = ai_message.additional_kwargs chat_history.append(ai_message) tool_calls = ai_message.additional_kwargs.get("tool_calls", None) if tool_calls is not None: for tool_call in tool_calls: function_message = self._call_function(tool_call) chat_history.append(function_message) ai_message = self._llm.chat(chat_history).message chat_history.append(ai_message) return ai_message.content def _call_function(self, tool_call: dict) -> ChatMessage: id_ = tool_call["id"] function_call = tool_call["function"] tool = self._tools[function_call["name"]] output = tool(**json.loads(function_call["arguments"])) return ChatMessage( name=function_call["name"], content=str(output), role="tool", additional_kwargs={ "tool_call_id": id_, "name": function_call["name"], }, ) agent = YourOpenAIAgent(tools=[multiply_tool, add_tool]) agent.chat("Hi") agent.chat("What is 2123 * 215123") from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-0613") agent = OpenAIAgent.from_tools( [multiply_tool, add_tool], llm=llm, verbose=True ) response = agent.chat("What is (121 * 3) + 42?") print(str(response)) print(response.sources) response = await agent.achat("What is 121 * 3?") print(str(response)) response = agent.stream_chat( "What is 121 * 2? Once you have the answer, use that number to write a" " story about a group of mice." ) response_gen = response.response_gen for token in response_gen: print(token, end="") response = await agent.astream_chat( "What is 121 + 8? Once you have the answer, use that number to write a" " story about a group of mice." ) response_gen = response.response_gen async for token in response.async_response_gen(): print(token, end="") from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI from llama_index.core.prompts.system import SHAKESPEARE_WRITING_ASSISTANT llm =
OpenAI(model="gpt-3.5-turbo-0613")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
from llama_hub.semanticscholar.base import SemanticScholarReader import os import openai from llama_index.llms import OpenAI from llama_index.query_engine import CitationQueryEngine from llama_index import ( VectorStoreIndex, StorageContext, load_index_from_storage, ServiceContext, ) from llama_index.response.notebook_utils import display_response s2reader = SemanticScholarReader() openai.api_key = os.environ["OPENAI_API_KEY"] service_context = ServiceContext.from_defaults( llm=OpenAI(model="gpt-3.5-turbo", temperature=0) ) query_space = "large language models" full_text = True total_papers = 50 persist_dir = ( "./citation_" + query_space + "_" + str(total_papers) + "_" + str(full_text) ) if not os.path.exists(persist_dir): documents = s2reader.load_data(query_space, total_papers, full_text=full_text) index = VectorStoreIndex.from_documents(documents, service_context=service_context) index.storage_context.persist(persist_dir=persist_dir) else: index = load_index_from_storage( StorageContext.from_defaults(persist_dir=persist_dir), service_context=service_context, ) query_engine = CitationQueryEngine.from_args( index, similarity_top_k=3, citation_chunk_size=512, ) query_string = "limitations of using large language models" response = query_engine.query(query_string) display_response( response, show_source=True, source_length=100, show_source_metadata=True ) query_space = "covid 19 vaccine" query_string = "List the efficacy numbers of the covid 19 vaccines" full_text = True total_papers = 50 persist_dir = ( "./citation_" + query_space + "_" + str(total_papers) + "_" + str(full_text) ) if not os.path.exists(persist_dir): documents = s2reader.load_data(query_space, total_papers, full_text=full_text) index =
VectorStoreIndex.from_documents(documents, service_context=service_context)
llama_index.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey') get_ipython().system('pip install llama-index') get_ipython().system('pip install -U llama_index') get_ipython().system('pip install -U portkey-ai') from llama_index.llms.portkey import Portkey from llama_index.core.llms import ChatMessage import portkey as pk import os os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY" openai_virtual_key_a = "" openai_virtual_key_b = "" anthropic_virtual_key_a = "" anthropic_virtual_key_b = "" cohere_virtual_key_a = "" cohere_virtual_key_b = "" os.environ["OPENAI_API_KEY"] = "" os.environ["ANTHROPIC_API_KEY"] = "" portkey_client = Portkey( mode="single", ) openai_llm = pk.LLMOptions( provider="openai", model="gpt-4", virtual_key=openai_virtual_key_a, ) portkey_client.add_llms(openai_llm) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("Testing Portkey Llamaindex integration:") response = portkey_client.chat(messages) print(response) prompt = "Why is the sky blue?" print("\nTesting Stream Complete:\n") response = portkey_client.stream_complete(prompt) for i in response: print(i.delta, end="", flush=True) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("\nTesting Stream Chat:\n") response = portkey_client.stream_chat(messages) for i in response: print(i.delta, end="", flush=True) portkey_client = Portkey(mode="fallback") messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] llm1 = pk.LLMOptions( provider="openai", model="gpt-4", retry_settings={"on_status_codes": [429, 500], "attempts": 2}, virtual_key=openai_virtual_key_a, ) llm2 = pk.LLMOptions( provider="openai", model="gpt-3.5-turbo", virtual_key=openai_virtual_key_b, ) portkey_client.add_llms(llm_params=[llm1, llm2]) print("Testing Fallback & Retry functionality:") response = portkey_client.chat(messages) print(response) portkey_client = Portkey(mode="ab_test") messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] llm1 = pk.LLMOptions( provider="openai", model="gpt-4", virtual_key=openai_virtual_key_a, weight=0.2, ) llm2 = pk.LLMOptions( provider="openai", model="gpt-3.5-turbo", virtual_key=openai_virtual_key_a, weight=0.8, ) portkey_client.add_llms(llm_params=[llm1, llm2]) print("Testing Loadbalance functionality:") response = portkey_client.chat(messages) print(response) import time portkey_client = Portkey(mode="single") openai_llm = pk.LLMOptions( provider="openai", model="gpt-3.5-turbo", virtual_key=openai_virtual_key_a, cache_status="semantic", ) portkey_client.add_llms(openai_llm) current_messages = [
ChatMessage(role="system", content="You are a helpful assistant")
llama_index.core.llms.ChatMessage