Upload treesplantingsitesdataset.py
Browse files- treesplantingsitesdataset.py +108 -0
treesplantingsitesdataset.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""TreesPlantingSitesDataset
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Hvt3Y131OjTl7oGQGS55S_v7-aYu1Yj8
|
8 |
+
"""
|
9 |
+
|
10 |
+
from datasets import DatasetBuilder, DownloadManager, DatasetInfo, SplitGenerator, Split
|
11 |
+
from datasets.features import Features, Value, ClassLabel
|
12 |
+
import pandas as pd
|
13 |
+
import geopandas as gpd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
|
16 |
+
class TreesPlantingSitesDataset(DatasetBuilder):
|
17 |
+
VERSION = "1.0.0"
|
18 |
+
|
19 |
+
def _info(self):
|
20 |
+
# Specifies the dataset's features
|
21 |
+
return DatasetInfo(
|
22 |
+
description="This dataset contains information about tree planting sites from CSV and GeoJSON files.",
|
23 |
+
features=Features({
|
24 |
+
"OBJECTID": Value("int32"), # Unique identifier for each record
|
25 |
+
"streetaddress": Value("string"), # Street address of the tree planting site
|
26 |
+
"city": Value("string"), # City where the tree planting site is located
|
27 |
+
"zipcode": Value("int32"), # Zip code of the tree planting site
|
28 |
+
"facilityid": Value("int32"), # Identifier for the facility
|
29 |
+
"neighborhood": Value("string"), # Neighborhood where the tree planting site is located
|
30 |
+
"plantingwidth": Value("string"), # Width available for planting
|
31 |
+
"plantingcondition": Value("string"), # Condition of the planting site
|
32 |
+
"matureheight": Value("string"), # Expected mature height of the tree
|
33 |
+
"GlobalID": Value("string"), # Global unique identifier
|
34 |
+
"created_user": Value("string"), # User who created the record
|
35 |
+
"created_date": Value("string"), # Date when the record was created
|
36 |
+
"last_edited_user": Value("string"), # User who last edited the record
|
37 |
+
"last_edited_date": Value("string"), # Date when the record was last edited
|
38 |
+
"geometry": Value("string") # Geometry feature from GeoJSON
|
39 |
+
}),
|
40 |
+
supervised_keys=None,
|
41 |
+
homepage="https://github.com/AuraMa111?tab=repositories",
|
42 |
+
citation="Citation for the dataset",
|
43 |
+
)
|
44 |
+
|
45 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
46 |
+
# Downloads the data and defines the splits
|
47 |
+
urls_to_download = {
|
48 |
+
"csv": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
|
49 |
+
"geojson": "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo"
|
50 |
+
}
|
51 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
52 |
+
|
53 |
+
return [
|
54 |
+
SplitGenerator(name=Split.TRAIN, gen_kwargs={
|
55 |
+
"csv_path": downloaded_files["csv"],
|
56 |
+
"geojson_path": downloaded_files["geojson"]
|
57 |
+
}),
|
58 |
+
# If you have additional splits, define them here
|
59 |
+
]
|
60 |
+
|
61 |
+
def _generate_examples(self, csv_path, geojson_path):
|
62 |
+
# Load the data into DataFrame and GeoDataFrame
|
63 |
+
csv_data = pd.read_csv(csv_path)
|
64 |
+
geojson_data = gpd.read_file(geojson_path)
|
65 |
+
|
66 |
+
# Merge the CSV data with the GeoJSON data on the 'OBJECTID' column
|
67 |
+
gdf = geojson_data.merge(csv_data, on='OBJECTID')
|
68 |
+
columns_to_extract = [
|
69 |
+
"OBJECTID", "streetaddress", "city", "zipcode", "facilityid", "present",
|
70 |
+
"neighborhood", "plantingwidth", "plantingcondition", "underpowerlines",
|
71 |
+
"matureheight", "GlobalID", "created_user", "created_date",
|
72 |
+
"last_edited_user", "last_edited_date", "geometry"
|
73 |
+
]
|
74 |
+
|
75 |
+
# Extract the specified columns
|
76 |
+
extracted_gdf = gdf[columns_to_extract]
|
77 |
+
# Basic statistics: Count the number of planting sites
|
78 |
+
number_of_planting_sites = gdf['present'].value_counts()
|
79 |
+
print("Number of planting sites:", number_of_planting_sites)
|
80 |
+
|
81 |
+
# Spatial analysis: Group by neighborhood to see the distribution of features
|
82 |
+
neighborhood_analysis = gdf.groupby('neighborhood').size()
|
83 |
+
print("Distribution by neighborhood:", neighborhood_analysis)
|
84 |
+
|
85 |
+
# Visual analysis: Plot the points on a map
|
86 |
+
gdf.plot(marker='*', color='green', markersize=5)
|
87 |
+
plt.title('TreesPlantingSitesDataset')
|
88 |
+
plt.show() # Make sure to display the plot if running in a script
|
89 |
+
|
90 |
+
# Iterate over the rows in the GeoDataFrame and yield examples
|
91 |
+
for id_, row in extracted_gdf.iterrows():
|
92 |
+
yield id_, {
|
93 |
+
"OBJECTID": row["OBJECTID"],
|
94 |
+
"streetaddress": row["streetaddress"],
|
95 |
+
"city": row["city"],
|
96 |
+
"zipcode": row["zipcode"],
|
97 |
+
"facilityid": row["facilityid"],
|
98 |
+
"neighborhood": row["neighborhood"],
|
99 |
+
"plantingwidth": row["plantingwidth"],
|
100 |
+
"plantingcondition": row["plantingcondition"],
|
101 |
+
"matureheight": row["matureheight"],
|
102 |
+
"GlobalID": row["GlobalID"],
|
103 |
+
"created_user": row["created_user"],
|
104 |
+
"created_date": row["created_date"],
|
105 |
+
"last_edited_user": row["last_edited_user"],
|
106 |
+
"last_edited_date": row["last_edited_date"],
|
107 |
+
"geometry": row["geometry"].wkt if row["geometry"] else None # Ensure geometry is in Well-Known Text (WKT) format or handled as desired
|
108 |
+
}
|