abdullah's picture
Add files using upload-large-folder tool
d956a35 verified
raw
history blame
53.5 kB
1
00:00:09,400 --> 00:00:14,820
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ูƒู…ู„ ู…ุง ุจุฏุฃู†ุงู‡ ููŠ ุงู„ู…ุฑุฉ
2
00:00:14,820 --> 00:00:18,360
ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ ู…ูˆุถูˆุน ุงู„ comparison test ูˆ limit
3
00:00:18,360 --> 00:00:23,060
comparison test ุงุญู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฎุฏู†ุง ูู‚ุท ุงู„ู„ูŠ
4
00:00:23,060 --> 00:00:28,180
ู‡ูˆ ุงู„ comparison test ุชู…ุงู… ุงุฎุชุจุงุฑ ุงู„ู…ู‚ุงุฑู†ุฉ ูˆู‚ู„ู†ุง
5
00:00:28,180 --> 00:00:34,320
ุจู†ู‚ุงุฑู† ู…ุง ุจูŠู† ุญุฏูŠู† ู†ูˆู†ูŠูŠู† ู„ two series ุชู…ุงู…ุŸ ููŠ
6
00:00:34,320 --> 00:00:39,000
ุทุจุนุง ุญุฏ ู†ูˆู†ูŠ ุฃูƒุจุฑ ุฃูˆ ุฃู‚ู„ ู…ู† ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุงู„ุซุงู†ูŠ
7
00:00:39,000 --> 00:00:43,380
ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุงู„ุซุงู†ูŠ ุจูŠูƒูˆู† ุฃุตุบุฑ
8
00:00:43,380 --> 00:00:51,950
ูุจุฃุฌูŠ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ a n ุฃู‚ู„ ู…ู† ุงู„ c n ูˆูƒุงู† ุงู„ู„ูŠ ู‡ูˆ
9
00:00:51,950 --> 00:00:56,330
ุงู„ cn ุงู„ู„ูŠ ู‡ูˆ ุงู„ูƒุจูŠุฑ converged ูŠุจู‚ู‰ summation ุนู„ู‰
10
00:00:56,330 --> 00:01:04,150
an ุจูŠูƒูˆู† converged ุทุจุนุง ู„ูˆ ูƒุงู† ุงู„ dn ุฃู‚ู„ ู…ู† ุฃูˆ
11
00:01:04,150 --> 00:01:09,770
ูŠุณุงูˆูŠ ุงู„ an ูˆูƒุงู† ุงู„ dn ุถูŠูุฌ summation ุนู„ูŠู‡ุง ุงู„
12
00:01:09,770 --> 00:01:13,770
series ู‡ุฐู‡ ูŠุจู‚ู‰ ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†ู‡ุง divergence ู…ู† ุงู„ุจุงุจ
13
00:01:13,770 --> 00:01:18,330
ุงู„ุฃูˆู„ู‰ ูˆู‡ูŠ summation ุนู„ู‰ CNN ูˆู‡ุฐุง ุณู…ูŠู†ุงู‡ ุงู„ู…ุฑุฉ
14
00:01:18,330 --> 00:01:24,670
ุงู„ู…ุงุถูŠุฉ ุงุฎุชุจุงุฑ ุงู„ู…ู‚ุงุฑู†ุฉ ูˆุงุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ ู…ุฌู…ูˆุนุฉ ู…ู†
15
00:01:24,670 --> 00:01:31,770
ุงู„ุฃู…ุซู„ุฉ ุฃุนุชู‚ุฏ ุณุชุฉ ุฃู…ุซู„ุฉ ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุณุงุจุน ุทูŠุจ
16
00:01:31,770 --> 00:01:34,930
ุทุจุนุง ู‡ูˆ ุจูŠุนุทูŠู†ูŠ two series ู‡ูˆ ุจูŠุนุทูŠู†ูŠ ุงู„ series
17
00:01:34,930 --> 00:01:40,890
ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑ ูˆุฃู†ุช ุจุฏูƒ ุชุฎู„ู‚ series ุฃุฎุฑู‰ ู…ู† ุงู„
18
00:01:40,890 --> 00:01:44,770
series ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒ ุจู‡ุฐู‡ ุงู„ series ุงู„ู…ุฎู„ู‚ุฉ
19
00:01:44,770 --> 00:01:50,310
ุชูƒูˆู† ุฃู†ุช ุนุงุฑูู‡ุง ู‡ู„ ู‡ูŠ converged ุฃูˆ diver ูู„ูˆ ุฌูŠู†ุง
20
00:01:50,310 --> 00:01:54,710
ู„ู„ series ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู…ูŠู† ุฃู‚ุฑุจ series ุนู„ู‰ ู‡ุฐู‡
21
00:01:54,710 --> 00:01:59,840
ุงู„ series ู…ู…ูƒู† ุฃู‚ุงุฑู† ู…ุนุงู‡ุง ุจูˆุงุญุฏ ุนู„ู‰ n ุชุฑุจูŠุน ูŠุจู‚ู‰
22
00:01:59,840 --> 00:02:05,220
ุฃู†ุง ุนู†ุฏูŠ summation 1 ุนู„ู‰ N ุชุฑุจูŠุน ู…ู† N equal one to
23
00:02:05,220 --> 00:02:13,340
infinity ู‡ุฏู‰ converge ุจ ุณูŠุฑุฒ ุงู„ุณุจุจ because
24
00:02:16,130 --> 00:02:22,450
ุฃู† P ูŠุณุงูˆูŠ 2 ุฃูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ุทูŠุจ ุจุฏุฃุช ุขุฎุฐ
25
00:02:22,450 --> 00:02:29,750
ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ tan ุงู„ N ุนู„ู‰ N ุชุฑุจูŠุน ุจุฏุฃุช ุฃุดูˆู ุดูˆ
26
00:02:29,750 --> 00:02:37,610
ุนู„ุงู‚ุชู‡ุง ุจูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน tan X ุฃูƒุจุฑ ู‚ูŠู…ุฉ ู…ู…ูƒู†
27
00:02:37,610 --> 00:02:42,490
ุชุฃุฎุฐู‡ุง ู„ู…ุง X ุชูƒุจุฑ ุฃูˆ ุงู„ N ุชูƒุจุฑ ูˆ ุชุฑูˆุญ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ
28
00:02:42,490 --> 00:02:49,550
ูˆุชุฌุฏู‡ุง ุฅุฐุงู‹ ุฏุงุฆู…ุงู‹ ูˆ ุฃุจุฏุงู‹ ุฃู‚ู„ ู…ู† ู…ูŠู†ุŸ ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ
29
00:02:49,550 --> 00:02:55,570
ุนู„ู‰ ุงู† ุชุฑุจูŠุนุŒ ู…ุงุฏุงู… ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู† ุชุฑุจูŠุน
30
00:02:55,570 --> 00:02:59,670
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู† ุชุฑุจูŠุนุŒ ู‚ู„ู†ุง ุฃู†ู‡ุง
31
00:02:59,670 --> 00:03:05,220
converge series ูŠุจู‚ู‰ ุงู„ู„ูŠ ุฃู‚ู„ ู…ู†ู‡ุง ุจุชุจู‚ู‰ converge
32
00:03:05,220 --> 00:03:13,220
ุจุฑูˆุญ ุจู‚ูˆู„ ู„ู‡ by the comparison test the series
33
00:03:13,220 --> 00:03:20,380
summation ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ tanุดุฑ N ุนู„ู‰ ุงู† ุชุฑุจูŠุนู‡ุง
34
00:03:20,380 --> 00:03:28,920
converge ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซุงู„ ุงู„ุณุคุงู„ ุงู„ุซุงู…ู†
35
00:03:28,920 --> 00:03:37,920
ุจูŠู‚ูˆู„ ู„ูŠ summation ู…ู† N equal one to infinity ู„ู„ N
36
00:03:37,920 --> 00:03:46,000
ุฒุงุฆุฏ ุงุซู†ูŠู† ุฃุณ N ุนู„ู‰ N ุชุฑุจูŠุน ููŠ ุงุซู†ูŠู† ุฃุณ N
37
00:03:51,780 --> 00:03:56,340
ุจู†ุฑูˆุญ ู†ุฃุฎุฐ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ููŠ ู‡ุฐู‡ ุงู„ series ูŠุจุฏุฃ ุงู„ุญุฏ
38
00:03:56,340 --> 00:04:02,080
ุงู„ู†ูˆู†ูŠ ููŠ ู‡ุฐู‡ ุงู„ series ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† N ุฒุงุฆุฏ 2 ุฃุณ N
39
00:04:02,080 --> 00:04:10,360
ุนู„ู‰ N ุชุฑุจูŠุน ููŠ ุงู„ 2 ุฃุณ N ุงู„ุณุคุงู„ ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ุฃูƒุจุฑ
40
00:04:10,360 --> 00:04:19,320
ุงู„ N ูˆู„ุง 2 ุฃุณ N ุฅู† ุฃูƒุจุฑ ู…ู† ุงุซู†ูŠู† ุฃุณ ุฅู†ุŸ ู„ู…ุง ุงู„ N
41
00:04:19,320 --> 00:04:24,000
ุจูŠุจู‚ู‰ ุชุฑูˆุญ ู„ู„ู…ุงู„ุง ู†ู‡ุงูŠุฉุŒ ู„ุฃู† ุงุซู†ูŠู† ุฃุณ N ู‡ูŠ ุงู„ุฃูƒุจุฑ
42
00:04:24,000 --> 00:04:27,980
ุฏุงุฆู…ุงู‹ ูˆ ุฃู‚ู„ู‡ุงุŒ ุญุท N ุจูˆุงุญุฏุŒ ุจูŠุตูŠุฑ ู‡ุฐู‡ ูˆุงุญุฏุฉ ูˆู‡ุฐู‡
43
00:04:27,980 --> 00:04:32,770
ุงุซู†ูŠู† ุญุท ุงุซู†ูŠู† ุจุตูŠุฑ ุงุซู†ูŠู† ูˆ ุงุซู†ูŠู† ุชุฑุจูŠุนุŒ ุญุท
44
00:04:32,770 --> 00:04:36,710
ุซู„ุงุซุฉ ุจุตูŠุฑ ุซู„ุงุซุฉ ูˆ ุงุซู†ูŠู† ุชูƒุนูŠุจุŒ ุญุท ุฃุฑุจุนุฉ ุจุตูŠุฑ
45
00:04:36,710 --> 00:04:40,290
ุงุซู†ูŠู† ูˆ ุงุซู†ูŠู† ุฃุณ ุฃุฑุจุนุฉุŒ ูŠุจู‚ู‰ ูุฑู‚ ุดุงุณุน ู…ุง ุจูŠู†
46
00:04:40,290 --> 00:04:44,130
ุงู„ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ุฅุฐุง ุงู„ู„ูŠ .. ุจุฏูŠ ุฃุนุชุจุฑู‡ุง ุฏูŠ ู…ุด
47
00:04:44,130 --> 00:04:48,830
ู…ูˆุฌูˆุฏุฉุŒ ุจุถู„ ูƒุฏู‡ุŒ ู„ุฃู† ุงู„ N ู‡ูŠ ุงู„ู„ูŠ ุจุชุชุญูƒู… ููŠ ุงู„ุจุณุท
48
00:04:49,130 --> 00:04:59,250
ุฃุธู† ู…ู…ูƒู† ู†ุฎุชุตุฑู‡ุง ุฃู† ุงุชุจุนุช ุงู„ู…ู‚ุงู… ุจุถู„ ุฌุฏูŠุฏ ุฃู‚ู„
49
00:04:59,250 --> 00:05:07,890
ู…ู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุฃู‚ู„ ู…ู† ูˆู‡ุฐุง ุงู„ูƒุณุฑ ูˆู‡ุฐู‡ N ุชุฑุจูŠุน ูˆู‡ุฐู‡
50
00:05:07,890 --> 00:05:15,150
ุงุซู†ูŠู† ุฃุณ N ูŠุจู‚ู‰ ู‡ุฐูŠ ู„ู„ุจุณุท ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุดูŠู„ ุงู„ N ูˆู†ูƒุชุจ
51
00:05:15,150 --> 00:05:25,150
ุจุณ ุงุซู†ูŠู† ุฃุณ N ุตุญูŠุญ ุบู„ุทุฉ ุงู„ุจุณุท ุฃูƒุจุฑ ุชู…ุงู… ุงู„ุจุณุท ุฃูƒุจุฑ ู…ู†
52
00:05:25,150 --> 00:05:30,010
ุงู„ุจุณุท ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุจุณูŠุทุฉ ู…ุดุงู† ุฃุฌู…ุน ุงู„ุงุซู†ูŠู† ู…ุน
53
00:05:30,010 --> 00:05:35,210
ุจุนุถ ู„ุงุฒู… ุฃูƒุชุจ ู‡ุฐู‡ ุจุฏู„ุงู„ุฉ ู‡ุฐู‡ ุฅุฐุง ุฃู†ุง ู„ูˆ ุฌูŠุช ู‚ู„ุช
54
00:05:35,210 --> 00:05:42,340
ุงุซู†ูŠู† ู‚ุต N ูƒู…ุงู† ู…ู† ูุนู„ู‡ ู…ู†ูุนุด ู…ู† ูุนู„ูŠู‡ ุงู„ู…ูŠู† ู‡ุฐู‡
55
00:05:42,340 --> 00:05:46,540
ุฃู‚ู„ ู…ู† ู‡ุฐู‡ ู„ูŠุด ุงู„ู…ู‚ุงู… ู‡ูˆ ู†ูุณู‡ ุงุซู†ูŠู† ูˆุงุณ N ู‡ูŠ
56
00:05:46,540 --> 00:05:52,120
ุงุซู†ูŠู† ูˆุงุณ N ุงู„ N ุฃู‚ู„ ู…ู† ุงุซู†ูŠู† ูˆุงุณ N ูŠุจู‚ู‰ ุงู„ู…ู‚ุงู…
57
00:05:52,120 --> 00:05:57,880
ุงู„ุฃูˆู„ ุฃู‚ู„ ู…ู† ุงู„ู…ู‚ุงู… ุงู„ุซุงู†ูŠ ุทุจ ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒุŸ ุนู…ู„ุช
58
00:05:57,880 --> 00:06:02,860
ู‡ูŠูƒ ู…ุดุงู† ุฃู‚ุฏุฑ ุฃุฌู…ุน ุงู„ุงุซู†ูŠู† ู…ุน ุจุนุถ ูˆ ูŠุชู… ุนู…ู„ูŠุฉ
59
00:06:02,860 --> 00:06:08,660
ุงู„ุงุฎุชุตุงุฑุงุช ูุจุฃุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุจุฏูŠ ุฃุณุงูˆูŠ ุงุซู†ูŠู† ุถุฑุจ ุงุซู†ูŠู†
60
00:06:08,660 --> 00:06:15,300
ุฃุณ N ุนู„ู‰ N ุชุฑุจูŠุน ููŠ ุงุซู†ูŠู† ุฃุณ N ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ุงุซู†ูŠู†
61
00:06:15,300 --> 00:06:20,100
ุนู„ู‰ N ุชุฑุจูŠุน ุจู‚ูˆู„ ู„ู‡ ุจุทูˆู„ูƒ
62
00:06:32,400 --> 00:06:33,800
ุงู„ุณุจุจ
63
00:06:37,350 --> 00:06:44,930
ุฃู† P ูŠุณุงูˆูŠ 2 ุฃูƒุจุฑ ู…ู† 1 ุงู„ุตุญูŠุญ ุจุฑูˆุญ ุจู‚ูˆู„ ู‡ู†ุง by the
64
00:06:44,930 --> 00:06:53,490
comparison test the series ุงู„ู‡ูŠ summation ู„ู…ู† ู„ู„ N
65
00:06:53,490 --> 00:07:01,090
ุฒุงุฆุฏ 2 ุฃุณ N ุนู„ู‰ N ุชุฑุจูŠุน ุฒุงุฆุฏ 2 ุฃุณ N converge
66
00:07:03,440 --> 00:07:07,520
ุทูŠุจ ุงุฌู‰ ูˆุงุญุฏ ุซุงู†ูŠ ู‚ุงู„ ุฃู†ุง ุจููƒุฑ ููŠ ุงู„ู…ุณุฃู„ุฉ ุจุทุฑูŠู‚ุฉ
67
00:07:07,520 --> 00:07:14,980
ุฃุฎุฑู‰ ุจู‚ูˆู„ ู„ู‡ ูƒูŠู ุทุจุนุง ุญู„ ุขุฎุฑ ูŠุจู‚ู‰ another solution
68
00:07:14,980 --> 00:07:18,100
ุงุฌู‰
69
00:07:18,100 --> 00:07:22,560
ู‚ุงู„ ู„ูŠ ุฃู†ุง ู…ุง ุจุฏูŠุด ุฃุดุชุบู„ ู‡ูŠูƒ ุจู‚ูˆู„ ู„ู‡ ูƒูŠู ู‚ุงู„ ู„ูŠ ู‡ุฐุง
70
00:07:22,560 --> 00:07:30,520
ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ N ุฒุงุฆุฏ ุงุซู†ูŠู† ุฃุณ N ุนู„ู‰ N
71
00:07:30,520 --> 00:07:35,860
ุชุฑุจูŠุน ููŠ ุงุซู†ูŠู† ุฃุณ N ู‚ู„ู†ุง ู„ู‡ ุฃูŠูˆุฉ ุฌุงู„ูŠ ุจุฏูŠ ุฃูˆุฒุน ุงู„
72
00:07:35,860 --> 00:07:41,970
ุจุณุท ุนู„ูŠ ุงู„ู…ู‚ุงู… ูˆู‡ุฐุง ู‡ูŠ summation ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰
73
00:07:41,970 --> 00:07:51,090
ู‡ุฐุง summation ู„ู„ N ุนู„ู‰ N ุชุฑุจูŠุน ููŠ 2 ุฃุณ N ุฒุงุฆุฏ 2 ุฃุณ
74
00:07:51,090 --> 00:07:58,070
N ุนู„ู‰ N ุชุฑุจูŠุน ููŠ 2 ุฃุณ N ู‚ู„ู†ุง ู„ู‡ู… ู…ุง ููŠุด ู…ุดูƒู„ุฉ ู‚ุงู„ ู„ู‡
75
00:07:58,070 --> 00:08:03,650
ู‡ุฐู‡ ูƒู…ุงู† summation ุงุฎุชุตุฑ ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ N ููŠ
76
00:08:03,650 --> 00:08:10,910
ุงู„ุงุซู†ูŠู† ุฃุณ N ูˆู‡ุฐู‡ ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน ู‚ู„ู†ุง ู„ู‡ ุชู…ุงู…
77
00:08:10,910 --> 00:08:16,230
ุชู…ุงู… ู…ู…ูƒู† ูŠุฏุฎู„ ุงู„ summation ุนู„ู‰ ุงู„ุงุซู†ูŠู† ูˆุจุงู„ุชุงู„ูŠ
78
00:08:16,230 --> 00:08:20,790
ู‡ุฐู‡ ุจูŠุตูŠุฑ summation ุซุงู†ูŠ ุจู‡ุฐุง ุงู„ุดูƒู„ ุฃุธู† ู‡ุฐู‡
79
00:08:20,790 --> 00:08:25,900
convergence ุฏุบุฑูŠ ู…ุง ููŠู‡ุง ู…ุดูƒู„ุฉ ู…ุดูƒู„ุฉ ุชุจุนู†ุงู‡ุง ู…ุน ู‡ุฐู‡
80
00:08:25,900 --> 00:08:35,320
ุจู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุฃู‚ู„ ู…ู† summation ู„ 1 ุนู„ู‰ 2 ุฃุณ N ุฒุงุฆุฏ
81
00:08:35,320 --> 00:08:42,740
summation ุฒุงุฆุฏ summation ู„ 1 ุนู„ู‰ N ุชุฑุจูŠุนุŒ ู…ุธุจูˆุท
82
00:08:42,740 --> 00:08:49,700
ูˆู„ุง ู„ุงุŸ ู‡ุฐู‡ ุฃู‚ู„ ู…ู† ู‡ุฐู‡ุŒ ุตุญูŠุญ ูˆู„ุง ู„ุงุŸ ู…ุงู„ูƒ ูˆ ุฎู†ุด
83
00:08:49,700 --> 00:08:53,960
ูŠุนู†ูŠ ุดูŠู„ุช N ู…ู† ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ุฃู‚ู„ ู…ู†ู‡ุง ู„ุฃู† ู‡ุฐู‡ ู…ู‚ุงู…ู‡ุง
84
00:08:53,960 --> 00:09:01,080
ุฃูƒุจุฑ ุทูŠุจ ู‡ุฐู‡ ู‡ุงู‡ุง ุงู„ู„ูŠ ุชุณุงูˆูŠ ู…ูŠู†ุŸ summation ู„ู†ุตู ุฃุณ
85
00:09:01,080 --> 00:09:06,560
N ุฒูŠ summation ู„ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน ุฃุธู† ู‡ุฐู‡ convert
86
00:09:06,560 --> 00:09:13,360
geometric ุตุญุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ convert geometric series
87
00:09:13,650 --> 00:09:19,750
ูˆู‡ุฐู‡ convergence P series ูˆู‡ุฐู‡ convergence P
88
00:09:19,750 --> 00:09:25,030
series ู…ุฌู…ูˆุน ุงู„ two convergence series is
89
00:09:25,030 --> 00:09:30,770
convergent ูŠุจู‚ู‰ ุงู„ series ุงู„ู„ูŠ ุฃู‚ู„ ู…ู†ู‡ุง ุงู„ู„ูŠ ุงู„ุฃุตู„
90
00:09:30,770 --> 00:09:37,580
ูŠุงุดูŠ ุจุชูƒูˆู† convergent ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุทุฑูŠู‚ูŠู† ู„ู„ุญู„
91
00:09:37,580 --> 00:09:41,020
ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุชุดูˆูู‡ุง ู…ู†ุงุณุจุฉ ุจุงู„ู†ุณุจุฉ ู„ูƒ ุทุจุนุงู‹
92
00:09:41,020 --> 00:09:46,760
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ุฃุณุฑุน ูƒุซูŠุฑ ู…ู† ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูˆุฃุจุณุท
93
00:09:46,760 --> 00:09:53,340
ู…ู†ู‡ุง ู‡ุฐุง ูƒุงู† ุงู„ุณุคุงู„ ุงู„ุซุงู…ู† ุงู„ุณุคุงู„ ุงู„ุชุงุณุน ุจูŠู‚ูˆู„ ุงู„
94
00:09:53,340 --> 00:10:00,060
summation ู…ู† n equal one to infinity ู„ุฅุซู†ูŠู† to the
95
00:10:00,060 --> 00:10:06,460
power n ุซู„ุงุซุฉ to the power n ุซู„ุงุซุฉ to the power n
96
00:10:06,460 --> 00:10:12,940
ุฒุงุฆุฏ ุฃุฑุจุนุฉ to the power n ุจู‚ูˆู„ ู„ูƒ ูƒูˆูŠุณุŒ ุจุฏู†ุง ู†ุฃุฎุฐ
97
00:10:12,940 --> 00:10:19,320
ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุงุซู†ูŠู† ุฃุณ N ุฒุงุฆุฏ ุซู„ุงุซุฉ ุฃุณ N ุซู„ุงุซุฉ ุฃุณ N
98
00:10:19,320 --> 00:10:26,660
ุฒุงุฆุฏ ุฃุฑุจุนุฉ ุฃุณ N ุทุจุนุง ุงุซู†ูŠู† ุฃุณ N ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
99
00:10:26,660 --> 00:10:29,980
ุซู„ุงุซุฉ ุฃุณ N ูŠุจู‚ู‰ ุงู„ู„ูŠ ุจุฏู‡ ูŠุชุญูƒู… ููŠ ุงู„ู…ูˆุถูˆุน ู…ูŠู†
100
00:10:29,980 --> 00:10:34,840
ุซู„ุงุซุฉ ุฃุณ N ู‡ู†ุง ุฃุฑุจุนุฉ ุฃุณ N ุฃูƒุจุฑ ู…ู† ุซู„ุงุซุฉ ุฃุณ N
101
00:10:34,840 --> 00:10:39,000
ูŠุจู‚ู‰ ุงู„ู„ูŠ ุจุฏู‡ ูŠุชุญูƒู… ููŠ ุงู„ู…ูˆุถูˆุน ู…ูŠู† ูŠุจู‚ู‰ ุจุฏูŠ ุฃุดูŠู„
102
00:10:39,000 --> 00:10:43,220
ุงู„ุซู„ุงุซุฉ ูˆุฃุดูŠู„ ุงุซู†ูŠู† ู…ุถุงู„ ุซู„ุงุซุฉ ุฃุณ N ุนู„ู‰ ุฃุฑุจุนุฉ ุฃุณ
103
00:10:43,220 --> 00:10:51,180
N ูŠุนู†ูŠ ุซู„ุงุซุฉ ุฃุฑุจุงุน ูƒู„ ุฃุณ N geometric convert ูŠุจู‚ู‰
104
00:10:51,180 --> 00:10:56,900
ุจุฏู‡ ูŠู…ุดูŠ ุฃุฌู„ ู…ู†ุทุจุนุงู‹ ูŠุจู‚ู‰ ุจู‚ู‰ ุขุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุฃู‚ู„
105
00:10:56,900 --> 00:11:02,980
ู…ู†ู‡ ูˆู‡ุฐุง ุฅุดุงุฑุฉ ุงู„ูƒุณุฑุŒ ู„ุง ู…ุด ู…ุธุจูˆุท ุบู„ุทุŒ ู‡ุฐุง ุงู„ุจุณุท
106
00:11:02,980 --> 00:11:07,740
ุทุจุนุงู‹ ุงู„ู…ู‚ุงู… ุฏูŠ ู†ุฎู„ูŠู‡ ุฒูŠ ู…ุง ู‡ูˆุŒ ุฃูŠ ุซู„ุงุซุฉ ุฃุณ N ุฒูŠ
107
00:11:07,740 --> 00:11:14,210
ุฃุฑุจุนุฉ ุฃุณ NุŒ ู…ุธุจูˆุท ุฐู„ูƒุŸ ู…ุด ู…ุธุจูˆุท ุจุณูŠุทุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุชุจุชู‡ุง
108
00:11:14,210 --> 00:11:20,850
ุซู„ุงุซุฉ ุฃุณ N ุจุตูŠุฑ ูุนู„ุงู‹ ุงุซู†ูŠู† ุฃุณ N ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ุฃุณ N
109
00:11:20,850 --> 00:11:25,530
ู„ูƒู„ ุงู„ N ู…ู† ุนู†ุฏ ุงู„ูˆุงุญุฏ ู„ุบุงูŠุฉ ู…ุง ู„ู†ู‡ุงูŠุฉ ูˆ ุฏู‡ ูƒู„ุงู…
110
00:11:25,530 --> 00:11:34,350
ุตุญูŠุญ ูŠุนู†ูŠ ู‡ุฐู‡ ุชุณุงูˆูŠ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ุฃุณ N ุนู„ู‰ ุซู„ุงุซุฉ
111
00:11:34,350 --> 00:11:45,040
ุฃุณ N ุฒุงุฆุฏ ุฃุฑุจุนุฉ ุฃุณ N ู‡ุฐู‡ ุชุณุงูˆูŠ ุงุซู†ูŠู† ู…ู†
112
00:11:45,040 --> 00:11:55,330
ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ุฃูุณ N ุนู„ู‰ ุฃุฑุจุนุฉ ุฃูุณ N ูŠุนู†ูŠ ุดูŠู„ุช ู…ู†ุŸ
113
00:11:55,330 --> 00:11:58,970
ุดูŠู„ุช ุงู„ุซู„ุงุซุฉ ูˆ ุงู„ุซู…ุงู†ูŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู…ู‚ุงู… ู‡ุฐูŠ.
114
00:11:58,970 --> 00:12:05,110
ุชู…ุงู…ุŸ ู‡ุฐูŠ ู…ูŠู†ุŸ ู‡ุฐูŠ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ุฃุฑุจุงุน ูƒู„ูˆุณ ู‚ุฏุงุด.
115
00:12:05,830 --> 00:12:09,990
And ู…ูŠู† ู‡ุฐูŠ ุงู„ seriesุŸ GeometricุŒ convergent ูˆู„ุง
116
00:12:09,990 --> 00:12:14,840
divergentุŸ convert ุฅุฐุง ุงู„ู„ูŠ ุฃู‚ู„ ู…ู†ู‡ุง ุจุชูƒูˆู† ู…ุงู„ู‡ุง
117
00:12:14,840 --> 00:12:24,020
convert ุจู‚ูˆู„ ู„ู‡ ุจุทูˆู„ูƒ summation ู„ู„ุฅุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุงุน
118
00:12:24,020 --> 00:12:31,420
ุฃุณ N ู…ู† N equal one to infinity converge geometric
119
00:12:31,420 --> 00:12:35,660
series ุงู„ุณุจุจ because
120
00:12:41,840 --> 00:12:47,620
ุงู„ุฃุณุงุณ ุชุจุน ุงู„ series ูŠุณุงูˆูŠ ุซู„ุงุซุฉ ุฃุฑุจุงุน ูˆุงู„ุซู„ุงุซุฉ ุฃุฑุจุงุน
121
00:12:47,620 --> 00:12:54,660
ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ุจุฑูˆุญ ุจู‚ูˆู„ ู„ู‡ by the comparisons
122
00:12:54,660 --> 00:13:03,350
of the series ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุฃู‚ู„ ู…ู†ู‡ุง summation ู…ู† n
123
00:13:03,350 --> 00:13:09,450
equal one to infinity ู„ู„ุงุชู†ูŠู† ุฃุณ N ุฒุงุฆุฏ ุซู„ุงุซุฉ ุฃุณ N
124
00:13:09,450 --> 00:13:16,590
ูˆู‡ู†ุง ุฃุฑุจุนุฉ ุฃุณ N converge ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุณุฃู„ุฉ
125
00:13:29,950 --> 00:13:36,310
ุณุคุงู„ ุงู„ุนุงุดุฑ summation
126
00:13:36,310 --> 00:13:44,950
ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู„ n factorial ุงู„
127
00:13:44,950 --> 00:13:52,570
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู„ n ุนู„ู‰ n ุฒุงุฆุฏ ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ
128
00:13:52,570 --> 00:13:53,270
factorial
129
00:14:04,900 --> 00:14:09,100
ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู†ูŠ ุฃุจุญุซ convergence ูˆ divergence
130
00:14:09,100 --> 00:14:14,580
ู…ุจุงุดุฑุฉุŒ ุฅุฐุง ุญุงุจุจ ุชุญุท ุงู„ู…ุณุฃู„ุฉ ููŠ ุดูƒู„ ุฌุฏูŠุฏุŒ ุฃุชูˆู‚ุน
131
00:14:14,580 --> 00:14:21,520
ูˆุงู„ู„ู‡ุŒ ู…ุด ุญุงุจุจุŒ ุฎู„ุงุต ุฏุฑุจ ู‡ู†ุง ุงู„ุฃู‚ู„ ู…ู† ูˆุงู„ุฃูƒุจุฑ ู…ู†ุŒ
132
00:14:21,520 --> 00:14:27,680
ุชู…ุงู…ุŸ ุฃู‡ ุชุฎุชุตุฑ n ุฒุงุฆุฏ ุงุซู†ูŠู†ุŒ n ุฒุงุฆุฏ ุงุซู†ูŠู†ุŒ ูˆ n
133
00:14:27,680 --> 00:14:34,480
ุขุฎุฑ n ุงุซู†ูŠู† 100% ูŠุนู†ูŠ ู‚ุตุฏ ุฒู…ูŠู„ูƒู… ู†ุญุท ุงู„ู…ุณุฃู„ุฉ ููŠ ุดูƒู„
134
00:14:34,480 --> 00:14:38,200
ุฌุฏูŠุฏ ู‚ุจู„ ุฃู† ู†ุจุญุซ ุงู„ convergence ูˆ ุงู„ divergence
135
00:14:38,200 --> 00:14:42,840
ู„ู‡ุฐู‡ ุงู„ series ุจู‚ูˆู„ ูŠุนู†ูŠ ุฅูŠู‡ุŸ ูŠุนู†ูŠ ู‡ุฐู‡ ู‡ูŠ
136
00:14:42,840 --> 00:14:48,730
summation ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ุงู„
137
00:14:48,730 --> 00:14:53,330
factorial
138
00:14:53,330 --> 00:15:01,110
ู†ููƒู‘ู‡ n ุฒุงุฆุฏ 2 ููŠ n ุฒุงุฆุฏ 1 ููŠ n factorial
139
00:15:04,890 --> 00:15:09,870
ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงู„ summation ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰
140
00:15:09,870 --> 00:15:13,590
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู„ square root ู„ู„ n ุนู„ู‰
141
00:15:19,480 --> 00:15:26,400
ูŠุจู‚ู‰ ู‡ู†ุง ุจุงุฌูŠ ุจู‚ูˆู„ n ุฒุงุฆุฏ ุงุซู†ูŠู† ููŠ ุงู„ n ุฒุงุฆุฏ ูˆุงุญุฏ
142
00:15:26,400 --> 00:15:32,960
ุฅุฐุง ุตุงุฑุช ุงู„ู…ุณุฃู„ุฉ ููŠ ุดูƒู„ ุฌุฏูŠุฏ ุณู‡ู„ ุงู„ุขู† ุฃุชุญูƒู… ููŠู‡ ูˆ
143
00:15:32,960 --> 00:15:37,880
ุฃุนุฑู ุฅูŠู‡ ู‡ูˆ converge ุฃูˆ bye bye ุทุจุนู‹ุง ุงู„ bus ุฌุงู‡ุฒ
144
00:15:37,880 --> 00:15:42,780
ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ n ุงู„ู…ู‚ุงู… ุจุฏูŠ ุฃุดูŠู„ ุงู„ูˆุงุญุฏ ูˆ ุงุซู†ูŠู†
145
00:15:42,780 --> 00:15:48,900
ุจูŠุตูŠุฑ n ููŠ n ุฌุฏุงุดูŠู„ n ุชุฑุจูŠุน ูˆ ููˆู‚ ู†ู‚ุต ู†ุต
146
00:15:56,550 --> 00:16:03,330
ูŠุง ุฑุฌู„ ูŠุง ุฑุฌู„ ูŠุง ุฑุฌู„ ูƒู… ู…ุฑุฉ ู†ูƒุชุจ ุงู„ n ุฃูƒุจุฑ ู…ู†
147
00:16:03,330 --> 00:16:08,060
ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ุจุชุจู‚ู‰ convergeุŸ ูŠุจู‚ู‰ ุชุณุชุนุฌู„ุด ุชุงู†ูŠ ู…ุฑุฉ
148
00:16:08,060 --> 00:16:12,300
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุชุจู‚ู‰ ุงู„ series converge ุฅุฐุง
149
00:16:12,300 --> 00:16:17,980
ุนู†ุฏ ุงู„ู…ู‚ุงุฑู†ุฉ ุจุฏูŠ ุฃู…ุดูŠ ุฃู‚ู„ ู…ู† ุฅุฐุง ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุตุงุฑ
150
00:16:17,980 --> 00:16:26,600
ุนู†ุฏูŠ ุฌุฐุฑ ุงู„ n ุนู„ู‰ n ุฒุงุฆุฏ ุงุซู†ูŠู† n ุฒุงุฆุฏ ูˆุงุญุฏ ุฃู‚ู„ ู…ู†
151
00:16:26,600 --> 00:16:35,540
ุฌุฐุฑ ุงู„ n ุนู„ู‰ n ููŠ n ุทุจ ุงู„ู„ูŠ ููˆู‚ ุฃุณ ู†ุต ูŠุจู‚ู‰ ุจู†ุฎุชุตุฑ
152
00:16:35,540 --> 00:16:44,320
ุจูŠุถู„ ุนู„ู‰ n ุฃุณ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ุจู‚ูˆู„ู‡ ุจุทูˆู„ูƒู… ุตู…ูŠุดูŠ
153
00:16:44,320 --> 00:16:49,340
ู„ูˆุงุญุฏ ุนู„ู‰ n ุฃุณ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰
154
00:16:49,340 --> 00:16:59,300
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ converge P series ุงู„ุณุจุจ ุจุณุจุจ ุฃู† p ูŠุณุงูˆูŠ
155
00:16:59,300 --> 00:17:05,620
ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ุฃูƒุซุฑ ู…ู† ูˆุงุญุฏ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ by the
156
00:17:05,620 --> 00:17:15,040
comparison test ุงู„ series ุงู„ุฃุตู„ูŠุฉ ู„ุตู…ูŠู… ู…ู† n ุชุณุงูˆูŠ
157
00:17:15,040 --> 00:17:16,500
ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
158
00:17:29,670 --> 00:17:39,040
ุงู„ุณุคุงู„ ุงู„ุญุงุฏูŠ ุนุดุฑ ุจูŠู‚ูˆู„ ู„ูŠ summation ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ
159
00:17:39,040 --> 00:17:46,120
ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ูˆุงุญุฏ ุนู„ู‰ n factorial ุจุฏูŠ ุฃุดูˆู ู‡ุฐุง
160
00:17:46,120 --> 00:17:50,860
ุงู„ุณุคุงู„ ู‡ู„ ุงู„ series ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ converge ูˆุงู„ู„ู‡
161
00:17:50,860 --> 00:17:55,490
diverge ูˆุงู„ู„ู‡ ูˆุงู„ู„ู‡ ู…ุง ุฅุญู†ุง ุนุงุฑููŠู† ูŠุนู†ูŠ ู…ุด ุนุงุฑููŠู† ูƒูŠู
162
00:17:55,490 --> 00:17:59,950
ู†ุนู…ู„ ููŠู‡ุง ู†ู‚ุงุฑู† ู…ุน ู…ูŠู† ูŠุนู†ูŠ ุชู…ุงู…ุŸ ู„ุฃู† ุงู„ n
163
00:17:59,950 --> 00:18:04,610
factorial ู„ูˆ ุจุฏู‡ ูุฑู‚ ุจุฏู‡ ูŠุตูŠุฑ n ู…ู† ุงู„ terms ู„ูƒู†
164
00:18:04,610 --> 00:18:09,490
ุฎู„ู‘ูŠู†ุง ู†ุชุนุฑู ุนู„ู‰ ุดูƒู„ ุงู„ series ููŠ ุงู„ุฃูˆู„ ูˆ ุจู†ุงุก ุนู„ู‰
165
00:18:09,490 --> 00:18:14,950
ุงู„ุฑูˆุญ ู†ุญูƒู… ูˆู†ุดูˆู ูƒูŠู ูู„ูˆ ุฌูŠุช ู‡ู†ุง ุจุชุชุนุฑู ุนู„ู‰ ุดูƒู„
166
00:18:14,950 --> 00:18:19,230
ุงู„ series ุงู„ุญุฏ ุงู„ุฃูˆู„ ุจูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ factorial ุงู„ู„ูŠ
167
00:18:19,230 --> 00:18:25,670
ู‡ูˆ ุจูˆุงุญุฏ ุงู„ุซุงู†ูŠ ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† factorial ุงู„ุซุงู„ุซ
168
00:18:25,670 --> 00:18:31,610
ูˆุงุญุฏ ุนู„ู‰ ุซู„ุงุซุฉ factorial ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ factorial
169
00:18:31,610 --> 00:18:41,090
ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n factorial ุฒุงุฆุฏ ุฅู„ู‰ ู…ุง ุดุงุก ุงู„ู„ู‡ ู…ู…ูƒู†
170
00:18:41,090 --> 00:18:46,550
ุฃุชุนุฑู ุนู„ู‰ ุดูƒู„ู‡ุง ุฃูƒุซุฑ ู…ู† ุฐู„ูƒ ู„ูˆ ููƒูŠุช ุงู„ factorial ููŠ
171
00:18:46,550 --> 00:18:52,250
ูƒู„ ุงู„ู…ู‚ุงู…ุงุช ู„ู„ุญุฏูˆุฏ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ูƒูŠู ุจุงุฌูŠ ุจู‚ูˆู„
172
00:18:52,250 --> 00:18:58,230
ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ
173
00:18:58,230 --> 00:19:04,510
ูˆุงุญุฏ ุนู„ู‰ ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ
174
00:19:04,510 --> 00:19:12,610
ููŠ ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ูุงู†
175
00:19:12,610 --> 00:19:18,210
ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ ุฅู„ู‰ ู…ุง
176
00:19:18,210 --> 00:19:26,040
ุดุงุก ุงู„ู„ู‡ ุทุจ ูƒูˆูŠุณ ุฅุฐุง ุฃู†ุง ุญุทูŠุช ุงู„ series ููŠ ุงู„ุดูƒู„
177
00:19:26,040 --> 00:19:31,480
ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆุจุฏุฃุฌูŠ ุงู„ุขู† ุฃูุญุต ุงู„ series
178
00:19:31,480 --> 00:19:35,720
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุฃูˆ ุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ ู‡ู„ ู…ู…ูƒู† ูŠูƒูˆู†
179
00:19:35,720 --> 00:19:42,580
convergence series ูˆุงู„ู„ู‡ divergence series ุชู…ุงู…ุŸ
180
00:19:42,580 --> 00:19:49,010
ุจุงุฌูŠ ุฃุทู„ุน ููŠ ุงู„ู…ุซู„ุฉ ุงุจุชุจุนุชูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ู†ุตู ุฒุงุฆุฏ ุณุฏุณ
181
00:19:49,010 --> 00:19:53,170
ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุน ูˆุนุดุฑูŠู† ุฒุงุฆุฏ ุฒุงุฆุฏ ูˆู…ุงุดุงุก ุงู„ู„ู‡
182
00:19:53,170 --> 00:20:00,430
ุนู„ูŠู‡ุง ู…ุงุดูŠุฉ ูƒูˆูŠุณ ุทูŠุจ ุงู„ู…ู„ุงุญุธ ุฃู† ูƒู„ ุญุฏ ุจูŠู‚ู„ ุนู† ุงู„ุญุฏ
183
00:20:00,430 --> 00:20:07,050
ุงู„ู„ูŠ ุฌุงุจู„ู‡ ูˆุงุญุฏ ู…ุซู„ ุณุฏุณ ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุน ูˆุนุดุฑูŠู† ูŠุนู†ูŠ
184
00:20:07,050 --> 00:20:14,270
ุฑุงูŠุญ ู„ูˆูŠู† ูŠุนู†ูŠ ููŠ ุงุญุชู…ุงู„ ุชูƒูˆู† ููŠู‡ ุงุญุชู…ุงู„ ู…ุธุจูˆุท ุทูŠุจ
185
00:20:14,270 --> 00:20:18,850
ุจู„ุงุด ู…ุด ู…ุชุฃูƒุฏูŠู† ู‡ู„ ู‡ูŠ conversion ูˆู„ุง diverg ุชุนุงู„ ุดูˆู
186
00:20:18,850 --> 00:20:24,130
ู„ู‡ุง ุงู„ุฑุฃูŠ ู‡ุฐุง ุฅูŠุด ุฑุฃูŠูƒ ููŠู‡ ู„ูˆ ุฌูŠุช ู‚ู„ุช ู‡ุฐุง ูˆุงุญุฏ
187
00:20:24,130 --> 00:20:32,210
ุฒุงุฆุฏ ู†ุตู ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
188
00:20:32,210 --> 00:20:38,630
ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ููŠ
189
00:20:38,630 --> 00:20:44,330
ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุฒุงุฆุฏ ุฅู„ู‰ ู…ุง ุดุงุก ุงู„ู„ู‡
190
00:20:47,650 --> 00:20:54,450
ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ series ุจุงู„ุดูƒู„ ู‡ุฐุง ูƒุชุจุช series ุซุงู†ูŠุฉุŒ
191
00:20:54,450 --> 00:20:58,350
ุจุฏูŠ ุฃุจุญุซ ู…ุง ู‡ูŠ ุงู„ุนู„ุงู‚ุฉ ู…ุง ุจูŠู† ุงู„ two series
192
00:20:58,350 --> 00:21:02,990
ุงู„ุงุซู†ูŠู† ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ุงู„ term ุงู„ุฃูˆู„ ู‡ูˆ ุงู„ term ุงู„ุฃูˆู„ุŒ
193
00:21:02,990 --> 00:21:07,330
ุงู„ term ุงู„ุซุงู†ูŠ ู‡ูˆ ุงู„ term ุงู„ุซุงู†ูŠุŒ ุงู„ term ุงู„ุซุงู„ุซ
194
00:21:07,330 --> 00:21:14,750
ุฃู‚ู„ ู…ู† ุงู„ term ุงู„ุซุงู„ุซ ุงู„ุฑุงุจุน ุฃู‚ู„ ู…ู† ุงู„ุฑุงุจุน ูˆุงุญุฏ ุนู„ู‰
195
00:21:14,750 --> 00:21:21,010
ุฑุจุน ูˆุนุดุฑูŠู† ุฃู‚ู„ ู…ู† ุชู…ูˆู† ุณุช ุฃู‚ู„ ู…ู† ุงู„ุฑุงุจุน ู†ุตู ูŠุณุงูˆูŠ
196
00:21:21,010 --> 00:21:24,130
ู†ุตู ูˆุงุญุฏ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ุงู„ series ุงู„ุฃูˆู„ู‰ ุดูˆ ุนู„ุงู‚ุฉ
197
00:21:24,130 --> 00:21:29,450
ุจุงู„ series ุงู„ุซุงู†ูŠุฉ ุฃู‚ู„ ู…ู†ู‡ุง ู…ู…ุชุงุฒ ูŠุจู‚ู‰ ุจุฏู„ ุงู„ู„ูŠ
198
00:21:29,450 --> 00:21:33,410
ูŠุณุงูˆูŠ ุจุฏูŠ ูŠุตูŠุฑ ุนู†ุฏูŠ ุฃู‚ู„ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
199
00:21:33,410 --> 00:21:39,390
ุชู…ุงู…ุŸ ุฅุฐุง ุฃุตุจุญุช ุงู„ series ุงู„ุฃุตู„ูŠุฉ summation ูˆุงุญุฏ
200
00:21:39,390 --> 00:21:45,010
ุนู„ู‰ n factorial ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง
201
00:21:45,010 --> 00:21:51,750
ุงู„ุฃุตู„ูŠุฉ ุฃู‚ู„ ู…ู†ู‡ ุฃุทู„ุน
202
00:21:51,750 --> 00:21:58,230
ู„ูŠ ู‡ู†ุง ุงู„ุญุฏ ุงู„ุฃูˆู„ ูˆุงุญุฏ ุงู„ุญุฏ ุงู„ุซุงู†ูŠ ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู†
203
00:21:58,230 --> 00:22:04,350
ุฃู‚ุตู‰ ูˆุงุญุฏ ุงู„ุญุฏ ุงู„ุซุงู„ุซ ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ุชุฑุจูŠุน ุงู„ุญุฏ
204
00:22:04,350 --> 00:22:11,520
ุงู„ุฑุงุจุน ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ุชูƒุนูŠุจ ูŠุจู‚ู‰ ู‚ูŠู…ุฉ ุงู„ุญุฏ ุงู„ุฃุณ ุชุจู‚ู‰
205
00:22:11,520 --> 00:22:16,840
ุฃู‚ู„ ู…ู† ุงู„ุฑุชุจุฉ ุจู…ู‚ุฏุงุฑ ูˆุงุญุฏุŒ ู…ู…ุชุงุฒ ุฌุฏู‹ุง ูŠุนู†ูŠ ุจู‚ุฏุฑ
206
00:22:16,840 --> 00:22:23,320
ุฃู‚ูˆู„ ู‡ุฐู‡ ุงู„ summation ู„ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ุฃุณ n ู†ุงู‚ุต
207
00:22:23,320 --> 00:22:30,200
ูˆุงุญุฏ ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุฎู„ู‘ูŠู†ูŠ ุฃุชุฃูƒุฏ ุฃุดูˆู
208
00:22:30,200 --> 00:22:33,620
ู‡ู„ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ูƒุชุจุชู‡ ุตุญูŠุญ ู‡ุฐุง ูˆุงู„ู„ู‡ ู…ุง ู‡ูˆุด ุตุญูŠุญ
209
00:22:33,620 --> 00:22:38,680
ุจุญุท ู„ุฃู†ู‘ูŠ ุจูˆุงุญุฏ ุจูŠุตูŠุฑ ุงุซู†ูŠู† ุฃู‚ุตู‰ zero ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ
210
00:22:38,680 --> 00:22:42,860
ูˆุงุญุฏ ู‡ูŠ ู…ุธุจูˆุทุฉ ุจุนุฏ ูˆุงุญุฏ ุจูŠุฌูŠู†ูŠ ุงุซู†ูŠู† ุงุซู†ูŠู† ู†ู‚ุต
211
00:22:42,860 --> 00:22:48,980
ูˆุงุญุฏ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู†ุตู ุงู„ุญู…ุฏ ู„ู„ู‡ ุชู…ุงู… ุซู„ุงุซุฉ ู†ู‚ุต ูˆุงุญุฏ
212
00:22:48,980 --> 00:22:53,020
ุจ ุงุซู†ูŠู† ุงุซู†ูŠู† ุทุฑุญ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุฃุฑุจุนุฉ ูˆุงุญุฏ ุนู„ู‰
213
00:22:53,020 --> 00:22:59,530
ุงุซู†ูŠู† ุชูƒุนูŠุจ ู…ูŠุฉ ู„ู…ูŠุฉ ุทูŠุจ ุฅูŠู‡ ุงู„ุดุบู„ุฉ ูƒุงู†ุช ุงู„ series
214
00:22:59,530 --> 00:23:02,930
ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุฎู„ูŠู‡ุง ุชุจุฏุฃ ู…ู† ุนู†ุฏ ุงู„ุตูุฑ ุจุฏู„ ู…ู† ุนู†ุฏ
215
00:23:02,930 --> 00:23:07,870
ุงู„ูˆุงุญุฏ ุจูŠุบูŠุฑูˆุง ุงู„ index ูˆุงุฎุฐู†ุง ุญุงุฌุฉ ุงุณู…ู‡ุง re
216
00:23:07,870 --> 00:23:13,250
indexing ููŠ section ุนุดุฑ ุงุซู†ูŠู† ูŠุนู†ูŠ ู„ูˆ ุดู„ุช ูƒู„ n
217
00:23:13,250 --> 00:23:19,770
ุญุทูŠุช ู…ูƒุงู†ู‡ุง n ุฒุงุฆุฏ ูˆุงุญุฏ ุจูŠุตูŠุฑ ู‡ุฐู‡ ุงู„ summation ู…ู† n
218
00:23:19,770 --> 00:23:24,990
ุชุณุงูˆูŠ ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ุฃุณ n
219
00:23:29,830 --> 00:23:36,570
ุฃูˆ ุงู„ุดูƒู„ ุงู„ุนุงู… summation ู…ู† n ุชุณุงูˆูŠ ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
220
00:23:36,570 --> 00:23:42,830
ู„ู†ุตู to the power n ุดูˆ ุฑุงูŠุญ ููŠ ุงู„ series ู‡ุฐู‡ุŸ
221
00:23:42,830 --> 00:23:47,790
converge Geometric ูŠุชุฌู„ูŠ ุฃู‚ู„ ู…ู†ู‡ุง ุจุงู„ comparison
222
00:23:47,790 --> 00:23:54,570
test ูŠุจู‚ู‰ converge ุจู‚ูˆู„ ู‡ู†ุง ุจุทูˆู„ูƒู… summation
223
00:23:54,570 --> 00:23:59,510
ู„ู„ู†ุตู of the power n ู…ู† n ุชุณุงูˆูŠ ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
224
00:23:59,510 --> 00:24:11,240
converge ุฌูŠูˆู…ุชุฑูŠูƒ series ุงู„ุณุจุจ ุฃู† absolute value ู„ r
225
00:24:11,240 --> 00:24:18,260
ูŠุณุงูˆูŠ ู†ุตู ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ุจู‚ูˆู„ ู‡ู†ุง by the
226
00:24:18,260 --> 00:24:25,080
comparison test ุงู„ุณูŠุฑูŠุฒ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
227
00:24:25,080 --> 00:24:30,700
summation ู„ 1 ุนู„ู‰ n factorial ู…ู† n ุชุณุงูˆูŠ ูˆุงุญุฏ ุฅู„ู‰
228
00:24:30,700 --> 00:24:41,020
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ converge ู…ู† ุงู„ู„ูŠ ุจุฏุฃ ูŠุณุฃู„ ุฅูŠู‡ุŸ ุจุชุณุงูˆูŠุŸ
229
00:24:41,020 --> 00:24:48,380
ู„ุง ู‡ูŠ ูŠุง ุฑุฌู„ุŒ ููŠู‡ ุงุญุชู…ุงู„ ุฃู†ู‡ ู…ุชุณุงูˆูŠุฉุŸ series ู‡ุฐู‡ ู…ุด
230
00:24:48,380 --> 00:24:53,400
ุนู†ุฏูŠ ุญุฏ ู‡ู†ุง series to infinite ูŠุจู‚ู‰ ุงุญุชู…ุงู„ ุงู„ู…ุณุงูˆุงุฉ
231
00:24:53,400 --> 00:25:00,700
ุบูŠุฑ ูˆุงุฑุฏ ุจุชุงุชุง ุทุจุนู‹ุง ุทูŠุจ ุงู„ุขู† ู„ุญุฏ ู‡ู†ุง stop ุงู†ุชู‡ูŠู†ุง
232
00:25:00,700 --> 00:25:04,300
ู…ู† ุงู„ู†ุตู ุงู„ุฃูˆู„ ู…ู† ู‡ุฐุง ุงู„ section ูˆู‡ูˆ ุงู„ comparison
233
00:25:04,300 --> 00:25:08,640
test ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ู†ุตู ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ limit
234
00:25:08,640 --> 00:25:10,360
comparison test
235
00:25:21,200 --> 00:25:25,880
ูŠุจู‚ู‰ ุงู„ุงุฎุชุจุงุฑ ุงู„ุซุงู†ูŠ ู†ู…ุฑุฉ ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ limit
236
00:25:25,880 --> 00:25:31,380
comparison test
237
00:25:36,770 --> 00:25:41,190
ุฅุญู†ุง ู‚ู„ู†ุง ู‡ุฐุง ุงู„ section ููŠู‡ ุงุฎุชุจุงุฑูŠู† ุงู„ู…ุฑุฉ ุงู„ู„ูŠ
238
00:25:41,190 --> 00:25:45,810
ูุงุชุช ุฃุฎุฐู†ุง ู†ุตู ู„ุงุฎุชุจุงุฑ ุงู„ุฃูˆู„ ุญู„ู‘ูŠู†ุง ุดูˆูŠุฉ ุฃู…ุซู„ุฉ ุนู„ูŠู‡
239
00:25:45,810 --> 00:25:51,930
ูƒู…ู„ู†ุง ุงู„ูŠูˆู… ุจุฃู‚ู„ ุฃู…ุซู„ุฉ ุงู„ุฃู‚ู„ ุจู†ุฑูˆุญ ู„ู„ุงุฎุชุจุงุฑ ุงู„ุซุงู†ูŠ
240
00:25:51,930 --> 00:25:56,410
ุงู„ู„ูŠ ู‡ูˆ ุงู„ limit comparison test ุจู†ุต ุนู„ู‰ ู…ุง ูŠุฃุชูŠ
241
00:25:56,410 --> 00:26:06,530
suppose that ุงูุชุฑุถ ุฃู† ุงู„ a n greater than zero
242
00:26:06,530 --> 00:26:16,770
and ุงู„ b n greater than zero for all n greater
243
00:26:16,770 --> 00:26:23,510
than or equal to n capital ูˆ ุงู„ n ู‡ุฐุง is an
244
00:26:23,510 --> 00:26:28,710
integer ู†ู…ุฑุญู„
245
00:26:28,710 --> 00:26:38,810
ุจูŠู‚ูˆู„ ู„ูŠู‡ุŸ ุงู„ limit ู„ู…ุง ุงู„ n tends to infinity ู„ู„
246
00:26:38,810 --> 00:26:46,150
a n ุนู„ู‰ b n ูŠุณุงูˆูŠ constant c with c greater than
247
00:26:46,150 --> 00:26:54,990
zero then summation ุนู„ู‰ a n and summation ุนู„ู‰ b n
248
00:26:54,990 --> 00:26:58,870
either
249
00:26:58,870 --> 00:27:24,590
both converge or both diverge
250
00:27:24,590 --> 00:27:32,220
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ู‡ุฐุง ุงู„ุงุฎุชุจุงุฑ ู†ู…ุฑุฉ ุงุซู†ูŠู† ุงู„ู€
251
00:27:32,220 --> 00:27:37,880
limit ู„ู…ุง ุงู„ู€ n tends to infinity ู„ู„ู€ a n ุนู„ู‰ b n
252
00:27:37,880 --> 00:27:47,020
ูŠุณุงูˆูŠ zero ูˆ ุงู„ู€ summation ุนู„ู‰ b n converge then
253
00:27:47,020 --> 00:27:55,380
summation ุนู„ู‰ a n converge ูƒุฐู„ูƒ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ
254
00:27:55,380 --> 00:28:02,880
ูˆุงู„ุฃุฎูŠุฑุฉ if limit ู„ู…ุง ุงู„ู€ N tends to infinity ู„ู„ู€ A
255
00:28:02,880 --> 00:28:09,700
N ุนู„ู‰ B N ูŠุณุงูˆูŠ infinity ูˆ summation ุนู„ู‰ B N
256
00:28:09,700 --> 00:28:16,800
diverge then summation ุนู„ู‰ A N diverge ูƒุฐู„ูƒ
257
00:28:16,800 --> 00:28:23,460
examples test
258
00:28:24,830 --> 00:28:31,210
the convergence of
259
00:28:31,210 --> 00:28:37,330
the following series
260
00:28:37,330 --> 00:28:44,550
ุงู„ุณุคุงู„
261
00:28:44,550 --> 00:28:49,610
ุงู„ุฃูˆู„ ู†ู…ุฑุฉ ูˆุงุญุฏ summation
262
00:28:51,070 --> 00:28:59,010
ู…ู† n equal one to infinity ู„ูˆุงุญุฏ ุนู„ู‰ n ุงู„ุฌุฐุฑ ุงู„ู†ูˆู†ูŠ ู„ู€ N ุชูƒุนูŠุจ
263
00:28:59,010 --> 00:29:04,090
ุงู„ู†ูˆู†ูŠ ู„ู…ู†ุŸ ู„ู€ N ุชูƒุนูŠุจ ูƒูŠู
264
00:29:13,990 --> 00:29:18,010
ุทุจุนุง ุฃู†ุง ุฎุฏู†ุง ุงู„ู€ limit comparison test ููŠ ุญุงู„ุฉ ุงู„ู€
265
00:29:18,010 --> 00:29:22,930
improper integrals ู…ุธุจูˆุท ูˆูƒุงู†ุช ู‡ู†ุง ุจุณ ุงู„ู†ู‚ุทุฉ
266
00:29:22,930 --> 00:29:26,590
ุงู„ุฃูˆู„ู‰ ู„ูƒู† ููŠ ุงู„ู€ series ุนู…ู„ู†ุง limit comparison
267
00:29:26,590 --> 00:29:34,790
test ุนู„ู‰ ุดูƒู„ ุซู„ุงุซ ู†ู‚ุงุท ู†ุฑุฌุน ู„ู„ู†ุต ุณุจุนู‡ ูˆู†ุญุงูˆู„ ู†ู†ุงู‚ุด
268
00:29:34,790 --> 00:29:40,630
ู†ู‚ุงุท ุงู„ุซู„ุงุซ ูˆุฎู„ูŠูƒ ุตุญูŠ ู…ุนุงูŠุง ูƒูˆูŠุณ ู„ุญุธุฉ ุนู†ุฏู…ุง ุฃุฎุฐู†ุง
269
00:29:40,630 --> 00:29:43,970
ุงู„ุงู†ุณุชูŠุฑ ู…ุง ุฏูˆุฑู†ุงุด ุงู„ุญุฏูˆุฏ positive ูˆู„ุง negativeุŒ
270
00:29:43,970 --> 00:29:46,690
ู„ูƒู† ุนู†ุฏู…ุง ุฌูŠู†ุง ู„ู„ู€ test integralุŒ ู‚ุงู„ู†ุง ุงู„ุญุฏูˆุฏ
271
00:29:46,690 --> 00:29:50,390
ู…ูˆุฌุจุฉ. ุนู†ุฏู…ุง ุฌูŠู†ุง ู„ู„ู€ test comparisonุŒ ู‚ุงู„ู†ุง ุงู„ุญุฏูˆุฏ
272
00:29:50,390 --> 00:29:54,490
ู…ูˆุฌุจุฉ. ุนู†ุฏู…ุง ุฌูŠู†ุง ู„ู„ู€ test limit comparisonุŒ ู‚ุงู„ู†ุง
273
00:29:54,490 --> 00:30:00,860
ูƒุฐู„ูƒ ุงู„ุญุฏูˆุฏ ุจุฏูŠุงู‡ุง ู…ูˆุฌุจุฉ. ู‚ุงู„ ุงูุชุฑุถ ุฃู† ุงู„ู€ a n ุฃูƒุจุฑ
274
00:30:00,860 --> 00:30:04,920
ู…ู† 0 ูˆ ุงู„ู€ b n ุฃูƒุจุฑ ู…ู† 0 for all n ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ุฃูˆ
275
00:30:04,920 --> 00:30:10,200
ูŠุณุงูˆูŠ ุงู„ู€ n ูŠุนู†ูŠ ู…ู…ูƒู† ุขุฌูŠ ุนู†ุฏ ุงู„ู€ ูˆุงุญุฏ ูˆู„ุง ุขุฌูŠ ุงู„ู€ a
276
00:30:10,200 --> 00:30:13,160
one ู…ูˆุฌุจู‡ ุจู„ูƒ ุงู„ู€ b one ุณุงู„ุจู‡
277
00:30:25,540 --> 00:30:30,580
ุจู†ูุชุฑุถ ุจุนุฏ ุนุดุฑ ุญุฏูˆุฏ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ ุฅู† ุฃู†ุง ู†ุตู…ุด
278
00:30:30,580 --> 00:30:36,240
ู…ู† n equal ุงู„ุนุดุฑุฉ ู„ู€ infinity ุจุตูŠุฑ ุงู„ู€ a n ุฃูƒุจุฑ ู…ู†
279
00:30:36,240 --> 00:30:39,060
ุงู„ู€ zero ูˆ ุงู„ู€ b n ุฃูƒุจุฑ ู…ู† ุงู„ู€ zero ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃุณุชุฎุฏู…
280
00:30:39,060 --> 00:30:45,130
ุงู„ู€ limit comparison ุชุณุชุฎุฏู…ู‡ู…ุง ุงู„ุนุฏุฏ ุงู„ู…ุญุฏูˆุฏ ู…ู†
281
00:30:45,130 --> 00:30:48,950
ุญุฏูˆุฏ ุงู„ู€ series ู„ุง ูŠุคุซุฑ ุนู„ู‰ ุงู„ู€ convergence ูˆู„ุง ุนู„ู‰
282
00:30:48,950 --> 00:30:55,730
ุงู„ู€ divergence ู„ู‡ุฐู‡ ุงู„ู€ series ุจูŠู‚ูˆู„ ุฌูŠูƒ ุฌุณู…ุช ุงู„ุญุฏ
283
00:30:55,730 --> 00:31:02,600
ุงู„ู†ูˆู†ูŠ AN ุนู„ู‰ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ BN ูŠุนู†ูŠ BN ู‡ุฐู‡ ุงู„ู€ series
284
00:31:02,600 --> 00:31:07,180
ุงู„ุชุงู†ูŠุฉ ู‡ูˆ ุจูŠุนุทูŠู‡ุง ู„ูŠ ุบูŠุฑ ุงู„ู€ ANุŸ ู„ุฃุŒ ู‡ูˆ ุจูŠุนุทูŠู†ูŠ ุงู„ู€
285
00:31:07,180 --> 00:31:10,760
series ูˆุงุญุฏุฉุŒ ู‡ุงูŠ ุงู„ุณุคุงู„ุŒ ุจูŠุนุทูŠู†ูŠ ุงู„ู€ series ูˆุงุญุฏุฉ
286
00:31:10,760 --> 00:31:15,700
ุทุจ ูˆ ุฃู†ุง ุฅูŠุด ุจุฏูŠ ุฃุจุฏุฃ ุฃุณูˆูŠู‡ุŸ ุฃู†ุช ู„ุญุงู„ูƒ ุจุฏูƒ ุชุฑูˆุญ ุชุฌูŠุจ ุงู„ู€
287
00:31:15,700 --> 00:31:19,640
series ุชุงู†ูŠุฉ ุงู„ู€ series ุงู„ุชุงู†ูŠุฉ ุจุฏุฃุช ุชูƒูˆู† ู…ุนุฑูˆูุฉ
288
00:31:19,640 --> 00:31:23,100
ุจุงู„ู†ุณุจุงู„ูƒ ู‡ู„ ู‡ูŠ converged ุฃูˆ diverged ู‚ุจู„ ู…ุง ู†ุจุฏุฃ
289
00:31:23,100 --> 00:31:27,620
ูŠุนู†ูŠ ุงู„ู€ summation ุนู„ู‰ BN ู…ุนุฑูˆูุฉ ุจุงู„ู†ุณุจุงู„ูŠ ู‡ู„ ู‡ูŠ
290
00:31:27,620 --> 00:31:32,490
converged ุฃูˆ diverge ุบุงู„ุจ ุจุชูƒูˆู† ูˆุงุญุฏุฉ ู…ู†
291
00:31:32,490 --> 00:31:36,210
ุงู„ุชู„ุงุชุฉ ุงู„ู…ุดู‡ูˆุฑุฉ ุทุจ ุจุฏูŠ ุฃุฌูŠุจู‡ุง ู…ู† ูˆูŠู†ุŸ ุจุฏูŠ ุฃุฌูŠุจู‡ุง
292
00:31:36,210 --> 00:31:40,510
ู…ู† ุงู„ู€ series ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุนู†ูŠ ุจุฏูŠ ุฃุฎู„ู‚ series
293
00:31:40,510 --> 00:31:46,190
ู…ู† ุงู„ู€ series ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ูƒู„ ุณุคุงู„ ุจู…ุง ูŠู†ุงุณุจู‡ ุชู…ุงู…ุŸ
294
00:31:46,770 --> 00:31:51,450
ุจู‚ูˆู„ ูƒูˆูŠุณ ุฎู„ู‚ู†ุง series of motion ุนู„ู‰ BN ูˆุงุฎุฏู†ุง
295
00:31:51,450 --> 00:31:56,450
ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุชุจุนู‡ุง ูŠู„ุฌุฃ N ุนู„ู‰ BN ุฃุฎุฏุช ุงู„ู€ limit ู„ู…ุง
296
00:31:56,450 --> 00:32:00,810
ุงู„ู€ N ุจุฏุฃุช ุชุฑูˆุญ ู„ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุทู„ุน ุงู„ู†ุงุชุฌ ู‚ูŠู…ุฉ ุนุฏุฏูŠุฉ
297
00:32:00,810 --> 00:32:06,100
ูˆู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุฃูƒุจุฑ ู…ู† ุงู„ู€ zero ู„ุง ูŠู…ูƒู† ุชุฌูŠ ุฃู‚ู„ ู…ู† ุงู„ู€ zero
298
00:32:06,100 --> 00:32:10,100
ู„ุฅูŠุดุŸ ู„ุฃู† ุงู„ู€ two are positive ู…ู† ูˆุฑู… ุงู„ุฏุฌูŠู† ุงู„ุณุงู„ุจ
299
00:32:10,100 --> 00:32:15,940
ูŠุจู‚ู‰ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ู‡ุชูƒูˆู† ู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุงู„ู€ zero ุฅุฐุง
300
00:32:15,940 --> 00:32:22,300
ุญุฏุซ ุฐู„ูƒ ุทุจุนุง ููŠ ุฃูŠ ุฑู‚ู… ูˆ ู„ูŠุณ ุฑู‚ู… ู…ุญุฏุฏ ุฅุฐุง ุญุฏุซ ุฐู„ูƒ
301
00:32:22,300 --> 00:32:25,520
ุณูŠูƒูˆู† ุงู„ู€ series ุชุจุนุช ุงู„ุจุณุท ูˆ ุงู„ู€ series ุชุจุนุช ุงู„ู…ู‚ุงู…
302
00:32:25,520 --> 00:32:29,880
ุงุชู†ูŠู† ุญุจุงูŠุจ ู‡ุฏูŠ converge ู‡ุฏูŠ converge ู‡ุฏูŠ diverge
303
00:32:29,880 --> 00:32:30,680
ู‡ุฏูŠ diverge
304
00:32:40,350 --> 00:32:44,150
ุชุจุน ุงู„ู…ู‚ุงู… Convergent ูˆุชุจุน ุงู„ุจุณุท Convergent ุชุจุน
305
00:32:44,150 --> 00:32:47,270
ุงู„ู…ู‚ุงู… Convergent ูˆุชุจุน ุงู„ุจุณุท Convergent
306
00:32:48,960 --> 00:32:53,780
ู„ูˆ ุฃุฎุฏุช limit ุงู„ุขู† ุนู„ู‰ ุงู„ู€ b ุฅู†ู‘ู‡ ุทู„ุน ูŠุณุงูˆูŠ zero
307
00:32:53,780 --> 00:32:59,560
ูˆุทู„ุนุช ููŠ ุชุจุนุฉ ุงู„ู…ู‚ุงู… ูˆุฌุฏุช convert ุฅุฐุง ุงู„ู†ุชุฌ ูŠุณุงูˆูŠ
308
00:32:59,560 --> 00:33:03,840
zero ุชุจุนุฉ ุงู„ู…ู‚ุงู… convert ุฅุฐุง ุชุจุนุฉ ุงู„ุจุณุท convert
309
00:33:03,840 --> 00:33:08,090
ุนู„ู‰ ู‚ูˆู„ ุงู„ุฎุท ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู„ุชุฉ ุงู„ู„ูŠ ุฃุฎุฏุช ุงู„ู€ limit ูˆ
310
00:33:08,090 --> 00:33:12,650
ู„ุฌูŠุชู‡ุง infinity ูˆ ุฑูˆุญุช ู„ู€ series ุชุจุน ุงู„ู…ู‚ุงู… ู„ุฌูŠุชู‡ุง
311
00:33:12,650 --> 00:33:18,190
diverge ูŠุฑุฌุน ุชุจุน ุงู„ุจุณุท ู„ู‡ุง diverge ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุฏูˆุฑ
312
00:33:18,190 --> 00:33:22,710
ุงู„ุขู† ููŠ ุฏู…ุงุบ ุงู„ุจุนุถ ู…ู†ูƒู… ุทูŠุจ ู„ูˆ ุฑูˆุญู†ุง ุฃุฎุฏู†ุง ุงู„ู€
313
00:33:22,710 --> 00:33:26,770
limit ู‡ุฐุง ูˆ ุทู„ุน ูŠุณุงูˆูŠ zero ูˆ ุฑูˆุญู†ุง ุนู„ู‰ ุงู„ู€
314
00:33:26,770 --> 00:33:32,740
summation ุนู„ู‰ BN ุฅู†ู‘ู‡ ู„ุฌูŠุชู‡ุง diverge ุจูุดู„ ุงู„ุงุฎุชุจุงุฑ ูŠุนู†ูŠ
315
00:33:32,740 --> 00:33:36,220
ุงู„ุงุฎุชุจุงุฑ ู‡ุฐุง ู„ุง ู†ุณุชุทูŠุน ุจูŠู‡ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ู€ series ู‡ู„
316
00:33:36,220 --> 00:33:40,800
ู‡ูŠ converge ุฃูˆ diverge ูˆ ุจุฑูˆุญ ู†ุฏูˆุฑู†ุง ุนู„ู‰ ุฃูŠ ุงุฎุชุจุงุฑ
317
00:33:40,800 --> 00:33:45,960
ู…ู† ุงู„ุงุฎุชุจุงุฑุงุช ุฐุงุช ุงู„ุณุงุจู‚ ุงู„ุชูŠ ุณุจู‚ุช ุฏุฑุงุณุชู‡ุง ู…ุง ูŠู†ุทุจู‚
318
00:33:45,960 --> 00:33:49,540
ู‡ู†ุง ูŠู†ุทุจู‚ ู‡ู†ุง ูŠุนู†ูŠ ู„ุฌู‡ุฉ ุงู„ู€ limit ู‡ุฐู‡ infinity ู„ูƒู†
319
00:33:49,540 --> 00:33:54,630
ู‡ุฐู‡ converge ู…ุด diverge ูŠุจู‚ู‰ ุชุจุน ุงู„ุจุณุท ุงู„ู„ู‡ ุฃุนู„ู… ู‚ุฏ
320
00:33:54,630 --> 00:33:59,110
ุชูƒูˆู† converge ูˆ ู‚ุฏ ุชูƒูˆู† diverge ุงุญู†ุง ู…ุง ุจู†ุนุฑูู‡ุง ูŠุจู‚ู‰
321
00:33:59,110 --> 00:34:03,630
ุจูŠูุดู„ ุงู„ุงุฎุชุจุงุฑ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุญุฏ ูŠู„ูˆูŠ ุฃูŠ ุชุณูˆุงู† ู‡ู†ุง
322
00:34:03,630 --> 00:34:09,910
ู‚ุจู„ ุฃู† ู†ุฏุฎู„ ุนู„ู‰ ุงู„ุฃู…ุซู„ุฉ ูุถู„ ุงู‡
323
00:34:11,800 --> 00:34:20,340
ูŠุนู†ูŠ ุนุฏุฏ ุงู„ุงุฎุชุจุงุฑุงุช ูƒุซูŠุฑุฉ ู„ุง ู‡ูŠ ุฑุงุฌู„ .. ู„ุง ู…ุง ู‡ูˆ ุฃู†ุช
324
00:34:20,340 --> 00:34:26,280
ู„ู…ุง ุชุญู„ ู…ุซุงู„ ุจุตูŠุฑ ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ุชุนุฑู ู…ูŠู† ุงู„ุงุฎุชุจุงุฑ
325
00:34:26,280 --> 00:34:30,560
ุงู„ู„ูŠ ุจุฏูƒ ุชุณุชุฎุฏู…ู‡ ู„ูƒู† ุฅุฐุง ุจูŠูƒุชููŠ ุจุงู„ุฃู…ุซู„ุฉ ุงู„ู„ูŠ
326
00:34:30,560 --> 00:34:35,640
ุจุชุงุฎุฏู‡ุง ู‡ู†ุงุŒ ุจูŠู‚ูˆู„ ูŠู…ูƒู† ุชู†ุฌุญุŒ ูŠู…ูƒู†ุŒ ุงู‡ ูŠุนู†ูŠ
327
00:34:35,640 --> 00:34:39,100
ุงู„ุฑูŠุงุถูŠุงุช ุงู„ู„ูŠ ุฑูˆุญ ุชู…ุณูƒ ุฌู„ู…ูƒ ูˆ ุชุดุบู„ุŒ ู…ุง ุงุดุชุบู„ุชุด
328
00:34:39,100 --> 00:34:43,240
ุจุฌู„ู…ูƒุŒ ุฃู†ุช ู„ุง ุณุงุจุน ุฑูŠุงุถูŠุงุช ูˆู„ุง ุจุชุนุฑู ุฑูŠุงุถูŠุงุชุŒ ุฃู†ุช
329
00:34:43,240 --> 00:34:46,800
ุญุงูุธู„ูƒ ูƒู… ู…ุซุงู„ ูˆู„ุง ุทุฑูŠู‚ุฉ ูƒู… ู…ุซู„ ุงู†ู‚ุงุฏ ูŠุฒูŠู‡ู…
330
00:34:46,800 --> 00:34:52,070
ูŠุชุญู„ูˆุงุŒ ุฎุฏู†ุงุดุฏุงู†ุง ุงู„ู…ุดูˆูŠุฉ ุงู„ุณุคุงู„ ุชุจู‚ู‰ ุฑุงุญุฉ ุงู„ุนู„ู…
331
00:34:52,070 --> 00:34:58,050
ูˆ ุฃู†ุช ุตุงููŠุช ุนู„ู‰ ุดุฌุฉุŒ ุฅุฐุง ู„ุงุฒู… ุชุชู…ุฑุณ ุนู† ุทุฑูŠู‚ ุญู„
332
00:34:58,050 --> 00:35:03,330
ุงู„ู…ุณุงุฆู„ ูˆุงุญู†ุง ู„ู…ุง ู†ุฌูŠุจูƒ ุณุคุงู„ ู„ุง ู†ู‚ูŠุฏูƒ ุจุฃูŠ ุงุฎุชุจุงุฑุŒ
333
00:35:03,330 --> 00:35:05,790
ุจูŠู‚ูˆู„ูƒ test the convergence of the following
334
00:35:05,790 --> 00:35:11,470
series ูˆ ุฃู†ุช ุญุฑ ุงุณุชุฎุฏู… ุงู„ุงุฎุชุจุงุฑ ุงู„ุฐูŠ ุชุฑุงู‡ ู…ู†ุงุณุจุง
335
00:35:11,470 --> 00:35:15,910
ูˆู‚ุฏ ุชุณุชุบุฑุจ ุฃู† ุงู„ุณุคุงู„ ูŠุญู„ ุจู€ 3 ุฃูˆ 4 ุงุฎุชุจุงุฑุงุช ูƒู„ ูˆุงุญุฏ
336
00:35:15,910 --> 00:35:21,210
ุจูŠุญู„ูˆุง ุดูƒู„ ูŠุจุฏุฃ ูƒู„ู‡ ุญุณุจ ู…ุง ูŠู‡ุฏูŠู‡ ุฑุจู†ุง ููŠ ุนู‚ู„ู‡ ู‡ุฐุง
337
00:35:21,210 --> 00:35:25,570
ูˆ ูŠูƒุชุดู ุงู„ุทุฑูŠู‚ุฉ ูˆ ูŠูƒุชุดู ุงู„ุงุฎุชุจุงุฑ ุงู„ู„ูŠ ุจูŠุญู„ู‡ ุนู„ู‰ ุฃูŠ
338
00:35:25,570 --> 00:35:31,970
ุญุงู„ ุนู„ู‰ ุฃูŠ ุญุงู„ ูƒู„ ู‡ุฐุง ู…ู† ู†ุชุฑูƒู‡ ู„ุฃู† ู‡ุฐุง ุจูˆุณุน ู…ุฏุงุฑูƒ
339
00:35:31,970 --> 00:35:35,190
ูˆ ุจุตูŠุฑ ูŠุชููƒุฑ ูƒูˆูŠุณ ุจุณ ู„ูˆ ู‚ู„ุช ู„ูƒ ุงุณุชุฎุฏู… ุงู„ุทุฑูŠู‚ุฉ
340
00:35:35,190 --> 00:35:38,990
ุงู„ูู„ุงู†ูŠุฉ ุฃู†ุง ู…ุง ุดุบู„ุชุด ุจุฎูƒ ุจุตูŠุฑ ุฃู†ุช ุฒูŠ ุงู„ู„ูŠ ู†ุงูŠู…
341
00:35:38,990 --> 00:35:42,460
ุฎู„ุงุต automatic ุจุดุชุบู„ู‡ุง ุฃูŠ ู†ุนู…ุŒ ู„ูƒู† ู„ู…ุง ุฃู‚ูˆู„ ู„ูƒ
342
00:35:42,460 --> 00:35:45,740
ุงุณุชุฎุฏุงู… ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ุŒ ุจุตูŠุช ูุงูƒุฑ ู…ูŠู† ุงู„ู„ูŠ ุจูŠู†ูุน
343
00:35:45,740 --> 00:35:49,560
ููŠู‡ู…ุŒ ู‡ุฐุง ู„ุฃุŒ ู‡ุฐุง ุงู‡ุŒ ูŠุจู‚ู‰ ุฃู†ุช ุตุงุฑุช ุงู„ู€ thumbs
344
00:35:49,560 --> 00:35:53,600
ูˆูˆุณุนู†ุง ุงู„ู…ุฏุงุฑูƒ ุงู„ุนุงู„ู…ูŠุฉ ุจุงู„ู†ุณุจุงู„ูƒุŒ ุฃุนู†ูŠ ุจุงู„ูƒ ู…ุนุงูƒ
345
00:35:53,600 --> 00:35:56,760
ู‡ู†ุงุŒ ุงู„ุขู† ุจุฏู†ุง ู†ุจุฏุฃ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ู‰ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ
346
00:35:56,760 --> 00:36:00,160
ุจู†ู‚ูˆู„ู‡ุŒ ุฌุงู„ูŠ ูŠุดูˆู ู„ูŠ ู‡ุงู„ู€ series ู‡ุฐูŠ convertุŒ ู‚ูˆู„ู‡
347
00:36:00,160 --> 00:36:06,740
ุถูŠููŠู†ุŒ ุจุฏูŠ ุฃู†ุง ุจู‚ู‰ ุฃุณุฃู„ ู…ู† ุฃู‚ุฑุจ series ุนู„ู‰ ู‡ุฐู‡ ุงู„ู€
348
00:36:06,740 --> 00:36:10,960
series ุฃู†ุง ุนุงุฑูู‡ู… ู…ุณุจู‚ุง ู‡ู„ ู‡ูŠ convergent ุฃูˆ
349
00:36:10,960 --> 00:36:19,020
divergent ุฃู‚ุฑุจ
350
00:36:19,020 --> 00:36:25,460
ูˆุงุญุฏ ุนู„ูŠู‡ู… ูˆุงุญุฏ ุนู„ู‰ n ุฅุฐุง ุฃู†ุง ุจู‚ูˆู„ ุนู†ุฏู†ุง summation
351
00:36:25,460 --> 00:36:32,180
ูˆุงุญุฏ ุนู„ู‰ n ู‡ูŠ divergent harmonic series
352
00:36:34,490 --> 00:36:40,370
ูŠุจู‚ู‰ ุจู†ุฑูˆุญ ู†ุฃุฎุฐ ุงู„ู€ limit ู„ู…ุง ุงู„ู€ N tends to infinity
353
00:36:40,370 --> 00:36:47,990
ู„ูˆุงุญุฏ ุนู„ู‰ N ุงู„ุฌุฐุฑ ุงู„ู†ูˆู†ูŠ ู„ู€ N ุชูƒุนูŠุจ ุชู‚ุณูŠู… ูˆุงุญุฏ ุนู„ู‰
354
00:36:47,990 --> 00:36:52,550
N ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุงู„ู€ limit ู„ู…ุง ุงู„ู€ N tends to infinity
355
00:36:52,550 --> 00:37:03,830
ุชุทู„ุน ุงู„ู€ N ููˆู‚ ุนู„ู‰ ุงู„ู€ N ูˆู‡ุฐุง N ุชูƒุนูŠุจ ุฃุณ ูˆุงุญุฏ ุนู„ู‰
356
00:37:03,830 --> 00:37:11,370
N ุชุฎุชุตุฑ N ู…ุน N ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู„ู…ุณุฃู„ุฉ limit ู„ู…ุง
357
00:37:11,370 --> 00:37:17,950
ุงู„ู€ N till infinity ู„ูˆุงุญุฏ ุนู„ู‰ N ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N
358
00:37:17,950 --> 00:37:23,610
ุงู„ูƒู„ ุชูƒุนูŠุจ ูŠุจู‚ู‰ N ุชูƒุนูŠุจ ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ูˆุงู„ู„ู‡ N ุฃุณ
359
00:37:23,610 --> 00:37:28,470
ูˆุงุญุฏ ุนู„ู‰ N ุงู„ูƒู„ ุชูƒุนูŠุจ ุงู„ุงุชู†ูŠู† are the same ุงู„ู€
360
00:37:28,470 --> 00:37:33,070
limit ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุญุณุจุชู‡ุง ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ .. ู‡ุฐู‡ ู…ู† ุงู„ู€
361
00:37:33,070 --> 00:37:36,530
standard ุงู„ู…ุนุฑูˆูุฉ ู…ู† ุงู„ู€ six limits ุงู„ู…ุดู‡ูˆุฑุฉ ุงู„ู„ูŠ
362
00:37:36,530 --> 00:37:42,750
ุฃุนุทูŠู†ุงู„ูƒ ููŠ ุฌุฏูˆู„ุŒ ู‡ุฐู‡ ุฑู‚ู… ู‚ุฏุงุด ู…ู†ู‡ู…ุŸ ุงู„ุฑู‚ู… ุงุชู†ูŠู†ุŒ
363
00:37:42,750 --> 00:37:48,870
ูŠุจู‚ู‰ ู‡ุฐู‡ ู‚ูŠู…ุชู‡ุง ุจูˆุงุญุฏ ุชูƒุนูŠุจุŒ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ูŠุณุงูˆูŠ ู‚ุฏุงุด
364
00:37:50,330 --> 00:37:54,330
ูˆุงุญุฏ ูˆุงู„ุฑู‚ู… ุฃูƒุจุฑ ู…ู† ุงู„ู€ zero ูŠุจู‚ู‰ ุจุงู„ู€ limit
365
00:37:54,330 --> 00:37:58,730
comparison test ุงู„ู€ series ุงู„ู„ูŠ ู‚ุงุฑู†ู†ุง ู…ุนุงู‡ุง ูˆุงู„ู€
366
00:37:58,730 --> 00:38:02,690
series ุงู„ุฃุตู„ูŠุฉ ุงุชู†ูŠู† ุฒูŠ ุจุนุถ ุทุจ ุงู„ู„ูŠ ู‚ุงุฑู†ู†ุง ู…ุนุงู‡ุง
367
00:38:02,690 --> 00:38:06,930
diverge ุฅุฐุง ุงู„ู€ series ุงู„ุชุงู†ูŠุฉ ู…ุนุงู‡ุง diverge
368
00:38:06,930 --> 00:38:12,910
ูุจุฑูˆุญ ุจู‚ูˆู„ู‡ by the limit comparison test the
369
00:38:12,910 --> 00:38:13,730
series
370
00:38:32,070 --> 00:38:37,590
ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ ูŠู‚ูˆู„
371
00:38:39,650 --> 00:38:48,070
ู…ู† N equal one to infinity ู„ู„ุฌุฐุฑ ุงู„ู†ูˆู†ูŠ ู„ู€ N ุนู„ู‰ N
372
00:38:48,070 --> 00:38:48,850
ุชุฑุจูŠุน
373
00:38:52,210 --> 00:38:59,770
ู…ุงุดูŠ ุงู„ุญุงุฌุฉ high summation 1 ุนู„ู‰ N ุชุฑุจูŠุน convert P
374
00:38:59,770 --> 00:39:08,850
series ุงู„ุณุจุจ ุจุณุจุจ ุฃู† P ูŠุณุงูˆูŠ 2 ุฃูƒุจุฑ ู…ู† 1 ูŠุจู‚ู‰ ุจุฏู†ุง
375
00:39:08,850 --> 00:39:14,530
ู†ุฃุฎุฐ limit ู„ู…ุง ุงู„ู€ N tends to infinity ู„ู„ู€ N ุฃุณ 1 ุนู„ู‰
376
00:39:14,530 --> 00:39:21,270
ุนู„ู‰ N ุนู„ู‰ N ุชุฑุจูŠุฉ ุชู‚ุณูŠู… 1 ุนู„ู‰ N ุชุฑุจูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ุงู…
377
00:39:21,270 --> 00:39:26,770
limit ู„ู…ุง ุงู„ N tends to infinity ู„ู„ N ุฃุณ ูˆุงุญุฏ ุนู„ู‰
378
00:39:26,770 --> 00:39:31,850
N ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุฉ ุชุฎุชุตุฑ ู…ุน ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุฉ ุจูŠุจู‚ู‰
379
00:39:31,850 --> 00:39:37,630
ุงู„ N ุฃุณ ูˆุงุญุฏ ุนู„ู‰ N ู„ูŠู‡ ุจูŠุฌุฏุงุด ุจูˆุงุญุฏ ูƒุฐู„ูƒ ุฃูƒุจุฑ ู…ู†
380
00:39:37,630 --> 00:39:44,570
ุงู„ุตูุฑ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ by the limit comparison test
381
00:40:01,200 --> 00:40:03,320
ุงู„ุณุคุงู„ ุงู„ุซุงู„ุซ
382
00:40:07,080 --> 00:40:12,100
ุณุคุงู„ ุงู„ุซุงู„ุซ ุจูŠู‚ูˆู„ ู„ูŠ ุงู„ summation ู…ู† n equal one to
383
00:40:12,100 --> 00:40:19,640
infinity ู„ tan ูˆุงุญุฏ ุนู„ู‰ m ุจุฏู†ุง ู†ุดูˆู ู‡ู„ ุงู„ series
384
00:40:19,640 --> 00:40:26,650
ู‡ุฐู‡ converge ูˆู„ุง diverge ูŠุง ุงู„ู„ู‡ ุทู„ุน ููŠู‡ุง ูƒูˆูŠุณ ูˆุดูˆู
385
00:40:26,650 --> 00:40:32,590
ู…ูŠู† ุฃู‚ุฑุจ series ุนู„ูŠู‡ุง ู…ู…ูƒู† ู†ุนู…ู„ ู…ู‚ุงุฑู†ุฉ ุจูŠู†ู‡ุง
386
00:40:32,590 --> 00:40:37,730
ูˆุจูŠู†ู‡ุง ูˆุจุงู„ุชุงู„ูŠ ู†ุชูˆุตู„ ู„ู„ convergence ุฃูˆ ุงู„
387
00:40:37,730 --> 00:40:47,190
divergence ุชุจุนุชู‡ุง ูˆุงุญุฏ ุนู„ู‰ ุงู†ููŠู†ูŠุชูŠุŒ ู…ูŠู†ุŸ ุทูŠุจ ู†ุฌุฑุจุŒ
388
00:40:47,190 --> 00:40:56,180
ูŠุจู‚ู‰ ูˆู‚ุช ุจุณู… ุงู„ู„ู‡ ุจูŠู‚ูˆู„ ุงู„ุงู†ููŠู†ูŠุชูŠุŒ ูˆู„ุง ู„ุงุŸ ุงู„ุงู† ุงู„ุงู†
389
00:40:56,180 --> 00:41:01,320
ุงุนุชุจุฑ ุณู…ุนูŠ ู…ุด ู…ุธุจูˆุท ูŠุจู‚ู‰ ู„ูˆ ุฑูˆุญู†ุง ุฃุฎุฐู†ุง summation
390
00:41:01,320 --> 00:41:06,660
ูˆุงุญุฏ ุนู„ู‰ n summation ูˆุงุญุฏ ุนู„ู‰ n ู‡ูŠ diverge
391
00:41:06,660 --> 00:41:15,770
harmonic series ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฃุฎุฐ limit ู„ู…ุง ุงู„ N tends
392
00:41:15,770 --> 00:41:22,790
to infinity ู„ุชุงู† ูˆุงุญุฏ ุนู„ู‰ N ูƒู„ู‡ ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ m
393
00:41:22,790 --> 00:41:29,530
ุงู„ุชุนูˆูŠุถ ุงู„ู…ุจุงุดุฑ ูŠุนุทูŠู†ุง ุตูุฑ ุนู„ู‰ ุตูุฑ ูŠุจู‚ู‰ ู†ุณุชุฎุฏู…
394
00:41:29,530 --> 00:41:34,070
ู‚ุงุนุฏุฉ ู„ูˆุจูŠุชุงู„ ูŠุจู‚ู‰ limit ู„ู…ุง ุงู„ N tends to
395
00:41:34,070 --> 00:41:35,910
infinity ุชูุถู„ ุงู„ tan
396
00:41:47,500 --> 00:41:53,460
ู†ุฎุชุตุฑ ู„ุงุฎุชุตุงุฑุงุช ู‡ุฐู‡ ู…ุน ุงู„ุณู„ุงู…ุฉ ุจุตูŠุฑ limit ู„ู…ุง ุงู„
397
00:41:53,460 --> 00:41:59,040
N tends to infinity ู„ sec ุชุฑุจูŠุน 1 ุนู„ู‰ N
398
00:42:02,540 --> 00:42:10,500
ุตูุฑ sec ุงู„ุตูุฑ ุจูˆุงุญุฏ ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ ุจูˆุงุญุฏ ูƒุฐู„ูƒ ุฅุฐุง
399
00:42:10,500 --> 00:42:16,200
ุณุงูˆู‰ ุงู„ุฑู‚ู… ูˆุงู„ุฑู‚ู… ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ุตูุฑ ูŠุจู‚ู‰
400
00:42:16,200 --> 00:42:20,620
ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู„ู‡ู… ุจูŠุจู‚ู‰ ุจุนุถ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ by
401
00:42:20,620 --> 00:42:28,020
the limit comparison test the series summation
402
00:42:28,020 --> 00:42:31,280
ู„ุชุงู† ูˆุงุญุฏ ุนู„ู‰ m
403
00:42:34,610 --> 00:42:40,690
ุณุคุงู„ ุงู„ุฑุงุจุน ุงู„ุฑุงุจุน
404
00:42:40,690 --> 00:42:48,990
summation ู…ู† N equal to infinity ู„ูˆุงุญุฏ ุนู„ู‰ N
405
00:42:48,990 --> 00:42:57,430
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ N ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ
406
00:42:57,430 --> 00:42:58,170
ุนู„ู‰ ู…ูŠู†ุŸ
407
00:43:01,940 --> 00:43:06,740
ุฃุญุฏ ุงู„ุดุจุงุจ ูŠู‚ุชุฑุญ ุฃู†ู‡ ู†ู‚ุงุฑู† ู…ุน ูˆุงุญุฏ ุนู„ู‰ n ุจู‚ูˆู„ู‡
408
00:43:06,740 --> 00:43:11,380
ุชู…ุงู… ูŠุจู‚ู‰ ู„ู…ุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ู…ู‚ุณูˆู…ุง ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ n
409
00:43:11,380 --> 00:43:16,680
ุชุทู„ุน n ููˆุฑ ูˆุชุฑูˆุญ ู…ุน n ู„ุชุญุช ุจุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฌุฐุฑ
410
00:43:16,680 --> 00:43:23,390
ูˆุงุญุฏ ุนู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุชุจุฒู‘ูŠู†ู‡ ูˆุชุจุนุช ุงู„ู…ู‚ุงู… ุจูŠููŠุฑ ูŠุจู‚ู‰
411
00:43:23,390 --> 00:43:28,430
ูุดู„ ุงู„ุงุฎุชุจุงุฑ ููŠ ุงู„ุญูƒู… ู…ุด ุงู„ู„ูŠ ูุดู„ ุงู„ุงุฎุชุจุงุฑุŒ
412
00:43:28,430 --> 00:43:31,950
ูˆุงู„ุงุฎุชุจุงุฑ ูุดู„ ุจู†ุงุกู‹ ุนู„ู‰ ุงู„ series ุงู„ู„ูŠ ุงุฎุชุงุฑู‡ุงุŒ
413
00:43:31,950 --> 00:43:36,930
ูŠุจู‚ู‰ ุงุฎุชูŠุงุฑู‡ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุงุฎุชูŠุงุฑู‹ุง ุฎุงุทุฆู‹ุงุŒ ูˆุนู„ู‰
414
00:43:36,930 --> 00:43:40,530
ุงู„ interviewerุŒ ูŠุจู‚ู‰ ุงู„ุฃู‚ุฑุจ ู„ู„ุญุณุงุจ ุงู„ุฐุงุชูŠ ุงู„ู„ูŠ ู‡ูˆ
415
00:43:40,530 --> 00:43:45,650
ูˆุงุญุฏ ุนู„ู‰ ุงู„ N ุชุฑุจูŠุน ูˆ ู‡ุฐุง ุฌุฐุฑ ุงู„ู€
416
00:43:45,650 --> 00:43:50,590
N ุชุฑุจูŠุน ูˆ ูƒู…ุงู† N ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงุญู†ุง ุจู†ุนุฑู
417
00:43:50,590 --> 00:43:58,430
summation 1 ุนู„ู‰ N ุชุฑุจูŠุน converge P series
418
00:44:00,010 --> 00:44:08,810
ุจุณุจุจ ุฃู† P ูŠุณุงูˆูŠ 2 ุฃูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏุฉ ุงู„ุตุญูŠู‡ ู†ุฑูˆุญ ู†ุฃุฎุฐ
419
00:44:08,810 --> 00:44:14,170
limit ู„ู…ุง ุงู„ N tends to infinity ู„ูˆุงุญุฏ ุนู„ู‰ N
420
00:44:14,170 --> 00:44:18,750
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ N ุชุฑุจูŠุน minus one ูƒู„ู‡ ุจุฏุง ูŠู‚ุณู…
421
00:44:18,750 --> 00:44:24,490
ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน ูŠุณุงูˆูŠ limit ู„ู…ุง ุงู„ N tends to
422
00:44:24,490 --> 00:44:30,180
infinity ู„ู…ู†ุŸ ู„ู„ N ุนู„ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ N ุชุฑุจูŠุน
423
00:44:30,180 --> 00:44:35,340
ู†ุงู‚ุต ูˆุงุญุฏ ุฌู„ุจู†ุงู‡ุง ุทู„ุนุช ููˆู‚ ุงุฎุชุตุฑุช ู…ุน ุงู„ N ุงู„ู„ูŠ ุชุนุซุฑุช
424
00:44:35,340 --> 00:44:39,680
ุจุงู„ุดูƒู„ ู‡ุฐุง ุงู„ุงู† ุชุนูˆูŠุถ ู…ุจุงุดุฑ ุจูŠุนุทูŠู†ูŠ infinity ุนู„ู‰
425
00:44:39,680 --> 00:44:45,640
infinity ูŠุง ุงู…ุง ุจุณุชุฎุฏู… ู‚ุงุนุฏุฉ ู„ูˆู…ูŠุชุงู„ูŠุง ุฅู…ุง ุจุฌุณู… ุงู„ุจุณุท
426
00:44:45,640 --> 00:44:50,120
ูˆุงู„ู…ู‚ุงู… ุนู„ู‰ n ุงู„ู…ุฑููˆุน ุนู„ูŠู‡ ุฃูƒุจุฑ ุฃุณ ููŠ ุงู„ู…ู‚ุงู… ูŠุนู†ูŠ
427
00:44:50,120 --> 00:44:54,820
ูŠุฌุฏูˆุด ุนู„ู‰ n ูˆู„ูŠุณ ุนู„ู‰ n ุชุฑุจูŠุน ู„ุฃู† n ุชุฑุจูŠุน ุชุญุช
428
00:44:54,820 --> 00:45:00,800
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ุฅุฐุง ู„ูˆ ุฌุณู…ู†ุง ูƒู„ ู…ู† ุงู„ุจุณุท ูˆุงู„ู…ู‚ุงู… ุนู„ู‰
429
00:45:00,800 --> 00:45:06,160
n ุจุตูŠุฑ ุนู†ุฏูŠ ูˆุงุญุฏ ู‡ู†ุง ู„ู…ุง ุฃุฌุณู…ู‡ุง n ู‡ุฏุฎู„ู‡ุง ุชุญุช
430
00:45:06,160 --> 00:45:11,940
ุงู„ุฌุฐุฑ ุชุฏุฎู„ ุชุญุช ุงู„ุฌุฐุฑ ุจ n ุชุฑุจูŠุน ุจุตูŠุฑ ุงู„ square root
431
00:45:11,940 --> 00:45:17,700
ู„ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n ุชุฑุจูŠุน ู‡ุฐุง ุจุตูุฑ ูˆุงู„ู†ุชูŠุฌุฉ
432
00:45:17,700 --> 00:45:22,520
ุจุณุชูˆูŠ ูˆุงุญุฏ ุงู„ุฃูˆู„ู‰ converge ุฅุฐุง ุงู„ุซุงู†ูŠุฉ ู…ุงู„ู‡ุง ูŠุจู‚ู‰
433
00:45:22,520 --> 00:45:28,940
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ by the limit comparison test the series
434
00:45:28,940 --> 00:45:34,420
summation ูˆุงุญุฏ ุนู„ู‰ n ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ n ุชุฑุจูŠุน
435
00:45:34,420 --> 00:45:45,380
ู†ุงู‚ุต ูˆุงุญุฏ converge ูƒุฐู„ูƒ ุณุคุงู„
436
00:45:45,380 --> 00:45:57,720
ุงู„ุฎุงู…ุณ summation ู…ู† N equal one to infinity ู„ูˆุงุญุฏ
437
00:45:57,720 --> 00:46:01,660
ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ ln ุงู„ N
438
00:46:06,550 --> 00:46:10,870
ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡
439
00:46:10,870 --> 00:46:11,470
ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง
440
00:46:11,470 --> 00:46:12,670
ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡
441
00:46:12,670 --> 00:46:15,950
ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง
442
00:46:15,950 --> 00:46:15,970
ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง
443
00:46:15,970 --> 00:46:17,470
ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡
444
00:46:17,470 --> 00:46:25,810
ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง ู‡ู†ุง ุฎู„ู‘ูˆู‡ ูŠุจุงุฑูƒูˆุง
445
00:46:25,810 --> 00:46:32,590
ู‡ู†ุง ุฎู„ู‘ูˆู‡
446
00:46:33,130 --> 00:46:37,870
ูŠุจู‚ู‰ ู„ู…ุง ุฃู‚ุนุฏ ุฃุทู„ุน ููŠ ุงู„ุฃู…ุซู„ุฉ ู‡ุฐู‡ ุจู„ุงุญุธ ุฃู†ู‡ ุฃู‚ุฑุจ
447
00:46:37,870 --> 00:46:42,630
series ุนู„ูŠู‡ุง ู…ู† ุงู„ู„ูŠ ุงุญู†ุง ุนุงุฑููŠู†ู‡ู… ูˆุงุญุฏ ุนู„ู‰ N
448
00:46:42,630 --> 00:46:48,430
ู…ุธุจูˆุทุŒ ุจู†ุฌุฑุจุŒ ุถุจุทุชุŒ ุฃู‡ู„ ุงู„ูˆุณูŠู„ุฉุŒ ู…ุง ุถุจุทุชุŒ ุจู†ู‚ูˆุงุŒ
449
00:46:48,430 --> 00:46:54,270
ู‡ู†ุบูŠุฑู‡ุงุŒ ุงู„ุดุบู„ ููŠ ุจูŠู†ู†ุงุŒ ุฅุฐู† ุจุฏูŠ ุฃุฌุฑุจ summation
450
00:46:54,270 --> 00:47:01,590
ูˆุงุญุฏ ุนู„ู‰ N ุงู„ู„ูŠ ู‡ูŠ diverge harmonic series
451
00:47:04,050 --> 00:47:10,130
ูŠุจุฏุฃ ุจุฃุฎุฐ limit ู„ู…ุง ุงู„ N tends to infinity ู„ 1 ุนู„ู‰ 1
452
00:47:10,130 --> 00:47:18,500
ุฒุงุฆุฏ ln ุงู„ N ุชู‚ุณูŠู… 1 ุนู„ู‰ N ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
453
00:47:18,500 --> 00:47:25,100
ูŠุณุชูˆูŠ ุงู„ limit ู„ู…ุง ุงู„ N ุชู†ุฒู„ infinity ู„ู„ N ุนู„ู‰ 1
454
00:47:25,100 --> 00:47:31,260
ุฒุงุฆุฏ ln ุงู„ N ู†ุฑุฌุน ู„ุณุคุงู„ู†ุง ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุฌู„ุจู†ุง ุทู„ุนุช
455
00:47:31,260 --> 00:47:35,580
ุงู„ N ููˆู‚ ูˆ ุตุงุฑุช ุซุงู†ูŠุฉ ุชุญุชู‡ ุชุนูˆูŠุถ ู…ุจุงุดุฑ ุจูŠุฌูŠุจ ู„ูŠ
456
00:47:35,580 --> 00:47:42,430
infinity ุนู„ู‰ infinity ูŠุจู‚ู‰ ุจู‚ุงุนุฏุฉ ู„ูˆุจูŠุชุงู„ limit ู„ู…ุง
457
00:47:42,430 --> 00:47:49,230
ุงู„ N tends to infinity ู„ู„ูˆุงุญุฏ ุนู„ู‰ ู…ุดุชู‚ุฉ ู‡ุฐุง ุจุตูุฑ
458
00:47:49,230 --> 00:47:56,470
ูˆู…ุดุชู‚ุฉ ู‡ุฐุง ุจุงู„ูˆุงุญุฏ ุนู„ู‰ N ูŠุจู‚ู‰ ุงู„ุตุนุจ limit ู„ู…ุง ุงู„ N
459
00:47:56,470 --> 00:48:03,630
tends to infinity ู„ู…ู†ุŸ ู„ n ุงู„ู†ุชูŠุฌุฉ ุฌุฏูˆุด infinity ุทูŠุจ
460
00:48:03,630 --> 00:48:12,190
ุชุจุนุช ุงู„ู…ู‚ุงู… diverge ูˆุงู„ู†ุชูŠุฌุฉ infinity ุจู‚ูˆู„ู‡ by the
461
00:48:12,190 --> 00:48:20,230
limit comparison test the series summation ู„ู„ูˆุงุญุฏ
462
00:48:20,230 --> 00:48:27,950
ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ ln ุงู„ N ุงู„ู„ูŠ ู‡ูˆ diverge ูƒุฐู„ูƒ ุฃุญุฏ
463
00:48:27,950 --> 00:48:33,410
ู…ู† ุงู„ุดุจุงุจ ู‚ุงู„ ุงูŠู‡ุŸ ู‚ุงู„ ุฃู†ุช ุจุดูˆููƒ ูƒู„ู‡ limit
464
00:48:33,410 --> 00:48:37,970
comparison ูŠุนู†ูŠ ู…ุง ูŠู†ูุนุด ุจุงู„ comparison ูˆุงู„ู„ู‡ ุงู„ุชูƒุงู…ู„
465
00:48:37,970 --> 00:48:42,070
ูˆุงู„ู„ู‡ ุงู„ end term ูˆุงู„ู„ู‡ ุงู„ู„ูŠ ูุงุช ุจู‚ูˆู„ ู„ูƒ ู…ู…ูƒู† ู…ุง ูŠู†ูุนุด
466
00:48:42,070 --> 00:48:46,830
ุฌุฑุจ ุงู„ุญูŠู† ู‡ุฐุง ู„ูˆ ุจุฏูŠ ุขุฌูŠ ุขุฎุฐ ุงู„ end term ุดุงู ุฃุญุฏ
467
00:48:46,830 --> 00:48:51,740
ุนู…ู„ ู†ู‡ุงูŠุฉ ุจุตูุฑ ูุงุดู„ ู„ุญุฏ ุงู„ุขู† ู…ุง ู†ุณุชุทูŠุน ุฃู† ู†ูƒู…ู„ ูˆุงุญุฏ
468
00:48:51,740 --> 00:48:54,980
ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ ln ุฌู…ู„ู‡ ู„ู… ูŠุชู… ุชูƒู…ู„ู‡ ุจุนุฏ ุฃู†ูƒ ุชุจุญุซ ุนู†
469
00:48:54,980 --> 00:49:00,240
ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ุฌุฒุก ุทูˆูŠู„ุฉ ูˆุจุนุฏูŠู† ุชูƒู…ู„ู‡ุง ุณุงุจุน ูŠุจู‚ู‰
470
00:49:00,240 --> 00:49:04,500
ุจุฑูˆุญูŠ ู„ู„ comparison ูˆูˆุตู„ุช ู„ู„ comparison ุจู‚ูˆู„ู‡ ุงู‡ ู‡ูˆ
471
00:49:04,500 --> 00:49:12,190
ุงู„ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ ln ุงู„ m ุทุจุนุง ุฃู‚ุฑุจ ูˆุงุญุฏุฉ ุงู„ู„ูŠ
472
00:49:12,190 --> 00:49:15,550
ุงุญู†ุง ุทู„ุนู†ุงู‡ุง diverge ู…ุธุจูˆุท ุฅุฐุง diverge ู…ุนู†ุงุชู‡ ุฏู‡
473
00:49:15,550 --> 00:49:23,410
ู…ุงุดูŠ ุฃูƒุจุฑ ู…ู† ุจู‚ูˆู„ู‡ุง ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุนู„ู‰ ln ุงู„ n ุตุญูŠุญุŸ
474
00:49:23,410 --> 00:49:31,190
ู„ุง ู…ุด ุตุญูŠุญ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ ุฒุงุฆุฏ ln ln ุชู…ุดูŠ ุงู„ุญุงู„ุŸ ูŠุนู†ูŠ
475
00:49:31,190 --> 00:49:38,530
ู‡ุฐุง ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ln ln ุดูˆ ุนู„ุงู‚ุฉ ุจูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู†
476
00:49:38,530 --> 00:49:48,430
nุŸ ุฃู‚ู„ ูˆู„ุง ุฃูƒุจุฑุŸ ุฃู‚ู„ ู„ูˆุบุงุฑูŠุชู… ุงู„ุนุฏุฏ ุฃู‚ู„ ู…ู† ุงู„ุนุฏุฏ ุฅุฐุง
477
00:49:48,430 --> 00:49:53,990
ุงู„ูƒุณูˆุฑ ู‡ุฐู‡ ู„ู‡ุง ุฃูƒุจุฑ ุฅุฐุง ู‡ุฐุง ุงู„ูƒุณุฑ ุฃูƒุจุฑ ู…ู† ุงู„ูƒุณุฑ ุงู„ู„ูŠ
478
00:49:53,990 --> 00:49:58,430
ุนู†ุฏู†ุง ู‡ุฐุง ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† ln ุงู„ n ุฃูƒุจุฑ ูƒุซูŠุฑุง ู…ู†
479
00:49:58,430 --> 00:50:05,710
ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† n ุจู‚ูˆู„ู‡ ุจุทูˆูŠ ู„ูƒู† ู†ุต summation ูˆุงุญุฏ
480
00:50:05,710 --> 00:50:13,950
ุนู„ู‰ n by very harmonic series ูŠูุฌู‡ ู‡ู†ุง by the
481
00:50:13,950 --> 00:50:21,210
comparison test the series summation ู„ู„ูˆุงุญุฏ ุฒุงุฆุฏ
482
00:50:21,210 --> 00:50:26,530
ln ุงู„ n diverged ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ู‡ู†ุง ุนู„ู‰ ุฃูŠ ุญุงู„ ูŠุนู†ูŠ
483
00:50:26,530 --> 00:50:30,950
ุงุญู†ุง ู„ู…ุง ู†ูŠุฌูŠ ู†ุดุบู„ ููŠ ุงู„ section ู‡ุฐุง ูƒู„ ุงุฎุชุจุงุฑุงุช
484
00:50:30,950 --> 00:50:35,550
ุงู„ุณุงุจู‚ุฉ ูŠู…ูƒู† ุงุณุชุฎุฏุงู…ู‡ุง ุชู‡ุฑุจ ุชุณุชุฎุฏู…ู‡ุง ู…ุงุดูŠ ุจุฏูƒุด
485
00:50:35,550 --> 00:50:39,620
ุชุณุชุฎุฏู…ู‡ุง ู…ุงุดูŠ ุณูŠุงู…ู„ุงุฒู… ููŠ ู†ูุณ ุงู„ section ูˆ ู„ู…ุง
486
00:50:39,620 --> 00:50:43,800
ู†ู†ุชู‡ูŠ ุจุนุฏ ูŠูˆู… ุงู„ุณุจุช ุฅู† ุดุงุก ุงู„ู„ู‡ ุจู†ูƒู…ู„ ู‡ุฐุง ุงู„
487
00:50:43,800 --> 00:50:47,200
section ูˆ ุจู†ุจุฏุฃ ููŠ ุงู„ section ุงู„ุฌุฏูŠุฏ