prompt
stringlengths
43
25.9k
completion
stringlengths
7
362
api
stringlengths
18
90
from langchain.chains import LLMSummarizationCheckerChain from langchain_openai import OpenAI llm = OpenAI(temperature=0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2) text = """ Your 9-year old might like these recent discoveries made by The James Webb Space Telescope (JWST): β€’ In 2023, The JWST spotted a number of galaxies nicknamed "green peas." They were given this name because they are small, round, and green, like peas. β€’ The telescope captured images of galaxies that are over 13 billion years old. This means that the light from these galaxies has been traveling for over 13 billion years to reach us. β€’ JWST took the very first pictures of a planet outside of our own solar system. These distant worlds are called "exoplanets." Exo means "from outside." These discoveries can spark a child's imagination about the infinite wonders of the universe.""" checker_chain.run(text) from langchain.chains import LLMSummarizationCheckerChain from langchain_openai import OpenAI llm = OpenAI(temperature=0) checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3) text = "The Greenland Sea is an outlying portion of the Arctic Ocean located between Iceland, Norway, the Svalbard archipelago and Greenland. It has an area of 465,000 square miles and is one of five oceans in the world, alongside the Pacific Ocean, Atlantic Ocean, Indian Ocean, and the Southern Ocean. It is the smallest of the five oceans and is covered almost entirely by water, some of which is frozen in the form of glaciers and icebergs. The sea is named after the island of Greenland, and is the Arctic Ocean's main outlet to the Atlantic. It is often frozen over so navigation is limited, and is considered the northern branch of the Norwegian Sea." checker_chain.run(text) from langchain.chains import LLMSummarizationCheckerChain from langchain_openai import OpenAI llm =
OpenAI(temperature=0)
langchain_openai.OpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3') from langchain_community.document_loaders import S3DirectoryLoader loader = S3DirectoryLoader("testing-hwc") loader.load() loader =
S3DirectoryLoader("testing-hwc", prefix="fake")
langchain_community.document_loaders.S3DirectoryLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet singlestoredb') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import SingleStoreDB from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() os.environ["SINGLESTOREDB_URL"] = "root:pass@localhost:3306/db" docsearch = SingleStoreDB.from_documents( docs, embeddings, table_name="notebook", # use table with a custom name ) query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) # Find documents that correspond to the query print(docs[0].page_content) get_ipython().run_line_magic('pip', 'install -U langchain openai singlestoredb langchain-experimental # (newest versions required for multi-modal)') import os from langchain_community.vectorstores import SingleStoreDB from langchain_experimental.open_clip import OpenCLIPEmbeddings os.environ["SINGLESTOREDB_URL"] = "root:pass@localhost:3306/db" TEST_IMAGES_DIR = "../../modules/images" docsearch = SingleStoreDB(
OpenCLIPEmbeddings()
langchain_experimental.open_clip.OpenCLIPEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.model_laboratory import ModelLaboratory from langchain.prompts import PromptTemplate from langchain_community.llms import Cohere, HuggingFaceHub from langchain_openai import OpenAI import getpass import os os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:") os.environ["OPENAI_API_KEY"] = getpass.getpass("Open API Key:") os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass("Hugging Face API Key:") llms = [ OpenAI(temperature=0), Cohere(temperature=0), HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 1}), ] model_lab =
ModelLaboratory.from_llms(llms)
langchain.model_laboratory.ModelLaboratory.from_llms
get_ipython().run_line_magic('pip', 'install --upgrade --quiet aim') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results') import os from datetime import datetime from langchain.callbacks import AimCallbackHandler, StdOutCallbackHandler from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = "..." os.environ["SERPAPI_API_KEY"] = "..." session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S") aim_callback = AimCallbackHandler( repo=".", experiment_name="scenario 1: OpenAI LLM", ) callbacks = [StdOutCallbackHandler(), aim_callback] llm = OpenAI(temperature=0, callbacks=callbacks) llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3) aim_callback.flush_tracker( langchain_asset=llm, experiment_name="scenario 2: Chain with multiple SubChains on multiple generations", ) from langchain.chains import LLMChain from langchain.prompts import PromptTemplate template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. Title: {title} Playwright: This is a synopsis for the above play:""" prompt_template = PromptTemplate(input_variables=["title"], template=template) synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks) test_prompts = [ { "title": "documentary about good video games that push the boundary of game design" }, {"title": "the phenomenon behind the remarkable speed of cheetahs"}, {"title": "the best in class mlops tooling"}, ] synopsis_chain.apply(test_prompts) aim_callback.flush_tracker( langchain_asset=synopsis_chain, experiment_name="scenario 3: Agent with Tools" ) from langchain.agents import AgentType, initialize_agent, load_tools tools =
load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
langchain.agents.load_tools
import os from langchain.chains import ConversationalRetrievalChain from langchain_community.vectorstores import Vectara from langchain_openai import OpenAI from langchain_community.document_loaders import TextLoader loader = TextLoader("state_of_the_union.txt") documents = loader.load() vectara = Vectara.from_documents(documents, embedding=None) from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) openai_api_key = os.environ["OPENAI_API_KEY"] llm = OpenAI(openai_api_key=openai_api_key, temperature=0) retriever = vectara.as_retriever() d = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson", k=2 ) print(d) bot = ConversationalRetrievalChain.from_llm( llm, retriever, memory=memory, verbose=False ) query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query}) result["answer"] query = "Did he mention who she suceeded" result = bot.invoke({"question": query}) result["answer"] bot = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectara.as_retriever() ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query, "chat_history": chat_history}) result["answer"] chat_history = [(query, result["answer"])] query = "Did he mention who she suceeded" result = bot.invoke({"question": query, "chat_history": chat_history}) result["answer"] bot = ConversationalRetrievalChain.from_llm( llm, vectara.as_retriever(), return_source_documents=True ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query, "chat_history": chat_history}) result["source_documents"][0] from langchain.chains import LLMChain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT from langchain.chains.question_answering import load_qa_chain question_generator =
LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
langchain.chains.llm.LLMChain
get_ipython().run_line_magic('pip', 'install --upgrade --quiet scann') from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import ScaNN from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings() db = ScaNN.from_documents(docs, embeddings) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) docs[0] from langchain.chains import RetrievalQA from langchain_community.chat_models import google_palm palm_client =
google_palm.ChatGooglePalm(google_api_key="YOUR_GOOGLE_PALM_API_KEY")
langchain_community.chat_models.google_palm.ChatGooglePalm
from langchain_community.document_loaders import RoamLoader loader =
RoamLoader("Roam_DB")
langchain_community.document_loaders.RoamLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.prompts import PromptTemplate from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0).configurable_fields( temperature=ConfigurableField( id="llm_temperature", name="LLM Temperature", description="The temperature of the LLM", ) ) model.invoke("pick a random number") model.with_config(configurable={"llm_temperature": 0.9}).invoke("pick a random number") prompt = PromptTemplate.from_template("Pick a random number above {x}") chain = prompt | model chain.invoke({"x": 0}) chain.with_config(configurable={"llm_temperature": 0.9}).invoke({"x": 0}) from langchain.runnables.hub import HubRunnable prompt =
HubRunnable("rlm/rag-prompt")
langchain.runnables.hub.HubRunnable
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-cloud-sql-pg langchain-google-vertexai') from google.colab import auth auth.authenticate_user() PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') get_ipython().system('gcloud services enable sqladmin.googleapis.com') REGION = "us-central1" # @param {type: "string"} INSTANCE = "my-pg-instance" # @param {type: "string"} DATABASE = "my-database" # @param {type: "string"} TABLE_NAME = "vector_store" # @param {type: "string"} from langchain_google_cloud_sql_pg import PostgreSQLEngine engine = await PostgreSQLEngine.afrom_instance( project_id=PROJECT_ID, region=REGION, instance=INSTANCE, database=DATABASE ) from langchain_google_cloud_sql_pg import PostgreSQLEngine await engine.ainit_vectorstore_table( table_name=TABLE_NAME, vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest) ) get_ipython().system('gcloud services enable aiplatform.googleapis.com') from langchain_google_vertexai import VertexAIEmbeddings embedding = VertexAIEmbeddings( model_name="textembedding-gecko@latest", project=PROJECT_ID ) from langchain_google_cloud_sql_pg import PostgresVectorStore store = await PostgresVectorStore.create( # Use .create() to initialize an async vector store engine=engine, table_name=TABLE_NAME, embedding_service=embedding, ) import uuid all_texts = ["Apples and oranges", "Cars and airplanes", "Pineapple", "Train", "Banana"] metadatas = [{"len": len(t)} for t in all_texts] ids = [str(uuid.uuid4()) for _ in all_texts] await store.aadd_texts(all_texts, metadatas=metadatas, ids=ids) await store.adelete([ids[1]]) query = "I'd like a fruit." docs = await store.asimilarity_search(query) print(docs) query_vector = embedding.embed_query(query) docs = await store.asimilarity_search_by_vector(query_vector, k=2) print(docs) from langchain_google_cloud_sql_pg.indexes import IVFFlatIndex index =
IVFFlatIndex()
langchain_google_cloud_sql_pg.indexes.IVFFlatIndex
get_ipython().run_line_magic('pip', 'install --upgrade --quiet modal') get_ipython().system('modal token new') from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import Modal template = """Question: {question} Answer: Let's think step by step.""" prompt =
PromptTemplate.from_template(template)
langchain.prompts.PromptTemplate.from_template
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results') import os from langchain_community.tools.google_scholar import GoogleScholarQueryRun from langchain_community.utilities.google_scholar import GoogleScholarAPIWrapper os.environ["SERP_API_KEY"] = "" tool = GoogleScholarQueryRun(api_wrapper=
GoogleScholarAPIWrapper()
langchain_community.utilities.google_scholar.GoogleScholarAPIWrapper
model_url = "http://localhost:5000" from langchain.chains import LLMChain from langchain.globals import set_debug from langchain.prompts import PromptTemplate from langchain_community.llms import TextGen set_debug(True) template = """Question: {question} Answer: Let's think step by step.""" prompt =
PromptTemplate.from_template(template)
langchain.prompts.PromptTemplate.from_template
def pretty_print_docs(docs): print( f"\n{'-' * 100}\n".join( [f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)] ) ) from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter documents = TextLoader("../../state_of_the_union.txt").load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever() docs = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson" ) pretty_print_docs(docs) from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor from langchain_openai import OpenAI llm = OpenAI(temperature=0) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) compressed_docs = compression_retriever.get_relevant_documents( "What did the president say about Ketanji Jackson Brown" ) pretty_print_docs(compressed_docs) from langchain.retrievers.document_compressors import LLMChainFilter _filter = LLMChainFilter.from_llm(llm) compression_retriever = ContextualCompressionRetriever( base_compressor=_filter, base_retriever=retriever ) compressed_docs = compression_retriever.get_relevant_documents( "What did the president say about Ketanji Jackson Brown" ) pretty_print_docs(compressed_docs) from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) compression_retriever = ContextualCompressionRetriever( base_compressor=embeddings_filter, base_retriever=retriever ) compressed_docs = compression_retriever.get_relevant_documents( "What did the president say about Ketanji Jackson Brown" ) pretty_print_docs(compressed_docs) from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain_community.document_transformers import EmbeddingsRedundantFilter from langchain_text_splitters import CharacterTextSplitter splitter =
CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
langchain_text_splitters.CharacterTextSplitter
import os os.environ["EXA_API_KEY"] = "..." get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_exa import ExaSearchRetriever, TextContentsOptions from langchain_openai import ChatOpenAI retriever = ExaSearchRetriever( k=5, text_contents_options=TextContentsOptions(max_length=200) ) prompt = PromptTemplate.from_template( """Answer the following query based on the following context: query: {query} <context> {context} </context""" ) llm = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "query": RunnablePassthrough()}) | prompt | llm ) chain.invoke("When is the best time to visit japan?") get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') from exa_py import Exa from langchain.agents import tool exa = Exa(api_key=os.environ["EXA_API_KEY"]) @tool def search(query: str): """Search for a webpage based on the query.""" return exa.search(f"{query}", use_autoprompt=True, num_results=5) @tool def find_similar(url: str): """Search for webpages similar to a given URL. The url passed in should be a URL returned from `search`. """ return exa.find_similar(url, num_results=5) @tool def get_contents(ids: list[str]): """Get the contents of a webpage. The ids passed in should be a list of ids returned from `search`. """ return exa.get_contents(ids) tools = [search, get_contents, find_similar] from langchain.agents import AgentExecutor, OpenAIFunctionsAgent from langchain_core.messages import SystemMessage from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0) system_message =
SystemMessage( content="You are a web researcher who answers user questions by looking up information on the internet and retrieving contents of helpful documents. Cite your sources." )
langchain_core.messages.SystemMessage
from typing import List from langchain.prompts.chat import ( HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import ( AIMessage, BaseMessage, HumanMessage, SystemMessage, ) from langchain_openai import ChatOpenAI class CAMELAgent: def __init__( self, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.system_message = system_message self.model = model self.init_messages() def reset(self) -> None: self.init_messages() return self.stored_messages def init_messages(self) -> None: self.stored_messages = [self.system_message] def update_messages(self, message: BaseMessage) -> List[BaseMessage]: self.stored_messages.append(message) return self.stored_messages def step( self, input_message: HumanMessage, ) -> AIMessage: messages = self.update_messages(input_message) output_message = self.model(messages) self.update_messages(output_message) return output_message import os os.environ["OPENAI_API_KEY"] = "" assistant_role_name = "Python Programmer" user_role_name = "Stock Trader" task = "Develop a trading bot for the stock market" word_limit = 50 # word limit for task brainstorming task_specifier_sys_msg = SystemMessage(content="You can make a task more specific.") task_specifier_prompt = """Here is a task that {assistant_role_name} will help {user_role_name} to complete: {task}. Please make it more specific. Be creative and imaginative. Please reply with the specified task in {word_limit} words or less. Do not add anything else.""" task_specifier_template = HumanMessagePromptTemplate.from_template( template=task_specifier_prompt ) task_specify_agent = CAMELAgent(task_specifier_sys_msg, ChatOpenAI(temperature=1.0)) task_specifier_msg = task_specifier_template.format_messages( assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task, word_limit=word_limit, )[0] specified_task_msg = task_specify_agent.step(task_specifier_msg) print(f"Specified task: {specified_task_msg.content}") specified_task = specified_task_msg.content assistant_inception_prompt = """Never forget you are a {assistant_role_name} and I am a {user_role_name}. Never flip roles! Never instruct me! We share a common interest in collaborating to successfully complete a task. You must help me to complete the task. Here is the task: {task}. Never forget our task! I must instruct you based on your expertise and my needs to complete the task. I must give you one instruction at a time. You must write a specific solution that appropriately completes the requested instruction. You must decline my instruction honestly if you cannot perform the instruction due to physical, moral, legal reasons or your capability and explain the reasons. Do not add anything else other than your solution to my instruction. You are never supposed to ask me any questions you only answer questions. You are never supposed to reply with a flake solution. Explain your solutions. Your solution must be declarative sentences and simple present tense. Unless I say the task is completed, you should always start with: Solution: <YOUR_SOLUTION> <YOUR_SOLUTION> should be specific and provide preferable implementations and examples for task-solving. Always end <YOUR_SOLUTION> with: Next request.""" user_inception_prompt = """Never forget you are a {user_role_name} and I am a {assistant_role_name}. Never flip roles! You will always instruct me. We share a common interest in collaborating to successfully complete a task. I must help you to complete the task. Here is the task: {task}. Never forget our task! You must instruct me based on my expertise and your needs to complete the task ONLY in the following two ways: 1. Instruct with a necessary input: Instruction: <YOUR_INSTRUCTION> Input: <YOUR_INPUT> 2. Instruct without any input: Instruction: <YOUR_INSTRUCTION> Input: None The "Instruction" describes a task or question. The paired "Input" provides further context or information for the requested "Instruction". You must give me one instruction at a time. I must write a response that appropriately completes the requested instruction. I must decline your instruction honestly if I cannot perform the instruction due to physical, moral, legal reasons or my capability and explain the reasons. You should instruct me not ask me questions. Now you must start to instruct me using the two ways described above. Do not add anything else other than your instruction and the optional corresponding input! Keep giving me instructions and necessary inputs until you think the task is completed. When the task is completed, you must only reply with a single word <CAMEL_TASK_DONE>. Never say <CAMEL_TASK_DONE> unless my responses have solved your task.""" def get_sys_msgs(assistant_role_name: str, user_role_name: str, task: str): assistant_sys_template = SystemMessagePromptTemplate.from_template( template=assistant_inception_prompt ) assistant_sys_msg = assistant_sys_template.format_messages( assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task, )[0] user_sys_template = SystemMessagePromptTemplate.from_template( template=user_inception_prompt ) user_sys_msg = user_sys_template.format_messages( assistant_role_name=assistant_role_name, user_role_name=user_role_name, task=task, )[0] return assistant_sys_msg, user_sys_msg assistant_sys_msg, user_sys_msg = get_sys_msgs( assistant_role_name, user_role_name, specified_task ) assistant_agent = CAMELAgent(assistant_sys_msg, ChatOpenAI(temperature=0.2)) user_agent = CAMELAgent(user_sys_msg, ChatOpenAI(temperature=0.2)) assistant_agent.reset() user_agent.reset() user_msg = HumanMessage( content=( f"{user_sys_msg.content}. " "Now start to give me introductions one by one. " "Only reply with Instruction and Input." ) ) assistant_msg = HumanMessage(content=f"{assistant_sys_msg.content}") assistant_msg = assistant_agent.step(user_msg) print(f"Original task prompt:\n{task}\n") print(f"Specified task prompt:\n{specified_task}\n") chat_turn_limit, n = 30, 0 while n < chat_turn_limit: n += 1 user_ai_msg = user_agent.step(assistant_msg) user_msg = HumanMessage(content=user_ai_msg.content) print(f"AI User ({user_role_name}):\n\n{user_msg.content}\n\n") assistant_ai_msg = assistant_agent.step(user_msg) assistant_msg =
HumanMessage(content=assistant_ai_msg.content)
langchain.schema.HumanMessage
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pymilvus') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Milvus from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() vector_db = Milvus.from_documents( docs, embeddings, connection_args={"host": "127.0.0.1", "port": "19530"}, ) query = "What did the president say about Ketanji Brown Jackson" docs = vector_db.similarity_search(query) docs[0].page_content vector_db = Milvus.from_documents( docs, embeddings, collection_name="collection_1", connection_args={"host": "127.0.0.1", "port": "19530"}, ) vector_db = Milvus( embeddings, connection_args={"host": "127.0.0.1", "port": "19530"}, collection_name="collection_1", ) from langchain_core.documents import Document docs = [ Document(page_content="i worked at kensho", metadata={"namespace": "harrison"}), Document(page_content="i worked at facebook", metadata={"namespace": "ankush"}), ] vectorstore = Milvus.from_documents( docs, embeddings, connection_args={"host": "127.0.0.1", "port": "19530"}, drop_old=True, partition_key_field="namespace", # Use the "namespace" field as the partition key ) vectorstore.as_retriever( search_kwargs={"expr": 'namespace == "ankush"'} ).get_relevant_documents("where did i work?") vectorstore.as_retriever( search_kwargs={"expr": 'namespace == "harrison"'} ).get_relevant_documents("where did i work?") from langchain.docstore.document import Document docs = [
Document(page_content="foo", metadata={"id": 1})
langchain.docstore.document.Document
from langchain.prompts import FewShotPromptTemplate, PromptTemplate from langchain.prompts.example_selector import ( MaxMarginalRelevanceExampleSelector, SemanticSimilarityExampleSelector, ) from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = MaxMarginalRelevanceExampleSelector.from_examples( examples, OpenAIEmbeddings(), FAISS, k=2, ) mmr_prompt = FewShotPromptTemplate( example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) print(mmr_prompt.format(adjective="worried")) example_selector = SemanticSimilarityExampleSelector.from_examples( examples,
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from langchain_openai import OpenAI template = """You are a chatbot having a conversation with a human. {chat_history} Human: {human_input} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "human_input"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") llm = OpenAI() llm_chain = LLMChain( llm=llm, prompt=prompt, verbose=True, memory=memory, ) llm_chain.predict(human_input="Hi there my friend") llm_chain.predict(human_input="Not too bad - how are you?") from langchain.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain_core.messages import SystemMessage from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_messages( [ SystemMessage( content="You are a chatbot having a conversation with a human." ), # The persistent system prompt MessagesPlaceholder( variable_name="chat_history" ), # Where the memory will be stored. HumanMessagePromptTemplate.from_template( "{human_input}" ), # Where the human input will injected ] ) memory =
ConversationBufferMemory(memory_key="chat_history", return_messages=True)
langchain.memory.ConversationBufferMemory
from langchain.agents import AgentType, initialize_agent from langchain.requests import Requests from langchain_community.agent_toolkits import NLAToolkit from langchain_openai import OpenAI llm = OpenAI( temperature=0, max_tokens=700, model_name="gpt-3.5-turbo-instruct" ) # You can swap between different core LLM's here. speak_toolkit =
NLAToolkit.from_llm_and_url(llm, "https://api.speak.com/openapi.yaml")
langchain_community.agent_toolkits.NLAToolkit.from_llm_and_url
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"} get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-datastore') PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') from google.colab import auth auth.authenticate_user() get_ipython().system('gcloud services enable datastore.googleapis.com') from langchain_core.documents import Document from langchain_google_datastore import DatastoreSaver data = [Document(page_content="Hello, World!")] saver = DatastoreSaver() saver.upsert_documents(data) saver = DatastoreSaver("Collection") saver.upsert_documents(data) doc_ids = ["AnotherCollection/doc_id", "foo/bar"] saver =
DatastoreSaver()
langchain_google_datastore.DatastoreSaver
get_ipython().run_line_magic('pip', 'install --upgrade --quiet lxml') get_ipython().run_line_magic('pip', 'install --upgrade --quiet html2text') from langchain_community.document_loaders import EverNoteLoader loader =
EverNoteLoader("example_data/testing.enex")
langchain_community.document_loaders.EverNoteLoader
from langchain_community.vectorstores import AnalyticDB from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.model_laboratory import ModelLaboratory from langchain.prompts import PromptTemplate from langchain_community.llms import Cohere, HuggingFaceHub from langchain_openai import OpenAI import getpass import os os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:") os.environ["OPENAI_API_KEY"] = getpass.getpass("Open API Key:") os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass("Hugging Face API Key:") llms = [ OpenAI(temperature=0), Cohere(temperature=0), HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature": 1}), ] model_lab = ModelLaboratory.from_llms(llms) model_lab.compare("What color is a flamingo?") prompt = PromptTemplate( template="What is the capital of {state}?", input_variables=["state"] ) model_lab_with_prompt = ModelLaboratory.from_llms(llms, prompt=prompt) model_lab_with_prompt.compare("New York") from langchain.chains import SelfAskWithSearchChain from langchain_community.utilities import SerpAPIWrapper open_ai_llm = OpenAI(temperature=0) search = SerpAPIWrapper() self_ask_with_search_openai = SelfAskWithSearchChain( llm=open_ai_llm, search_chain=search, verbose=True ) cohere_llm = Cohere(temperature=0) search = SerpAPIWrapper() self_ask_with_search_cohere = SelfAskWithSearchChain( llm=cohere_llm, search_chain=search, verbose=True ) chains = [self_ask_with_search_openai, self_ask_with_search_cohere] names = [str(open_ai_llm), str(cohere_llm)] model_lab =
ModelLaboratory(chains, names=names)
langchain.model_laboratory.ModelLaboratory
from typing import Callable, List from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_openai import ChatOpenAI class DialogueAgent: def __init__( self, name: str, system_message: SystemMessage, model: ChatOpenAI, ) -> None: self.name = name self.system_message = system_message self.model = model self.prefix = f"{self.name}: " self.reset() def reset(self): self.message_history = ["Here is the conversation so far."] def send(self) -> str: """ Applies the chatmodel to the message history and returns the message string """ message = self.model( [ self.system_message, HumanMessage(content="\n".join(self.message_history + [self.prefix])), ] ) return message.content def receive(self, name: str, message: str) -> None: """ Concatenates {message} spoken by {name} into message history """ self.message_history.append(f"{name}: {message}") class DialogueSimulator: def __init__( self, agents: List[DialogueAgent], selection_function: Callable[[int, List[DialogueAgent]], int], ) -> None: self.agents = agents self._step = 0 self.select_next_speaker = selection_function def reset(self): for agent in self.agents: agent.reset() def inject(self, name: str, message: str): """ Initiates the conversation with a {message} from {name} """ for agent in self.agents: agent.receive(name, message) self._step += 1 def step(self) -> tuple[str, str]: speaker_idx = self.select_next_speaker(self._step, self.agents) speaker = self.agents[speaker_idx] message = speaker.send() for receiver in self.agents: receiver.receive(speaker.name, message) self._step += 1 return speaker.name, message character_names = ["Harry Potter", "Ron Weasley", "Hermione Granger", "Argus Filch"] storyteller_name = "Dungeon Master" quest = "Find all of Lord Voldemort's seven horcruxes." word_limit = 50 # word limit for task brainstorming game_description = f"""Here is the topic for a Dungeons & Dragons game: {quest}. The characters are: {*character_names,}. The story is narrated by the storyteller, {storyteller_name}.""" player_descriptor_system_message = SystemMessage( content="You can add detail to the description of a Dungeons & Dragons player." ) def generate_character_description(character_name): character_specifier_prompt = [ player_descriptor_system_message, HumanMessage( content=f"""{game_description} Please reply with a creative description of the character, {character_name}, in {word_limit} words or less. Speak directly to {character_name}. Do not add anything else.""" ), ] character_description = ChatOpenAI(temperature=1.0)( character_specifier_prompt ).content return character_description def generate_character_system_message(character_name, character_description): return SystemMessage( content=( f"""{game_description} Your name is {character_name}. Your character description is as follows: {character_description}. You will propose actions you plan to take and {storyteller_name} will explain what happens when you take those actions. Speak in the first person from the perspective of {character_name}. For describing your own body movements, wrap your description in '*'. Do not change roles! Do not speak from the perspective of anyone else. Remember you are {character_name}. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to {word_limit} words! Do not add anything else. """ ) ) character_descriptions = [ generate_character_description(character_name) for character_name in character_names ] character_system_messages = [ generate_character_system_message(character_name, character_description) for character_name, character_description in zip( character_names, character_descriptions ) ] storyteller_specifier_prompt = [ player_descriptor_system_message, HumanMessage( content=f"""{game_description} Please reply with a creative description of the storyteller, {storyteller_name}, in {word_limit} words or less. Speak directly to {storyteller_name}. Do not add anything else.""" ), ] storyteller_description = ChatOpenAI(temperature=1.0)( storyteller_specifier_prompt ).content storyteller_system_message = SystemMessage( content=( f"""{game_description} You are the storyteller, {storyteller_name}. Your description is as follows: {storyteller_description}. The other players will propose actions to take and you will explain what happens when they take those actions. Speak in the first person from the perspective of {storyteller_name}. Do not change roles! Do not speak from the perspective of anyone else. Remember you are the storyteller, {storyteller_name}. Stop speaking the moment you finish speaking from your perspective. Never forget to keep your response to {word_limit} words! Do not add anything else. """ ) ) print("Storyteller Description:") print(storyteller_description) for character_name, character_description in zip( character_names, character_descriptions ): print(f"{character_name} Description:") print(character_description) quest_specifier_prompt = [
SystemMessage(content="You can make a task more specific.")
langchain.schema.SystemMessage
get_ipython().run_line_magic('pip', 'install --upgrade --quiet "docarray[hnswlib]"') from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import DocArrayHnswSearch from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter documents = TextLoader("../../modules/state_of_the_union.txt").load() text_splitter =
CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
langchain_text_splitters.CharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_openai.chat_models import ChatOpenAI model = ChatOpenAI() prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're an assistant who's good at {ability}. Respond in 20 words or fewer", ), MessagesPlaceholder(variable_name="history"), ("human", "{input}"), ] ) runnable = prompt | model from langchain_community.chat_message_histories import ChatMessageHistory from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.runnables.history import RunnableWithMessageHistory store = {} def get_session_history(session_id: str) -> BaseChatMessageHistory: if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id] with_message_history = RunnableWithMessageHistory( runnable, get_session_history, input_messages_key="input", history_messages_key="history", ) with_message_history.invoke( {"ability": "math", "input": "What does cosine mean?"}, config={"configurable": {"session_id": "abc123"}}, ) with_message_history.invoke( {"ability": "math", "input": "What?"}, config={"configurable": {"session_id": "abc123"}}, ) with_message_history.invoke( {"ability": "math", "input": "What?"}, config={"configurable": {"session_id": "def234"}}, ) from langchain_core.runnables import ConfigurableFieldSpec store = {} def get_session_history(user_id: str, conversation_id: str) -> BaseChatMessageHistory: if (user_id, conversation_id) not in store: store[(user_id, conversation_id)] = ChatMessageHistory() return store[(user_id, conversation_id)] with_message_history = RunnableWithMessageHistory( runnable, get_session_history, input_messages_key="input", history_messages_key="history", history_factory_config=[ ConfigurableFieldSpec( id="user_id", annotation=str, name="User ID", description="Unique identifier for the user.", default="", is_shared=True, ), ConfigurableFieldSpec( id="conversation_id", annotation=str, name="Conversation ID", description="Unique identifier for the conversation.", default="", is_shared=True, ), ], ) with_message_history.invoke( {"ability": "math", "input": "Hello"}, config={"configurable": {"user_id": "123", "conversation_id": "1"}}, ) from langchain_core.messages import HumanMessage from langchain_core.runnables import RunnableParallel chain = RunnableParallel({"output_message": ChatOpenAI()}) def get_session_history(session_id: str) -> BaseChatMessageHistory: if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id] with_message_history = RunnableWithMessageHistory( chain, get_session_history, output_messages_key="output_message", ) with_message_history.invoke( [HumanMessage(content="What did Simone de Beauvoir believe about free will")], config={"configurable": {"session_id": "baz"}}, ) with_message_history.invoke( [HumanMessage(content="How did this compare to Sartre")], config={"configurable": {"session_id": "baz"}}, ) RunnableWithMessageHistory( ChatOpenAI(), get_session_history, ) from operator import itemgetter RunnableWithMessageHistory( itemgetter("input_messages") |
ChatOpenAI()
langchain_openai.chat_models.ChatOpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core databricks-vectorsearch langchain-openai tiktoken') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.document_loaders import TextLoader from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() emb_dim = len(embeddings.embed_query("hello")) from databricks.vector_search.client import VectorSearchClient vsc = VectorSearchClient() vsc.create_endpoint(name="vector_search_demo_endpoint", endpoint_type="STANDARD") vector_search_endpoint_name = "vector_search_demo_endpoint" index_name = "ml.llm.demo_index" index = vsc.create_direct_access_index( endpoint_name=vector_search_endpoint_name, index_name=index_name, primary_key="id", embedding_dimension=emb_dim, embedding_vector_column="text_vector", schema={ "id": "string", "text": "string", "text_vector": "array<float>", "source": "string", }, ) index.describe() from langchain_community.vectorstores import DatabricksVectorSearch dvs = DatabricksVectorSearch( index, text_column="text", embedding=embeddings, columns=["source"] ) dvs.add_documents(docs) query = "What did the president say about Ketanji Brown Jackson" dvs.similarity_search(query) print(docs[0].page_content) dvs_delta_sync =
DatabricksVectorSearch("catalog_name.schema_name.delta_sync_index")
langchain_community.vectorstores.DatabricksVectorSearch
import os import comet_llm os.environ["LANGCHAIN_COMET_TRACING"] = "true" comet_llm.init() os.environ["COMET_PROJECT_NAME"] = "comet-example-langchain-tracing" from langchain.agents import AgentType, initialize_agent, load_tools from langchain.llms import OpenAI llm = OpenAI(temperature=0) tools = load_tools(["llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run("What is 2 raised to .123243 power?") # this should be traced if "LANGCHAIN_COMET_TRACING" in os.environ: del os.environ["LANGCHAIN_COMET_TRACING"] from langchain.callbacks.tracers.comet import CometTracer tracer = CometTracer() llm = OpenAI(temperature=0) tools =
load_tools(["llm-math"], llm=llm)
langchain.agents.load_tools
import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = FAISS.from_documents(docs, embeddings) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) retriever = db.as_retriever() docs = retriever.invoke(query) print(docs[0].page_content) docs_and_scores = db.similarity_search_with_score(query) docs_and_scores[0] embedding_vector = embeddings.embed_query(query) docs_and_scores = db.similarity_search_by_vector(embedding_vector) db.save_local("faiss_index") new_db = FAISS.load_local("faiss_index", embeddings) docs = new_db.similarity_search(query) docs[0] from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings pkl = db.serialize_to_bytes() # serializes the faiss embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") db = FAISS.deserialize_from_bytes( embeddings=embeddings, serialized=pkl ) # Load the index db1 = FAISS.from_texts(["foo"], embeddings) db2 =
FAISS.from_texts(["bar"], embeddings)
langchain_community.vectorstores.FAISS.from_texts
from langchain.evaluation import load_evaluator evaluator = load_evaluator("criteria", criteria="conciseness") from langchain.evaluation import EvaluatorType evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria="conciseness") eval_result = evaluator.evaluate_strings( prediction="What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.", input="What's 2+2?", ) print(eval_result) evaluator = load_evaluator("labeled_criteria", criteria="correctness") eval_result = evaluator.evaluate_strings( input="What is the capital of the US?", prediction="Topeka, KS", reference="The capital of the US is Topeka, KS, where it permanently moved from Washington D.C. on May 16, 2023", ) print(f'With ground truth: {eval_result["score"]}') from langchain.evaluation import Criteria list(Criteria) custom_criterion = { "numeric": "Does the output contain numeric or mathematical information?" } eval_chain = load_evaluator( EvaluatorType.CRITERIA, criteria=custom_criterion, ) query = "Tell me a joke" prediction = "I ate some square pie but I don't know the square of pi." eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query) print(eval_result) custom_criteria = { "numeric": "Does the output contain numeric information?", "mathematical": "Does the output contain mathematical information?", "grammatical": "Is the output grammatically correct?", "logical": "Is the output logical?", } eval_chain = load_evaluator( EvaluatorType.CRITERIA, criteria=custom_criteria, ) eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query) print("Multi-criteria evaluation") print(eval_result) from langchain.chains.constitutional_ai.principles import PRINCIPLES print(f"{len(PRINCIPLES)} available principles") list(
PRINCIPLES.items()
langchain.chains.constitutional_ai.principles.PRINCIPLES.items
from langchain.callbacks import get_openai_callback from langchain_openai import ChatOpenAI llm = ChatOpenAI(model_name="gpt-4") with get_openai_callback() as cb: result = llm.invoke("Tell me a joke") print(cb) with get_openai_callback() as cb: result = llm.invoke("Tell me a joke") result2 = llm.invoke("Tell me a joke") print(cb.total_tokens) from langchain.agents import AgentType, initialize_agent, load_tools from langchain_openai import OpenAI tools =
load_tools(["serpapi", "llm-math"], llm=llm)
langchain.agents.load_tools
get_ipython().system("python3 -m pip install --upgrade langchain 'deeplake[enterprise]' openai tiktoken") import getpass import os from langchain.chains import RetrievalQA from langchain_community.vectorstores import DeepLake from langchain_openai import OpenAI, OpenAIEmbeddings from langchain_text_splitters import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") activeloop_token = getpass.getpass("Activeloop Token:") os.environ["ACTIVELOOP_TOKEN"] = activeloop_token os.environ["ACTIVELOOP_ORG"] = getpass.getpass("Activeloop Org:") org_id = os.environ["ACTIVELOOP_ORG"] embeddings = OpenAIEmbeddings() dataset_path = "hub://" + org_id + "/data" with open("messages.txt") as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) pages = text_splitter.split_text(state_of_the_union) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) texts = text_splitter.create_documents(pages) print(texts) dataset_path = "hub://" + org_id + "/data" embeddings = OpenAIEmbeddings() db = DeepLake.from_documents( texts, embeddings, dataset_path=dataset_path, overwrite=True ) db =
DeepLake(dataset_path=dataset_path, read_only=True, embedding=embeddings)
langchain_community.vectorstores.DeepLake
get_ipython().run_line_magic('pip', 'install --upgrade --quiet predictionguard langchain') import os from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import PredictionGuard os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>" os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>" pgllm = PredictionGuard(model="OpenAI-text-davinci-003") pgllm("Tell me a joke") template = """Respond to the following query based on the context. Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! πŸŽ‰ We have officially added TWO new candle subscription box options! πŸ“¦ Exclusive Candle Box - $80 Monthly Candle Box - $45 (NEW!) Scent of The Month Box - $28 (NEW!) Head to stories to get ALLL the deets on each box! πŸ‘† BONUS: Save 50% on your first box with code 50OFF! πŸŽ‰ Query: {query} Result: """ prompt =
PromptTemplate.from_template(template)
langchain.prompts.PromptTemplate.from_template
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-pinecone langchain-openai langchain') from langchain_community.document_loaders import TextLoader from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() from langchain_pinecone import PineconeVectorStore index_name = "langchain-test-index" docsearch =
PineconeVectorStore.from_documents(docs, embeddings, index_name=index_name)
langchain_pinecone.PineconeVectorStore.from_documents
get_ipython().system('pip install --quiet langchain_experimental langchain_openai') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings text_splitter = SemanticChunker(OpenAIEmbeddings()) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) text_splitter = SemanticChunker( OpenAIEmbeddings(), breakpoint_threshold_type="percentile" ) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) print(len(docs)) text_splitter = SemanticChunker(
OpenAIEmbeddings()
langchain_openai.embeddings.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet lark clickhouse-connect') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") os.environ["MYSCALE_HOST"] = getpass.getpass("MyScale URL:") os.environ["MYSCALE_PORT"] = getpass.getpass("MyScale Port:") os.environ["MYSCALE_USERNAME"] = getpass.getpass("MyScale Username:") os.environ["MYSCALE_PASSWORD"] = getpass.getpass("MyScale Password:") from langchain_community.vectorstores import MyScale from langchain_core.documents import Document from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() docs = [ Document( page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"date": "1993-07-02", "rating": 7.7, "genre": ["science fiction"]}, ), Document( page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"date": "2010-12-30", "director": "Christopher Nolan", "rating": 8.2}, ), Document( page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"date": "2006-04-23", "director": "Satoshi Kon", "rating": 8.6}, ), Document( page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"date": "2019-08-22", "director": "Greta Gerwig", "rating": 8.3}, ), Document( page_content="Toys come alive and have a blast doing so", metadata={"date": "1995-02-11", "genre": ["animated"]}, ), Document( page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={ "date": "1979-09-10", "director": "Andrei Tarkovsky", "genre": ["science fiction", "adventure"], "rating": 9.9, }, ), ] vectorstore = MyScale.from_documents( docs, embeddings, ) from langchain.chains.query_constructor.base import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_openai import OpenAI metadata_field_info = [ AttributeInfo( name="genre", description="The genres of the movie", type="list[string]", ),
AttributeInfo( name="length(genre)
langchain.chains.query_constructor.base.AttributeInfo
get_ipython().run_line_magic('pip', 'install -qU chromadb langchain langchain-community langchain-openai') from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter loader =
TextLoader("../../state_of_the_union.txt")
langchain_community.document_loaders.TextLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet duckduckgo-search') from langchain.tools import DuckDuckGoSearchRun search = DuckDuckGoSearchRun() search.run("Obama's first name?") from langchain.tools import DuckDuckGoSearchResults search = DuckDuckGoSearchResults() search.run("Obama") search =
DuckDuckGoSearchResults(backend="news")
langchain.tools.DuckDuckGoSearchResults
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints') import getpass import os if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"): nvapi_key = getpass.getpass("Enter your NVIDIA API key: ") assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key" os.environ["NVIDIA_API_KEY"] = nvapi_key from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="mixtral_8x7b") result = llm.invoke("Write a ballad about LangChain.") print(result.content) print(llm.batch(["What's 2*3?", "What's 2*6?"])) for chunk in llm.stream("How far can a seagull fly in one day?"): print(chunk.content, end="|") async for chunk in llm.astream( "How long does it take for monarch butterflies to migrate?" ): print(chunk.content, end="|") ChatNVIDIA.get_available_models() from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser() for txt in chain.stream({"input": "What's your name?"}): print(txt, end="") prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are an expert coding AI. Respond only in valid python; no narration whatsoever.", ), ("user", "{input}"), ] ) chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser() for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}): print(txt, end="") from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="nemotron_steerlm_8b") complex_result = llm.invoke( "What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0} ) print("Un-creative\n") print(complex_result.content) print("\n\nCreative\n") creative_result = llm.invoke( "What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9} ) print(creative_result.content) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = ( prompt | ChatNVIDIA(model="nemotron_steerlm_8b").bind( labels={"creativity": 9, "complexity": 0, "verbosity": 9} ) | StrOutputParser() ) for txt in chain.stream({"input": "Why is a PB&J?"}): print(txt, end="") import IPython import requests image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/[email protected]" ## Large Image image_content = requests.get(image_url).content IPython.display.Image(image_content) from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="playground_neva_22b") from langchain_core.messages import HumanMessage llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ] ) from langchain_core.messages import HumanMessage llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ], labels={"creativity": 0, "quality": 9, "complexity": 0, "verbosity": 0}, ) import IPython import requests image_url = "https://picsum.photos/seed/kitten/300/200" image_content = requests.get(image_url).content IPython.display.Image(image_content) import base64 from langchain_core.messages import HumanMessage b64_string = base64.b64encode(image_content).decode("utf-8") llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_string}"}, }, ] ) ] ) base64_with_mime_type = f"data:image/png;base64,{b64_string}" llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />') from langchain_nvidia_ai_endpoints import ChatNVIDIA kosmos = ChatNVIDIA(model="kosmos_2") from langchain_core.messages import HumanMessage def drop_streaming_key(d): """Takes in payload dictionary, outputs new payload dictionary""" if "stream" in d: d.pop("stream") return d kosmos =
ChatNVIDIA(model="kosmos_2")
langchain_nvidia_ai_endpoints.ChatNVIDIA
get_ipython().run_line_magic('pip', 'install --upgrade --quiet comet_ml langchain langchain-openai google-search-results spacy textstat pandas') get_ipython().system('{sys.executable} -m spacy download en_core_web_sm') import comet_ml comet_ml.init(project_name="comet-example-langchain") import os os.environ["OPENAI_API_KEY"] = "..." os.environ["SERPAPI_API_KEY"] = "..." from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler from langchain_openai import OpenAI comet_callback = CometCallbackHandler( project_name="comet-example-langchain", complexity_metrics=True, stream_logs=True, tags=["llm"], visualizations=["dep"], ) callbacks = [StdOutCallbackHandler(), comet_callback] llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True) llm_result = llm.generate(["Tell me a joke", "Tell me a poem", "Tell me a fact"] * 3) print("LLM result", llm_result) comet_callback.flush_tracker(llm, finish=True) from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI comet_callback = CometCallbackHandler( complexity_metrics=True, project_name="comet-example-langchain", stream_logs=True, tags=["synopsis-chain"], ) callbacks = [StdOutCallbackHandler(), comet_callback] llm = OpenAI(temperature=0.9, callbacks=callbacks) template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. Title: {title} Playwright: This is a synopsis for the above play:""" prompt_template = PromptTemplate(input_variables=["title"], template=template) synopsis_chain =
LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
langchain.chains.LLMChain
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer --upgrade') import promptlayer # Don't forget this 🍰 from langchain.callbacks import PromptLayerCallbackHandler from langchain.schema import ( HumanMessage, ) from langchain_openai import ChatOpenAI chat_llm = ChatOpenAI( temperature=0, callbacks=[
PromptLayerCallbackHandler(pl_tags=["chatopenai"])
langchain.callbacks.PromptLayerCallbackHandler
get_ipython().run_cell_magic('writefile', 'discord_chats.txt', "talkingtower β€” 08/15/2023 11:10 AM\nLove music! Do you like jazz?\nreporterbob β€” 08/15/2023 9:27 PM\nYes! Jazz is fantastic. Ever heard this one?\nWebsite\nListen to classic jazz track...\n\ntalkingtower β€” Yesterday at 5:03 AM\nIndeed! Great choice. 🎷\nreporterbob β€” Yesterday at 5:23 AM\nThanks! How about some virtual sightseeing?\nWebsite\nVirtual tour of famous landmarks...\n\ntalkingtower β€” Today at 2:38 PM\nSounds fun! Let's explore.\nreporterbob β€” Today at 2:56 PM\nEnjoy the tour! See you around.\ntalkingtower β€” Today at 3:00 PM\nThank you! Goodbye! πŸ‘‹\nreporterbob β€” Today at 3:02 PM\nFarewell! Happy exploring.\n") import logging import re from typing import Iterator, List from langchain_community.chat_loaders import base as chat_loaders from langchain_core.messages import BaseMessage, HumanMessage logger = logging.getLogger() class DiscordChatLoader(chat_loaders.BaseChatLoader): def __init__(self, path: str): """ Initialize the Discord chat loader. Args: path: Path to the exported Discord chat text file. """ self.path = path self._message_line_regex = re.compile( r"(.+?) β€” (\w{3,9} \d{1,2}(?:st|nd|rd|th)?(?:, \d{4})? \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))", # noqa flags=re.DOTALL, ) def _load_single_chat_session_from_txt( self, file_path: str ) -> chat_loaders.ChatSession: """ Load a single chat session from a text file. Args: file_path: Path to the text file containing the chat messages. Returns: A `ChatSession` object containing the loaded chat messages. """ with open(file_path, "r", encoding="utf-8") as file: lines = file.readlines() results: List[BaseMessage] = [] current_sender = None current_timestamp = None current_content = [] for line in lines: if re.match( r".+? β€” (\d{2}/\d{2}/\d{4} \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))", # noqa line, ): if current_sender and current_content: results.append( HumanMessage( content="".join(current_content).strip(), additional_kwargs={ "sender": current_sender, "events": [{"message_time": current_timestamp}], }, ) ) current_sender, current_timestamp = line.split(" β€” ")[:2] current_content = [ line[len(current_sender) + len(current_timestamp) + 4 :].strip() ] elif re.match(r"\[\d{1,2}:\d{2} (?:AM|PM)\]", line.strip()): results.append( HumanMessage( content="".join(current_content).strip(), additional_kwargs={ "sender": current_sender, "events": [{"message_time": current_timestamp}], }, ) ) current_timestamp = line.strip()[1:-1] current_content = [] else: current_content.append("\n" + line.strip()) if current_sender and current_content: results.append( HumanMessage( content="".join(current_content).strip(), additional_kwargs={ "sender": current_sender, "events": [{"message_time": current_timestamp}], }, ) ) return chat_loaders.ChatSession(messages=results) def lazy_load(self) -> Iterator[chat_loaders.ChatSession]: """ Lazy load the messages from the chat file and yield them in the required format. Yields: A `ChatSession` object containing the loaded chat messages. """ yield self._load_single_chat_session_from_txt(self.path) loader = DiscordChatLoader( path="./discord_chats.txt", ) from typing import List from langchain_community.chat_loaders.base import ChatSession from langchain_community.chat_loaders.utils import ( map_ai_messages, merge_chat_runs, ) raw_messages = loader.lazy_load() merged_messages = merge_chat_runs(raw_messages) messages: List[ChatSession] = list( map_ai_messages(merged_messages, sender="talkingtower") ) messages from langchain_openai import ChatOpenAI llm =
ChatOpenAI()
langchain_openai.ChatOpenAI
from typing import List, Optional from langchain.chains.openai_tools import create_extraction_chain_pydantic from langchain_core.pydantic_v1 import BaseModel from langchain_openai import ChatOpenAI model = ChatOpenAI(model="gpt-3.5-turbo-1106") class Person(BaseModel): """Information about people to extract.""" name: str age: Optional[int] = None chain =
create_extraction_chain_pydantic(Person, model)
langchain.chains.openai_tools.create_extraction_chain_pydantic
get_ipython().run_line_magic('pip', 'install --upgrade --quiet timescale-vector') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken') import os from dotenv import find_dotenv, load_dotenv _ = load_dotenv(find_dotenv()) OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] from typing import Tuple from datetime import datetime, timedelta from langchain.docstore.document import Document from langchain_community.document_loaders import TextLoader from langchain_community.document_loaders.json_loader import JSONLoader from langchain_community.vectorstores.timescalevector import TimescaleVector from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../../extras/modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"] COLLECTION_NAME = "state_of_the_union_test" db = TimescaleVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, ) query = "What did the president say about Ketanji Brown Jackson" docs_with_score = db.similarity_search_with_score(query) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) retriever = db.as_retriever() print(retriever) from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0.1, model="gpt-3.5-turbo-16k") from langchain.chains import RetrievalQA qa_stuff = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, verbose=True, ) query = "What did the president say about Ketanji Brown Jackson?" response = qa_stuff.run(query) print(response) from timescale_vector import client def create_uuid(date_string: str): if date_string is None: return None time_format = "%a %b %d %H:%M:%S %Y %z" datetime_obj = datetime.strptime(date_string, time_format) uuid = client.uuid_from_time(datetime_obj) return str(uuid) def split_name(input_string: str) -> Tuple[str, str]: if input_string is None: return None, None start = input_string.find("<") end = input_string.find(">") name = input_string[:start].strip() email = input_string[start + 1 : end].strip() return name, email def create_date(input_string: str) -> datetime: if input_string is None: return None month_dict = { "Jan": "01", "Feb": "02", "Mar": "03", "Apr": "04", "May": "05", "Jun": "06", "Jul": "07", "Aug": "08", "Sep": "09", "Oct": "10", "Nov": "11", "Dec": "12", } components = input_string.split() day = components[2] month = month_dict[components[1]] year = components[4] time = components[3] timezone_offset_minutes = int(components[5]) # Convert the offset to minutes timezone_hours = timezone_offset_minutes // 60 # Calculate the hours timezone_minutes = timezone_offset_minutes % 60 # Calculate the remaining minutes timestamp_tz_str = ( f"{year}-{month}-{day} {time}+{timezone_hours:02}{timezone_minutes:02}" ) return timestamp_tz_str def extract_metadata(record: dict, metadata: dict) -> dict: record_name, record_email = split_name(record["author"]) metadata["id"] = create_uuid(record["date"]) metadata["date"] = create_date(record["date"]) metadata["author_name"] = record_name metadata["author_email"] = record_email metadata["commit_hash"] = record["commit"] return metadata get_ipython().system('curl -O https://s3.amazonaws.com/assets.timescale.com/ai/ts_git_log.json') FILE_PATH = "../../../../../ts_git_log.json" loader = JSONLoader( file_path=FILE_PATH, jq_schema=".commit_history[]", text_content=False, metadata_func=extract_metadata, ) documents = loader.load() documents = [doc for doc in documents if doc.metadata["date"] is not None] print(documents[0]) NUM_RECORDS = 500 documents = documents[:NUM_RECORDS] text_splitter = CharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) docs = text_splitter.split_documents(documents) COLLECTION_NAME = "timescale_commits" embeddings = OpenAIEmbeddings() db = TimescaleVector.from_documents( embedding=embeddings, ids=[doc.metadata["id"] for doc in docs], documents=docs, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, time_partition_interval=timedelta(days=7), ) start_dt = datetime(2023, 8, 1, 22, 10, 35) # Start date = 1 August 2023, 22:10:35 end_dt = datetime(2023, 8, 30, 22, 10, 35) # End date = 30 August 2023, 22:10:35 td = timedelta(days=7) # Time delta = 7 days query = "What's new with TimescaleDB functions?" docs_with_score = db.similarity_search_with_score( query, start_date=start_dt, end_date=end_dt ) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print("Date: ", doc.metadata["date"]) print(doc.page_content) print("-" * 80) docs_with_score = db.similarity_search_with_score( query, start_date=start_dt, time_delta=td ) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print("Date: ", doc.metadata["date"]) print(doc.page_content) print("-" * 80) docs_with_score = db.similarity_search_with_score(query, end_date=end_dt, time_delta=td) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print("Date: ", doc.metadata["date"]) print(doc.page_content) print("-" * 80) docs_with_score = db.similarity_search_with_score(query, start_date=start_dt) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print("Date: ", doc.metadata["date"]) print(doc.page_content) print("-" * 80) docs_with_score = db.similarity_search_with_score(query, end_date=end_dt) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print("Date: ", doc.metadata["date"]) print(doc.page_content) print("-" * 80) retriever = db.as_retriever(search_kwargs={"start_date": start_dt, "end_date": end_dt}) from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0.1, model="gpt-3.5-turbo-16k") from langchain.chains import RetrievalQA qa_stuff = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, verbose=True, ) query = ( "What's new with the timescaledb functions? Tell me when these changes were made." ) response = qa_stuff.run(query) print(response) COLLECTION_NAME = "timescale_commits" embeddings = OpenAIEmbeddings() db = TimescaleVector( collection_name=COLLECTION_NAME, service_url=SERVICE_URL, embedding_function=embeddings, ) db.create_index() db.drop_index() db.create_index(index_type="tsv", max_alpha=1.0, num_neighbors=50) db.drop_index() db.create_index(index_type="hnsw", m=16, ef_construction=64) db.drop_index() db.create_index(index_type="ivfflat", num_lists=20, num_records=1000) db.drop_index() db.create_index() COLLECTION_NAME = "timescale_commits" vectorstore = TimescaleVector( embedding_function=OpenAIEmbeddings(), collection_name=COLLECTION_NAME, service_url=SERVICE_URL, ) from langchain.chains.query_constructor.base import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_openai import OpenAI metadata_field_info = [ AttributeInfo( name="id", description="A UUID v1 generated from the date of the commit", type="uuid", ), AttributeInfo( name="date", description="The date of the commit in timestamptz format", type="timestamptz", ), AttributeInfo( name="author_name", description="The name of the author of the commit", type="string", ), AttributeInfo( name="author_email", description="The email address of the author of the commit", type="string", ), ] document_content_description = "The git log commit summary containing the commit hash, author, date of commit, change summary and change details" llm = OpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, enable_limit=True, verbose=True, ) retriever.get_relevant_documents("What are improvements made to continuous aggregates?") retriever.get_relevant_documents("What commits did Sven Klemm add?") retriever.get_relevant_documents( "What commits about timescaledb_functions did Sven Klemm add?" ) retriever.get_relevant_documents("What commits were added in July 2023?") retriever.get_relevant_documents( "What are two commits about hierarchical continuous aggregates?" ) COLLECTION_NAME = "timescale_commits" embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet meilisearch') import getpass import os os.environ["MEILI_HTTP_ADDR"] = getpass.getpass("Meilisearch HTTP address and port:") os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:") os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.vectorstores import Meilisearch from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter embeddings = OpenAIEmbeddings() with open("../../modules/state_of_the_union.txt") as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) vector_store = Meilisearch.from_texts(texts=texts, embedding=embeddings) from langchain_community.document_loaders import TextLoader loader =
TextLoader("../../modules/state_of_the_union.txt")
langchain_community.document_loaders.TextLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai faiss-cpu tiktoken') from langchain.prompts import ChatPromptTemplate from langchain.vectorstores import FAISS from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings vectorstore = FAISS.from_texts( ["harrison worked at kensho"], embedding=OpenAIEmbeddings() ) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() chain = ( {"context": retriever, "question":
RunnablePassthrough()
langchain_core.runnables.RunnablePassthrough
get_ipython().run_line_magic('pip', 'install --upgrade --quiet wikipedia') from langchain import hub from langchain.agents import AgentExecutor, create_react_agent from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper from langchain_openai import ChatOpenAI api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100) tool = WikipediaQueryRun(api_wrapper=api_wrapper) tools = [tool] prompt = hub.pull("hwchase17/react") llm =
ChatOpenAI(temperature=0)
langchain_openai.ChatOpenAI
import os os.environ["EXA_API_KEY"] = "..." get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_exa import ExaSearchRetriever, TextContentsOptions from langchain_openai import ChatOpenAI retriever = ExaSearchRetriever( k=5, text_contents_options=TextContentsOptions(max_length=200) ) prompt = PromptTemplate.from_template( """Answer the following query based on the following context: query: {query} <context> {context} </context""" ) llm = ChatOpenAI() chain = ( RunnableParallel({"context": retriever, "query": RunnablePassthrough()}) | prompt | llm ) chain.invoke("When is the best time to visit japan?") get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') from exa_py import Exa from langchain.agents import tool exa = Exa(api_key=os.environ["EXA_API_KEY"]) @tool def search(query: str): """Search for a webpage based on the query.""" return exa.search(f"{query}", use_autoprompt=True, num_results=5) @tool def find_similar(url: str): """Search for webpages similar to a given URL. The url passed in should be a URL returned from `search`. """ return exa.find_similar(url, num_results=5) @tool def get_contents(ids: list[str]): """Get the contents of a webpage. The ids passed in should be a list of ids returned from `search`. """ return exa.get_contents(ids) tools = [search, get_contents, find_similar] from langchain.agents import AgentExecutor, OpenAIFunctionsAgent from langchain_core.messages import SystemMessage from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0) system_message = SystemMessage( content="You are a web researcher who answers user questions by looking up information on the internet and retrieving contents of helpful documents. Cite your sources." ) agent_prompt =
OpenAIFunctionsAgent.create_prompt(system_message)
langchain.agents.OpenAIFunctionsAgent.create_prompt
from langchain_experimental.llm_bash.base import LLMBashChain from langchain_openai import OpenAI llm = OpenAI(temperature=0) text = "Please write a bash script that prints 'Hello World' to the console." bash_chain = LLMBashChain.from_llm(llm, verbose=True) bash_chain.run(text) from langchain.prompts.prompt import PromptTemplate from langchain_experimental.llm_bash.prompt import BashOutputParser _PROMPT_TEMPLATE = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format: Question: "copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'" I need to take the following actions: - List all files in the directory - Create a new directory - Copy the files from the first directory into the second directory ```bash ls mkdir myNewDirectory cp -r target/* myNewDirectory ``` Do not use 'echo' when writing the script. That is the format. Begin! Question: {question}""" PROMPT = PromptTemplate( input_variables=["question"], template=_PROMPT_TEMPLATE, output_parser=
BashOutputParser()
langchain_experimental.llm_bash.prompt.BashOutputParser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet rapidfuzz') from langchain.evaluation import load_evaluator evaluator = load_evaluator("string_distance") evaluator.evaluate_strings( prediction="The job is completely done.", reference="The job is done", ) evaluator.evaluate_strings( prediction="The job is done.", reference="The job isn't done", ) from langchain.evaluation import StringDistance list(StringDistance) jaro_evaluator =
load_evaluator("string_distance", distance=StringDistance.JARO)
langchain.evaluation.load_evaluator
from langchain.chains import RetrievalQA from langchain_community.vectorstores import Chroma from langchain_openai import OpenAI, OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter llm = OpenAI(temperature=0) from pathlib import Path relevant_parts = [] for p in Path(".").absolute().parts: relevant_parts.append(p) if relevant_parts[-3:] == ["langchain", "docs", "modules"]: break doc_path = str(Path(*relevant_parts) / "state_of_the_union.txt") from langchain_community.document_loaders import TextLoader loader = TextLoader(doc_path) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(texts, embeddings, collection_name="state-of-union") state_of_union = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=docsearch.as_retriever() ) from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://beta.ruff.rs/docs/faq/") docs = loader.load() ruff_texts = text_splitter.split_documents(docs) ruff_db = Chroma.from_documents(ruff_texts, embeddings, collection_name="ruff") ruff = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=ruff_db.as_retriever() ) from langchain.agents import AgentType, Tool, initialize_agent from langchain_openai import OpenAI tools = [ Tool( name="State of Union QA System", func=state_of_union.run, description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.", ), Tool( name="Ruff QA System", func=ruff.run, description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.", ), ] agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run( "What did biden say about ketanji brown jackson in the state of the union address?" ) agent.run("Why use ruff over flake8?") tools = [ Tool( name="State of Union QA System", func=state_of_union.run, description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question.", return_direct=True, ), Tool( name="Ruff QA System", func=ruff.run, description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question.", return_direct=True, ), ] agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run( "What did biden say about ketanji brown jackson in the state of the union address?" ) agent.run("Why use ruff over flake8?") tools = [ Tool( name="State of Union QA System", func=state_of_union.run, description="useful for when you need to answer questions about the most recent state of the union address. Input should be a fully formed question, not referencing any obscure pronouns from the conversation before.", ),
Tool( name="Ruff QA System", func=ruff.run, description="useful for when you need to answer questions about ruff (a python linter)
langchain.agents.Tool
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core langchain langchain-openai') from langchain.utils.math import cosine_similarity from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings physics_template = """You are a very smart physics professor. \ You are great at answering questions about physics in a concise and easy to understand manner. \ When you don't know the answer to a question you admit that you don't know. Here is a question: {query}""" math_template = """You are a very good mathematician. You are great at answering math questions. \ You are so good because you are able to break down hard problems into their component parts, \ answer the component parts, and then put them together to answer the broader question. Here is a question: {query}""" embeddings = OpenAIEmbeddings() prompt_templates = [physics_template, math_template] prompt_embeddings = embeddings.embed_documents(prompt_templates) def prompt_router(input): query_embedding = embeddings.embed_query(input["query"]) similarity = cosine_similarity([query_embedding], prompt_embeddings)[0] most_similar = prompt_templates[similarity.argmax()] print("Using MATH" if most_similar == math_template else "Using PHYSICS") return PromptTemplate.from_template(most_similar) chain = ( {"query": RunnablePassthrough()} | RunnableLambda(prompt_router) |
ChatOpenAI()
langchain_openai.ChatOpenAI
from ragatouille import RAGPretrainedModel RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") import requests def get_wikipedia_page(title: str): """ Retrieve the full text content of a Wikipedia page. :param title: str - Title of the Wikipedia page. :return: str - Full text content of the page as raw string. """ URL = "https://en.wikipedia.org/w/api.php" params = { "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, } headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 ([email protected])"} response = requests.get(URL, params=params, headers=headers) data = response.json() page = next(iter(data["query"]["pages"].values())) return page["extract"] if "extract" in page else None full_document = get_wikipedia_page("Hayao_Miyazaki") RAG.index( collection=[full_document], index_name="Miyazaki-123", max_document_length=180, split_documents=True, ) results = RAG.search(query="What animation studio did Miyazaki found?", k=3) results retriever = RAG.as_langchain_retriever(k=3) retriever.invoke("What animation studio did Miyazaki found?") from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_template( """Answer the following question based only on the provided context: <context> {context} </context> Question: {input}""" ) llm =
ChatOpenAI()
langchain_openai.ChatOpenAI
get_ipython().system('pip install -U oci') from langchain_community.llms import OCIGenAI llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", ) response = llm.invoke("Tell me one fact about earth", temperature=0.7) print(response) from langchain.chains import LLMChain from langchain_core.prompts import PromptTemplate llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", auth_type="SECURITY_TOKEN", auth_profile="MY_PROFILE", # replace with your profile name model_kwargs={"temperature": 0.7, "top_p": 0.75, "max_tokens": 200}, ) prompt =
PromptTemplate(input_variables=["query"], template="{query}")
langchain_core.prompts.PromptTemplate
get_ipython().run_line_magic('pip', 'install --upgrade --quiet gpt4all > /dev/null') from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import GPT4All template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) local_path = ( "./models/ggml-gpt4all-l13b-snoozy.bin" # replace with your desired local file path ) callbacks = [
StreamingStdOutCallbackHandler()
langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet runhouse') import runhouse as rh from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import SelfHostedHuggingFaceLLM, SelfHostedPipeline gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm = SelfHostedHuggingFaceLLM( model_id="gpt2", hardware=gpu, model_reqs=["pip:./", "transformers", "torch"] ) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) llm = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-small", task="text2text-generation", hardware=gpu, ) llm("What is the capital of Germany?") def load_pipeline(): from transformers import ( AutoModelForCausalLM, AutoTokenizer, pipeline, ) model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) return pipe def inference_fn(pipeline, prompt, stop=None): return pipeline(prompt)[0]["generated_text"][len(prompt) :] llm = SelfHostedHuggingFaceLLM( model_load_fn=load_pipeline, hardware=gpu, inference_fn=inference_fn ) llm("Who is the current US president?") pipeline = load_pipeline() llm = SelfHostedPipeline.from_pipeline( pipeline=pipeline, hardware=gpu, model_reqs=["pip:./", "transformers", "torch"] ) import pickle rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to( gpu, path="models" ) llm =
SelfHostedPipeline.from_pipeline(pipeline="models/pipeline.pkl", hardware=gpu)
langchain_community.llms.SelfHostedPipeline.from_pipeline
from langchain.agents import Tool from langchain.chains import RetrievalQA from langchain_community.document_loaders import PyPDFLoader from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from pydantic import BaseModel, Field class DocumentInput(BaseModel): question: str = Field() llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") tools = [] files = [ { "name": "alphabet-earnings", "path": "/Users/harrisonchase/Downloads/2023Q1_alphabet_earnings_release.pdf", }, { "name": "tesla-earnings", "path": "/Users/harrisonchase/Downloads/TSLA-Q1-2023-Update.pdf", }, ] for file in files: loader = PyPDFLoader(file["path"]) pages = loader.load_and_split() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(pages) embeddings = OpenAIEmbeddings() retriever = FAISS.from_documents(docs, embeddings).as_retriever() tools.append( Tool( args_schema=DocumentInput, name=file["name"], description=f"useful when you want to answer questions about {file['name']}", func=
RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
langchain.chains.RetrievalQA.from_chain_type
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_core.runnables import RunnableParallel, RunnablePassthrough runnable = RunnableParallel( passed=RunnablePassthrough(), extra=RunnablePassthrough.assign(mult=lambda x: x["num"] * 3), modified=lambda x: x["num"] + 1, ) runnable.invoke({"num": 1}) from langchain_community.vectorstores import FAISS from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings vectorstore = FAISS.from_texts( ["harrison worked at kensho"], embedding=OpenAIEmbeddings() ) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI() retrieval_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model |
StrOutputParser()
langchain_core.output_parsers.StrOutputParser
from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from langchain_openai import OpenAI template = """You are a chatbot having a conversation with a human. {chat_history} Human: {human_input} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "human_input"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") llm = OpenAI() llm_chain = LLMChain( llm=llm, prompt=prompt, verbose=True, memory=memory, ) llm_chain.predict(human_input="Hi there my friend") llm_chain.predict(human_input="Not too bad - how are you?") from langchain.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain_core.messages import SystemMessage from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_messages( [ SystemMessage( content="You are a chatbot having a conversation with a human." ), # The persistent system prompt MessagesPlaceholder( variable_name="chat_history" ), # Where the memory will be stored. HumanMessagePromptTemplate.from_template( "{human_input}" ), # Where the human input will injected ] ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) llm =
ChatOpenAI()
langchain_openai.ChatOpenAI
get_ipython().system('pip/pip3 install pyepsilla') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.vectorstores import Epsilla from langchain_openai import OpenAIEmbeddings from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() documents =
CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
langchain_text_splitters.CharacterTextSplitter
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.prompts import PromptTemplate from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0).configurable_fields( temperature=ConfigurableField( id="llm_temperature", name="LLM Temperature", description="The temperature of the LLM", ) ) model.invoke("pick a random number") model.with_config(configurable={"llm_temperature": 0.9}).invoke("pick a random number") prompt = PromptTemplate.from_template("Pick a random number above {x}") chain = prompt | model chain.invoke({"x": 0}) chain.with_config(configurable={"llm_temperature": 0.9}).invoke({"x": 0}) from langchain.runnables.hub import HubRunnable prompt = HubRunnable("rlm/rag-prompt").configurable_fields( owner_repo_commit=ConfigurableField( id="hub_commit", name="Hub Commit", description="The Hub commit to pull from", ) ) prompt.invoke({"question": "foo", "context": "bar"}) prompt.with_config(configurable={"hub_commit": "rlm/rag-prompt-llama"}).invoke( {"question": "foo", "context": "bar"} ) from langchain.prompts import PromptTemplate from langchain_community.chat_models import ChatAnthropic from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI llm = ChatAnthropic(temperature=0).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=
ChatOpenAI()
langchain_openai.ChatOpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet timescale-vector') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken') import os from dotenv import find_dotenv, load_dotenv _ = load_dotenv(find_dotenv()) OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] from typing import Tuple from datetime import datetime, timedelta from langchain.docstore.document import Document from langchain_community.document_loaders import TextLoader from langchain_community.document_loaders.json_loader import JSONLoader from langchain_community.vectorstores.timescalevector import TimescaleVector from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../../extras/modules/state_of_the_union.txt") documents = loader.load() text_splitter =
CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
langchain_text_splitters.CharacterTextSplitter
get_ipython().run_line_magic('pip', 'install --upgrade --quiet hologres-vector') from langchain_community.vectorstores import Hologres from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-pinecone langchain-openai langchain') from langchain_community.document_loaders import TextLoader from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().system('pip install gymnasium') import tenacity from langchain.output_parsers import RegexParser from langchain.schema import ( HumanMessage, SystemMessage, ) class GymnasiumAgent: @classmethod def get_docs(cls, env): return env.unwrapped.__doc__ def __init__(self, model, env): self.model = model self.env = env self.docs = self.get_docs(env) self.instructions = """ Your goal is to maximize your return, i.e. the sum of the rewards you receive. I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as: Observation: <observation> Reward: <reward> Termination: <termination> Truncation: <truncation> Return: <sum_of_rewards> You will respond with an action, formatted as: Action: <action> where you replace <action> with your actual action. Do nothing else but return the action. """ self.action_parser = RegexParser( regex=r"Action: (.*)", output_keys=["action"], default_output_key="action" ) self.message_history = [] self.ret = 0 def random_action(self): action = self.env.action_space.sample() return action def reset(self): self.message_history = [
SystemMessage(content=self.docs)
langchain.schema.SystemMessage
get_ipython().run_line_magic('pip', "install --upgrade --quiet faiss-gpu # For CUDA 7.5+ Supported GPU's.") get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss-cpu # For CPU Installation') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../../extras/modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = await FAISS.afrom_documents(docs, embeddings) query = "What did the president say about Ketanji Brown Jackson" docs = await db.asimilarity_search(query) print(docs[0].page_content) docs_and_scores = await db.asimilarity_search_with_score(query) docs_and_scores[0] embedding_vector = await embeddings.aembed_query(query) docs_and_scores = await db.asimilarity_search_by_vector(embedding_vector) db.save_local("faiss_index") new_db = FAISS.load_local("faiss_index", embeddings, asynchronous=True) docs = await new_db.asimilarity_search(query) docs[0] from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings pkl = db.serialize_to_bytes() # serializes the faiss index embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") db = FAISS.deserialize_from_bytes( embeddings=embeddings, serialized=pkl, asynchronous=True ) # Load the index db1 = await
FAISS.afrom_texts(["foo"], embeddings)
langchain_community.vectorstores.FAISS.afrom_texts
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_community.chat_models import ChatAnthropic from langchain_openai import ChatOpenAI from unittest.mock import patch import httpx from openai import RateLimitError request = httpx.Request("GET", "/") response = httpx.Response(200, request=request) error = RateLimitError("rate limit", response=response, body="") openai_llm = ChatOpenAI(max_retries=0) anthropic_llm = ChatAnthropic() llm = openai_llm.with_fallbacks([anthropic_llm]) with patch("openai.resources.chat.completions.Completions.create", side_effect=error): try: print(openai_llm.invoke("Why did the chicken cross the road?")) except RateLimitError: print("Hit error") with patch("openai.resources.chat.completions.Completions.create", side_effect=error): try: print(llm.invoke("Why did the chicken cross the road?")) except RateLimitError: print("Hit error") from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're a nice assistant who always includes a compliment in your response", ), ("human", "Why did the {animal} cross the road"), ] ) chain = prompt | llm with patch("openai.resources.chat.completions.Completions.create", side_effect=error): try: print(chain.invoke({"animal": "kangaroo"})) except RateLimitError: print("Hit error") from langchain_core.output_parsers import StrOutputParser chat_prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're a nice assistant who always includes a compliment in your response", ), ("human", "Why did the {animal} cross the road"), ] ) chat_model = ChatOpenAI(model_name="gpt-fake") bad_chain = chat_prompt | chat_model | StrOutputParser() from langchain.prompts import PromptTemplate from langchain_openai import OpenAI prompt_template = """Instructions: You should always include a compliment in your response. Question: Why did the {animal} cross the road?""" prompt = PromptTemplate.from_template(prompt_template) llm = OpenAI() good_chain = prompt | llm chain = bad_chain.with_fallbacks([good_chain]) chain.invoke({"animal": "turtle"}) short_llm = ChatOpenAI() long_llm = ChatOpenAI(model="gpt-3.5-turbo-16k") llm = short_llm.with_fallbacks([long_llm]) inputs = "What is the next number: " + ", ".join(["one", "two"] * 3000) try: print(short_llm.invoke(inputs)) except Exception as e: print(e) try: print(llm.invoke(inputs)) except Exception as e: print(e) from langchain.output_parsers import DatetimeOutputParser prompt = ChatPromptTemplate.from_template( "what time was {event} (in %Y-%m-%dT%H:%M:%S.%fZ format - only return this value)" ) openai_35 = ChatOpenAI() |
DatetimeOutputParser()
langchain.output_parsers.DatetimeOutputParser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_messages( [ ( "system", "Write out the following equation using algebraic symbols then solve it. Use the format\n\nEQUATION:...\nSOLUTION:...\n\n", ), ("human", "{equation_statement}"), ] ) model =
ChatOpenAI(temperature=0)
langchain_openai.ChatOpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet neo4j') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain.docstore.document import Document from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Neo4jVector from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() url = "bolt://localhost:7687" username = "neo4j" password = "pleaseletmein" db = Neo4jVector.from_documents( docs, OpenAIEmbeddings(), url=url, username=username, password=password ) query = "What did the president say about Ketanji Brown Jackson" docs_with_score = db.similarity_search_with_score(query, k=2) for doc, score in docs_with_score: print("-" * 80) print("Score: ", score) print(doc.page_content) print("-" * 80) index_name = "vector" # default index name store = Neo4jVector.from_existing_index( OpenAIEmbeddings(), url=url, username=username, password=password, index_name=index_name, ) store.query("CREATE (p:Person {name: 'Tomaz', location:'Slovenia', hobby:'Bicycle'})") existing_graph = Neo4jVector.from_existing_graph( embedding=OpenAIEmbeddings(), url=url, username=username, password=password, index_name="person_index", node_label="Person", text_node_properties=["name", "location"], embedding_node_property="embedding", ) result = existing_graph.similarity_search("Slovenia", k=1) result[0] store.add_documents([Document(page_content="foo")]) docs_with_score = store.similarity_search_with_score("foo") docs_with_score[0] hybrid_db = Neo4jVector.from_documents( docs, OpenAIEmbeddings(), url=url, username=username, password=password, search_type="hybrid", ) index_name = "vector" # default index name keyword_index_name = "keyword" # default keyword index name store = Neo4jVector.from_existing_index(
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
import asyncio import os import nest_asyncio import pandas as pd from langchain.docstore.document import Document from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain_experimental.autonomous_agents import AutoGPT from langchain_openai import ChatOpenAI nest_asyncio.apply() llm =
ChatOpenAI(model_name="gpt-4", temperature=1.0)
langchain_openai.ChatOpenAI
from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool from langchain_community.utilities import SerpAPIWrapper def random_word(query: str) -> str: print("\nNow I'm doing this!") return "foo" search = SerpAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="RandomWord", func=random_word, description="call this to get a random word.", ), ] from typing import Any, List, Tuple, Union from langchain_core.agents import AgentAction, AgentFinish class FakeAgent(BaseMultiActionAgent): """Fake Custom Agent.""" @property def input_keys(self): return ["input"] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ if len(intermediate_steps) == 0: return [ AgentAction(tool="Search", tool_input=kwargs["input"], log=""), AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""), ] else: return AgentFinish(return_values={"output": "bar"}, log="") async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ if len(intermediate_steps) == 0: return [ AgentAction(tool="Search", tool_input=kwargs["input"], log=""), AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""), ] else: return
AgentFinish(return_values={"output": "bar"}, log="")
langchain_core.agents.AgentFinish
get_ipython().run_line_magic('pip', 'install --upgrade --quiet "cassio>=0.1.4"') import os from getpass import getpass from datasets import ( load_dataset, ) from langchain_community.document_loaders import PyPDFLoader from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter os.environ["OPENAI_API_KEY"] = getpass("OPENAI_API_KEY = ") embe = OpenAIEmbeddings() from langchain_community.vectorstores import Cassandra from cassandra.cluster import Cluster cluster = Cluster(["127.0.0.1"]) session = cluster.connect() import cassio CASSANDRA_KEYSPACE = input("CASSANDRA_KEYSPACE = ") cassio.init(session=session, keyspace=CASSANDRA_KEYSPACE) vstore = Cassandra( embedding=embe, table_name="cassandra_vector_demo", ) ASTRA_DB_ID = input("ASTRA_DB_ID = ") ASTRA_DB_APPLICATION_TOKEN = getpass("ASTRA_DB_APPLICATION_TOKEN = ") desired_keyspace = input("ASTRA_DB_KEYSPACE (optional, can be left empty) = ") if desired_keyspace: ASTRA_DB_KEYSPACE = desired_keyspace else: ASTRA_DB_KEYSPACE = None import cassio cassio.init( database_id=ASTRA_DB_ID, token=ASTRA_DB_APPLICATION_TOKEN, keyspace=ASTRA_DB_KEYSPACE, ) vstore = Cassandra( embedding=embe, table_name="cassandra_vector_demo", ) philo_dataset = load_dataset("datastax/philosopher-quotes")["train"] docs = [] for entry in philo_dataset: metadata = {"author": entry["author"]} doc = Document(page_content=entry["quote"], metadata=metadata) docs.append(doc) inserted_ids = vstore.add_documents(docs) print(f"\nInserted {len(inserted_ids)} documents.") texts = ["I think, therefore I am.", "To the things themselves!"] metadatas = [{"author": "descartes"}, {"author": "husserl"}] ids = ["desc_01", "huss_xy"] inserted_ids_2 = vstore.add_texts(texts=texts, metadatas=metadatas, ids=ids) print(f"\nInserted {len(inserted_ids_2)} documents.") results = vstore.similarity_search("Our life is what we make of it", k=3) for res in results: print(f"* {res.page_content} [{res.metadata}]") results_filtered = vstore.similarity_search( "Our life is what we make of it", k=3, filter={"author": "plato"}, ) for res in results_filtered: print(f"* {res.page_content} [{res.metadata}]") results = vstore.similarity_search_with_score("Our life is what we make of it", k=3) for res, score in results: print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]") results = vstore.max_marginal_relevance_search( "Our life is what we make of it", k=3, filter={"author": "aristotle"}, ) for res in results: print(f"* {res.page_content} [{res.metadata}]") delete_1 = vstore.delete(inserted_ids[:3]) print(f"all_succeed={delete_1}") # True, all documents deleted delete_2 = vstore.delete(inserted_ids[2:5]) print(f"some_succeeds={delete_2}") # True, though some IDs were gone already get_ipython().system('curl -L "https://github.com/awesome-astra/datasets/blob/main/demo-resources/what-is-philosophy/what-is-philosophy.pdf?raw=true" -o "what-is-philosophy.pdf"') pdf_loader = PyPDFLoader("what-is-philosophy.pdf") splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=64) docs_from_pdf = pdf_loader.load_and_split(text_splitter=splitter) print(f"Documents from PDF: {len(docs_from_pdf)}.") inserted_ids_from_pdf = vstore.add_documents(docs_from_pdf) print(f"Inserted {len(inserted_ids_from_pdf)} documents.") retriever = vstore.as_retriever(search_kwargs={"k": 3}) philo_template = """ You are a philosopher that draws inspiration from great thinkers of the past to craft well-thought answers to user questions. Use the provided context as the basis for your answers and do not make up new reasoning paths - just mix-and-match what you are given. Your answers must be concise and to the point, and refrain from answering about other topics than philosophy. CONTEXT: {context} QUESTION: {question} YOUR ANSWER:""" philo_prompt = ChatPromptTemplate.from_template(philo_template) llm = ChatOpenAI() chain = ( {"context": retriever, "question": RunnablePassthrough()} | philo_prompt | llm |
StrOutputParser()
langchain_core.output_parsers.StrOutputParser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet jsonformer > /dev/null') import logging logging.basicConfig(level=logging.ERROR) import json import os import requests from langchain.tools import tool HF_TOKEN = os.environ.get("HUGGINGFACE_API_KEY") @tool def ask_star_coder(query: str, temperature: float = 1.0, max_new_tokens: float = 250): """Query the BigCode StarCoder model about coding questions.""" url = "https://api-inference.huggingface.co/models/bigcode/starcoder" headers = { "Authorization": f"Bearer {HF_TOKEN}", "content-type": "application/json", } payload = { "inputs": f"{query}\n\nAnswer:", "temperature": temperature, "max_new_tokens": int(max_new_tokens), } response = requests.post(url, headers=headers, data=json.dumps(payload)) response.raise_for_status() return json.loads(response.content.decode("utf-8")) prompt = """You must respond using JSON format, with a single action and single action input. You may 'ask_star_coder' for help on coding problems. {arg_schema} EXAMPLES ---- Human: "So what's all this about a GIL?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What is a GIL?", "temperature": 0.0, "max_new_tokens": 100}}" }} Observation: "The GIL is python's Global Interpreter Lock" Human: "Could you please write a calculator program in LISP?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "Write a calculator program in LISP", "temperature": 0.0, "max_new_tokens": 250}} }} Observation: "(defun add (x y) (+ x y))\n(defun sub (x y) (- x y ))" Human: "What's the difference between an SVM and an LLM?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What's the difference between SGD and an SVM?", "temperature": 1.0, "max_new_tokens": 250}} }} Observation: "SGD stands for stochastic gradient descent, while an SVM is a Support Vector Machine." BEGIN! Answer the Human's question as best as you are able. ------ Human: 'What's the difference between an iterator and an iterable?' AI Assistant:""".format(arg_schema=ask_star_coder.args) from langchain_community.llms import HuggingFacePipeline from transformers import pipeline hf_model = pipeline( "text-generation", model="cerebras/Cerebras-GPT-590M", max_new_tokens=200 ) original_model = HuggingFacePipeline(pipeline=hf_model) generated = original_model.predict(prompt, stop=["Observation:", "Human:"]) print(generated) decoder_schema = { "title": "Decoding Schema", "type": "object", "properties": { "action": {"type": "string", "default": ask_star_coder.name}, "action_input": { "type": "object", "properties": ask_star_coder.args, }, }, } from langchain_experimental.llms import JsonFormer json_former =
JsonFormer(json_schema=decoder_schema, pipeline=hf_model)
langchain_experimental.llms.JsonFormer
get_ipython().run_line_magic('pip', 'install --upgrade --quiet aphrodite-engine==0.4.2') from langchain_community.llms import Aphrodite llm = Aphrodite( model="PygmalionAI/pygmalion-2-7b", trust_remote_code=True, # mandatory for hf models max_tokens=128, temperature=1.2, min_p=0.05, mirostat_mode=0, # change to 2 to use mirostat mirostat_tau=5.0, mirostat_eta=0.1, ) print( llm( '<|system|>Enter RP mode. You are Ayumu "Osaka" Kasuga.<|user|>Hey Osaka. Tell me about yourself.<|model|>' ) ) from langchain.chains import LLMChain from langchain.prompts import PromptTemplate template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm_chain =
LLMChain(prompt=prompt, llm=llm)
langchain.chains.LLMChain
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') import os from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import GooseAI from getpass import getpass GOOSEAI_API_KEY = getpass() os.environ["GOOSEAI_API_KEY"] = GOOSEAI_API_KEY llm =
GooseAI()
langchain_community.llms.GooseAI
get_ipython().system('pip install pettingzoo pygame rlcard') import collections import inspect import tenacity from langchain.output_parsers import RegexParser from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_openai import ChatOpenAI class GymnasiumAgent: @classmethod def get_docs(cls, env): return env.unwrapped.__doc__ def __init__(self, model, env): self.model = model self.env = env self.docs = self.get_docs(env) self.instructions = """ Your goal is to maximize your return, i.e. the sum of the rewards you receive. I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as: Observation: <observation> Reward: <reward> Termination: <termination> Truncation: <truncation> Return: <sum_of_rewards> You will respond with an action, formatted as: Action: <action> where you replace <action> with your actual action. Do nothing else but return the action. """ self.action_parser = RegexParser( regex=r"Action: (.*)", output_keys=["action"], default_output_key="action" ) self.message_history = [] self.ret = 0 def random_action(self): action = self.env.action_space.sample() return action def reset(self): self.message_history = [ SystemMessage(content=self.docs), SystemMessage(content=self.instructions), ] def observe(self, obs, rew=0, term=False, trunc=False, info=None): self.ret += rew obs_message = f""" Observation: {obs} Reward: {rew} Termination: {term} Truncation: {trunc} Return: {self.ret} """ self.message_history.append(HumanMessage(content=obs_message)) return obs_message def _act(self): act_message = self.model(self.message_history) self.message_history.append(act_message) action = int(self.action_parser.parse(act_message.content)["action"]) return action def act(self): try: for attempt in tenacity.Retrying( stop=tenacity.stop_after_attempt(2), wait=tenacity.wait_none(), # No waiting time between retries retry=tenacity.retry_if_exception_type(ValueError), before_sleep=lambda retry_state: print( f"ValueError occurred: {retry_state.outcome.exception()}, retrying..." ), ): with attempt: action = self._act() except tenacity.RetryError: action = self.random_action() return action def main(agents, env): env.reset() for name, agent in agents.items(): agent.reset() for agent_name in env.agent_iter(): observation, reward, termination, truncation, info = env.last() obs_message = agents[agent_name].observe( observation, reward, termination, truncation, info ) print(obs_message) if termination or truncation: action = None else: action = agents[agent_name].act() print(f"Action: {action}") env.step(action) env.close() class PettingZooAgent(GymnasiumAgent): @classmethod def get_docs(cls, env): return inspect.getmodule(env.unwrapped).__doc__ def __init__(self, name, model, env): super().__init__(model, env) self.name = name def random_action(self): action = self.env.action_space(self.name).sample() return action from pettingzoo.classic import rps_v2 env = rps_v2.env(max_cycles=3, render_mode="human") agents = { name: PettingZooAgent(name=name, model=ChatOpenAI(temperature=1), env=env) for name in env.possible_agents } main(agents, env) class ActionMaskAgent(PettingZooAgent): def __init__(self, name, model, env): super().__init__(name, model, env) self.obs_buffer = collections.deque(maxlen=1) def random_action(self): obs = self.obs_buffer[-1] action = self.env.action_space(self.name).sample(obs["action_mask"]) return action def reset(self): self.message_history = [ SystemMessage(content=self.docs), SystemMessage(content=self.instructions), ] def observe(self, obs, rew=0, term=False, trunc=False, info=None): self.obs_buffer.append(obs) return super().observe(obs, rew, term, trunc, info) def _act(self): valid_action_instruction = "Generate a valid action given by the indices of the `action_mask` that are not 0, according to the action formatting rules." self.message_history.append(HumanMessage(content=valid_action_instruction)) return super()._act() from pettingzoo.classic import tictactoe_v3 env = tictactoe_v3.env(render_mode="human") agents = { name: ActionMaskAgent(name=name, model=ChatOpenAI(temperature=0.2), env=env) for name in env.possible_agents } main(agents, env) from pettingzoo.classic import texas_holdem_no_limit_v6 env = texas_holdem_no_limit_v6.env(num_players=4, render_mode="human") agents = { name: ActionMaskAgent(name=name, model=
ChatOpenAI(temperature=0.2)
langchain_openai.ChatOpenAI
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-openai langchain-anthropic langchain-community wikipedia') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() os.environ["ANTHROPIC_API_KEY"] = getpass.getpass() from langchain_community.retrievers import WikipediaRetriever from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) wiki = WikipediaRetriever(top_k_results=6, doc_content_chars_max=2000) prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, answer the user question. If none of the articles answer the question, just say you don't know.\n\nHere are the Wikipedia articles:{context}", ), ("human", "{question}"), ] ) prompt.pretty_print() from operator import itemgetter from typing import List from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) def format_docs(docs: List[Document]) -> str: """Convert Documents to a single string.:""" formatted = [ f"Article Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}" for doc in docs ] return "\n\n" + "\n\n".join(formatted) format = itemgetter("docs") | RunnableLambda(format_docs) answer = prompt | llm | StrOutputParser() chain = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format) .assign(answer=answer) .pick(["answer", "docs"]) ) chain.invoke("How fast are cheetahs?") from langchain_core.pydantic_v1 import BaseModel, Field class cited_answer(BaseModel): """Answer the user question based only on the given sources, and cite the sources used.""" answer: str = Field( ..., description="The answer to the user question, which is based only on the given sources.", ) citations: List[int] = Field( ..., description="The integer IDs of the SPECIFIC sources which justify the answer.", ) llm_with_tool = llm.bind_tools( [cited_answer], tool_choice="cited_answer", ) example_q = """What Brian's height? Source: 1 Information: Suzy is 6'2" Source: 2 Information: Jeremiah is blonde Source: 3 Information: Brian is 3 inches shorted than Suzy""" llm_with_tool.invoke(example_q) from langchain.output_parsers.openai_tools import JsonOutputKeyToolsParser output_parser = JsonOutputKeyToolsParser(key_name="cited_answer", return_single=True) (llm_with_tool | output_parser).invoke(example_q) def format_docs_with_id(docs: List[Document]) -> str: formatted = [ f"Source ID: {i}\nArticle Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}" for i, doc in enumerate(docs) ] return "\n\n" + "\n\n".join(formatted) format_1 = itemgetter("docs") | RunnableLambda(format_docs_with_id) answer_1 = prompt | llm_with_tool | output_parser chain_1 = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format_1) .assign(cited_answer=answer_1) .pick(["cited_answer", "docs"]) ) chain_1.invoke("How fast are cheetahs?") class Citation(BaseModel): source_id: int = Field( ..., description="The integer ID of a SPECIFIC source which justifies the answer.", ) quote: str = Field( ..., description="The VERBATIM quote from the specified source that justifies the answer.", ) class quoted_answer(BaseModel): """Answer the user question based only on the given sources, and cite the sources used.""" answer: str = Field( ..., description="The answer to the user question, which is based only on the given sources.", ) citations: List[Citation] = Field( ..., description="Citations from the given sources that justify the answer." ) output_parser_2 = JsonOutputKeyToolsParser(key_name="quoted_answer", return_single=True) llm_with_tool_2 = llm.bind_tools( [quoted_answer], tool_choice="quoted_answer", ) format_2 = itemgetter("docs") | RunnableLambda(format_docs_with_id) answer_2 = prompt | llm_with_tool_2 | output_parser_2 chain_2 = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format_2) .assign(quoted_answer=answer_2) .pick(["quoted_answer", "docs"]) ) chain_2.invoke("How fast are cheetahs?") from langchain_anthropic import ChatAnthropicMessages anthropic = ChatAnthropicMessages(model_name="claude-instant-1.2") system = """You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, \ answer the user question and provide citations. If none of the articles answer the question, just say you don't know. Remember, you must return both an answer and citations. A citation consists of a VERBATIM quote that \ justifies the answer and the ID of the quote article. Return a citation for every quote across all articles \ that justify the answer. Use the following format for your final output: <cited_answer> <answer></answer> <citations> <citation><source_id></source_id><quote></quote></citation> <citation><source_id></source_id><quote></quote></citation> ... </citations> </cited_answer> Here are the Wikipedia articles:{context}""" prompt_3 = ChatPromptTemplate.from_messages( [("system", system), ("human", "{question}")] ) from langchain_core.output_parsers import XMLOutputParser def format_docs_xml(docs: List[Document]) -> str: formatted = [] for i, doc in enumerate(docs): doc_str = f"""\ <source id=\"{i}\"> <title>{doc.metadata['title']}</title> <article_snippet>{doc.page_content}</article_snippet> </source>""" formatted.append(doc_str) return "\n\n<sources>" + "\n".join(formatted) + "</sources>" format_3 = itemgetter("docs") | RunnableLambda(format_docs_xml) answer_3 = prompt_3 | anthropic | XMLOutputParser() | itemgetter("cited_answer") chain_3 = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format_3) .assign(cited_answer=answer_3) .pick(["cited_answer", "docs"]) ) chain_3.invoke("How fast are cheetahs?") from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter splitter = RecursiveCharacterTextSplitter( chunk_size=400, chunk_overlap=0, separators=["\n\n", "\n", ".", " "], keep_separator=False, ) compressor = EmbeddingsFilter(embeddings=OpenAIEmbeddings(), k=10) def split_and_filter(input) -> List[Document]: docs = input["docs"] question = input["question"] split_docs = splitter.split_documents(docs) stateful_docs = compressor.compress_documents(split_docs, question) return [stateful_doc for stateful_doc in stateful_docs] retrieve = ( RunnableParallel(question=
RunnablePassthrough()
langchain_core.runnables.RunnablePassthrough
from langchain.prompts import PromptTemplate prompt = ( PromptTemplate.from_template("Tell me a joke about {topic}") + ", make it funny" + "\n\nand in {language}" ) prompt prompt.format(topic="sports", language="spanish") from langchain.chains import LLMChain from langchain_openai import ChatOpenAI model =
ChatOpenAI()
langchain_openai.ChatOpenAI
get_ipython().system('poetry run pip install dgml-utils==0.3.0 --upgrade --quiet') import os from langchain_community.document_loaders import DocugamiLoader DOCUGAMI_API_KEY = os.environ.get("DOCUGAMI_API_KEY") docset_id = "26xpy3aes7xp" document_ids = ["d7jqdzcj50sj", "cgd1eacfkchw"] loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids) chunks = loader.load() len(chunks) loader.min_text_length = 64 loader.include_xml_tags = True chunks = loader.load() for chunk in chunks[:5]: print(chunk) get_ipython().system('poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib') loader = DocugamiLoader(docset_id="zo954yqy53wp") chunks = loader.load() for chunk in chunks: stripped_metadata = chunk.metadata.copy() for key in chunk.metadata: if key not in ["name", "xpath", "id", "structure"]: del stripped_metadata[key] chunk.metadata = stripped_metadata print(len(chunks)) from langchain.chains import RetrievalQA from langchain_community.vectorstores.chroma import Chroma from langchain_openai import OpenAI, OpenAIEmbeddings embedding = OpenAIEmbeddings() vectordb = Chroma.from_documents(documents=chunks, embedding=embedding) retriever = vectordb.as_retriever() qa_chain = RetrievalQA.from_chain_type( llm=OpenAI(), chain_type="stuff", retriever=retriever, return_source_documents=True ) qa_chain("What can tenants do with signage on their properties?") chain_response = qa_chain("What is rentable area for the property owned by DHA Group?") chain_response["result"] # correct answer should be 13,500 sq ft chain_response["source_documents"] loader = DocugamiLoader(docset_id="zo954yqy53wp") loader.include_xml_tags = ( True # for additional semantics from the Docugami knowledge graph ) chunks = loader.load() print(chunks[0].metadata) get_ipython().system('poetry run pip install --upgrade lark --quiet') from langchain.chains.query_constructor.schema import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_community.vectorstores.chroma import Chroma EXCLUDE_KEYS = ["id", "xpath", "structure"] metadata_field_info = [ AttributeInfo( name=key, description=f"The {key} for this chunk", type="string", ) for key in chunks[0].metadata if key.lower() not in EXCLUDE_KEYS ] document_content_description = "Contents of this chunk" llm = OpenAI(temperature=0) vectordb = Chroma.from_documents(documents=chunks, embedding=embedding) retriever = SelfQueryRetriever.from_llm( llm, vectordb, document_content_description, metadata_field_info, verbose=True ) qa_chain = RetrievalQA.from_chain_type( llm=
OpenAI()
langchain_openai.OpenAI
import xorbits.pandas as pd from langchain_experimental.agents.agent_toolkits import create_xorbits_agent from langchain_openai import OpenAI data = pd.read_csv("titanic.csv") agent = create_xorbits_agent(OpenAI(temperature=0), data, verbose=True) agent.run("How many rows and columns are there?") agent.run("How many people are in pclass 1?") agent.run("whats the mean age?") agent.run("Group the data by sex and find the average age for each group") agent.run( "Show the number of people whose age is greater than 30 and fare is between 30 and 50 , and pclass is either 1 or 2" ) import xorbits.numpy as np from langchain.agents import create_xorbits_agent from langchain_openai import OpenAI arr = np.array([1, 2, 3, 4, 5, 6]) agent = create_xorbits_agent(
OpenAI(temperature=0)
langchain_openai.OpenAI
import os import yaml get_ipython().system('wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml') get_ipython().system('wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml') get_ipython().system('wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml') from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec with open("openai_openapi.yaml") as f: raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader) openai_api_spec = reduce_openapi_spec(raw_openai_api_spec) with open("klarna_openapi.yaml") as f: raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader) klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec) with open("spotify_openapi.yaml") as f: raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader) spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec) import spotipy.util as util from langchain.requests import RequestsWrapper def construct_spotify_auth_headers(raw_spec: dict): scopes = list( raw_spec["components"]["securitySchemes"]["oauth_2_0"]["flows"][ "authorizationCode" ]["scopes"].keys() ) access_token = util.prompt_for_user_token(scope=",".join(scopes)) return {"Authorization": f"Bearer {access_token}"} headers = construct_spotify_auth_headers(raw_spotify_api_spec) requests_wrapper = RequestsWrapper(headers=headers) endpoints = [ (route, operation) for route, operations in raw_spotify_api_spec["paths"].items() for operation in operations if operation in ["get", "post"] ] len(endpoints) import tiktoken enc = tiktoken.encoding_for_model("gpt-4") def count_tokens(s): return len(enc.encode(s)) count_tokens(yaml.dump(raw_spotify_api_spec)) from langchain_community.agent_toolkits.openapi import planner from langchain_openai import OpenAI llm = OpenAI(model_name="gpt-4", temperature=0.0) spotify_agent = planner.create_openapi_agent(spotify_api_spec, requests_wrapper, llm) user_query = ( "make me a playlist with the first song from kind of blue. call it machine blues." ) spotify_agent.run(user_query) user_query = "give me a song I'd like, make it blues-ey" spotify_agent.run(user_query) headers = {"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"} openai_requests_wrapper = RequestsWrapper(headers=headers) llm = OpenAI(model_name="gpt-4", temperature=0.25) openai_agent = planner.create_openapi_agent( openai_api_spec, openai_requests_wrapper, llm ) user_query = "generate a short piece of advice" openai_agent.run(user_query) from langchain.agents import create_openapi_agent from langchain_community.agent_toolkits import OpenAPIToolkit from langchain_community.tools.json.tool import JsonSpec from langchain_openai import OpenAI with open("openai_openapi.yaml") as f: data = yaml.load(f, Loader=yaml.FullLoader) json_spec = JsonSpec(dict_=data, max_value_length=4000) openapi_toolkit = OpenAPIToolkit.from_llm( OpenAI(temperature=0), json_spec, openai_requests_wrapper, verbose=True ) openapi_agent_executor = create_openapi_agent( llm=
OpenAI(temperature=0)
langchain_openai.OpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet elasticsearch') from langchain.retrievers import ElasticSearchBM25Retriever elasticsearch_url = "http://localhost:9200" retriever =
ElasticSearchBM25Retriever.create(elasticsearch_url, "langchain-index-4")
langchain.retrievers.ElasticSearchBM25Retriever.create
get_ipython().run_line_magic('pip', 'install --upgrade --quiet johnsnowlabs') from langchain_community.embeddings.johnsnowlabs import JohnSnowLabsEmbeddings embedder =
JohnSnowLabsEmbeddings("en.embed_sentence.biobert.clinical_base_cased")
langchain_community.embeddings.johnsnowlabs.JohnSnowLabsEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sentence_transformers') from langchain_community.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings() from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=400, chunk_overlap=0) docs = text_splitter.split_documents(documents) print(len(docs)) import getpass import os os.environ["SEMADB_API_KEY"] = getpass.getpass("SemaDB API Key:") from langchain_community.vectorstores import SemaDB from langchain_community.vectorstores.utils import DistanceStrategy db =
SemaDB("mycollection", 768, embeddings, DistanceStrategy.COSINE)
langchain_community.vectorstores.SemaDB
get_ipython().run_line_magic('pip', 'install --upgrade --quiet clarifai') from getpass import getpass CLARIFAI_PAT = getpass() from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Clarifai from langchain_text_splitters import CharacterTextSplitter USER_ID = "USERNAME_ID" APP_ID = "APPLICATION_ID" NUMBER_OF_DOCS = 2 texts = [ "I really enjoy spending time with you", "I hate spending time with my dog", "I want to go for a run", "I went to the movies yesterday", "I love playing soccer with my friends", ] metadatas = [ {"id": i, "text": text, "source": "book 1", "category": ["books", "modern"]} for i, text in enumerate(texts) ] idlist = ["text1", "text2", "text3", "text4", "text5"] metadatas = [ {"id": idlist[i], "text": text, "source": "book 1", "category": ["books", "modern"]} for i, text in enumerate(texts) ] clarifai_vector_db = Clarifai( user_id=USER_ID, app_id=APP_ID, number_of_docs=NUMBER_OF_DOCS, ) response = clarifai_vector_db.add_texts(texts=texts, ids=idlist, metadatas=metadatas) response = clarifai_vector_db.add_texts(texts=texts) clarifai_vector_db = Clarifai.from_texts( user_id=USER_ID, app_id=APP_ID, texts=texts, metadatas=metadatas, ) docs = clarifai_vector_db.similarity_search("I would like to see you") docs book1_similar_docs = clarifai_vector_db.similarity_search( "I would love to see you", filter={"source": "book 1"} ) book_category_similar_docs = clarifai_vector_db.similarity_search( "I would love to see you", filter={"category": ["books"]} ) loader =
TextLoader("your_local_file_path.txt")
langchain_community.document_loaders.TextLoader
import os from langchain_community.utilities import OpenWeatherMapAPIWrapper os.environ["OPENWEATHERMAP_API_KEY"] = "" weather =
OpenWeatherMapAPIWrapper()
langchain_community.utilities.OpenWeatherMapAPIWrapper
from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0, model="gpt-4-turbo-preview") from langchain import hub from langchain_core.prompts import PromptTemplate select_prompt = hub.pull("hwchase17/self-discovery-select") select_prompt.pretty_print() adapt_prompt = hub.pull("hwchase17/self-discovery-adapt") adapt_prompt.pretty_print() structured_prompt =
hub.pull("hwchase17/self-discovery-structure")
langchain.hub.pull
get_ipython().system('pip install --upgrade langchain langchain-google-vertexai') project: str = "PUT_YOUR_PROJECT_ID_HERE" # @param {type:"string"} endpoint_id: str = "PUT_YOUR_ENDPOINT_ID_HERE" # @param {type:"string"} location: str = "PUT_YOUR_ENDPOINT_LOCAtION_HERE" # @param {type:"string"} from langchain_google_vertexai import ( GemmaChatVertexAIModelGarden, GemmaVertexAIModelGarden, ) llm = GemmaVertexAIModelGarden( endpoint_id=endpoint_id, project=project, location=location, ) output = llm.invoke("What is the meaning of life?") print(output) from langchain_core.messages import HumanMessage llm = GemmaChatVertexAIModelGarden( endpoint_id=endpoint_id, project=project, location=location, ) message1 = HumanMessage(content="How much is 2+2?") answer1 = llm.invoke([message1]) print(answer1) message2 = HumanMessage(content="How much is 3+3?") answer2 = llm.invoke([message1, answer1, message2]) print(answer2) answer1 = llm.invoke([message1], parse_response=True) print(answer1) answer2 = llm.invoke([message1, answer1, message2], parse_response=True) print(answer2) get_ipython().system('mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json') get_ipython().system('pip install keras>=3 keras_nlp') from langchain_google_vertexai import GemmaLocalKaggle keras_backend: str = "jax" # @param {type:"string"} model_name: str = "gemma_2b_en" # @param {type:"string"} llm = GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend) output = llm.invoke("What is the meaning of life?", max_tokens=30) print(output) from langchain_google_vertexai import GemmaChatLocalKaggle keras_backend: str = "jax" # @param {type:"string"} model_name: str = "gemma_2b_en" # @param {type:"string"} llm = GemmaChatLocalKaggle(model_name=model_name, keras_backend=keras_backend) from langchain_core.messages import HumanMessage message1 = HumanMessage(content="Hi! Who are you?") answer1 = llm.invoke([message1], max_tokens=30) print(answer1) message2 = HumanMessage(content="What can you help me with?") answer2 = llm.invoke([message1, answer1, message2], max_tokens=60) print(answer2) answer1 = llm.invoke([message1], max_tokens=30, parse_response=True) print(answer1) answer2 = llm.invoke([message1, answer1, message2], max_tokens=60, parse_response=True) print(answer2) from langchain_google_vertexai import GemmaChatLocalHF, GemmaLocalHF hf_access_token: str = "PUT_YOUR_TOKEN_HERE" # @param {type:"string"} model_name: str = "google/gemma-2b" # @param {type:"string"} llm = GemmaLocalHF(model_name="google/gemma-2b", hf_access_token=hf_access_token) output = llm.invoke("What is the meaning of life?", max_tokens=50) print(output) llm =
GemmaChatLocalHF(model_name=model_name, hf_access_token=hf_access_token)
langchain_google_vertexai.GemmaChatLocalHF
get_ipython().run_line_magic('pip', 'install --upgrade --quiet manifest-ml') from langchain_community.llms.manifest import ManifestWrapper from manifest import Manifest manifest = Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5000" ) print(manifest.client_pool.get_current_client().get_model_params()) llm = ManifestWrapper( client=manifest, llm_kwargs={"temperature": 0.001, "max_tokens": 256} ) from langchain.chains.mapreduce import MapReduceChain from langchain.prompts import PromptTemplate from langchain_text_splitters import CharacterTextSplitter _prompt = """Write a concise summary of the following: {text} CONCISE SUMMARY:""" prompt =
PromptTemplate.from_template(_prompt)
langchain.prompts.PromptTemplate.from_template
get_ipython().run_cell_magic('writefile', 'discord_chats.txt', "talkingtower β€” 08/15/2023 11:10 AM\nLove music! Do you like jazz?\nreporterbob β€” 08/15/2023 9:27 PM\nYes! Jazz is fantastic. Ever heard this one?\nWebsite\nListen to classic jazz track...\n\ntalkingtower β€” Yesterday at 5:03 AM\nIndeed! Great choice. 🎷\nreporterbob β€” Yesterday at 5:23 AM\nThanks! How about some virtual sightseeing?\nWebsite\nVirtual tour of famous landmarks...\n\ntalkingtower β€” Today at 2:38 PM\nSounds fun! Let's explore.\nreporterbob β€” Today at 2:56 PM\nEnjoy the tour! See you around.\ntalkingtower β€” Today at 3:00 PM\nThank you! Goodbye! πŸ‘‹\nreporterbob β€” Today at 3:02 PM\nFarewell! Happy exploring.\n") import logging import re from typing import Iterator, List from langchain_community.chat_loaders import base as chat_loaders from langchain_core.messages import BaseMessage, HumanMessage logger = logging.getLogger() class DiscordChatLoader(chat_loaders.BaseChatLoader): def __init__(self, path: str): """ Initialize the Discord chat loader. Args: path: Path to the exported Discord chat text file. """ self.path = path self._message_line_regex = re.compile( r"(.+?) β€” (\w{3,9} \d{1,2}(?:st|nd|rd|th)?(?:, \d{4})? \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))", # noqa flags=re.DOTALL, ) def _load_single_chat_session_from_txt( self, file_path: str ) -> chat_loaders.ChatSession: """ Load a single chat session from a text file. Args: file_path: Path to the text file containing the chat messages. Returns: A `ChatSession` object containing the loaded chat messages. """ with open(file_path, "r", encoding="utf-8") as file: lines = file.readlines() results: List[BaseMessage] = [] current_sender = None current_timestamp = None current_content = [] for line in lines: if re.match( r".+? β€” (\d{2}/\d{2}/\d{4} \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))", # noqa line, ): if current_sender and current_content: results.append( HumanMessage( content="".join(current_content).strip(), additional_kwargs={ "sender": current_sender, "events": [{"message_time": current_timestamp}], }, ) ) current_sender, current_timestamp = line.split(" β€” ")[:2] current_content = [ line[len(current_sender) + len(current_timestamp) + 4 :].strip() ] elif re.match(r"\[\d{1,2}:\d{2} (?:AM|PM)\]", line.strip()): results.append( HumanMessage( content="".join(current_content).strip(), additional_kwargs={ "sender": current_sender, "events": [{"message_time": current_timestamp}], }, ) ) current_timestamp = line.strip()[1:-1] current_content = [] else: current_content.append("\n" + line.strip()) if current_sender and current_content: results.append( HumanMessage( content="".join(current_content).strip(), additional_kwargs={ "sender": current_sender, "events": [{"message_time": current_timestamp}], }, ) ) return chat_loaders.ChatSession(messages=results) def lazy_load(self) -> Iterator[chat_loaders.ChatSession]: """ Lazy load the messages from the chat file and yield them in the required format. Yields: A `ChatSession` object containing the loaded chat messages. """ yield self._load_single_chat_session_from_txt(self.path) loader = DiscordChatLoader( path="./discord_chats.txt", ) from typing import List from langchain_community.chat_loaders.base import ChatSession from langchain_community.chat_loaders.utils import ( map_ai_messages, merge_chat_runs, ) raw_messages = loader.lazy_load() merged_messages =
merge_chat_runs(raw_messages)
langchain_community.chat_loaders.utils.merge_chat_runs
from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI template = """Human: {question} AI Assistant: """ prompt = PromptTemplate.from_template(template) import getpass my_account_id = getpass.getpass("Enter your Cloudflare account ID:\n\n") my_api_token = getpass.getpass("Enter your Cloudflare API token:\n\n") llm = CloudflareWorkersAI(account_id=my_account_id, api_token=my_api_token) llm_chain =
LLMChain(prompt=prompt, llm=llm)
langchain.chains.LLMChain
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml langchainhub') get_ipython().system(' brew install tesseract') get_ipython().system(' brew install poppler') path = "/Users/rlm/Desktop/Papers/LLaMA2/" from typing import Any from pydantic import BaseModel from unstructured.partition.pdf import partition_pdf raw_pdf_elements = partition_pdf( filename=path + "LLaMA2.pdf", extract_images_in_pdf=False, infer_table_structure=True, chunking_strategy="by_title", max_characters=4000, new_after_n_chars=3800, combine_text_under_n_chars=2000, image_output_dir_path=path, ) category_counts = {} for element in raw_pdf_elements: category = str(type(element)) if category in category_counts: category_counts[category] += 1 else: category_counts[category] = 1 unique_categories = set(category_counts.keys()) category_counts class Element(BaseModel): type: str text: Any categorized_elements = [] for element in raw_pdf_elements: if "unstructured.documents.elements.Table" in str(type(element)): categorized_elements.append(Element(type="table", text=str(element))) elif "unstructured.documents.elements.CompositeElement" in str(type(element)): categorized_elements.append(Element(type="text", text=str(element))) table_elements = [e for e in categorized_elements if e.type == "table"] print(len(table_elements)) text_elements = [e for e in categorized_elements if e.type == "text"] print(len(text_elements)) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI prompt_text = """You are an assistant tasked with summarizing tables and text. \ Give a concise summary of the table or text. Table or text chunk: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) model = ChatOpenAI(temperature=0, model="gpt-4") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() tables = [i.text for i in table_elements] table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) texts = [i.text for i in text_elements] text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5}) import uuid from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import InMemoryStore from langchain_community.vectorstores import Chroma from langchain_core.documents import Document from langchain_openai import OpenAIEmbeddings vectorstore = Chroma(collection_name="summaries", embedding_function=OpenAIEmbeddings()) store = InMemoryStore() id_key = "doc_id" retriever = MultiVectorRetriever( vectorstore=vectorstore, docstore=store, id_key=id_key, ) doc_ids = [str(uuid.uuid4()) for _ in texts] summary_texts = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
langchain_core.documents.Document
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import os import uuid uid = uuid.uuid4().hex[:6] os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_API_KEY"] = "YOUR API KEY" from langsmith.client import Client client = Client() import requests url = "https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/docs/integrations/chat_loaders/example_data/langsmith_chat_dataset.json" response = requests.get(url) response.raise_for_status() data = response.json() dataset_name = f"Extraction Fine-tuning Dataset {uid}" ds = client.create_dataset(dataset_name=dataset_name, data_type="chat") _ = client.create_examples( inputs=[e["inputs"] for e in data], outputs=[e["outputs"] for e in data], dataset_id=ds.id, ) from langchain_community.chat_loaders.langsmith import LangSmithDatasetChatLoader loader =
LangSmithDatasetChatLoader(dataset_name=dataset_name)
langchain_community.chat_loaders.langsmith.LangSmithDatasetChatLoader
from langchain.prompts import ( ChatPromptTemplate, FewShotChatMessagePromptTemplate, ) examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, ] example_prompt = ChatPromptTemplate.from_messages( [ ("human", "{input}"), ("ai", "{output}"), ] ) few_shot_prompt = FewShotChatMessagePromptTemplate( example_prompt=example_prompt, examples=examples, ) print(few_shot_prompt.format()) final_prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a wondrous wizard of math."), few_shot_prompt, ("human", "{input}"), ] ) from langchain_community.chat_models import ChatAnthropic chain = final_prompt |
ChatAnthropic(temperature=0.0)
langchain_community.chat_models.ChatAnthropic
from getpass import getpass KAY_API_KEY = getpass() OPENAI_API_KEY = getpass() import os os.environ["KAY_API_KEY"] = KAY_API_KEY os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain.chains import ConversationalRetrievalChain from langchain.retrievers import KayAiRetriever from langchain_openai import ChatOpenAI model = ChatOpenAI(model_name="gpt-3.5-turbo") retriever = KayAiRetriever.create( dataset_id="company", data_types=["10-K", "10-Q"], num_contexts=6 ) qa =
ConversationalRetrievalChain.from_llm(model, retriever=retriever)
langchain.chains.ConversationalRetrievalChain.from_llm
def pretty_print_docs(docs): print( f"\n{'-' * 100}\n".join( [f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)] ) ) from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter documents = TextLoader("../../state_of_the_union.txt").load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever() docs = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson" ) pretty_print_docs(docs) from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor from langchain_openai import OpenAI llm = OpenAI(temperature=0) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) compressed_docs = compression_retriever.get_relevant_documents( "What did the president say about Ketanji Jackson Brown" ) pretty_print_docs(compressed_docs) from langchain.retrievers.document_compressors import LLMChainFilter _filter = LLMChainFilter.from_llm(llm) compression_retriever = ContextualCompressionRetriever( base_compressor=_filter, base_retriever=retriever ) compressed_docs = compression_retriever.get_relevant_documents( "What did the president say about Ketanji Jackson Brown" ) pretty_print_docs(compressed_docs) from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) compression_retriever = ContextualCompressionRetriever( base_compressor=embeddings_filter, base_retriever=retriever ) compressed_docs = compression_retriever.get_relevant_documents( "What did the president say about Ketanji Jackson Brown" ) pretty_print_docs(compressed_docs) from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain_community.document_transformers import EmbeddingsRedundantFilter from langchain_text_splitters import CharacterTextSplitter splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ") redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings) relevant_filter =
EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
langchain.retrievers.document_compressors.EmbeddingsFilter
from langchain_community.document_loaders.obs_file import OBSFileLoader endpoint = "your-endpoint" from obs import ObsClient obs_client = ObsClient( access_key_id="your-access-key", secret_access_key="your-secret-key", server=endpoint, ) loader =
OBSFileLoader("your-bucket-name", "your-object-key", client=obs_client)
langchain_community.document_loaders.obs_file.OBSFileLoader
from langchain.chains import RetrievalQAWithSourcesChain from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores.jaguar import Jaguar from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter """ Load a text file into a set of documents """ loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=300) docs = text_splitter.split_documents(documents) """ Instantiate a Jaguar vector store """ url = "http://192.168.5.88:8080/fwww/" embeddings = OpenAIEmbeddings() pod = "vdb" store = "langchain_rag_store" vector_index = "v" vector_type = "cosine_fraction_float" vector_dimension = 1536 vectorstore = Jaguar( pod, store, vector_index, vector_type, vector_dimension, url, embeddings ) """ Login must be performed to authorize the client. The environment variable JAGUAR_API_KEY or file $HOME/.jagrc should contain the API key for accessing JaguarDB servers. """ vectorstore.login() """ Create vector store on the JaguarDB database server. This should be done only once. """ metadata = "category char(16)" text_size = 4096 vectorstore.create(metadata, text_size) """ Add the texts from the text splitter to our vectorstore """ vectorstore.add_documents(docs) """ Get the retriever object """ retriever = vectorstore.as_retriever() template = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. Question: {question} Context: {context} Answer: """ prompt = ChatPromptTemplate.from_template(template) """ Obtain a Large Language Model """ LLM = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) """ Create a chain for the RAG flow """ rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | LLM |
StrOutputParser()
langchain_core.output_parsers.StrOutputParser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langsmith langchainhub --quiet') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai tiktoken pandas duckduckgo-search --quiet') import os from uuid import uuid4 unique_id = uuid4().hex[0:8] os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = f"Tracing Walkthrough - {unique_id}" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "<YOUR-API-KEY>" # Update to your API key os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>" from langsmith import Client client = Client() from langchain import hub from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser from langchain_community.tools import DuckDuckGoSearchResults from langchain_openai import ChatOpenAI prompt = hub.pull("wfh/langsmith-agent-prompt:5d466cbc") llm = ChatOpenAI( model="gpt-3.5-turbo-16k", temperature=0, ) tools = [ DuckDuckGoSearchResults( name="duck_duck_go" ), # General internet search using DuckDuckGo ] llm_with_tools = llm.bind_tools(tools) runnable_agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) agent_executor = AgentExecutor( agent=runnable_agent, tools=tools, handle_parsing_errors=True ) inputs = [ "What is LangChain?", "What's LangSmith?", "When was Llama-v2 released?", "What is the langsmith cookbook?", "When did langchain first announce the hub?", ] results = agent_executor.batch([{"input": x} for x in inputs], return_exceptions=True) results[:2] outputs = [ "LangChain is an open-source framework for building applications using large language models. It is also the name of the company building LangSmith.", "LangSmith is a unified platform for debugging, testing, and monitoring language model applications and agents powered by LangChain", "July 18, 2023", "The langsmith cookbook is a github repository containing detailed examples of how to use LangSmith to debug, evaluate, and monitor large language model-powered applications.", "September 5, 2023", ] dataset_name = f"agent-qa-{unique_id}" dataset = client.create_dataset( dataset_name, description="An example dataset of questions over the LangSmith documentation.", ) client.create_examples( inputs=[{"input": query} for query in inputs], outputs=[{"output": answer} for answer in outputs], dataset_id=dataset.id, ) from langchain import hub from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools from langchain_openai import ChatOpenAI def create_agent(prompt, llm_with_tools): runnable_agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools |
OpenAIToolsAgentOutputParser()
langchain.agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser