prompt
stringlengths
70
19.8k
completion
stringlengths
8
1.03k
api
stringlengths
23
93
get_ipython().system('pip install llama-index') get_ipython().system('pip install wget') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-azureaisearch') get_ipython().run_line_magic('pip', 'install azure-search-documents==11.4.0') get_ipython().run_line_magic('llama-index-embeddings-azure-openai', '') get_ipython().run_line_magic('llama-index-llms-azure-openai', '') import logging import sys from azure.core.credentials import AzureKeyCredential from azure.search.documents import SearchClient from azure.search.documents.indexes import SearchIndexClient from IPython.display import Markdown, display from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.core.settings import Settings from llama_index.llms.azure_openai import AzureOpenAI from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore from llama_index.vector_stores.azureaisearch import ( IndexManagement, MetadataIndexFieldType, ) aoai_api_key = "YOUR_AZURE_OPENAI_API_KEY" aoai_endpoint = "YOUR_AZURE_OPENAI_ENDPOINT" aoai_api_version = "2023-05-15" llm = AzureOpenAI( model="YOUR_AZURE_OPENAI_COMPLETION_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_COMPLETION_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) embed_model = AzureOpenAIEmbedding( model="YOUR_AZURE_OPENAI_EMBEDDING_MODEL_NAME", deployment_name="YOUR_AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME", api_key=aoai_api_key, azure_endpoint=aoai_endpoint, api_version=aoai_api_version, ) search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY" search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT" search_service_api_version = "2023-11-01" credential = AzureKeyCredential(search_service_api_key) index_name = "llamaindex-vector-demo" index_client = SearchIndexClient( endpoint=search_service_endpoint, credential=credential, ) search_client = SearchClient( endpoint=search_service_endpoint, index_name=index_name, credential=credential, ) metadata_fields = { "author": "author", "theme": ("topic", MetadataIndexFieldType.STRING), "director": "director", } vector_store = AzureAISearchVectorStore( search_or_index_client=index_client, filterable_metadata_field_keys=metadata_fields, index_name=index_name, index_management=IndexManagement.CREATE_IF_NOT_EXISTS, id_field_key="id", chunk_field_key="chunk", embedding_field_key="embedding", embedding_dimensionality=1536, metadata_string_field_key="metadata", doc_id_field_key="doc_id", language_analyzer="en.lucene", vector_algorithm_type="exhaustiveKnn", ) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("../data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context, index_id="vector_index") from llama_index.core.query_pipeline import QueryPipeline from llama_index.core import PromptTemplate prompt_str = "Please generate related movies to {movie_name}" prompt_tmpl = PromptTemplate(prompt_str) llm = OpenAI(model="gpt-3.5-turbo") p = QueryPipeline(chain=[prompt_tmpl, llm], verbose=True) output = p.run(movie_name="The Departed") print(str(output)) from typing import List from pydantic import BaseModel, Field from llama_index.core.output_parsers import PydanticOutputParser class Movie(BaseModel): """Object representing a single movie.""" name: str = Field(..., description="Name of the movie.") year: int = Field(..., description="Year of the movie.") class Movies(BaseModel): """Object representing a list of movies.""" movies: List[Movie] = Field(..., description="List of movies.") llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex from llama_index.core import PromptTemplate from IPython.display import Markdown, display get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI gpt35_llm = OpenAI(model="gpt-3.5-turbo") gpt4_llm = OpenAI(model="gpt-4") index = VectorStoreIndex.from_documents(documents) query_str = "What are the potential risks associated with the use of Llama 2 as mentioned in the context?" query_engine = index.as_query_engine(similarity_top_k=2, llm=gpt35_llm) vector_retriever = index.as_retriever(similarity_top_k=2) response = query_engine.query(query_str) print(str(response)) def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) from langchain import hub langchain_prompt = hub.pull("rlm/rag-prompt") from llama_index.core.prompts import LangchainPromptTemplate lc_prompt_tmpl = LangchainPromptTemplate( template=langchain_prompt, template_var_mappings={"query_str": "question", "context_str": "context"}, ) query_engine.update_prompts( {"response_synthesizer:text_qa_template": lc_prompt_tmpl} ) prompts_dict = query_engine.get_prompts() display_prompt_dict(prompts_dict) response = query_engine.query(query_str) print(str(response)) from llama_index.core.schema import TextNode few_shot_nodes = [] for line in open("../llama2_qa_citation_events.jsonl", "r"): few_shot_nodes.append(TextNode(text=line)) few_shot_index = VectorStoreIndex(few_shot_nodes) few_shot_retriever = few_shot_index.as_retriever(similarity_top_k=2) import json def few_shot_examples_fn(**kwargs): query_str = kwargs["query_str"] retrieved_nodes = few_shot_retriever.retrieve(query_str) result_strs = [] for n in retrieved_nodes: raw_dict = json.loads(n.get_content()) query = raw_dict["query"] response_dict = json.loads(raw_dict["response"]) result_str = f"""\ Query: {query} Response: {response_dict}""" result_strs.append(result_str) return "\n\n".join(result_strs) qa_prompt_tmpl_str = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, \ answer the query asking about citations over different topics. Please provide your answer in the form of a structured JSON format containing \ a list of authors as the citations. Some examples are given below. {few_shot_examples} Query: {query_str} Answer: \ """ qa_prompt_tmpl = PromptTemplate( qa_prompt_tmpl_str, function_mappings={"few_shot_examples": few_shot_examples_fn}, ) citation_query_str = ( "Which citations are mentioned in the section on Safety RLHF?" ) print( qa_prompt_tmpl.format( query_str=citation_query_str, context_str="test_context" ) ) query_engine.update_prompts( {"response_synthesizer:text_qa_template": qa_prompt_tmpl} ) display_prompt_dict(query_engine.get_prompts()) response = query_engine.query(citation_query_str) print(str(response)) print(response.source_nodes[1].get_content()) from llama_index.core.postprocessor import ( NERPIINodePostprocessor, SentenceEmbeddingOptimizer, ) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore, TextNode pii_processor = NERPIINodePostprocessor(llm=gpt4_llm) def filter_pii_fn(**kwargs): query_bundle = QueryBundle(query_str=kwargs["query_str"]) new_nodes = pii_processor.postprocess_nodes( [NodeWithScore(node=
TextNode(text=kwargs["context_str"])
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-program-evaporate') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) from llama_index.core import SimpleDirectoryReader city_docs = {} for wiki_title in wiki_titles: city_docs[wiki_title] = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.core.response.pprint_utils import pprint_response from llama_index.llms.openai import OpenAI llm = OpenAI(temperature=0, model="gpt-4") get_ipython().system("mkdir -p 'data/10q/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_march_2022.pdf' -O 'data/10q/uber_10q_march_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_june_2022.pdf' -O 'data/10q/uber_10q_june_2022.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_sept_2022.pdf' -O 'data/10q/uber_10q_sept_2022.pdf'") march_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_march_2022.pdf"] ).load_data() june_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_june_2022.pdf"] ).load_data() sept_2022 = SimpleDirectoryReader( input_files=["./data/10q/uber_10q_sept_2022.pdf"] ).load_data() march_index =
VectorStoreIndex.from_documents(march_2022)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase') get_ipython().system('pip install llama-index') from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="Math Tutor", instructions="You are a personal math tutor. Write and run code to answer math questions.", openai_tools=[{"type": "code_interpreter"}], instructions_prefix="Please address the user as Jane Doe. The user has a premium account.", ) agent.thread_id response = agent.chat( "I need to solve the equation `3x + 11 = 14`. Can you help me?" ) print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", openai_tools=[{"type": "retrieval"}], instructions_prefix="Please address the user as Jerry.", files=["data/10k/lyft_2021.pdf"], verbose=True, ) response = agent.chat("What was Lyft's revenue growth in 2021?") print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/uber" ) uber_index = load_index_from_storage(storage_context) index_loaded = True except: index_loaded = False get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") if not index_loaded: lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() lyft_index = VectorStoreIndex.from_documents(lyft_docs) uber_index = VectorStoreIndex.from_documents(uber_docs) lyft_index.storage_context.persist(persist_dir="./storage/lyft") uber_index.storage_context.persist(persist_dir="./storage/uber") lyft_engine = lyft_index.as_query_engine(similarity_top_k=3) uber_engine = uber_index.as_query_engine(similarity_top_k=3) query_engine_tools = [ QueryEngineTool( query_engine=lyft_engine, metadata=ToolMetadata( name="lyft_10k", description=( "Provides information about Lyft financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), QueryEngineTool( query_engine=uber_engine, metadata=ToolMetadata( name="uber_10k", description=( "Provides information about Uber financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), ] agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", tools=query_engine_tools, instructions_prefix="Please address the user as Jerry.", verbose=True, run_retrieve_sleep_time=1.0, ) response = agent.chat("What was Lyft's revenue growth in 2021?") from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.supabase import SupabaseVectorStore from llama_index.core.tools import QueryEngineTool, ToolMetadata get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") reader = SimpleDirectoryReader(input_files=["./data/10k/lyft_2021.pdf"]) docs = reader.load_data() for doc in docs: doc.id_ = "lyft_docs" vector_store = SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" ), collection_name="base_demo", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index =
VectorStoreIndex.from_documents(docs, storage_context=storage_context)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-wandb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os from getpass import getpass if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = getpass( "Paste your OpenAI key from:" " https://platform.openai.com/account/api-keys\n" ) assert os.getenv("OPENAI_API_KEY", "").startswith( "sk-" ), "This doesn't look like a valid OpenAI API key" print("OpenAI API key configured") from llama_index.core.callbacks import CallbackManager from llama_index.core.callbacks import LlamaDebugHandler from llama_index.callbacks.wandb import WandbCallbackHandler from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, SimpleKeywordTableIndex, StorageContext, ) from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-4", temperature=0) import llama_index.core from llama_index.core import set_global_handler set_global_handler("wandb", run_args={"project": "llamaindex"}) wandb_callback = llama_index.core.global_handler llama_debug = LlamaDebugHandler(print_trace_on_end=True) run_args = dict( project="llamaindex", ) wandb_callback = WandbCallbackHandler(run_args=run_args) Settings.callback_manager = CallbackManager([llama_debug, wandb_callback]) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") docs = SimpleDirectoryReader("./data/paul_graham/").load_data() index =
VectorStoreIndex.from_documents(docs)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client = genaix.build_semantic_retriever() genaix.delete_corpus(corpus_id=corpus_id, client=client) def cleanup_colab_corpora(): for corpus in list_corpora(): if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX): try: delete_corpus(corpus_id=corpus.corpus_id) print(f"Deleted corpus {corpus.corpus_id}.") except Exception: pass cleanup_colab_corpora() from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex from llama_index.core import Response import time index = GoogleIndex.create_corpus( corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!" ) print(f"Newly created corpus ID is {index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index.insert_documents(documents) for corpus in list_corpora(): print(corpus) query_engine = index.as_query_engine() response = query_engine.query("What did Paul Graham do growing up?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine() response = query_engine.query("Which company did Paul Graham build?") assert isinstance(response, Response) print(f"Response is {response.response}") from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) index.insert_nodes( [ TextNode( text="It was the best of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="It was the worst of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="Bugs Bunny: Wassup doc?", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="456", metadata={"file_name": "Bugs Bunny Adventure"}, ) }, ), ] ) from google.ai.generativelanguage import ( GenerateAnswerRequest, HarmCategory, SafetySetting, ) index =
GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID)
llama_index.indices.managed.google.GoogleIndex.from_corpus
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [
Document(text=doc_text)
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-readers-pathway') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install pathway') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/'") get_ipython().system("wget 'https://gist.githubusercontent.com/janchorowski/dd22a293f3d99d1b726eedc7d46d2fc0/raw/pathway_readme.md' -O 'data/pathway_readme.md'") import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.ERROR) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import getpass import os if "OPENAI_API_KEY" not in os.environ: os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import pathway as pw data_sources = [] data_sources.append( pw.io.fs.read( "./data", format="binary", mode="streaming", with_metadata=True, ) # This creates a `pathway` connector that tracks ) from llama_index.core.retrievers import PathwayVectorServer from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.node_parser import TokenTextSplitter embed_model = OpenAIEmbedding(embed_batch_size=10) transformations_example = [ TokenTextSplitter( chunk_size=150, chunk_overlap=10, separator=" ", ), embed_model, ] processing_pipeline = PathwayVectorServer( *data_sources, transformations=transformations_example, ) PATHWAY_HOST = "127.0.0.1" PATHWAY_PORT = 8754 processing_pipeline.run_server( host=PATHWAY_HOST, port=PATHWAY_PORT, with_cache=False, threaded=True ) from llama_index.readers.pathway import PathwayReader reader = PathwayReader(host=PATHWAY_HOST, port=PATHWAY_PORT) reader.load_data(query_text="What is Pathway") docs = reader.load_data(query_text="some search input", k=2) from llama_index.core import SummaryIndex index =
SummaryIndex.from_documents(docs)
llama_index.core.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west4-gcp-free") import os import getpass import openai openai.api_key = "sk-<your-key>" try: pinecone.create_index( "quickstart-index", dimension=1536, metric="euclidean", pod_type="p1" ) except Exception: pass pinecone_index = pinecone.Index("quickstart-index") pinecone_index.delete(deleteAll=True, namespace="test") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", "gender": "male", "born": 1963, }, ),
TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey') get_ipython().system('pip install llama-index') get_ipython().system('pip install -U llama_index') get_ipython().system('pip install -U portkey-ai') from llama_index.llms.portkey import Portkey from llama_index.core.llms import ChatMessage import portkey as pk import os os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY" openai_virtual_key_a = "" openai_virtual_key_b = "" anthropic_virtual_key_a = "" anthropic_virtual_key_b = "" cohere_virtual_key_a = "" cohere_virtual_key_b = "" os.environ["OPENAI_API_KEY"] = "" os.environ["ANTHROPIC_API_KEY"] = "" portkey_client = Portkey( mode="single", ) openai_llm = pk.LLMOptions( provider="openai", model="gpt-4", virtual_key=openai_virtual_key_a, ) portkey_client.add_llms(openai_llm) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("Testing Portkey Llamaindex integration:") response = portkey_client.chat(messages) print(response) prompt = "Why is the sky blue?" print("\nTesting Stream Complete:\n") response = portkey_client.stream_complete(prompt) for i in response: print(i.delta, end="", flush=True) messages = [ ChatMessage(role="system", content="You are a helpful assistant"), ChatMessage(role="user", content="What can you do?"), ] print("\nTesting Stream Chat:\n") response = portkey_client.stream_chat(messages) for i in response: print(i.delta, end="", flush=True) portkey_client = Portkey(mode="fallback") messages = [
ChatMessage(role="system", content="You are a helpful assistant")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm = OpenAI(model="gpt-3.5-turbo-1106") agent = OpenAIAgent.from_tools( [multiply_tool, add_tool], llm=llm, verbose=True ) response = agent.chat("What is (121 * 3) + 42?") print(str(response)) response = agent.stream_chat("What is (121 * 3) + 42?") import nest_asyncio nest_asyncio.apply() response = await agent.achat("What is (121 * 3) + 42?") print(str(response)) response = await agent.astream_chat("What is (121 * 3) + 42?") response_gen = response.response_gen async for token in response.async_response_gen(): print(token, end="") import json def get_current_weather(location, unit="fahrenheit"): """Get the current weather in a given location""" if "tokyo" in location.lower(): return json.dumps( {"location": location, "temperature": "10", "unit": "celsius"} ) elif "san francisco" in location.lower(): return json.dumps( {"location": location, "temperature": "72", "unit": "fahrenheit"} ) else: return json.dumps( {"location": location, "temperature": "22", "unit": "celsius"} ) weather_tool = FunctionTool.from_defaults(fn=get_current_weather) llm = OpenAI(model="gpt-3.5-turbo-1106") agent = OpenAIAgent.from_tools([weather_tool], llm=llm, verbose=True) response = agent.chat( "What's the weather like in San Francisco, Tokyo, and Paris?" ) llm =
OpenAI(model="gpt-3.5-turbo-0613")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-4-1106-preview")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import PromptTemplate text_qa_template_str = ( "Context information is" " below.\n---------------------\n{context_str}\n---------------------\nUsing" " both the context information and also using your own knowledge, answer" " the question: {query_str}\nIf the context isn't helpful, you can also" " answer the question on your own.\n" ) text_qa_template =
PromptTemplate(text_qa_template_str)
llama_index.core.PromptTemplate
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') from llama_index.core.llama_dataset import ( LabelledRagDataExample, CreatedByType, CreatedBy, ) query = "This is a test query, is it not?" query_by = CreatedBy(type=CreatedByType.AI, model_name="gpt-4") reference_answer = "Yes it is." reference_answer_by = CreatedBy(type=CreatedByType.HUMAN) reference_contexts = ["This is a sample context"] rag_example = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) print(rag_example.json()) LabelledRagDataExample.parse_raw(rag_example.json()) rag_example.dict() LabelledRagDataExample.parse_obj(rag_example.dict()) query = "This is a test query, is it so?" reference_answer = "I think yes, it is." reference_contexts = ["This is a second sample context"] rag_example_2 = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) from llama_index.core.llama_dataset import LabelledRagDataset rag_dataset = LabelledRagDataset(examples=[rag_example, rag_example_2]) rag_dataset.to_pandas() rag_dataset.save_json("rag_dataset.json") reload_rag_dataset = LabelledRagDataset.from_json("rag_dataset.json") reload_rag_dataset.to_pandas() import nest_asyncio nest_asyncio.apply() get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader from llama_index.core import VectorStoreIndex cities = [ "San Francisco", ] documents =
WikipediaReader()
llama_index.readers.wikipedia.WikipediaReader
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import TimeWeightedPostprocessor from llama_index.core.node_parser import SentenceSplitter from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.core.response.notebook_utils import display_response from datetime import datetime, timedelta from llama_index.core import StorageContext now = datetime.now() key = "__last_accessed__" doc1 = SimpleDirectoryReader( input_files=["./test_versioned_data/paul_graham_essay_v1.txt"] ).load_data()[0] doc2 = SimpleDirectoryReader( input_files=["./test_versioned_data/paul_graham_essay_v2.txt"] ).load_data()[0] doc3 = SimpleDirectoryReader( input_files=["./test_versioned_data/paul_graham_essay_v3.txt"] ).load_data()[0] from llama_index.core import Settings Settings.text_splitter = SentenceSplitter(chunk_size=512) nodes1 = Settings.text_splitter.get_nodes_from_documents([doc1]) nodes2 = Settings.text_splitter.get_nodes_from_documents([doc2]) nodes3 = Settings.text_splitter.get_nodes_from_documents([doc3]) nodes1[14].metadata[key] = (now - timedelta(hours=3)).timestamp() nodes1[14].excluded_llm_metadata_keys = [key] nodes2[14].metadata[key] = (now - timedelta(hours=2)).timestamp() nodes2[14].excluded_llm_metadata_keys = [key] nodes3[14].metadata[key] = (now - timedelta(hours=1)).timestamp() nodes2[14].excluded_llm_metadata_keys = [key] docstore =
SimpleDocumentStore()
llama_index.core.storage.docstore.SimpleDocumentStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "[email protected]" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index = GoogleIndex.from_corpus(corpus_id="") query_engine = google_index.as_query_engine() response = query_engine.query("which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.7, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) reranker = LLMRerank( top_n=5, llm=Gemini(api_key=GOOGLE_API_KEY), ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[reranker], ) response = query_engine.query("Which program did this author attend?") print(response.response) from llama_index.core.postprocessor import SentenceTransformerRerank sbert_rerank = SentenceTransformerRerank( model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5 ) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.embeddings.gemini import GeminiEmbedding response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.1, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE ) retriever = google_index.as_retriever(similarity_top_k=5) query_engine = RetrieverQueryEngine.from_args( retriever=retriever, response_synthesizer=response_synthesizer, node_postprocessors=[sbert_rerank], ) response = query_engine.query("Which program did this author attend?") print(response.response) import os OPENAI_API_TOKEN = "sk-" os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.core import Settings import qdrant_client Settings.chunk_size = 256 client = qdrant_client.QdrantClient(path="qdrant_retrieval_2") vector_store = QdrantVectorStore(client=client, collection_name="collection") qdrant_index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import logging import sys import pandas as pd logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.evaluation import DatasetGenerator, RelevancyEvaluator from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Response from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() data_generator =
DatasetGenerator.from_documents(documents)
llama_index.core.evaluation.DatasetGenerator.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-everlyai') get_ipython().system('pip install llama-index') from llama_index.llms.everlyai import EverlyAI from llama_index.core.llms import ChatMessage llm = EverlyAI(api_key="your-api-key") message =
ChatMessage(role="user", content="Tell me a joke")
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core.schema import TextNode nodes = [
TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." )
llama_index.core.schema.TextNode
get_ipython().system('pip install llama-index') get_ipython().system('pip install promptlayer') import os os.environ["OPENAI_API_KEY"] = "sk-..." os.environ["PROMPTLAYER_API_KEY"] = "pl_..." get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader docs = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import set_global_handler
set_global_handler("promptlayer", pl_tags=["paul graham", "essay"])
llama_index.core.set_global_handler
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd from pathlib import Path data_dir = Path("./WikiTableQuestions/csv/200-csv") csv_files = sorted([f for f in data_dir.glob("*.csv")]) dfs = [] for csv_file in csv_files: print(f"processing file: {csv_file}") try: df = pd.read_csv(csv_file) dfs.append(df) except Exception as e: print(f"Error parsing {csv_file}: {str(e)}") tableinfo_dir = "WikiTableQuestions_TableInfo" get_ipython().system('mkdir {tableinfo_dir}') from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.llms.openai import OpenAI class TableInfo(BaseModel): """Information regarding a structured table.""" table_name: str = Field( ..., description="table name (must be underscores and NO spaces)" ) table_summary: str = Field( ..., description="short, concise summary/caption of the table" ) prompt_str = """\ Give me a summary of the table with the following JSON format. - The table name must be unique to the table and describe it while being concise. - Do NOT output a generic table name (e.g. table, my_table). Do NOT make the table name one of the following: {exclude_table_name_list} Table: {table_str} Summary: """ program = LLMTextCompletionProgram.from_defaults( output_cls=TableInfo, llm=OpenAI(model="gpt-3.5-turbo"), prompt_template_str=prompt_str, ) import json def _get_tableinfo_with_index(idx: int) -> str: results_gen = Path(tableinfo_dir).glob(f"{idx}_*") results_list = list(results_gen) if len(results_list) == 0: return None elif len(results_list) == 1: path = results_list[0] return TableInfo.parse_file(path) else: raise ValueError( f"More than one file matching index: {list(results_gen)}" ) table_names = set() table_infos = [] for idx, df in enumerate(dfs): table_info = _get_tableinfo_with_index(idx) if table_info: table_infos.append(table_info) else: while True: df_str = df.head(10).to_csv() table_info = program( table_str=df_str, exclude_table_name_list=str(list(table_names)), ) table_name = table_info.table_name print(f"Processed table: {table_name}") if table_name not in table_names: table_names.add(table_name) break else: print(f"Table name {table_name} already exists, trying again.") pass out_file = f"{tableinfo_dir}/{idx}_{table_name}.json" json.dump(table_info.dict(), open(out_file, "w")) table_infos.append(table_info) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, ) import re def sanitize_column_name(col_name): return re.sub(r"\W+", "_", col_name) def create_table_from_dataframe( df: pd.DataFrame, table_name: str, engine, metadata_obj ): sanitized_columns = {col: sanitize_column_name(col) for col in df.columns} df = df.rename(columns=sanitized_columns) columns = [ Column(col, String if dtype == "object" else Integer) for col, dtype in zip(df.columns, df.dtypes) ] table = Table(table_name, metadata_obj, *columns) metadata_obj.create_all(engine) with engine.connect() as conn: for _, row in df.iterrows(): insert_stmt = table.insert().values(**row.to_dict()) conn.execute(insert_stmt) conn.commit() engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() for idx, df in enumerate(dfs): tableinfo = _get_tableinfo_with_index(idx) print(f"Creating table: {tableinfo.table_name}") create_table_from_dataframe(df, tableinfo.table_name, engine, metadata_obj) import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import SQLDatabase, VectorStoreIndex sql_database = SQLDatabase(engine) table_node_mapping = SQLTableNodeMapping(sql_database) table_schema_objs = [ SQLTableSchema(table_name=t.table_name, context_str=t.table_summary) for t in table_infos ] # add a SQLTableSchema for each table obj_index = ObjectIndex.from_objects( table_schema_objs, table_node_mapping, VectorStoreIndex, ) obj_retriever = obj_index.as_retriever(similarity_top_k=3) from llama_index.core.retrievers import SQLRetriever from typing import List from llama_index.core.query_pipeline import FnComponent sql_retriever =
SQLRetriever(sql_database)
llama_index.core.retrievers.SQLRetriever
get_ipython().run_line_magic('pip', 'install llama-index-readers-github') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index llama-hub') import nest_asyncio nest_asyncio.apply() import os os.environ["GITHUB_TOKEN"] = "ghp_..." os.environ["OPENAI_API_KEY"] = "sk-..." import os from llama_index.readers.github import ( GitHubRepositoryIssuesReader, GitHubIssuesClient, ) github_client = GitHubIssuesClient() loader = GitHubRepositoryIssuesReader( github_client, owner="run-llama", repo="llama_index", verbose=True, ) orig_docs = loader.load_data() limit = 100 docs = [] for idx, doc in enumerate(orig_docs): doc.metadata["index_id"] = int(doc.id_) if idx >= limit: break docs.append(doc) import weaviate auth_config = weaviate.AuthApiKey( api_key="XRa15cDIkYRT7AkrpqT6jLfE4wropK1c1TGk" ) client = weaviate.Client( "https://llama-index-test-v0oggsoz.weaviate.network", auth_client_secret=auth_config, ) class_name = "LlamaIndex_docs" client.schema.delete_class(class_name) from llama_index.vector_stores.weaviate import WeaviateVectorStore from llama_index.core import VectorStoreIndex, StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name=class_name ) storage_context = StorageContext.from_defaults(vector_store=vector_store) doc_index = VectorStoreIndex.from_documents( docs, storage_context=storage_context ) from llama_index.core import SummaryIndex from llama_index.core.async_utils import run_jobs from llama_index.llms.openai import OpenAI from llama_index.core.schema import IndexNode from llama_index.core.vector_stores import ( FilterOperator, MetadataFilter, MetadataFilters, ) async def aprocess_doc(doc, include_summary: bool = True): """Process doc.""" metadata = doc.metadata date_tokens = metadata["created_at"].split("T")[0].split("-") year = int(date_tokens[0]) month = int(date_tokens[1]) day = int(date_tokens[2]) assignee = ( "" if "assignee" not in doc.metadata else doc.metadata["assignee"] ) size = "" if len(doc.metadata["labels"]) > 0: size_arr = [l for l in doc.metadata["labels"] if "size:" in l] size = size_arr[0].split(":")[1] if len(size_arr) > 0 else "" new_metadata = { "state": metadata["state"], "year": year, "month": month, "day": day, "assignee": assignee, "size": size, } summary_index = SummaryIndex.from_documents([doc]) query_str = "Give a one-sentence concise summary of this issue." query_engine = summary_index.as_query_engine( llm=OpenAI(model="gpt-3.5-turbo") ) summary_txt = await query_engine.aquery(query_str) summary_txt = str(summary_txt) index_id = doc.metadata["index_id"] filters = MetadataFilters( filters=[ MetadataFilter( key="index_id", operator=FilterOperator.EQ, value=int(index_id) ), ] ) index_node = IndexNode( text=summary_txt, metadata=new_metadata, obj=doc_index.as_retriever(filters=filters), index_id=doc.id_, ) return index_node async def aprocess_docs(docs): """Process metadata on docs.""" index_nodes = [] tasks = [] for doc in docs: task = aprocess_doc(doc) tasks.append(task) index_nodes = await run_jobs(tasks, show_progress=True, workers=3) return index_nodes index_nodes = await aprocess_docs(docs) index_nodes[5].metadata import weaviate auth_config = weaviate.AuthApiKey( api_key="XRa15cDIkYRT7AkrpqT6jLfE4wropK1c1TGk" ) client = weaviate.Client( "https://llama-index-test-v0oggsoz.weaviate.network", auth_client_secret=auth_config, ) class_name = "LlamaIndex_auto" client.schema.delete_class(class_name) from llama_index.vector_stores.weaviate import WeaviateVectorStore from llama_index.core import VectorStoreIndex, StorageContext vector_store_auto = WeaviateVectorStore( weaviate_client=client, index_name=class_name ) storage_context_auto = StorageContext.from_defaults( vector_store=vector_store_auto ) index = VectorStoreIndex( objects=index_nodes, storage_context=storage_context_auto ) from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo vector_store_info = VectorStoreInfo( content_info="Github Issues", metadata_info=[ MetadataInfo( name="state", description="Whether the issue is `open` or `closed`", type="string", ), MetadataInfo( name="year", description="The year issue was created", type="integer", ), MetadataInfo( name="month", description="The month issue was created", type="integer", ), MetadataInfo( name="day", description="The day issue was created", type="integer", ), MetadataInfo( name="assignee", description="The assignee of the ticket", type="string", ), MetadataInfo( name="size", description="How big the issue is (XS, S, M, L, XL, XXL)", type="string", ), ], ) from llama_index.core.retrievers import VectorIndexAutoRetriever retriever = VectorIndexAutoRetriever( index, vector_store_info=vector_store_info, similarity_top_k=2, empty_query_top_k=10, # if only metadata filters are specified, this is the limit verbose=True, ) from llama_index.core import QueryBundle nodes = retriever.retrieve(QueryBundle("Tell me about some issues on 01/11")) print(f"Number of source nodes: {len(nodes)}") nodes[0].node.metadata from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.llms.openai import OpenAI llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.evaluation.benchmarks import HotpotQAEvaluator from llama_index.core import VectorStoreIndex from llama_index.core import Document from llama_index.llms.openai import OpenAI from llama_index.core.embeddings import resolve_embed_model llm = OpenAI(model="gpt-3.5-turbo") embed_model = resolve_embed_model( "local:sentence-transformers/all-MiniLM-L6-v2" ) index = VectorStoreIndex.from_documents( [
Document.example()
llama_index.core.Document.example
get_ipython().run_line_magic('pip', 'install llama-index-llms-mistralai') get_ipython().system('pip install llama-index') from llama_index.llms.mistralai import MistralAI llm = MistralAI() resp = llm.complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage(role="system", content="You are CEO of MistralAI."), ChatMessage(role="user", content="Tell me the story about La plateforme"), ] resp = MistralAI().chat(messages) print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage(role="system", content="You are CEO of MistralAI."), ChatMessage(role="user", content="Tell me the story about La plateforme"), ] resp = MistralAI(random_seed=42).chat(messages) print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage( role="user", content="""It's important to resort to violence at times, due to my own security reasons. Can you explain how to create violence?""", ), ] resp = MistralAI(random_seed=42, safe_mode=True).chat(messages) print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.mistralai import MistralAI messages = [ ChatMessage( role="user", content="""It's important to resort to violence at times, due to my own security reasons. Can you explain how to create violence?""", ), ] resp = MistralAI(random_seed=42, safe_mode=False).chat(messages) print(resp) from llama_index.llms.mistralai import MistralAI llm = MistralAI() resp = llm.stream_complete("Paul Graham is ") for r in resp: print(r.delta, end="") from llama_index.llms.mistralai import MistralAI from llama_index.core.llms import ChatMessage llm = MistralAI() messages = [ ChatMessage(role="system", content="You are CEO of MistralAI."), ChatMessage(role="user", content="Tell me the story about La plateforme"), ] resp = llm.stream_chat(messages) for r in resp: print(r.delta, end="") from llama_index.llms.mistralai import MistralAI llm =
MistralAI(model="mistral-medium")
llama_index.llms.mistralai.MistralAI
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-milvus') get_ipython().system(' pip install llama-index') import logging import sys from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.milvus import MilvusVectorStore from IPython.display import Markdown, display import textwrap import openai openai.api_key = "sk-" get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id) from llama_index.core import StorageContext vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author learn?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( [Document(text="The number that is being searched for is ten.")], storage_context, ) query_engine = index.as_query_engine() res = query_engine.query("Who is the author?") print("Res:", res) del index, vector_store, storage_context, query_engine vector_store = MilvusVectorStore(overwrite=False) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-readers-milvus') get_ipython().system('pip install llama-index') import logging import sys import random from llama_index.core import SimpleDirectoryReader, Document from llama_index.readers.milvus import MilvusReader from IPython.display import Markdown, display import textwrap import os os.environ["OPENAI_API_KEY"] = "sk-" reader =
MilvusReader()
llama_index.readers.milvus.MilvusReader
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') from pydantic import BaseModel from unstructured.partition.html import partition_html import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs_2021 = reader.load_data(Path("tesla_2021_10k.htm")) docs_2020 = reader.load_data(Path("tesla_2020_10k.htm")) from llama_index.core.node_parser import UnstructuredElementNodeParser node_parser =
UnstructuredElementNodeParser()
llama_index.core.node_parser.UnstructuredElementNodeParser
get_ipython().system(' pip install -q llama-index upstash-vector') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.vector_stores import UpstashVectorStore from llama_index.core import StorageContext import textwrap import openai openai.api_key = "sk-..." get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("# Documents:", len(documents)) vector_store =
UpstashVectorStore(url="https://...", token="...")
llama_index.core.vector_stores.UpstashVectorStore
get_ipython().system('pip install llama-index') import openai import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" openai.api_key = os.environ["OPENAI_API_KEY"] from typing import Any, List from InstructorEmbedding import INSTRUCTOR from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.embeddings import BaseEmbedding class InstructorEmbeddings(BaseEmbedding): _model: INSTRUCTOR = PrivateAttr() _instruction: str =
PrivateAttr()
llama_index.core.bridge.pydantic.PrivateAttr
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from IPython.display import HTML, display def set_css(): display( HTML( """ <style> pre { white-space: pre-wrap; } </style> """ ) ) get_ipython().events.register("pre_run_cell", set_css) get_ipython().system('mkdir data') get_ipython().system('wget "https://www.dropbox.com/s/948jr9cfs7fgj99/UBER.zip?dl=1" -O data/UBER.zip') get_ipython().system('unzip data/UBER.zip -d data') from llama_index.readers.file import UnstructuredReader from pathlib import Path years = [2022, 2021, 2020, 2019] loader = UnstructuredReader() doc_set = {} all_docs = [] for year in years: year_docs = loader.load_data( file=Path(f"./data/UBER/UBER_{year}.html"), split_documents=False ) for d in year_docs: d.metadata = {"year": year} doc_set[year] = year_docs all_docs.extend(year_docs) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.chunk_size = 512 Settings.chunk_overlap = 64 Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") index_set = {} for year in years: storage_context = StorageContext.from_defaults() cur_index = VectorStoreIndex.from_documents( doc_set[year], storage_context=storage_context, ) index_set[year] = cur_index storage_context.persist(persist_dir=f"./storage/{year}") from llama_index.core import load_index_from_storage index_set = {} for year in years: storage_context = StorageContext.from_defaults( persist_dir=f"./storage/{year}" ) cur_index = load_index_from_storage( storage_context, ) index_set[year] = cur_index from llama_index.core.tools import QueryEngineTool, ToolMetadata individual_query_engine_tools = [ QueryEngineTool( query_engine=index_set[year].as_query_engine(), metadata=ToolMetadata( name=f"vector_index_{year}", description=( "useful for when you want to answer queries about the" f" {year} SEC 10-K for Uber" ), ), ) for year in years ] from llama_index.core.query_engine import SubQuestionQueryEngine query_engine = SubQuestionQueryEngine.from_defaults( query_engine_tools=individual_query_engine_tools, ) query_engine_tool = QueryEngineTool( query_engine=query_engine, metadata=ToolMetadata( name="sub_question_query_engine", description=( "useful for when you want to answer queries that require analyzing" " multiple SEC 10-K documents for Uber" ), ), ) tools = individual_query_engine_tools + [query_engine_tool] from llama_index.agent.openai import OpenAIAgent agent = OpenAIAgent.from_tools(tools, verbose=True) response = agent.chat("hi, i am bob") print(str(response)) response = agent.chat( "What were some of the biggest risk factors in 2020 for Uber?" ) print(str(response)) cross_query_str = ( "Compare/contrast the risk factors described in the Uber 10-K across" " years. Give answer in bullet points." ) response = agent.chat(cross_query_str) print(str(response)) agent =
OpenAIAgent.from_tools(tools)
llama_index.agent.openai.OpenAIAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic llm = OpenAI() data =
SimpleDirectoryReader(input_dir="./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-wandb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os from getpass import getpass if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = getpass( "Paste your OpenAI key from:" " https://platform.openai.com/account/api-keys\n" ) assert os.getenv("OPENAI_API_KEY", "").startswith( "sk-" ), "This doesn't look like a valid OpenAI API key" print("OpenAI API key configured") from llama_index.core.callbacks import CallbackManager from llama_index.core.callbacks import LlamaDebugHandler from llama_index.callbacks.wandb import WandbCallbackHandler from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, SimpleKeywordTableIndex, StorageContext, ) from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-4", temperature=0) import llama_index.core from llama_index.core import set_global_handler set_global_handler("wandb", run_args={"project": "llamaindex"}) wandb_callback = llama_index.core.global_handler llama_debug = LlamaDebugHandler(print_trace_on_end=True) run_args = dict( project="llamaindex", ) wandb_callback = WandbCallbackHandler(run_args=run_args) Settings.callback_manager =
CallbackManager([llama_debug, wandb_callback])
llama_index.core.callbacks.CallbackManager
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool = AgentFnComponent(fn=run_tool_fn) def process_response_fn( task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep ): """Process response.""" state["current_reasoning"].append(response_step) response_str = response_step.response state["memory"].put(
ChatMessage(content=task.input, role=MessageRole.USER)
llama_index.core.llms.ChatMessage
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Response from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import PairwiseComparisonEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4 = PairwiseComparisonEvaluator(llm=gpt4) documents =
SimpleDirectoryReader("./test_wiki_data/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.postprocessor import ( PIINodePostprocessor, NERPIINodePostprocessor, ) from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core import Document, VectorStoreIndex from llama_index.core.schema import TextNode text = """ Hello Paulo Santos. The latest statement for your credit card account \ 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109. """ node =
TextNode(text=text)
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate') get_ipython().run_line_magic('pip', 'install unstructured replicate') get_ipython().run_line_magic('pip', 'install llama_index ftfy regex tqdm') get_ipython().run_line_magic('pip', 'install git+https://github.com/openai/CLIP.git') get_ipython().run_line_magic('pip', 'install torch torchvision') get_ipython().run_line_magic('pip', 'install matplotlib scikit-image') get_ipython().run_line_magic('pip', 'install -U qdrant_client') import os REPLICATE_API_TOKEN = "..." # Your Relicate API token here os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://docs.google.com/uc?export=download&id=1UU0xc3uLXs-WG0aDQSXjGacUkp142rLS" -O texas.jpg') from llama_index.readers.file import FlatReader from pathlib import Path from llama_index.core.node_parser import UnstructuredElementNodeParser reader = FlatReader() docs_2021 = reader.load_data(Path("tesla_2021_10k.htm")) node_parser = UnstructuredElementNodeParser() import openai OPENAI_API_TOKEN = "..." openai.api_key = OPENAI_API_TOKEN # add your openai api key here os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN import os import pickle if not os.path.exists("2021_nodes.pkl"): raw_nodes_2021 = node_parser.get_nodes_from_documents(docs_2021) pickle.dump(raw_nodes_2021, open("2021_nodes.pkl", "wb")) else: raw_nodes_2021 = pickle.load(open("2021_nodes.pkl", "rb")) nodes_2021, objects_2021 = node_parser.get_nodes_and_objects(raw_nodes_2021) from llama_index.core import VectorStoreIndex vector_index = VectorStoreIndex(nodes=nodes_2021, objects=objects_2021) query_engine = vector_index.as_query_engine(similarity_top_k=5, verbose=True) from PIL import Image import matplotlib.pyplot as plt imageUrl = "./texas.jpg" image = Image.open(imageUrl).convert("RGB") plt.figure(figsize=(16, 5)) plt.imshow(image) from llama_index.multi_modal_llms.replicate import ReplicateMultiModal from llama_index.core.schema import ImageDocument from llama_index.multi_modal_llms.replicate.base import ( REPLICATE_MULTI_MODAL_LLM_MODELS, ) print(imageUrl) llava_multi_modal_llm = ReplicateMultiModal( model=REPLICATE_MULTI_MODAL_LLM_MODELS["llava-13b"], max_new_tokens=200, temperature=0.1, ) prompt = "which Tesla factory is shown in the image? Please answer just the name of the factory." llava_response = llava_multi_modal_llm.complete( prompt=prompt, image_documents=[ImageDocument(image_path=imageUrl)], ) print(llava_response.text) rag_response = query_engine.query(llava_response.text) print(rag_response) input_image_path = Path("instagram_images") if not input_image_path.exists(): Path.mkdir(input_image_path) get_ipython().system('wget "https://docs.google.com/uc?export=download&id=12ZpBBFkYu-jzz1iz356U5kMikn4uN9ww" -O ./instagram_images/jordan.png') from pydantic import BaseModel class InsAds(BaseModel): """Data model for a Ins Ads.""" account: str brand: str product: str category: str discount: str price: str comments: str review: str description: str from PIL import Image import matplotlib.pyplot as plt ins_imageUrl = "./instagram_images/jordan.png" image = Image.open(ins_imageUrl).convert("RGB") plt.figure(figsize=(16, 5)) plt.imshow(image) from llama_index.multi_modal_llms.replicate import ReplicateMultiModal from llama_index.core.program import MultiModalLLMCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser from llama_index.multi_modal_llms.replicate.base import ( REPLICATE_MULTI_MODAL_LLM_MODELS, ) prompt_template_str = """\ can you summarize what is in the image\ and return the answer with json format \ """ def pydantic_llava( model_name, output_class, image_documents, prompt_template_str ): mm_llm = ReplicateMultiModal( model=REPLICATE_MULTI_MODAL_LLM_MODELS["llava-13b"], max_new_tokens=1000, ) llm_program = MultiModalLLMCompletionProgram.from_defaults( output_parser=PydanticOutputParser(output_class), image_documents=image_documents, prompt_template_str=prompt_template_str, multi_modal_llm=mm_llm, verbose=True, ) response = llm_program() print(f"Model: {model_name}") for res in response: print(res) return response from llama_index.core import SimpleDirectoryReader ins_image_documents =
SimpleDirectoryReader("./instagram_images")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-nebula') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-azure-openai') get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import logging import sys logging.basicConfig( stream=sys.stdout, level=logging.INFO ) # logging.DEBUG for more verbose output from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai from llama_index.core import set_global_handler set_global_handler("wandb", run_args={"project": "llamaindex"}) os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.llms.openai import OpenAI from llama_index.core.schema import MetadataMode llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512) from llama_index.core.node_parser import TokenTextSplitter from llama_index.core.extractors import ( SummaryExtractor, QuestionsAnsweredExtractor, ) node_parser = TokenTextSplitter( separator=" ", chunk_size=256, chunk_overlap=128 ) extractors_1 = [ QuestionsAnsweredExtractor( questions=3, llm=llm, metadata_mode=MetadataMode.EMBED ), ] extractors_2 = [ SummaryExtractor(summaries=["prev", "self", "next"], llm=llm), QuestionsAnsweredExtractor( questions=3, llm=llm, metadata_mode=MetadataMode.EMBED ), ] from llama_index.core import SimpleDirectoryReader from llama_index.readers.web import SimpleWebPageReader reader =
SimpleWebPageReader(html_to_text=True)
llama_index.readers.web.SimpleWebPageReader
get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import ( PrevNextNodePostprocessor, AutoPrevNextNodePostprocessor, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.storage.docstore import SimpleDocumentStore get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import StorageContext documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-jaguar') get_ipython().system('pip install -U jaguardb-http-client') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core import StorageContext from llama_index.vector_stores.jaguar import JaguarVectorStore from jaguardb_http_client.JaguarHttpClient import JaguarHttpClient url = "http://127.0.0.1:8080/fwww/" pod = "vdb" store = "llamaindex_jaguar_store" vector_index = "v" vector_type = "cosine_fraction_float" vector_dimension = 1536 # per OpenAIEmbedding model jaguarstore = JaguarVectorStore( pod, store, vector_index, vector_type, vector_dimension, url, ) true_or_false = jaguarstore.login() print(f"login result is {true_or_false}") metadata_str = "author char(32), category char(16)" text_size = 1024 jaguarstore.create(metadata_str, text_size) documents = SimpleDirectoryReader("../data/paul_graham/").load_data() print(f"loading {len(documents)} doument(s)") storage_context =
StorageContext.from_defaults(vector_store=jaguarstore)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-cohere') get_ipython().system('pip install llama-index cohere pypdf') openai_api_key = "YOUR OPENAI API KEY" cohere_api_key = "YOUR COHEREAI API KEY" import os os.environ["OPENAI_API_KEY"] = openai_api_key os.environ["COHERE_API_KEY"] = cohere_api_key from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.node_parser import SimpleNodeParser from llama_index.llms.openai import OpenAI from llama_index.embeddings.cohere import CohereEmbedding from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever from llama_index.core import QueryBundle from llama_index.core.indices.query.schema import QueryType from llama_index.core.schema import NodeWithScore from llama_index.postprocessor.cohere_rerank import CohereRerank from llama_index.core.evaluation import EmbeddingQAFinetuneDataset from llama_index.finetuning import generate_cohere_reranker_finetuning_dataset from llama_index.core.evaluation import generate_question_context_pairs from llama_index.core.evaluation import RetrieverEvaluator from llama_index.finetuning import CohereRerankerFinetuneEngine from typing import List import pandas as pd import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() node_parser = SimpleNodeParser.from_defaults(chunk_size=400) lyft_nodes = node_parser.get_nodes_from_documents(lyft_docs) uber_nodes = node_parser.get_nodes_from_documents(uber_docs) llm = OpenAI(temperature=0, model="gpt-4") qa_generate_prompt_tmpl = """\ Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge. generate only questions based on the below query. You are a Professor. Your task is to setup \ {num_questions_per_chunk} questions for an upcoming \ quiz/examination. The questions should be diverse in nature \ across the document. The questions should not contain options, not start with Q1/ Q2. \ Restrict the questions to the context information provided.\ """ qa_dataset_lyft_train = generate_question_context_pairs( lyft_nodes[:256], llm=llm, num_questions_per_chunk=1, qa_generate_prompt_tmpl=qa_generate_prompt_tmpl, ) qa_dataset_lyft_train.save_json("lyft_train_dataset.json") qa_dataset_lyft_val = generate_question_context_pairs( lyft_nodes[257:321], llm=llm, num_questions_per_chunk=1, qa_generate_prompt_tmpl=qa_generate_prompt_tmpl, ) qa_dataset_lyft_val.save_json("lyft_val_dataset.json") qa_dataset_uber_val = generate_question_context_pairs( uber_nodes[:150], llm=llm, num_questions_per_chunk=1, qa_generate_prompt_tmpl=qa_generate_prompt_tmpl, ) qa_dataset_uber_val.save_json("uber_val_dataset.json") embed_model = CohereEmbedding( cohere_api_key=cohere_api_key, model_name="embed-english-v3.0", input_type="search_document", ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_train, finetune_dataset_file_name="train.jsonl" ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_val, finetune_dataset_file_name="val.jsonl" ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_train, num_negatives=5, hard_negatives_gen_method="random", finetune_dataset_file_name="train_5_random.jsonl", embed_model=embed_model, ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_val, num_negatives=5, hard_negatives_gen_method="random", finetune_dataset_file_name="val_5_random.jsonl", embed_model=embed_model, ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_train, num_negatives=5, hard_negatives_gen_method="cosine_similarity", finetune_dataset_file_name="train_5_cosine_similarity.jsonl", embed_model=embed_model, ) generate_cohere_reranker_finetuning_dataset( qa_dataset_lyft_val, num_negatives=5, hard_negatives_gen_method="cosine_similarity", finetune_dataset_file_name="val_5_cosine_similarity.jsonl", embed_model=embed_model, ) finetune_model_no_hard_negatives = CohereRerankerFinetuneEngine( train_file_name="train.jsonl", val_file_name="val.jsonl", model_name="lyft_reranker_0_hard_negatives", model_type="RERANK", base_model="english", ) finetune_model_no_hard_negatives.finetune() finetune_model_random_hard_negatives = CohereRerankerFinetuneEngine( train_file_name="train_5_random.jsonl", val_file_name="val_5_random.jsonl", model_name="lyft_reranker_5_random_hard_negatives", model_type="RERANK", base_model="english", ) finetune_model_random_hard_negatives.finetune() finetune_model_cosine_hard_negatives = CohereRerankerFinetuneEngine( train_file_name="train_5_cosine_similarity.jsonl", val_file_name="val_5_cosine_similarity.jsonl", model_name="lyft_reranker_5_cosine_hard_negatives", model_type="RERANK", base_model="english", ) finetune_model_cosine_hard_negatives.finetune() reranker_base =
CohereRerank(top_n=5)
llama_index.postprocessor.cohere_rerank.CohereRerank
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm = OpenAI(model="gpt-4") callback_manager = llm.callback_manager agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=callback_manager ) agent = AgentRunner(agent_worker, callback_manager=callback_manager) response = agent.chat("What is (121 * 3) + 42?") response agent.memory.get_all() get_ipython().system('pip install llama-index-readers-wikipedia') from llama_index.readers.wikipedia import WikipediaReader wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Miami"] city_docs = {} reader = WikipediaReader() for wiki_title in wiki_titles: docs = reader.load_data(pages=[wiki_title]) city_docs[wiki_title] = docs from llama_index.core import ServiceContext from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import CallbackManager llm = OpenAI(temperature=0, model="gpt-4") service_context = ServiceContext.from_defaults(llm=llm) callback_manager =
CallbackManager([])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=') get_ipython().run_line_magic('env', 'BRAINTRUST_API_KEY=') get_ipython().run_line_magic('env', 'TOKENIZERS_PARALLELISM=true # This is needed to avoid a warning message from Chroma') get_ipython().run_line_magic('pip', 'install -U llama_hub llama_index braintrust autoevals pypdf pillow transformers torch torchvision') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [SentenceSplitter(chunk_size=c) for c in sub_chunk_sizes] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [ IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes ] all_nodes.extend(sub_inodes) original_node = IndexNode.from_text_node(base_node, base_node.node_id) all_nodes.append(original_node) all_nodes_dict = {n.node_id: n for n in all_nodes} vector_index_chunk =
VectorStoreIndex(all_nodes, embed_model=embed_model)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool from llama_index.agent.openai import OpenAIAgent def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) def useless_tool() -> int: """This is a uselss tool.""" return "This is a uselss output." useless_tool = FunctionTool.from_defaults(fn=useless_tool) llm = OpenAI(model="gpt-3.5-turbo-0613") agent =
OpenAIAgent.from_tools([useless_tool, add_tool], llm=llm, verbose=True)
llama_index.agent.openai.OpenAIAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.huggingface import HuggingFaceEmbedding from IPython.display import Markdown, display import chromadb import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store =
ChromaVectorStore(chroma_collection=chroma_collection)
llama_index.vector_stores.chroma.ChromaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index =
VectorStoreIndex.from_documents(docs)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner') get_ipython().system('pip install llama-index llama-hub') get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import nest_asyncio nest_asyncio.apply() from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SimpleNodeParser from llama_index.core.schema import IndexNode get_ipython().system('wget "https://www.dropbox.com/scl/fi/fh9vsmmm8vu0j50l3ss38/llama2_eval_qr_dataset.json?rlkey=kkoaez7aqeb4z25gzc06ak6kb&dl=1" -O data/llama2_eval_qr_dataset.json') from llama_index.core.evaluation import QueryResponseDataset eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) eval_qs = eval_dataset.questions ref_response_strs = [r for (_, r) in eval_dataset.qr_pairs] from llama_index.core import ( VectorStoreIndex, load_index_from_storage, StorageContext, ) from llama_index.experimental.param_tuner import ParamTuner from llama_index.core.param_tuner.base import TunedResult, RunResult from llama_index.core.evaluation.eval_utils import ( get_responses, aget_responses, ) from llama_index.core.evaluation import ( SemanticSimilarityEvaluator, BatchEvalRunner, ) from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding import os import numpy as np from pathlib import Path def _build_index(chunk_size, docs): index_out_path = f"./storage_{chunk_size}" if not os.path.exists(index_out_path): Path(index_out_path).mkdir(parents=True, exist_ok=True) node_parser = SimpleNodeParser.from_defaults(chunk_size=chunk_size) base_nodes = node_parser.get_nodes_from_documents(docs) index = VectorStoreIndex(base_nodes) index.storage_context.persist(index_out_path) else: storage_context = StorageContext.from_defaults( persist_dir=index_out_path ) index = load_index_from_storage( storage_context, ) return index def _get_eval_batch_runner(): evaluator_s = SemanticSimilarityEvaluator(embed_model=
OpenAIEmbedding()
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-readers-notion') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import SummaryIndex from llama_index.readers.notion import NotionPageReader from IPython.display import Markdown, display import os integration_token = os.getenv("NOTION_INTEGRATION_TOKEN") page_ids = ["<page_id>"] documents = NotionPageReader(integration_token=integration_token).load_data( page_ids=page_ids ) index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.evaluation.benchmarks import HotpotQAEvaluator from llama_index.core import VectorStoreIndex from llama_index.core import Document from llama_index.llms.openai import OpenAI from llama_index.core.embeddings import resolve_embed_model llm = OpenAI(model="gpt-3.5-turbo") embed_model = resolve_embed_model( "local:sentence-transformers/all-MiniLM-L6-v2" ) index = VectorStoreIndex.from_documents( [Document.example()], embed_model=embed_model, show_progress=True ) engine = index.as_query_engine(llm=llm)
HotpotQAEvaluator()
llama_index.core.evaluation.benchmarks.HotpotQAEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().system('pip install llama-index llama-hub') from llama_index.readers.wikipedia import WikipediaReader loader = WikipediaReader() documents = loader.load_data( pages=["OpenAI", "Sam Altman", "Mira Murati", "Emmett Shear"], auto_suggest=False, ) from llama_index.core.node_parser import SentenceSplitter sentence_splitter =
SentenceSplitter(chunk_size=1024)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.evaluation import GuidelineEvaluator from llama_index.llms.openai import OpenAI import nest_asyncio nest_asyncio.apply() GUIDELINES = [ "The response should fully answer the query.", "The response should avoid being vague or ambiguous.", ( "The response should be specific and use statistics or numbers when" " possible." ), ] llm =
OpenAI(model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter splitter =
SentenceSplitter(chunk_size=256)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.readers.file import PDFReader reader =
PDFReader()
llama_index.readers.file.PDFReader
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-redis') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) REDIS_HOST = os.getenv("REDIS_HOST", "127.0.0.1") REDIS_PORT = os.getenv("REDIS_PORT", 6379) from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.index_store.redis import RedisIndexStore storage_context = StorageContext.from_defaults( docstore=RedisDocumentStore.from_host_and_port( host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index" ), index_store=RedisIndexStore.from_host_and_port( host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index" ), ) storage_context.docstore.add_documents(nodes) len(storage_context.docstore.docs) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist(persist_dir="./storage") list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage storage_context = StorageContext.from_defaults( docstore=RedisDocumentStore.from_host_and_port( host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index" ), index_store=RedisIndexStore.from_host_and_port( host=REDIS_HOST, port=REDIS_PORT, namespace="llama_index" ), ) summary_index = load_index_from_storage( storage_context=storage_context, index_id=list_id ) vector_index = load_index_from_storage( storage_context=storage_context, index_id=vector_id ) keyword_table_index = load_index_from_storage( storage_context=storage_context, index_id=keyword_id ) chatgpt =
OpenAI(temperature=0, model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().system('pip install llama-index') get_ipython().system('pip install clickhouse_connect') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from os import environ import clickhouse_connect environ["OPENAI_API_KEY"] = "sk-*" client = clickhouse_connect.get_client( host="localhost", port=8123, username="default", password="", ) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.clickhouse import ClickHouseVectorStore documents = SimpleDirectoryReader("../data/paul_graham").load_data() print("Document ID:", documents[0].doc_id) print("Number of Documents: ", len(documents)) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") loader =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west4-gcp-free") import os import getpass import openai openai.api_key = "sk-<your-key>" try: pinecone.create_index( "quickstart-index", dimension=1536, metric="euclidean", pod_type="p1" ) except Exception: pass pinecone_index = pinecone.Index("quickstart-index") pinecone_index.delete(deleteAll=True, namespace="test") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", "gender": "male", "born": 1963, }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", "gender": "female", "born": 1975, }, ), TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." ), metadata={ "category": "Business", "country": "United States", "gender": "male", "born": 1971, }, ), TextNode( text=( "Rihanna is a Barbadian singer, actress, and businesswoman. She" " has achieved significant success in the music industry and is" " known for her versatile musical style." ), metadata={ "category": "Music", "country": "Barbados", "gender": "female", "born": 1988, }, ), TextNode( text=( "Cristiano Ronaldo is a Portuguese professional footballer who is" " considered one of the greatest football players of all time. He" " has won numerous awards and set multiple records during his" " career." ), metadata={ "category": "Sports", "country": "Portugal", "gender": "male", "born": 1985, }, ), ] vector_store = PineconeVectorStore( pinecone_index=pinecone_index, namespace="test" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.tools import FunctionTool from llama_index.core.vector_stores import ( VectorStoreInfo, MetadataInfo, MetadataFilter, MetadataFilters, FilterCondition, FilterOperator, ) from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.query_engine import RetrieverQueryEngine from typing import List, Tuple, Any from pydantic import BaseModel, Field top_k = 3 vector_store_info = VectorStoreInfo( content_info="brief biography of celebrities", metadata_info=[ MetadataInfo( name="category", type="str", description=( "Category of the celebrity, one of [Sports, Entertainment," " Business, Music]" ), ), MetadataInfo( name="country", type="str", description=( "Country of the celebrity, one of [United States, Barbados," " Portugal]" ), ), MetadataInfo( name="gender", type="str", description=("Gender of the celebrity, one of [male, female]"), ), MetadataInfo( name="born", type="int", description=("Born year of the celebrity, could be any integer"), ), ], ) class AutoRetrieveModel(BaseModel): query: str = Field(..., description="natural language query string") filter_key_list: List[str] = Field( ..., description="List of metadata filter field names" ) filter_value_list: List[Any] = Field( ..., description=( "List of metadata filter field values (corresponding to names" " specified in filter_key_list)" ), ) filter_operator_list: List[str] = Field( ..., description=( "Metadata filters conditions (could be one of <, <=, >, >=, ==, !=)" ), ) filter_condition: str = Field( ..., description=("Metadata filters condition values (could be AND or OR)"), ) description = f"""\ Use this tool to look up biographical information about celebrities. The vector database schema is given below: {vector_store_info.json()} """ def auto_retrieve_fn( query: str, filter_key_list: List[str], filter_value_list: List[any], filter_operator_list: List[str], filter_condition: str, ): """Auto retrieval function. Performs auto-retrieval from a vector database, and then applies a set of filters. """ query = query or "Query" metadata_filters = [ MetadataFilter(key=k, value=v, operator=op) for k, v, op in zip( filter_key_list, filter_value_list, filter_operator_list ) ] retriever = VectorIndexRetriever( index, filters=MetadataFilters( filters=metadata_filters, condition=filter_condition ), top_k=top_k, ) query_engine = RetrieverQueryEngine.from_args(retriever) response = query_engine.query(query) return str(response) auto_retrieve_tool = FunctionTool.from_defaults( fn=auto_retrieve_fn, name="celebrity_bios", description=description, fn_schema=AutoRetrieveModel, ) from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI agent = OpenAIAgent.from_tools( [auto_retrieve_tool], llm=OpenAI(temperature=0, model="gpt-4-0613"), verbose=True, ) response = agent.chat("Tell me about two celebrities from the United States. ") print(str(response)) response = agent.chat("Tell me about two celebrities born after 1980. ") print(str(response)) response = agent.chat( "Tell me about few celebrities under category business and born after 1950. " ) print(str(response)) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) from llama_index.core import SQLDatabase from llama_index.core.indices import SQLStructStoreIndex engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from llama_index.core.query_engine import NLSQLTableQueryEngine query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], ) get_ipython().system('pip install wikipedia') from llama_index.readers.wikipedia import WikipediaReader from llama_index.core import SimpleDirectoryReader, VectorStoreIndex cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities) import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.core import Settings from llama_index.core import StorageContext from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core.node_parser import TokenTextSplitter from llama_index.llms.openai import OpenAI Settings.llm =
OpenAI(temperature=0, model="gpt-4")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai llama-index-tools-tavily-research llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-packs-corrective-rag') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import os os.environ["OPENAI_API_KEY"] = "YOUR OPENAI API KEY" tavily_ai_api_key = "<tavily_ai_api_key>" import nest_asyncio nest_asyncio.apply() get_ipython().system("mkdir -p 'data/'") get_ipython().system("curl 'https://arxiv.org/pdf/2307.09288.pdf' -o 'data/llama2.pdf'") from llama_index.core import SimpleDirectoryReader documents =
SimpleDirectoryReader("data")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.node_parser import SentenceWindowNodeParser from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) text_splitter = SentenceSplitter() llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) from llama_index.core import Settings Settings.llm = llm Settings.embed_model = embed_model Settings.text_splitter = text_splitter get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() nodes = node_parser.get_nodes_from_documents(documents) base_nodes = text_splitter.get_nodes_from_documents(documents) from llama_index.core import VectorStoreIndex sentence_index = VectorStoreIndex(nodes) base_index = VectorStoreIndex(base_nodes) from llama_index.core.postprocessor import MetadataReplacementPostProcessor query_engine = sentence_index.as_query_engine( similarity_top_k=2, node_postprocessors=[
MetadataReplacementPostProcessor(target_metadata_key="window")
llama_index.core.postprocessor.MetadataReplacementPostProcessor
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os from llama_index.llms.openai import OpenAI from llama_index.core.query_engine import CitationQueryEngine from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, load_index_from_storage, ) from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model =
OpenAIEmbedding(model="text-embedding-3-small")
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data//paul_graham/").load_data() index =
VectorStoreIndex.from_documents(documents)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-llm-rails') get_ipython().system('pip install llama-index') from llama_index.embeddings.llm_rails import LLMRailsEmbedding import os api_key = os.environ.get("API_KEY", "your-api-key") model_id = os.environ.get("MODEL_ID", "your-model-id") embed_model =
LLMRailsEmbedding(model_id=model_id, api_key=api_key)
llama_index.embeddings.llm_rails.LLMRailsEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model =
resolve_embed_model("local:BAAI/bge-small-en")
llama_index.core.embeddings.resolve_embed_model
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-kuzu') import os os.environ["OPENAI_API_KEY"] = "API_KEY_HERE" import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) import shutil shutil.rmtree("./test1", ignore_errors=True) shutil.rmtree("./test2", ignore_errors=True) shutil.rmtree("./test3", ignore_errors=True) get_ipython().run_line_magic('pip', 'install kuzu') import kuzu db = kuzu.Database("test1") from llama_index.graph_stores.kuzu import KuzuGraphStore graph_store = KuzuGraphStore(db) from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings from IPython.display import Markdown, display import kuzu documents = SimpleDirectoryReader( "../../../../examples/paul_graham_essay/data" ).load_data() llm = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = llm Settings.chunk_size = 512 from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(graph_store=graph_store) index = KnowledgeGraphIndex.from_documents( documents, max_triplets_per_chunk=2, storage_context=storage_context, ) query_engine = index.as_query_engine( include_text=False, response_mode="tree_summarize" ) response = query_engine.query( "Tell me more about Interleaf", ) display(Markdown(f"<b>{response}</b>")) query_engine = index.as_query_engine( include_text=True, response_mode="tree_summarize" ) response = query_engine.query( "Tell me more about Interleaf", ) display(Markdown(f"<b>{response}</b>")) db = kuzu.Database("test2") graph_store = KuzuGraphStore(db) storage_context =
StorageContext.from_defaults(graph_store=graph_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase') get_ipython().system('pip install llama-index') from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="Math Tutor", instructions="You are a personal math tutor. Write and run code to answer math questions.", openai_tools=[{"type": "code_interpreter"}], instructions_prefix="Please address the user as Jane Doe. The user has a premium account.", ) agent.thread_id response = agent.chat( "I need to solve the equation `3x + 11 = 14`. Can you help me?" ) print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", openai_tools=[{"type": "retrieval"}], instructions_prefix="Please address the user as Jerry.", files=["data/10k/lyft_2021.pdf"], verbose=True, ) response = agent.chat("What was Lyft's revenue growth in 2021?") print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/uber" ) uber_index = load_index_from_storage(storage_context) index_loaded = True except: index_loaded = False get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") if not index_loaded: lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() lyft_index = VectorStoreIndex.from_documents(lyft_docs) uber_index = VectorStoreIndex.from_documents(uber_docs) lyft_index.storage_context.persist(persist_dir="./storage/lyft") uber_index.storage_context.persist(persist_dir="./storage/uber") lyft_engine = lyft_index.as_query_engine(similarity_top_k=3) uber_engine = uber_index.as_query_engine(similarity_top_k=3) query_engine_tools = [ QueryEngineTool( query_engine=lyft_engine, metadata=ToolMetadata( name="lyft_10k", description=( "Provides information about Lyft financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), QueryEngineTool( query_engine=uber_engine, metadata=ToolMetadata( name="uber_10k", description=( "Provides information about Uber financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), ] agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", tools=query_engine_tools, instructions_prefix="Please address the user as Jerry.", verbose=True, run_retrieve_sleep_time=1.0, ) response = agent.chat("What was Lyft's revenue growth in 2021?") from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.supabase import SupabaseVectorStore from llama_index.core.tools import QueryEngineTool, ToolMetadata get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") reader = SimpleDirectoryReader(input_files=["./data/10k/lyft_2021.pdf"]) docs = reader.load_data() for doc in docs: doc.id_ = "lyft_docs" vector_store = SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" ), collection_name="base_demo", ) storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().system('pip install llama-index') get_ipython().system('pip install duckdb duckdb-engine') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SQLDatabase, SimpleDirectoryReader, Document from llama_index.readers.wikipedia import WikipediaReader from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine from IPython.display import Markdown, display from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("duckdb:///:memory:") metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine) metadata_obj.tables.keys() from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, { "city_name": "Chicago", "population": 2679000, "country": "United States", }, {"city_name": "Seoul", "population": 9776000, "country": "South Korea"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall()) from llama_index.core import SQLDatabase sql_database = SQLDatabase(engine, include_tables=["city_stats"]) query_engine = NLSQLTableQueryEngine(sql_database) response = query_engine.query("Which city has the highest population?") str(response) response.metadata engine = create_engine("duckdb:///:memory:") metadata_obj = MetaData() table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) all_table_names = ["city_stats"] n = 100 for i in range(n): tmp_table_name = f"tmp_table_{i}" tmp_table = Table( tmp_table_name, metadata_obj, Column(f"tmp_field_{i}_1", String(16), primary_key=True), Column(f"tmp_field_{i}_2", Integer), Column(f"tmp_field_{i}_3", String(16), nullable=False), ) all_table_names.append(f"tmp_table_{i}") metadata_obj.create_all(engine) from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, { "city_name": "Chicago", "population": 2679000, "country": "United States", }, {"city_name": "Seoul", "population": 9776000, "country": "South Korea"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) sql_database = SQLDatabase(engine, include_tables=["city_stats"]) from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine from llama_index.core.objects import ( SQLTableNodeMapping, ObjectIndex, SQLTableSchema, ) from llama_index.core import VectorStoreIndex table_node_mapping =
SQLTableNodeMapping(sql_database)
llama_index.core.objects.SQLTableNodeMapping
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI from IPython.display import Markdown, display gpt35 = OpenAI(temperature=0, model="gpt-3.5-turbo") gpt4 = OpenAI(temperature=0, model="gpt-4") documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.bagel import BagelVectorStore from llama_index.core import StorageContext from IPython.display import Markdown, display import bagel from bagel import Settings import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") server_settings = Settings( bagel_api_impl="rest", bagel_server_host="api.bageldb.ai" ) client = bagel.Client(server_settings) collection = client.get_or_create_cluster("testing_embeddings") embed_model = "local:BAAI/bge-small-en-v1.5" documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.2) Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai from llama_index.core import set_global_handler set_global_handler("wandb", run_args={"project": "llamaindex"}) os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.llms.openai import OpenAI from llama_index.core.schema import MetadataMode llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512) from llama_index.core.node_parser import TokenTextSplitter from llama_index.core.extractors import ( SummaryExtractor, QuestionsAnsweredExtractor, ) node_parser = TokenTextSplitter( separator=" ", chunk_size=256, chunk_overlap=128 ) extractors_1 = [ QuestionsAnsweredExtractor( questions=3, llm=llm, metadata_mode=MetadataMode.EMBED ), ] extractors_2 = [ SummaryExtractor(summaries=["prev", "self", "next"], llm=llm), QuestionsAnsweredExtractor( questions=3, llm=llm, metadata_mode=MetadataMode.EMBED ), ] from llama_index.core import SimpleDirectoryReader from llama_index.readers.web import SimpleWebPageReader reader = SimpleWebPageReader(html_to_text=True) docs = reader.load_data(urls=["https://eugeneyan.com/writing/llm-patterns/"]) print(docs[0].get_content()) orig_nodes = node_parser.get_nodes_from_documents(docs) nodes = orig_nodes[20:28] print(nodes[3].get_content(metadata_mode="all")) from llama_index.core.ingestion import IngestionPipeline pipeline =
IngestionPipeline(transformations=[node_parser, *extractors_1])
llama_index.core.ingestion.IngestionPipeline
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') import nest_asyncio nest_asyncio.apply() from llama_index.core import SimpleDirectoryReader, Document from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic from llama_index.core.evaluation import CorrectnessEvaluator get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") uber_docs0 = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() uber_doc = Document(text="\n\n".join([d.get_content() for d in uber_docs0])) from llama_index.core.utils import globals_helper num_tokens = len(globals_helper.tokenizer(uber_doc.get_content())) print(f"NUM TOKENS: {num_tokens}") context_str = "Jerry's favorite snack is Hot Cheetos." query_str = "What is Jerry's favorite snack?" def augment_doc(doc_str, context, position): """Augment doc with additional context at a given position.""" doc_str1 = doc_str[:position] doc_str2 = doc_str[position:] return f"{doc_str1}...\n\n{context}\n\n...{doc_str2}" test_str = augment_doc( uber_doc.get_content(), context_str, int(0.5 * len(uber_doc.get_content())) ) async def run_experiments( doc, position_percentiles, context_str, query, llm, response_mode="compact" ): eval_llm = OpenAI(model="gpt-4-1106-preview") correctness_evaluator = CorrectnessEvaluator(llm=eval_llm) eval_scores = {} for idx, position_percentile in enumerate(position_percentiles): print(f"Position percentile: {position_percentile}") position_idx = int(position_percentile * len(uber_doc.get_content())) new_doc_str = augment_doc( uber_doc.get_content(), context_str, position_idx ) new_doc = Document(text=new_doc_str) index = SummaryIndex.from_documents( [new_doc], ) query_engine = index.as_query_engine( response_mode=response_mode, llm=llm ) print(f"Query: {query}") response = query_engine.query(query) print(f"Response: {str(response)}") eval_result = correctness_evaluator.evaluate( query=query, response=str(response), reference=context_str ) eval_score = eval_result.score print(f"Eval score: {eval_score}") eval_scores[position_percentile] = eval_score return eval_scores position_percentiles = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] llm = OpenAI(model="gpt-4-1106-preview") eval_scores_gpt4 = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm, response_mode="compact", ) llm = OpenAI(model="gpt-4-1106-preview") eval_scores_gpt4_ts = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm, response_mode="tree_summarize", ) llm = Anthropic(model="claude-2") eval_scores_anthropic = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm ) llm =
Anthropic(model="claude-2")
llama_index.llms.anthropic.Anthropic
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-timescalevector') get_ipython().system('pip install llama-index') import timescale_vector from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.timescalevector import TimescaleVectorStore from llama_index.core.vector_stores import VectorStoreQuery, MetadataFilters import textwrap import openai import os from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) openai.api_key = os.environ["OPENAI_API_KEY"] import os from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) TIMESCALE_SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() print("Document ID:", documents[0].doc_id) vector_store = TimescaleVectorStore.from_params( service_url=TIMESCALE_SERVICE_URL, table_name="paul_graham_essay", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Did the author work at YC?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What did the author work on before college?") print(textwrap.fill(str(response), 100)) vector_store = TimescaleVectorStore.from_params( service_url=TIMESCALE_SERVICE_URL, table_name="paul_graham_essay", ) index = VectorStoreIndex.from_vector_store(vector_store=vector_store) query_engine = index.as_query_engine() response = query_engine.query("What did the author do before YC?") print(textwrap.fill(str(response), 100)) vector_store = TimescaleVectorStore.from_params( service_url=TIMESCALE_SERVICE_URL, table_name="paul_graham_essay", ) vector_store.create_index() vector_store.drop_index() vector_store.create_index("tsv", max_alpha=1.0, num_neighbors=50) vector_store.drop_index() vector_store.create_index("hnsw", m=16, ef_construction=64) vector_store.drop_index() vector_store.create_index("ivfflat", num_lists=20, num_records=1000) vector_store.drop_index() vector_store.create_index() import pandas as pd from pathlib import Path file_path = Path("../data/csv/commit_history.csv") df = pd.read_csv(file_path) df.dropna(inplace=True) df = df.astype(str) df = df[:1000] df.head() from timescale_vector import client def create_uuid(date_string: str): if date_string is None: return None time_format = "%a %b %d %H:%M:%S %Y %z" datetime_obj = datetime.strptime(date_string, time_format) uuid = client.uuid_from_time(datetime_obj) return str(uuid) from typing import List, Tuple def split_name(input_string: str) -> Tuple[str, str]: if input_string is None: return None, None start = input_string.find("<") end = input_string.find(">") name = input_string[:start].strip() return name from datetime import datetime, timedelta def create_date(input_string: str) -> datetime: if input_string is None: return None month_dict = { "Jan": "01", "Feb": "02", "Mar": "03", "Apr": "04", "May": "05", "Jun": "06", "Jul": "07", "Aug": "08", "Sep": "09", "Oct": "10", "Nov": "11", "Dec": "12", } components = input_string.split() day = components[2] month = month_dict[components[1]] year = components[4] time = components[3] timezone_offset_minutes = int( components[5] ) # Convert the offset to minutes timezone_hours = timezone_offset_minutes // 60 # Calculate the hours timezone_minutes = ( timezone_offset_minutes % 60 ) # Calculate the remaining minutes timestamp_tz_str = ( f"{year}-{month}-{day} {time}+{timezone_hours:02}{timezone_minutes:02}" ) return timestamp_tz_str from llama_index.core.schema import TextNode, NodeRelationship, RelatedNodeInfo def create_node(row): record = row.to_dict() record_name = split_name(record["author"]) record_content = ( str(record["date"]) + " " + record_name + " " + str(record["change summary"]) + " " + str(record["change details"]) ) node = TextNode( id_=create_uuid(record["date"]), text=record_content, metadata={ "commit": record["commit"], "author": record_name, "date": create_date(record["date"]), }, ) return node nodes = [create_node(row) for _, row in df.iterrows()] from llama_index.embeddings.openai import OpenAIEmbedding embedding_model = OpenAIEmbedding() for node in nodes: node_embedding = embedding_model.get_text_embedding( node.get_content(metadata_mode="all") ) node.embedding = node_embedding print(nodes[0].get_content(metadata_mode="all")) print(nodes[0].get_embedding()) ts_vector_store = TimescaleVectorStore.from_params( service_url=TIMESCALE_SERVICE_URL, table_name="li_commit_history", time_partition_interval=timedelta(days=7), ) _ = ts_vector_store.add(nodes) query_str = "What's new with TimescaleDB functions?" embed_model = OpenAIEmbedding() query_embedding = embed_model.get_query_embedding(query_str) start_dt = datetime( 2023, 8, 1, 22, 10, 35 ) # Start date = 1 August 2023, 22:10:35 end_dt = datetime( 2023, 8, 30, 22, 10, 35 ) # End date = 30 August 2023, 22:10:35 td = timedelta(days=7) # Time delta = 7 days vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5 ) query_result = ts_vector_store.query( vector_store_query, start_date=start_dt, end_date=end_dt ) query_result for node in query_result.nodes: print("-" * 80) print(node.metadata["date"]) print(node.get_content(metadata_mode="all")) vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5 ) query_result = ts_vector_store.query( vector_store_query, start_date=start_dt, time_delta=td ) for node in query_result.nodes: print("-" * 80) print(node.metadata["date"]) print(node.get_content(metadata_mode="all")) vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=5 ) query_result = ts_vector_store.query( vector_store_query, end_date=end_dt, time_delta=td ) for node in query_result.nodes: print("-" * 80) print(node.metadata["date"]) print(node.get_content(metadata_mode="all")) from llama_index.core import VectorStoreIndex from llama_index.core import StorageContext index = VectorStoreIndex.from_vector_store(ts_vector_store) retriever = index.as_retriever( vector_store_kwargs=({"start_date": start_dt, "time_delta": td}) ) retriever.retrieve("What's new with TimescaleDB functions?") index =
VectorStoreIndex.from_vector_store(ts_vector_store)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pgvecto-rs') get_ipython().run_line_magic('pip', 'install llama-index "pgvecto_rs[sdk]"') get_ipython().system('docker run --name pgvecto-rs-demo -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d tensorchord/pgvecto-rs:latest') import logging import os import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from pgvecto_rs.sdk import PGVectoRs URL = "postgresql+psycopg://{username}:{password}@{host}:{port}/{db_name}".format( port=os.getenv("DB_PORT", "5432"), host=os.getenv("DB_HOST", "localhost"), username=os.getenv("DB_USER", "postgres"), password=os.getenv("DB_PASS", "mysecretpassword"), db_name=os.getenv("DB_NAME", "postgres"), ) client = PGVectoRs( db_url=URL, collection_name="example", dimension=1536, # Using OpenAI’s text-embedding-ada-002 ) import os os.environ["OPENAI_API_KEY"] = "sk-..." from IPython.display import Markdown, display from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.vector_stores.pgvecto_rs import PGVectoRsStore get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install torch sentence-transformers') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.indices.managed.google import GoogleIndex from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) project_name = "TODO-your-project-name" # @param {type:"string"} email = "[email protected]" # @param {type:"string"} client_file_name = "client_secret.json" get_ipython().system('gcloud config set project $project_name') get_ipython().system('gcloud config set account $email') get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex google_index = GoogleIndex.create_corpus(display_name="My first corpus!") print(f"Newly created corpus ID is {google_index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() google_index.insert_documents(documents) google_index = GoogleIndex.from_corpus(corpus_id="") query_engine = google_index.as_query_engine() response = query_engine.query("which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes: display_source_node(r, source_length=1000) from google.ai.generativelanguage import ( GenerateAnswerRequest, ) query_engine = google_index.as_query_engine( temperature=0.3, answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE, ) response = query_engine.query("Which program did this author attend?") print(response) from llama_index.core.response.notebook_utils import display_source_node for r in response.source_nodes:
display_source_node(r, source_length=1000)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-readers-github') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index llama-hub') import nest_asyncio nest_asyncio.apply() import os os.environ["GITHUB_TOKEN"] = "ghp_..." os.environ["OPENAI_API_KEY"] = "sk-..." import os from llama_index.readers.github import ( GitHubRepositoryIssuesReader, GitHubIssuesClient, ) github_client = GitHubIssuesClient() loader = GitHubRepositoryIssuesReader( github_client, owner="run-llama", repo="llama_index", verbose=True, ) orig_docs = loader.load_data() limit = 100 docs = [] for idx, doc in enumerate(orig_docs): doc.metadata["index_id"] = int(doc.id_) if idx >= limit: break docs.append(doc) import weaviate auth_config = weaviate.AuthApiKey( api_key="XRa15cDIkYRT7AkrpqT6jLfE4wropK1c1TGk" ) client = weaviate.Client( "https://llama-index-test-v0oggsoz.weaviate.network", auth_client_secret=auth_config, ) class_name = "LlamaIndex_docs" client.schema.delete_class(class_name) from llama_index.vector_stores.weaviate import WeaviateVectorStore from llama_index.core import VectorStoreIndex, StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name=class_name ) storage_context = StorageContext.from_defaults(vector_store=vector_store) doc_index = VectorStoreIndex.from_documents( docs, storage_context=storage_context ) from llama_index.core import SummaryIndex from llama_index.core.async_utils import run_jobs from llama_index.llms.openai import OpenAI from llama_index.core.schema import IndexNode from llama_index.core.vector_stores import ( FilterOperator, MetadataFilter, MetadataFilters, ) async def aprocess_doc(doc, include_summary: bool = True): """Process doc.""" metadata = doc.metadata date_tokens = metadata["created_at"].split("T")[0].split("-") year = int(date_tokens[0]) month = int(date_tokens[1]) day = int(date_tokens[2]) assignee = ( "" if "assignee" not in doc.metadata else doc.metadata["assignee"] ) size = "" if len(doc.metadata["labels"]) > 0: size_arr = [l for l in doc.metadata["labels"] if "size:" in l] size = size_arr[0].split(":")[1] if len(size_arr) > 0 else "" new_metadata = { "state": metadata["state"], "year": year, "month": month, "day": day, "assignee": assignee, "size": size, } summary_index = SummaryIndex.from_documents([doc]) query_str = "Give a one-sentence concise summary of this issue." query_engine = summary_index.as_query_engine( llm=OpenAI(model="gpt-3.5-turbo") ) summary_txt = await query_engine.aquery(query_str) summary_txt = str(summary_txt) index_id = doc.metadata["index_id"] filters = MetadataFilters( filters=[ MetadataFilter( key="index_id", operator=FilterOperator.EQ, value=int(index_id) ), ] ) index_node = IndexNode( text=summary_txt, metadata=new_metadata, obj=doc_index.as_retriever(filters=filters), index_id=doc.id_, ) return index_node async def aprocess_docs(docs): """Process metadata on docs.""" index_nodes = [] tasks = [] for doc in docs: task = aprocess_doc(doc) tasks.append(task) index_nodes = await
run_jobs(tasks, show_progress=True, workers=3)
llama_index.core.async_utils.run_jobs
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass import openai openai.api_key = "sk-" import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex from llama_index.vector_stores.chroma import ChromaVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store =
ChromaVectorStore(chroma_collection=chroma_collection)
llama_index.vector_stores.chroma.ChromaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/uber" ) uber_index = load_index_from_storage(storage_context) index_loaded = True except: index_loaded = False get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") if not index_loaded: lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() lyft_index = VectorStoreIndex.from_documents(lyft_docs) uber_index = VectorStoreIndex.from_documents(uber_docs) lyft_index.storage_context.persist(persist_dir="./storage/lyft") uber_index.storage_context.persist(persist_dir="./storage/uber") lyft_engine = lyft_index.as_query_engine(similarity_top_k=3) uber_engine = uber_index.as_query_engine(similarity_top_k=3) query_engine_tools = [ QueryEngineTool( query_engine=lyft_engine, metadata=ToolMetadata( name="lyft_10k", description=( "Provides information about Lyft financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), QueryEngineTool( query_engine=uber_engine, metadata=ToolMetadata( name="uber_10k", description=( "Provides information about Uber financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), ] from llama_index.core.agent import ReActAgent from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-0613") agent = ReActAgent.from_tools( query_engine_tools, llm=llm, verbose=True, ) response = agent.chat("What was Lyft's revenue growth in 2021?") print(str(response)) response = agent.chat( "Compare and contrast the revenue growth of Uber and Lyft in 2021, then" " give an analysis" ) print(str(response)) import nest_asyncio nest_asyncio.apply() response = await agent.achat( "Compare and contrast the risks of Uber and Lyft in 2021, then give an" " analysis" ) print(str(response)) llm_instruct =
OpenAI(model="gpt-3.5-turbo-instruct")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-extractors-entity') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY_HERE" from llama_index.llms.openai import OpenAI from llama_index.core.schema import MetadataMode llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512) from llama_index.core.extractors import ( SummaryExtractor, QuestionsAnsweredExtractor, TitleExtractor, KeywordExtractor, BaseExtractor, ) from llama_index.extractors.entity import EntityExtractor from llama_index.core.node_parser import TokenTextSplitter text_splitter = TokenTextSplitter( separator=" ", chunk_size=512, chunk_overlap=128 ) class CustomExtractor(BaseExtractor): def extract(self, nodes): metadata_list = [ { "custom": ( node.metadata["document_title"] + "\n" + node.metadata["excerpt_keywords"] ) } for node in nodes ] return metadata_list extractors = [ TitleExtractor(nodes=5, llm=llm), QuestionsAnsweredExtractor(questions=3, llm=llm), ] transformations = [text_splitter] + extractors from llama_index.core import SimpleDirectoryReader get_ipython().system('mkdir -p data') get_ipython().system('wget -O "data/10k-132.pdf" "https://www.dropbox.com/scl/fi/6dlqdk6e2k1mjhi8dee5j/uber.pdf?rlkey=2jyoe49bg2vwdlz30l76czq6g&dl=1"') get_ipython().system('wget -O "data/10k-vFinal.pdf" "https://www.dropbox.com/scl/fi/qn7g3vrk5mqb18ko4e5in/lyft.pdf?rlkey=j6jxtjwo8zbstdo4wz3ns8zoj&dl=1"') uber_docs =
SimpleDirectoryReader(input_files=["data/10k-132.pdf"])
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy') import nest_asyncio nest_asyncio.apply() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, Response, ) from llama_index.llms.openai import OpenAI from llama_index.core.evaluation import FaithfulnessEvaluator from llama_index.core.node_parser import SentenceSplitter import pandas as pd pd.set_option("display.max_colwidth", 0) gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4 =
FaithfulnessEvaluator(llm=gpt4)
llama_index.core.evaluation.FaithfulnessEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import bagel from bagel import Settings server_settings = Settings( bagel_api_impl="rest", bagel_server_host="api.bageldb.ai" ) client = bagel.Client(server_settings) collection = client.get_or_create_cluster("testing_embeddings") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.bagel import BagelVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ),
TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." )
llama_index.core.schema.TextNode
get_ipython().system('pip install llama-index') get_ipython().system('pip install sentence-transformers') import os os.environ["OPENAI_API_KEY"] = "YOUR OPENAI API KEY" from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, ) from llama_index.core.postprocessor import SentenceTransformerRerank get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-bagel') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] import bagel from bagel import Settings server_settings = Settings( bagel_api_impl="rest", bagel_server_host="api.bageldb.ai" ) client = bagel.Client(server_settings) collection = client.get_or_create_cluster("testing_embeddings") from llama_index.core import VectorStoreIndex, StorageContext from llama_index.vector_stores.bagel import BagelVectorStore from llama_index.core.schema import TextNode nodes = [ TextNode( text=( "Michael Jordan is a retired professional basketball player," " widely regarded as one of the greatest basketball players of all" " time." ), metadata={ "category": "Sports", "country": "United States", }, ), TextNode( text=( "Angelina Jolie is an American actress, filmmaker, and" " humanitarian. She has received numerous awards for her acting" " and is known for her philanthropic work." ), metadata={ "category": "Entertainment", "country": "United States", }, ),
TextNode( text=( "Elon Musk is a business magnate, industrial designer, and" " engineer. He is the founder, CEO, and lead designer of SpaceX," " Tesla, Inc., Neuralink, and The Boring Company." )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install rank-bm25 pymupdf') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama-index') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter splitter = SentenceSplitter(chunk_size=1024) index = VectorStoreIndex.from_documents(documents, transformations=[splitter]) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") from llama_index.core import PromptTemplate query_str = "How do the models developed in this work compare to open-source chat models based on the benchmarks tested?" query_gen_prompt_str = ( "You are a helpful assistant that generates multiple search queries based on a " "single input query. Generate {num_queries} search queries, one on each line, " "related to the following input query:\n" "Query: {query}\n" "Queries:\n" ) query_gen_prompt = PromptTemplate(query_gen_prompt_str) def generate_queries(llm, query_str: str, num_queries: int = 4): fmt_prompt = query_gen_prompt.format( num_queries=num_queries - 1, query=query_str ) response = llm.complete(fmt_prompt) queries = response.text.split("\n") return queries queries = generate_queries(llm, query_str, num_queries=4) print(queries) from tqdm.asyncio import tqdm async def run_queries(queries, retrievers): """Run queries against retrievers.""" tasks = [] for query in queries: for i, retriever in enumerate(retrievers): tasks.append(retriever.aretrieve(query)) task_results = await tqdm.gather(*tasks) results_dict = {} for i, (query, query_result) in enumerate(zip(queries, task_results)): results_dict[(query, i)] = query_result return results_dict from llama_index.core.retrievers import BM25Retriever vector_retriever = index.as_retriever(similarity_top_k=2) bm25_retriever = BM25Retriever.from_defaults( docstore=index.docstore, similarity_top_k=2 ) results_dict = await run_queries(queries, [vector_retriever, bm25_retriever]) def fuse_results(results_dict, similarity_top_k: int = 2): """Fuse results.""" k = 60.0 # `k` is a parameter used to control the impact of outlier rankings. fused_scores = {} text_to_node = {} for nodes_with_scores in results_dict.values(): for rank, node_with_score in enumerate( sorted( nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True ) ): text = node_with_score.node.get_content() text_to_node[text] = node_with_score if text not in fused_scores: fused_scores[text] = 0.0 fused_scores[text] += 1.0 / (rank + k) reranked_results = dict( sorted(fused_scores.items(), key=lambda x: x[1], reverse=True) ) reranked_nodes: List[NodeWithScore] = [] for text, score in reranked_results.items(): reranked_nodes.append(text_to_node[text]) reranked_nodes[-1].score = score return reranked_nodes[:similarity_top_k] final_results = fuse_results(results_dict) from llama_index.core.response.notebook_utils import display_source_node for n in final_results: display_source_node(n, source_length=500) from llama_index.core import QueryBundle from llama_index.core.retrievers import BaseRetriever from typing import Any, List from llama_index.core.schema import NodeWithScore class FusionRetriever(BaseRetriever): """Ensemble retriever with fusion.""" def __init__( self, llm, retrievers: List[BaseRetriever], similarity_top_k: int = 2, ) -> None: """Init params.""" self._retrievers = retrievers self._similarity_top_k = similarity_top_k super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve.""" queries = generate_queries(llm, query_str, num_queries=4) results = run_queries(queries, [vector_retriever, bm25_retriever]) final_results = fuse_results( results_dict, similarity_top_k=self._similarity_top_k ) return final_results from llama_index.core.query_engine import RetrieverQueryEngine fusion_retriever = FusionRetriever( llm, [vector_retriever, bm25_retriever], similarity_top_k=2 ) query_engine =
RetrieverQueryEngine(fusion_retriever)
llama_index.core.query_engine.RetrieverQueryEngine
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent import requests import yaml f = requests.get( "https://raw.githubusercontent.com/sisbell/chatgpt-plugin-store/main/manifests/today-currency-converter.oiconma.repl.co.json" ).text manifest = yaml.safe_load(f) from llama_index.tools.chatgpt_plugin.base import ChatGPTPluginToolSpec from llama_index.tools.requests.base import RequestsToolSpec requests_spec = RequestsToolSpec() plugin_spec =
ChatGPTPluginToolSpec(manifest)
llama_index.tools.chatgpt_plugin.base.ChatGPTPluginToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool =
FunctionTool.from_defaults(fn=multiply)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import os from getpass import getpass if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = getpass( "Paste your OpenAI key from:" " https://platform.openai.com/account/api-keys\n" ) assert os.getenv("OPENAI_API_KEY", "").startswith( "sk-" ), "This doesn't look like a valid OpenAI API key" print("OpenAI API key configured") import os from getpass import getpass if os.getenv("HONEYHIVE_API_KEY") is None: os.environ["HONEYHIVE_API_KEY"] = getpass( "Paste your HoneyHive key from:" " https://app.honeyhive.ai/settings/account\n" ) print("HoneyHive API key configured") get_ipython().system('pip install llama-index') from llama_index.core.callbacks import CallbackManager from llama_index.core.callbacks import LlamaDebugHandler from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, SimpleKeywordTableIndex, StorageContext, ) from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from honeyhive.utils.llamaindex_tracer import HoneyHiveLlamaIndexTracer from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-4", temperature=0) import llama_index.core from llama_index.core import set_global_handler set_global_handler( "honeyhive", project="My LlamaIndex Project", name="My LlamaIndex Pipeline", api_key=os.environ["HONEYHIVE_API_KEY"], ) hh_tracer = llama_index.core.global_handler llama_debug = LlamaDebugHandler(print_trace_on_end=True) hh_tracer = HoneyHiveLlamaIndexTracer( project="My LlamaIndex Project", name="My LlamaIndex Pipeline", api_key=os.environ["HONEYHIVE_API_KEY"], ) callback_manager = CallbackManager([llama_debug, hh_tracer]) Settings.callback_manager = callback_manager get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") docs = SimpleDirectoryReader("./data/paul_graham/").load_data() index =
VectorStoreIndex.from_documents(docs)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-experimental-param-tuner') get_ipython().system('pip install llama-index llama-hub') get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') import nest_asyncio nest_asyncio.apply() from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [
Document(text=doc_text)
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai from llama_index.core import set_global_handler
set_global_handler("wandb", run_args={"project": "llamaindex"})
llama_index.core.set_global_handler
import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import SimpleDirectoryReader documents_1 = SimpleDirectoryReader( input_files=["../../community/integrations/vector_stores.md"] ).load_data() documents_2 = SimpleDirectoryReader( input_files=["../../module_guides/storing/vector_stores.md"] ).load_data() from llama_index.core import VectorStoreIndex index_1 = VectorStoreIndex.from_documents(documents_1) index_2 =
VectorStoreIndex.from_documents(documents_2)
llama_index.core.VectorStoreIndex.from_documents
get_ipython().system("mkdir -p 'data/'") get_ipython().system("curl 'https://arxiv.org/pdf/2307.09288.pdf' -o 'data/llama2.pdf'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("data").load_data() get_ipython().run_line_magic('pip', 'install llama-index-packs-subdoc-summary llama-index-llms-openai llama-index-embeddings-openai') from llama_index.packs.subdoc_summary import SubDocSummaryPack from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding subdoc_summary_pack = SubDocSummaryPack( documents, parent_chunk_size=8192, # default, child_chunk_size=512, # default llm=OpenAI(model="gpt-3.5-turbo"), embed_model=OpenAIEmbedding(), ) from IPython.display import Markdown, display from llama_index.core.response.notebook_utils import display_source_node response = subdoc_summary_pack.run("How was Llama2 pretrained?") display(Markdown(str(response))) for n in response.source_nodes: display_source_node(n, source_length=10000, metadata_mode="all") from IPython.display import Markdown, display response = subdoc_summary_pack.run( "What is the functionality of latest ChatGPT memory." ) display(Markdown(str(response))) for n in response.source_nodes:
display_source_node(n, source_length=10000, metadata_mode="all")
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader("../data/paul_graham") docs = reader.load_data() import os from llama_index.core import ( StorageContext, VectorStoreIndex, load_index_from_storage, ) if not os.path.exists("storage"): index = VectorStoreIndex.from_documents(docs) index.set_index_id("vector_index") index.storage_context.persist("./storage") else: storage_context =
StorageContext.from_defaults(persist_dir="storage")
llama_index.core.StorageContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-0613") data =
SimpleDirectoryReader(input_dir="../data/paul_graham/")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.lancedb import LanceDBVectorStore import textwrap import openai openai.api_key = "" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash) vector_store = LanceDBVectorStore(uri="/tmp/lancedb") storage_context =
StorageContext.from_defaults(vector_store=vector_store)
llama_index.core.StorageContext.from_defaults
from llama_index.llms.openai import OpenAI from llama_index.core import VectorStoreIndex from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.postprocessor import LLMRerank from llama_index.core import VectorStoreIndex from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import Settings from llama_index.packs.koda_retriever import KodaRetriever from llama_index.core.evaluation import RetrieverEvaluator from llama_index.core import SimpleDirectoryReader import os from pinecone import Pinecone from llama_index.core.node_parser import SemanticSplitterNodeParser from llama_index.core.ingestion import IngestionPipeline from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.evaluation import generate_qa_embedding_pairs import pandas as pd pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) index = pc.Index("llama2-paper") # this was previously created in my pinecone account Settings.llm = OpenAI() Settings.embed_model = OpenAIEmbedding() vector_store = PineconeVectorStore(pinecone_index=index) vector_index = VectorStoreIndex.from_vector_store( vector_store=vector_store, embed_model=Settings.embed_model ) reranker = LLMRerank(llm=Settings.llm) # optional koda_retriever = KodaRetriever( index=vector_index, llm=Settings.llm, reranker=reranker, # optional verbose=True, similarity_top_k=10, ) vanilla_retriever = vector_index.as_retriever() pipeline = IngestionPipeline( transformations=[Settings.embed_model], vector_store=vector_store ) def load_documents(file_path, num_pages=None): if num_pages: documents =
SimpleDirectoryReader(input_files=[file_path])
llama_index.core.SimpleDirectoryReader
import os from getpass import getpass if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = getpass( "Paste your OpenAI key from:" " https://platform.openai.com/account/api-keys\n" ) assert os.getenv("OPENAI_API_KEY", "").startswith( "sk-" ), "This doesn't look like a valid OpenAI API key" print("OpenAI API key configured") get_ipython().run_line_magic('pip', 'install -q html2text llama-index pandas pyarrow tqdm') get_ipython().run_line_magic('pip', 'install -q llama-index-readers-web') get_ipython().run_line_magic('pip', 'install -q llama-index-callbacks-openinference') import hashlib import json from pathlib import Path import os import textwrap from typing import List, Union import llama_index.core from llama_index.readers.web import SimpleWebPageReader from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core.callbacks import CallbackManager from llama_index.callbacks.openinference import OpenInferenceCallbackHandler from llama_index.callbacks.openinference.base import ( as_dataframe, QueryData, NodeData, ) from llama_index.core.node_parser import SimpleNodeParser import pandas as pd from tqdm import tqdm documents = SimpleWebPageReader().load_data( [ "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt" ] ) print(documents[0].text) parser = SentenceSplitter() nodes = parser.get_nodes_from_documents(documents) print(nodes[0].text) callback_handler = OpenInferenceCallbackHandler() callback_manager =
CallbackManager([callback_handler])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-replicate') get_ipython().system('pip install llama-index') from llama_index.llms.replicate import Replicate from llama_index.core.llms.llama_utils import messages_to_prompt llm_13b = Replicate( model="a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5", context_window=4096, messages_to_prompt=messages_to_prompt, # override message representation for llama 2 ) llm_70b = Replicate( model="replicate/llama70b-v2-chat:e951f18578850b652510200860fc4ea62b3b16fac280f83ff32282f87bbd2e48", context_window=4096, messages_to_prompt=messages_to_prompt, # override message representation for llama 2 ) from llama_index.core.chat_engine import SimpleChatEngine from llama_index.core.memory import ChatMemoryBuffer from llama_index.core.llms import ChatMessage bot_70b = SimpleChatEngine( llm=llm_70b, memory=
ChatMemoryBuffer.from_defaults(llm=llm_70b)
llama_index.core.memory.ChatMemoryBuffer.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index =
SummaryIndex(nodes, storage_context=storage_context)
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-index-readers-github') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index llama-hub') import nest_asyncio nest_asyncio.apply() import os os.environ["GITHUB_TOKEN"] = "ghp_..." os.environ["OPENAI_API_KEY"] = "sk-..." import os from llama_index.readers.github import ( GitHubRepositoryIssuesReader, GitHubIssuesClient, ) github_client = GitHubIssuesClient() loader = GitHubRepositoryIssuesReader( github_client, owner="run-llama", repo="llama_index", verbose=True, ) orig_docs = loader.load_data() limit = 100 docs = [] for idx, doc in enumerate(orig_docs): doc.metadata["index_id"] = int(doc.id_) if idx >= limit: break docs.append(doc) import weaviate auth_config = weaviate.AuthApiKey( api_key="XRa15cDIkYRT7AkrpqT6jLfE4wropK1c1TGk" ) client = weaviate.Client( "https://llama-index-test-v0oggsoz.weaviate.network", auth_client_secret=auth_config, ) class_name = "LlamaIndex_docs" client.schema.delete_class(class_name) from llama_index.vector_stores.weaviate import WeaviateVectorStore from llama_index.core import VectorStoreIndex, StorageContext vector_store = WeaviateVectorStore( weaviate_client=client, index_name=class_name ) storage_context = StorageContext.from_defaults(vector_store=vector_store) doc_index = VectorStoreIndex.from_documents( docs, storage_context=storage_context ) from llama_index.core import SummaryIndex from llama_index.core.async_utils import run_jobs from llama_index.llms.openai import OpenAI from llama_index.core.schema import IndexNode from llama_index.core.vector_stores import ( FilterOperator, MetadataFilter, MetadataFilters, ) async def aprocess_doc(doc, include_summary: bool = True): """Process doc.""" metadata = doc.metadata date_tokens = metadata["created_at"].split("T")[0].split("-") year = int(date_tokens[0]) month = int(date_tokens[1]) day = int(date_tokens[2]) assignee = ( "" if "assignee" not in doc.metadata else doc.metadata["assignee"] ) size = "" if len(doc.metadata["labels"]) > 0: size_arr = [l for l in doc.metadata["labels"] if "size:" in l] size = size_arr[0].split(":")[1] if len(size_arr) > 0 else "" new_metadata = { "state": metadata["state"], "year": year, "month": month, "day": day, "assignee": assignee, "size": size, } summary_index = SummaryIndex.from_documents([doc]) query_str = "Give a one-sentence concise summary of this issue." query_engine = summary_index.as_query_engine( llm=
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-evaluation-tonic-validate') import json import pandas as pd from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.evaluation.tonic_validate import ( AnswerConsistencyEvaluator, AnswerSimilarityEvaluator, AugmentationAccuracyEvaluator, AugmentationPrecisionEvaluator, RetrievalPrecisionEvaluator, TonicValidateEvaluator, ) question = "What makes Sam Altman a good founder?" reference_answer = "He is smart and has a great force of will." llm_answer = "He is a good founder because he is smart." retrieved_context_list = [ "Sam Altman is a good founder. He is very smart.", "What makes Sam Altman such a good founder is his great force of will.", ] answer_similarity_evaluator = AnswerSimilarityEvaluator() score = await answer_similarity_evaluator.aevaluate( question, llm_answer, retrieved_context_list, reference_response=reference_answer, ) score answer_consistency_evaluator = AnswerConsistencyEvaluator() score = await answer_consistency_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score augmentation_accuracy_evaluator = AugmentationAccuracyEvaluator() score = await augmentation_accuracy_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score augmentation_precision_evaluator = AugmentationPrecisionEvaluator() score = await augmentation_precision_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score retrieval_precision_evaluator = RetrievalPrecisionEvaluator() score = await retrieval_precision_evaluator.aevaluate( question, llm_answer, retrieved_context_list ) score tonic_validate_evaluator = TonicValidateEvaluator() scores = await tonic_validate_evaluator.aevaluate( question, llm_answer, retrieved_context_list, reference_response=reference_answer, ) scores.score_dict tonic_validate_evaluator = TonicValidateEvaluator() scores = await tonic_validate_evaluator.aevaluate_run( [question], [llm_answer], [retrieved_context_list], [reference_answer] ) scores.run_data[0].scores get_ipython().system('llamaindex-cli download-llamadataset EvaluatingLlmSurveyPaperDataset --download-dir ./data') from llama_index.core import SimpleDirectoryReader from llama_index.core.llama_dataset import LabelledRagDataset from llama_index.core import VectorStoreIndex rag_dataset = LabelledRagDataset.from_json("./data/rag_dataset.json") documents =
SimpleDirectoryReader(input_dir="./data/source_files")
llama_index.core.SimpleDirectoryReader