Upload sarcasm.py
Browse files- sarcasm.py +91 -0
sarcasm.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Sarcasm
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/15_wDQ9RJXwyxbomu2F1k0pK9H7XZ1cuT
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import geopandas as gpd
|
12 |
+
from datasets import (
|
13 |
+
GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split,
|
14 |
+
Features, Value, BuilderConfig, DatasetInfo
|
15 |
+
)
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import seaborn as sns
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
from shapely.geometry import Point
|
21 |
+
|
22 |
+
# URL definitions
|
23 |
+
_URLS = {
|
24 |
+
"csv_file": "https://drive.google.com/uc?export=download&id=1WcPqVZasDy1nmGcildLS-uw_-04I9Max",
|
25 |
+
}
|
26 |
+
|
27 |
+
class Sarcasm(GeneratorBasedBuilder):
|
28 |
+
VERSION = Version("1.0.0")
|
29 |
+
|
30 |
+
def _info(self):
|
31 |
+
return DatasetInfo(
|
32 |
+
description="This dataset combines information from sarcasm",
|
33 |
+
features=Features({
|
34 |
+
"comments": Value("string"),
|
35 |
+
"contains_slash_s": Value("int64"),
|
36 |
+
}),
|
37 |
+
supervised_keys=None,
|
38 |
+
homepage="https://github.com/AuraMa111?tab=repositories",
|
39 |
+
citation="Citation for the combined dataset",
|
40 |
+
)
|
41 |
+
|
42 |
+
def _split_generators(self, dl_manager):
|
43 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
44 |
+
data_file_path = downloaded_files["combined_data.csv"]
|
45 |
+
|
46 |
+
num_examples = pd.read_csv(data_file_path).shape[0]
|
47 |
+
train_size = int(0.6 * num_examples)
|
48 |
+
val_size = int(0.2 * num_examples)
|
49 |
+
test_size = num_examples - train_size - val_size
|
50 |
+
|
51 |
+
return [
|
52 |
+
SplitGenerator(
|
53 |
+
name=Split.TRAIN,
|
54 |
+
gen_kwargs={"data_file_path": data_file_path, "split": Split.TRAIN, "size": train_size}
|
55 |
+
),
|
56 |
+
SplitGenerator(
|
57 |
+
name=Split.VALIDATION,
|
58 |
+
gen_kwargs={"data_file_path": data_file_path, "split": Split.VALIDATION, "size": val_size}
|
59 |
+
),
|
60 |
+
SplitGenerator(
|
61 |
+
name=Split.TEST,
|
62 |
+
gen_kwargs={"data_file_path": data_file_path, "split": Split.TEST, "size": test_size}
|
63 |
+
),
|
64 |
+
]
|
65 |
+
|
66 |
+
def _generate_examples(self, data_file_path, split, size):
|
67 |
+
data = pd.read_csv(data_file_path)
|
68 |
+
if split == Split.TRAIN:
|
69 |
+
subset_data = data[:size]
|
70 |
+
elif split == Split.VALIDATION:
|
71 |
+
subset_data = data[size:size*2]
|
72 |
+
elif split == Split.TEST:
|
73 |
+
subset_data = data[size*2:]
|
74 |
+
|
75 |
+
for index, row in subset_data.iterrows():
|
76 |
+
example = {
|
77 |
+
"comments": row["comments"],
|
78 |
+
"contains_slash_s": row["contains_slash_s"]
|
79 |
+
}
|
80 |
+
yield index, example
|
81 |
+
|
82 |
+
# Instantiate your dataset class
|
83 |
+
sarcasm = Sarcasm()
|
84 |
+
|
85 |
+
# Build the datasets
|
86 |
+
sarcasm.download_and_prepare()
|
87 |
+
|
88 |
+
# Access the datasets for training, validation, and testing
|
89 |
+
dataset_train = sarcasm.as_dataset(split='train')
|
90 |
+
dataset_validation = sarcasm.as_dataset(split='validation')
|
91 |
+
dataset_test = sarcasm.as_dataset(split='test')
|