// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. | |
// Sources flattened with hardhat v2.12.4 https://hardhat.org | |
// File erc721a/contracts/[email protected] | |
// SPDX-License-Identifier: MIT | |
// ERC721A Contracts v4.2.3 | |
// Creator: Chiru Labs | |
pragma solidity ^0.8.4; | |
/** | |
* @dev Interface of ERC721A. | |
*/ | |
interface IERC721A { | |
/** | |
* The caller must own the token or be an approved operator. | |
*/ | |
error ApprovalCallerNotOwnerNorApproved(); | |
/** | |
* The token does not exist. | |
*/ | |
error ApprovalQueryForNonexistentToken(); | |
/** | |
* Cannot query the balance for the zero address. | |
*/ | |
error BalanceQueryForZeroAddress(); | |
/** | |
* Cannot mint to the zero address. | |
*/ | |
error MintToZeroAddress(); | |
/** | |
* The quantity of tokens minted must be more than zero. | |
*/ | |
error MintZeroQuantity(); | |
/** | |
* The token does not exist. | |
*/ | |
error OwnerQueryForNonexistentToken(); | |
/** | |
* The caller must own the token or be an approved operator. | |
*/ | |
error TransferCallerNotOwnerNorApproved(); | |
/** | |
* The token must be owned by `from`. | |
*/ | |
error TransferFromIncorrectOwner(); | |
/** | |
* Cannot safely transfer to a contract that does not implement the | |
* ERC721Receiver interface. | |
*/ | |
error TransferToNonERC721ReceiverImplementer(); | |
/** | |
* Cannot transfer to the zero address. | |
*/ | |
error TransferToZeroAddress(); | |
/** | |
* The token does not exist. | |
*/ | |
error URIQueryForNonexistentToken(); | |
/** | |
* The `quantity` minted with ERC2309 exceeds the safety limit. | |
*/ | |
error MintERC2309QuantityExceedsLimit(); | |
/** | |
* The `extraData` cannot be set on an unintialized ownership slot. | |
*/ | |
error OwnershipNotInitializedForExtraData(); | |
// ============================================================= | |
// STRUCTS | |
// ============================================================= | |
struct TokenOwnership { | |
// The address of the owner. | |
address addr; | |
// Stores the start time of ownership with minimal overhead for tokenomics. | |
uint64 startTimestamp; | |
// Whether the token has been burned. | |
bool burned; | |
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. | |
uint24 extraData; | |
} | |
// ============================================================= | |
// TOKEN COUNTERS | |
// ============================================================= | |
/** | |
* @dev Returns the total number of tokens in existence. | |
* Burned tokens will reduce the count. | |
* To get the total number of tokens minted, please see {_totalMinted}. | |
*/ | |
function totalSupply() external view returns (uint256); | |
// ============================================================= | |
// IERC165 | |
// ============================================================= | |
/** | |
* @dev Returns true if this contract implements the interface defined by | |
* `interfaceId`. See the corresponding | |
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) | |
* to learn more about how these ids are created. | |
* | |
* This function call must use less than 30000 gas. | |
*/ | |
function supportsInterface(bytes4 interfaceId) external view returns (bool); | |
// ============================================================= | |
// IERC721 | |
// ============================================================= | |
/** | |
* @dev Emitted when `tokenId` token is transferred from `from` to `to`. | |
*/ | |
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); | |
/** | |
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. | |
*/ | |
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); | |
/** | |
* @dev Emitted when `owner` enables or disables | |
* (`approved`) `operator` to manage all of its assets. | |
*/ | |
event ApprovalForAll(address indexed owner, address indexed operator, bool approved); | |
/** | |
* @dev Returns the number of tokens in `owner`'s account. | |
*/ | |
function balanceOf(address owner) external view returns (uint256 balance); | |
/** | |
* @dev Returns the owner of the `tokenId` token. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
*/ | |
function ownerOf(uint256 tokenId) external view returns (address owner); | |
/** | |
* @dev Safely transfers `tokenId` token from `from` to `to`, | |
* checking first that contract recipients are aware of the ERC721 protocol | |
* to prevent tokens from being forever locked. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must exist and be owned by `from`. | |
* - If the caller is not `from`, it must be have been allowed to move | |
* this token by either {approve} or {setApprovalForAll}. | |
* - If `to` refers to a smart contract, it must implement | |
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId, | |
bytes calldata data | |
) external payable; | |
/** | |
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) external payable; | |
/** | |
* @dev Transfers `tokenId` from `from` to `to`. | |
* | |
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} | |
* whenever possible. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must be owned by `from`. | |
* - If the caller is not `from`, it must be approved to move this token | |
* by either {approve} or {setApprovalForAll}. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function transferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) external payable; | |
/** | |
* @dev Gives permission to `to` to transfer `tokenId` token to another account. | |
* The approval is cleared when the token is transferred. | |
* | |
* Only a single account can be approved at a time, so approving the | |
* zero address clears previous approvals. | |
* | |
* Requirements: | |
* | |
* - The caller must own the token or be an approved operator. | |
* - `tokenId` must exist. | |
* | |
* Emits an {Approval} event. | |
*/ | |
function approve(address to, uint256 tokenId) external payable; | |
/** | |
* @dev Approve or remove `operator` as an operator for the caller. | |
* Operators can call {transferFrom} or {safeTransferFrom} | |
* for any token owned by the caller. | |
* | |
* Requirements: | |
* | |
* - The `operator` cannot be the caller. | |
* | |
* Emits an {ApprovalForAll} event. | |
*/ | |
function setApprovalForAll(address operator, bool _approved) external; | |
/** | |
* @dev Returns the account approved for `tokenId` token. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
*/ | |
function getApproved(uint256 tokenId) external view returns (address operator); | |
/** | |
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. | |
* | |
* See {setApprovalForAll}. | |
*/ | |
function isApprovedForAll(address owner, address operator) external view returns (bool); | |
// ============================================================= | |
// IERC721Metadata | |
// ============================================================= | |
/** | |
* @dev Returns the token collection name. | |
*/ | |
function name() external view returns (string memory); | |
/** | |
* @dev Returns the token collection symbol. | |
*/ | |
function symbol() external view returns (string memory); | |
/** | |
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. | |
*/ | |
function tokenURI(uint256 tokenId) external view returns (string memory); | |
// ============================================================= | |
// IERC2309 | |
// ============================================================= | |
/** | |
* @dev Emitted when tokens in `fromTokenId` to `toTokenId` | |
* (inclusive) is transferred from `from` to `to`, as defined in the | |
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. | |
* | |
* See {_mintERC2309} for more details. | |
*/ | |
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); | |
} | |
// File erc721a/contracts/[email protected] | |
// ERC721A Contracts v4.2.3 | |
// Creator: Chiru Labs | |
pragma solidity ^0.8.4; | |
/** | |
* @dev Interface of ERC721 token receiver. | |
*/ | |
interface ERC721A__IERC721Receiver { | |
function onERC721Received( | |
address operator, | |
address from, | |
uint256 tokenId, | |
bytes calldata data | |
) external returns (bytes4); | |
} | |
/** | |
* @title ERC721A | |
* | |
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) | |
* Non-Fungible Token Standard, including the Metadata extension. | |
* Optimized for lower gas during batch mints. | |
* | |
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) | |
* starting from `_startTokenId()`. | |
* | |
* Assumptions: | |
* | |
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. | |
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). | |
*/ | |
contract ERC721A is IERC721A { | |
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). | |
struct TokenApprovalRef { | |
address value; | |
} | |
// ============================================================= | |
// CONSTANTS | |
// ============================================================= | |
// Mask of an entry in packed address data. | |
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; | |
// The bit position of `numberMinted` in packed address data. | |
uint256 private constant _BITPOS_NUMBER_MINTED = 64; | |
// The bit position of `numberBurned` in packed address data. | |
uint256 private constant _BITPOS_NUMBER_BURNED = 128; | |
// The bit position of `aux` in packed address data. | |
uint256 private constant _BITPOS_AUX = 192; | |
// Mask of all 256 bits in packed address data except the 64 bits for `aux`. | |
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; | |
// The bit position of `startTimestamp` in packed ownership. | |
uint256 private constant _BITPOS_START_TIMESTAMP = 160; | |
// The bit mask of the `burned` bit in packed ownership. | |
uint256 private constant _BITMASK_BURNED = 1 << 224; | |
// The bit position of the `nextInitialized` bit in packed ownership. | |
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; | |
// The bit mask of the `nextInitialized` bit in packed ownership. | |
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; | |
// The bit position of `extraData` in packed ownership. | |
uint256 private constant _BITPOS_EXTRA_DATA = 232; | |
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. | |
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; | |
// The mask of the lower 160 bits for addresses. | |
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; | |
// The maximum `quantity` that can be minted with {_mintERC2309}. | |
// This limit is to prevent overflows on the address data entries. | |
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} | |
// is required to cause an overflow, which is unrealistic. | |
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; | |
// The `Transfer` event signature is given by: | |
// `keccak256(bytes("Transfer(address,address,uint256)"))`. | |
bytes32 private constant _TRANSFER_EVENT_SIGNATURE = | |
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; | |
// ============================================================= | |
// STORAGE | |
// ============================================================= | |
// The next token ID to be minted. | |
uint256 private _currentIndex; | |
// The number of tokens burned. | |
uint256 private _burnCounter; | |
// Token name | |
string private _name; | |
// Token symbol | |
string private _symbol; | |
// Mapping from token ID to ownership details | |
// An empty struct value does not necessarily mean the token is unowned. | |
// See {_packedOwnershipOf} implementation for details. | |
// | |
// Bits Layout: | |
// - [0..159] `addr` | |
// - [160..223] `startTimestamp` | |
// - [224] `burned` | |
// - [225] `nextInitialized` | |
// - [232..255] `extraData` | |
mapping(uint256 => uint256) private _packedOwnerships; | |
// Mapping owner address to address data. | |
// | |
// Bits Layout: | |
// - [0..63] `balance` | |
// - [64..127] `numberMinted` | |
// - [128..191] `numberBurned` | |
// - [192..255] `aux` | |
mapping(address => uint256) private _packedAddressData; | |
// Mapping from token ID to approved address. | |
mapping(uint256 => TokenApprovalRef) private _tokenApprovals; | |
// Mapping from owner to operator approvals | |
mapping(address => mapping(address => bool)) private _operatorApprovals; | |
// ============================================================= | |
// CONSTRUCTOR | |
// ============================================================= | |
constructor(string memory name_, string memory symbol_) { | |
_name = name_; | |
_symbol = symbol_; | |
_currentIndex = _startTokenId(); | |
} | |
// ============================================================= | |
// TOKEN COUNTING OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Returns the starting token ID. | |
* To change the starting token ID, please override this function. | |
*/ | |
function _startTokenId() internal view virtual returns (uint256) { | |
return 0; | |
} | |
/** | |
* @dev Returns the next token ID to be minted. | |
*/ | |
function _nextTokenId() internal view virtual returns (uint256) { | |
return _currentIndex; | |
} | |
/** | |
* @dev Returns the total number of tokens in existence. | |
* Burned tokens will reduce the count. | |
* To get the total number of tokens minted, please see {_totalMinted}. | |
*/ | |
function totalSupply() public view virtual override returns (uint256) { | |
// Counter underflow is impossible as _burnCounter cannot be incremented | |
// more than `_currentIndex - _startTokenId()` times. | |
unchecked { | |
return _currentIndex - _burnCounter - _startTokenId(); | |
} | |
} | |
/** | |
* @dev Returns the total amount of tokens minted in the contract. | |
*/ | |
function _totalMinted() internal view virtual returns (uint256) { | |
// Counter underflow is impossible as `_currentIndex` does not decrement, | |
// and it is initialized to `_startTokenId()`. | |
unchecked { | |
return _currentIndex - _startTokenId(); | |
} | |
} | |
/** | |
* @dev Returns the total number of tokens burned. | |
*/ | |
function _totalBurned() internal view virtual returns (uint256) { | |
return _burnCounter; | |
} | |
// ============================================================= | |
// ADDRESS DATA OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Returns the number of tokens in `owner`'s account. | |
*/ | |
function balanceOf(address owner) public view virtual override returns (uint256) { | |
if (owner == address(0)) revert BalanceQueryForZeroAddress(); | |
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; | |
} | |
/** | |
* Returns the number of tokens minted by `owner`. | |
*/ | |
function _numberMinted(address owner) internal view returns (uint256) { | |
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; | |
} | |
/** | |
* Returns the number of tokens burned by or on behalf of `owner`. | |
*/ | |
function _numberBurned(address owner) internal view returns (uint256) { | |
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; | |
} | |
/** | |
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). | |
*/ | |
function _getAux(address owner) internal view returns (uint64) { | |
return uint64(_packedAddressData[owner] >> _BITPOS_AUX); | |
} | |
/** | |
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). | |
* If there are multiple variables, please pack them into a uint64. | |
*/ | |
function _setAux(address owner, uint64 aux) internal virtual { | |
uint256 packed = _packedAddressData[owner]; | |
uint256 auxCasted; | |
// Cast `aux` with assembly to avoid redundant masking. | |
assembly { | |
auxCasted := aux | |
} | |
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); | |
_packedAddressData[owner] = packed; | |
} | |
// ============================================================= | |
// IERC165 | |
// ============================================================= | |
/** | |
* @dev Returns true if this contract implements the interface defined by | |
* `interfaceId`. See the corresponding | |
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) | |
* to learn more about how these ids are created. | |
* | |
* This function call must use less than 30000 gas. | |
*/ | |
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { | |
// The interface IDs are constants representing the first 4 bytes | |
// of the XOR of all function selectors in the interface. | |
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) | |
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) | |
return | |
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. | |
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. | |
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. | |
} | |
// ============================================================= | |
// IERC721Metadata | |
// ============================================================= | |
/** | |
* @dev Returns the token collection name. | |
*/ | |
function name() public view virtual override returns (string memory) { | |
return _name; | |
} | |
/** | |
* @dev Returns the token collection symbol. | |
*/ | |
function symbol() public view virtual override returns (string memory) { | |
return _symbol; | |
} | |
/** | |
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. | |
*/ | |
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { | |
if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); | |
string memory baseURI = _baseURI(); | |
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; | |
} | |
/** | |
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each | |
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty | |
* by default, it can be overridden in child contracts. | |
*/ | |
function _baseURI() internal view virtual returns (string memory) { | |
return ''; | |
} | |
// ============================================================= | |
// OWNERSHIPS OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Returns the owner of the `tokenId` token. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
*/ | |
function ownerOf(uint256 tokenId) public view virtual override returns (address) { | |
return address(uint160(_packedOwnershipOf(tokenId))); | |
} | |
/** | |
* @dev Gas spent here starts off proportional to the maximum mint batch size. | |
* It gradually moves to O(1) as tokens get transferred around over time. | |
*/ | |
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { | |
return _unpackedOwnership(_packedOwnershipOf(tokenId)); | |
} | |
/** | |
* @dev Returns the unpacked `TokenOwnership` struct at `index`. | |
*/ | |
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { | |
return _unpackedOwnership(_packedOwnerships[index]); | |
} | |
/** | |
* @dev Initializes the ownership slot minted at `index` for efficiency purposes. | |
*/ | |
function _initializeOwnershipAt(uint256 index) internal virtual { | |
if (_packedOwnerships[index] == 0) { | |
_packedOwnerships[index] = _packedOwnershipOf(index); | |
} | |
} | |
/** | |
* Returns the packed ownership data of `tokenId`. | |
*/ | |
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) { | |
uint256 curr = tokenId; | |
unchecked { | |
if (_startTokenId() <= curr) | |
if (curr < _currentIndex) { | |
uint256 packed = _packedOwnerships[curr]; | |
// If not burned. | |
if (packed & _BITMASK_BURNED == 0) { | |
// Invariant: | |
// There will always be an initialized ownership slot | |
// (i.e. `ownership.addr != address(0) && ownership.burned == false`) | |
// before an unintialized ownership slot | |
// (i.e. `ownership.addr == address(0) && ownership.burned == false`) | |
// Hence, `curr` will not underflow. | |
// | |
// We can directly compare the packed value. | |
// If the address is zero, packed will be zero. | |
while (packed == 0) { | |
packed = _packedOwnerships[--curr]; | |
} | |
return packed; | |
} | |
} | |
} | |
revert OwnerQueryForNonexistentToken(); | |
} | |
/** | |
* @dev Returns the unpacked `TokenOwnership` struct from `packed`. | |
*/ | |
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { | |
ownership.addr = address(uint160(packed)); | |
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); | |
ownership.burned = packed & _BITMASK_BURNED != 0; | |
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); | |
} | |
/** | |
* @dev Packs ownership data into a single uint256. | |
*/ | |
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { | |
assembly { | |
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. | |
owner := and(owner, _BITMASK_ADDRESS) | |
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. | |
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) | |
} | |
} | |
/** | |
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1. | |
*/ | |
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { | |
// For branchless setting of the `nextInitialized` flag. | |
assembly { | |
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. | |
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) | |
} | |
} | |
// ============================================================= | |
// APPROVAL OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Gives permission to `to` to transfer `tokenId` token to another account. | |
* The approval is cleared when the token is transferred. | |
* | |
* Only a single account can be approved at a time, so approving the | |
* zero address clears previous approvals. | |
* | |
* Requirements: | |
* | |
* - The caller must own the token or be an approved operator. | |
* - `tokenId` must exist. | |
* | |
* Emits an {Approval} event. | |
*/ | |
function approve(address to, uint256 tokenId) public payable virtual override { | |
address owner = ownerOf(tokenId); | |
if (_msgSenderERC721A() != owner) | |
if (!isApprovedForAll(owner, _msgSenderERC721A())) { | |
revert ApprovalCallerNotOwnerNorApproved(); | |
} | |
_tokenApprovals[tokenId].value = to; | |
emit Approval(owner, to, tokenId); | |
} | |
/** | |
* @dev Returns the account approved for `tokenId` token. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
*/ | |
function getApproved(uint256 tokenId) public view virtual override returns (address) { | |
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); | |
return _tokenApprovals[tokenId].value; | |
} | |
/** | |
* @dev Approve or remove `operator` as an operator for the caller. | |
* Operators can call {transferFrom} or {safeTransferFrom} | |
* for any token owned by the caller. | |
* | |
* Requirements: | |
* | |
* - The `operator` cannot be the caller. | |
* | |
* Emits an {ApprovalForAll} event. | |
*/ | |
function setApprovalForAll(address operator, bool approved) public virtual override { | |
_operatorApprovals[_msgSenderERC721A()][operator] = approved; | |
emit ApprovalForAll(_msgSenderERC721A(), operator, approved); | |
} | |
/** | |
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. | |
* | |
* See {setApprovalForAll}. | |
*/ | |
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { | |
return _operatorApprovals[owner][operator]; | |
} | |
/** | |
* @dev Returns whether `tokenId` exists. | |
* | |
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. | |
* | |
* Tokens start existing when they are minted. See {_mint}. | |
*/ | |
function _exists(uint256 tokenId) internal view virtual returns (bool) { | |
return | |
_startTokenId() <= tokenId && | |
tokenId < _currentIndex && // If within bounds, | |
_packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. | |
} | |
/** | |
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. | |
*/ | |
function _isSenderApprovedOrOwner( | |
address approvedAddress, | |
address owner, | |
address msgSender | |
) private pure returns (bool result) { | |
assembly { | |
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. | |
owner := and(owner, _BITMASK_ADDRESS) | |
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. | |
msgSender := and(msgSender, _BITMASK_ADDRESS) | |
// `msgSender == owner || msgSender == approvedAddress`. | |
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) | |
} | |
} | |
/** | |
* @dev Returns the storage slot and value for the approved address of `tokenId`. | |
*/ | |
function _getApprovedSlotAndAddress(uint256 tokenId) | |
private | |
view | |
returns (uint256 approvedAddressSlot, address approvedAddress) | |
{ | |
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; | |
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. | |
assembly { | |
approvedAddressSlot := tokenApproval.slot | |
approvedAddress := sload(approvedAddressSlot) | |
} | |
} | |
// ============================================================= | |
// TRANSFER OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Transfers `tokenId` from `from` to `to`. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must be owned by `from`. | |
* - If the caller is not `from`, it must be approved to move this token | |
* by either {approve} or {setApprovalForAll}. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function transferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) public payable virtual override { | |
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); | |
if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); | |
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); | |
// The nested ifs save around 20+ gas over a compound boolean condition. | |
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) | |
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); | |
if (to == address(0)) revert TransferToZeroAddress(); | |
_beforeTokenTransfers(from, to, tokenId, 1); | |
// Clear approvals from the previous owner. | |
assembly { | |
if approvedAddress { | |
// This is equivalent to `delete _tokenApprovals[tokenId]`. | |
sstore(approvedAddressSlot, 0) | |
} | |
} | |
// Underflow of the sender's balance is impossible because we check for | |
// ownership above and the recipient's balance can't realistically overflow. | |
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. | |
unchecked { | |
// We can directly increment and decrement the balances. | |
--_packedAddressData[from]; // Updates: `balance -= 1`. | |
++_packedAddressData[to]; // Updates: `balance += 1`. | |
// Updates: | |
// - `address` to the next owner. | |
// - `startTimestamp` to the timestamp of transfering. | |
// - `burned` to `false`. | |
// - `nextInitialized` to `true`. | |
_packedOwnerships[tokenId] = _packOwnershipData( | |
to, | |
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) | |
); | |
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) . | |
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { | |
uint256 nextTokenId = tokenId + 1; | |
// If the next slot's address is zero and not burned (i.e. packed value is zero). | |
if (_packedOwnerships[nextTokenId] == 0) { | |
// If the next slot is within bounds. | |
if (nextTokenId != _currentIndex) { | |
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. | |
_packedOwnerships[nextTokenId] = prevOwnershipPacked; | |
} | |
} | |
} | |
} | |
emit Transfer(from, to, tokenId); | |
_afterTokenTransfers(from, to, tokenId, 1); | |
} | |
/** | |
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) public payable virtual override { | |
safeTransferFrom(from, to, tokenId, ''); | |
} | |
/** | |
* @dev Safely transfers `tokenId` token from `from` to `to`. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must exist and be owned by `from`. | |
* - If the caller is not `from`, it must be approved to move this token | |
* by either {approve} or {setApprovalForAll}. | |
* - If `to` refers to a smart contract, it must implement | |
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId, | |
bytes memory _data | |
) public payable virtual override { | |
transferFrom(from, to, tokenId); | |
if (to.code.length != 0) | |
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { | |
revert TransferToNonERC721ReceiverImplementer(); | |
} | |
} | |
/** | |
* @dev Hook that is called before a set of serially-ordered token IDs | |
* are about to be transferred. This includes minting. | |
* And also called before burning one token. | |
* | |
* `startTokenId` - the first token ID to be transferred. | |
* `quantity` - the amount to be transferred. | |
* | |
* Calling conditions: | |
* | |
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be | |
* transferred to `to`. | |
* - When `from` is zero, `tokenId` will be minted for `to`. | |
* - When `to` is zero, `tokenId` will be burned by `from`. | |
* - `from` and `to` are never both zero. | |
*/ | |
function _beforeTokenTransfers( | |
address from, | |
address to, | |
uint256 startTokenId, | |
uint256 quantity | |
) internal virtual {} | |
/** | |
* @dev Hook that is called after a set of serially-ordered token IDs | |
* have been transferred. This includes minting. | |
* And also called after one token has been burned. | |
* | |
* `startTokenId` - the first token ID to be transferred. | |
* `quantity` - the amount to be transferred. | |
* | |
* Calling conditions: | |
* | |
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been | |
* transferred to `to`. | |
* - When `from` is zero, `tokenId` has been minted for `to`. | |
* - When `to` is zero, `tokenId` has been burned by `from`. | |
* - `from` and `to` are never both zero. | |
*/ | |
function _afterTokenTransfers( | |
address from, | |
address to, | |
uint256 startTokenId, | |
uint256 quantity | |
) internal virtual {} | |
/** | |
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. | |
* | |
* `from` - Previous owner of the given token ID. | |
* `to` - Target address that will receive the token. | |
* `tokenId` - Token ID to be transferred. | |
* `_data` - Optional data to send along with the call. | |
* | |
* Returns whether the call correctly returned the expected magic value. | |
*/ | |
function _checkContractOnERC721Received( | |
address from, | |
address to, | |
uint256 tokenId, | |
bytes memory _data | |
) private returns (bool) { | |
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( | |
bytes4 retval | |
) { | |
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; | |
} catch (bytes memory reason) { | |
if (reason.length == 0) { | |
revert TransferToNonERC721ReceiverImplementer(); | |
} else { | |
assembly { | |
revert(add(32, reason), mload(reason)) | |
} | |
} | |
} | |
} | |
// ============================================================= | |
// MINT OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Mints `quantity` tokens and transfers them to `to`. | |
* | |
* Requirements: | |
* | |
* - `to` cannot be the zero address. | |
* - `quantity` must be greater than 0. | |
* | |
* Emits a {Transfer} event for each mint. | |
*/ | |
function _mint(address to, uint256 quantity) internal virtual { | |
uint256 startTokenId = _currentIndex; | |
if (quantity == 0) revert MintZeroQuantity(); | |
_beforeTokenTransfers(address(0), to, startTokenId, quantity); | |
// Overflows are incredibly unrealistic. | |
// `balance` and `numberMinted` have a maximum limit of 2**64. | |
// `tokenId` has a maximum limit of 2**256. | |
unchecked { | |
// Updates: | |
// - `balance += quantity`. | |
// - `numberMinted += quantity`. | |
// | |
// We can directly add to the `balance` and `numberMinted`. | |
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); | |
// Updates: | |
// - `address` to the owner. | |
// - `startTimestamp` to the timestamp of minting. | |
// - `burned` to `false`. | |
// - `nextInitialized` to `quantity == 1`. | |
_packedOwnerships[startTokenId] = _packOwnershipData( | |
to, | |
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) | |
); | |
uint256 toMasked; | |
uint256 end = startTokenId + quantity; | |
// Use assembly to loop and emit the `Transfer` event for gas savings. | |
// The duplicated `log4` removes an extra check and reduces stack juggling. | |
// The assembly, together with the surrounding Solidity code, have been | |
// delicately arranged to nudge the compiler into producing optimized opcodes. | |
assembly { | |
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. | |
toMasked := and(to, _BITMASK_ADDRESS) | |
// Emit the `Transfer` event. | |
log4( | |
0, // Start of data (0, since no data). | |
0, // End of data (0, since no data). | |
_TRANSFER_EVENT_SIGNATURE, // Signature. | |
0, // `address(0)`. | |
toMasked, // `to`. | |
startTokenId // `tokenId`. | |
) | |
// The `iszero(eq(,))` check ensures that large values of `quantity` | |
// that overflows uint256 will make the loop run out of gas. | |
// The compiler will optimize the `iszero` away for performance. | |
for { | |
let tokenId := add(startTokenId, 1) | |
} iszero(eq(tokenId, end)) { | |
tokenId := add(tokenId, 1) | |
} { | |
// Emit the `Transfer` event. Similar to above. | |
log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) | |
} | |
} | |
if (toMasked == 0) revert MintToZeroAddress(); | |
_currentIndex = end; | |
} | |
_afterTokenTransfers(address(0), to, startTokenId, quantity); | |
} | |
/** | |
* @dev Mints `quantity` tokens and transfers them to `to`. | |
* | |
* This function is intended for efficient minting only during contract creation. | |
* | |
* It emits only one {ConsecutiveTransfer} as defined in | |
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), | |
* instead of a sequence of {Transfer} event(s). | |
* | |
* Calling this function outside of contract creation WILL make your contract | |
* non-compliant with the ERC721 standard. | |
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 | |
* {ConsecutiveTransfer} event is only permissible during contract creation. | |
* | |
* Requirements: | |
* | |
* - `to` cannot be the zero address. | |
* - `quantity` must be greater than 0. | |
* | |
* Emits a {ConsecutiveTransfer} event. | |
*/ | |
function _mintERC2309(address to, uint256 quantity) internal virtual { | |
uint256 startTokenId = _currentIndex; | |
if (to == address(0)) revert MintToZeroAddress(); | |
if (quantity == 0) revert MintZeroQuantity(); | |
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); | |
_beforeTokenTransfers(address(0), to, startTokenId, quantity); | |
// Overflows are unrealistic due to the above check for `quantity` to be below the limit. | |
unchecked { | |
// Updates: | |
// - `balance += quantity`. | |
// - `numberMinted += quantity`. | |
// | |
// We can directly add to the `balance` and `numberMinted`. | |
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); | |
// Updates: | |
// - `address` to the owner. | |
// - `startTimestamp` to the timestamp of minting. | |
// - `burned` to `false`. | |
// - `nextInitialized` to `quantity == 1`. | |
_packedOwnerships[startTokenId] = _packOwnershipData( | |
to, | |
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) | |
); | |
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); | |
_currentIndex = startTokenId + quantity; | |
} | |
_afterTokenTransfers(address(0), to, startTokenId, quantity); | |
} | |
/** | |
* @dev Safely mints `quantity` tokens and transfers them to `to`. | |
* | |
* Requirements: | |
* | |
* - If `to` refers to a smart contract, it must implement | |
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer. | |
* - `quantity` must be greater than 0. | |
* | |
* See {_mint}. | |
* | |
* Emits a {Transfer} event for each mint. | |
*/ | |
function _safeMint( | |
address to, | |
uint256 quantity, | |
bytes memory _data | |
) internal virtual { | |
_mint(to, quantity); | |
unchecked { | |
if (to.code.length != 0) { | |
uint256 end = _currentIndex; | |
uint256 index = end - quantity; | |
do { | |
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { | |
revert TransferToNonERC721ReceiverImplementer(); | |
} | |
} while (index < end); | |
// Reentrancy protection. | |
if (_currentIndex != end) revert(); | |
} | |
} | |
} | |
/** | |
* @dev Equivalent to `_safeMint(to, quantity, '')`. | |
*/ | |
function _safeMint(address to, uint256 quantity) internal virtual { | |
_safeMint(to, quantity, ''); | |
} | |
// ============================================================= | |
// BURN OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Equivalent to `_burn(tokenId, false)`. | |
*/ | |
function _burn(uint256 tokenId) internal virtual { | |
_burn(tokenId, false); | |
} | |
/** | |
* @dev Destroys `tokenId`. | |
* The approval is cleared when the token is burned. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function _burn(uint256 tokenId, bool approvalCheck) internal virtual { | |
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); | |
address from = address(uint160(prevOwnershipPacked)); | |
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); | |
if (approvalCheck) { | |
// The nested ifs save around 20+ gas over a compound boolean condition. | |
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) | |
if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); | |
} | |
_beforeTokenTransfers(from, address(0), tokenId, 1); | |
// Clear approvals from the previous owner. | |
assembly { | |
if approvedAddress { | |
// This is equivalent to `delete _tokenApprovals[tokenId]`. | |
sstore(approvedAddressSlot, 0) | |
} | |
} | |
// Underflow of the sender's balance is impossible because we check for | |
// ownership above and the recipient's balance can't realistically overflow. | |
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. | |
unchecked { | |
// Updates: | |
// - `balance -= 1`. | |
// - `numberBurned += 1`. | |
// | |
// We can directly decrement the balance, and increment the number burned. | |
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. | |
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; | |
// Updates: | |
// - `address` to the last owner. | |
// - `startTimestamp` to the timestamp of burning. | |
// - `burned` to `true`. | |
// - `nextInitialized` to `true`. | |
_packedOwnerships[tokenId] = _packOwnershipData( | |
from, | |
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) | |
); | |
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) . | |
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { | |
uint256 nextTokenId = tokenId + 1; | |
// If the next slot's address is zero and not burned (i.e. packed value is zero). | |
if (_packedOwnerships[nextTokenId] == 0) { | |
// If the next slot is within bounds. | |
if (nextTokenId != _currentIndex) { | |
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. | |
_packedOwnerships[nextTokenId] = prevOwnershipPacked; | |
} | |
} | |
} | |
} | |
emit Transfer(from, address(0), tokenId); | |
_afterTokenTransfers(from, address(0), tokenId, 1); | |
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. | |
unchecked { | |
_burnCounter++; | |
} | |
} | |
// ============================================================= | |
// EXTRA DATA OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Directly sets the extra data for the ownership data `index`. | |
*/ | |
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { | |
uint256 packed = _packedOwnerships[index]; | |
if (packed == 0) revert OwnershipNotInitializedForExtraData(); | |
uint256 extraDataCasted; | |
// Cast `extraData` with assembly to avoid redundant masking. | |
assembly { | |
extraDataCasted := extraData | |
} | |
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); | |
_packedOwnerships[index] = packed; | |
} | |
/** | |
* @dev Called during each token transfer to set the 24bit `extraData` field. | |
* Intended to be overridden by the cosumer contract. | |
* | |
* `previousExtraData` - the value of `extraData` before transfer. | |
* | |
* Calling conditions: | |
* | |
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be | |
* transferred to `to`. | |
* - When `from` is zero, `tokenId` will be minted for `to`. | |
* - When `to` is zero, `tokenId` will be burned by `from`. | |
* - `from` and `to` are never both zero. | |
*/ | |
function _extraData( | |
address from, | |
address to, | |
uint24 previousExtraData | |
) internal view virtual returns (uint24) {} | |
/** | |
* @dev Returns the next extra data for the packed ownership data. | |
* The returned result is shifted into position. | |
*/ | |
function _nextExtraData( | |
address from, | |
address to, | |
uint256 prevOwnershipPacked | |
) private view returns (uint256) { | |
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); | |
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; | |
} | |
// ============================================================= | |
// OTHER OPERATIONS | |
// ============================================================= | |
/** | |
* @dev Returns the message sender (defaults to `msg.sender`). | |
* | |
* If you are writing GSN compatible contracts, you need to override this function. | |
*/ | |
function _msgSenderERC721A() internal view virtual returns (address) { | |
return msg.sender; | |
} | |
/** | |
* @dev Converts a uint256 to its ASCII string decimal representation. | |
*/ | |
function _toString(uint256 value) internal pure virtual returns (string memory str) { | |
assembly { | |
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but | |
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. | |
// We will need 1 word for the trailing zeros padding, 1 word for the length, | |
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. | |
let m := add(mload(0x40), 0xa0) | |
// Update the free memory pointer to allocate. | |
mstore(0x40, m) | |
// Assign the `str` to the end. | |
str := sub(m, 0x20) | |
// Zeroize the slot after the string. | |
mstore(str, 0) | |
// Cache the end of the memory to calculate the length later. | |
let end := str | |
// We write the string from rightmost digit to leftmost digit. | |
// The following is essentially a do-while loop that also handles the zero case. | |
// prettier-ignore | |
for { let temp := value } 1 {} { | |
str := sub(str, 1) | |
// Write the character to the pointer. | |
// The ASCII index of the '0' character is 48. | |
mstore8(str, add(48, mod(temp, 10))) | |
// Keep dividing `temp` until zero. | |
temp := div(temp, 10) | |
// prettier-ignore | |
if iszero(temp) { break } | |
} | |
let length := sub(end, str) | |
// Move the pointer 32 bytes leftwards to make room for the length. | |
str := sub(str, 0x20) | |
// Store the length. | |
mstore(str, length) | |
} | |
} | |
} | |
// File @openzeppelin/contracts/utils/[email protected] | |
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Provides information about the current execution context, including the | |
* sender of the transaction and its data. While these are generally available | |
* via msg.sender and msg.data, they should not be accessed in such a direct | |
* manner, since when dealing with meta-transactions the account sending and | |
* paying for execution may not be the actual sender (as far as an application | |
* is concerned). | |
* | |
* This contract is only required for intermediate, library-like contracts. | |
*/ | |
abstract contract Context { | |
function _msgSender() internal view virtual returns (address) { | |
return msg.sender; | |
} | |
function _msgData() internal view virtual returns (bytes calldata) { | |
return msg.data; | |
} | |
} | |
// File @openzeppelin/contracts/access/[email protected] | |
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Contract module which provides a basic access control mechanism, where | |
* there is an account (an owner) that can be granted exclusive access to | |
* specific functions. | |
* | |
* By default, the owner account will be the one that deploys the contract. This | |
* can later be changed with {transferOwnership}. | |
* | |
* This module is used through inheritance. It will make available the modifier | |
* `onlyOwner`, which can be applied to your functions to restrict their use to | |
* the owner. | |
*/ | |
abstract contract Ownable is Context { | |
address private _owner; | |
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); | |
/** | |
* @dev Initializes the contract setting the deployer as the initial owner. | |
*/ | |
constructor() { | |
_transferOwnership(_msgSender()); | |
} | |
/** | |
* @dev Throws if called by any account other than the owner. | |
*/ | |
modifier onlyOwner() { | |
_checkOwner(); | |
_; | |
} | |
/** | |
* @dev Returns the address of the current owner. | |
*/ | |
function owner() public view virtual returns (address) { | |
return _owner; | |
} | |
/** | |
* @dev Throws if the sender is not the owner. | |
*/ | |
function _checkOwner() internal view virtual { | |
require(owner() == _msgSender(), "Ownable: caller is not the owner"); | |
} | |
/** | |
* @dev Leaves the contract without owner. It will not be possible to call | |
* `onlyOwner` functions anymore. Can only be called by the current owner. | |
* | |
* NOTE: Renouncing ownership will leave the contract without an owner, | |
* thereby removing any functionality that is only available to the owner. | |
*/ | |
function renounceOwnership() public virtual onlyOwner { | |
_transferOwnership(address(0)); | |
} | |
/** | |
* @dev Transfers ownership of the contract to a new account (`newOwner`). | |
* Can only be called by the current owner. | |
*/ | |
function transferOwnership(address newOwner) public virtual onlyOwner { | |
require(newOwner != address(0), "Ownable: new owner is the zero address"); | |
_transferOwnership(newOwner); | |
} | |
/** | |
* @dev Transfers ownership of the contract to a new account (`newOwner`). | |
* Internal function without access restriction. | |
*/ | |
function _transferOwnership(address newOwner) internal virtual { | |
address oldOwner = _owner; | |
_owner = newOwner; | |
emit OwnershipTransferred(oldOwner, newOwner); | |
} | |
} | |
// File @openzeppelin/contracts/utils/math/[email protected] | |
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Standard math utilities missing in the Solidity language. | |
*/ | |
library Math { | |
enum Rounding { | |
Down, // Toward negative infinity | |
Up, // Toward infinity | |
Zero // Toward zero | |
} | |
/** | |
* @dev Returns the largest of two numbers. | |
*/ | |
function max(uint256 a, uint256 b) internal pure returns (uint256) { | |
return a > b ? a : b; | |
} | |
/** | |
* @dev Returns the smallest of two numbers. | |
*/ | |
function min(uint256 a, uint256 b) internal pure returns (uint256) { | |
return a < b ? a : b; | |
} | |
/** | |
* @dev Returns the average of two numbers. The result is rounded towards | |
* zero. | |
*/ | |
function average(uint256 a, uint256 b) internal pure returns (uint256) { | |
// (a + b) / 2 can overflow. | |
return (a & b) + (a ^ b) / 2; | |
} | |
/** | |
* @dev Returns the ceiling of the division of two numbers. | |
* | |
* This differs from standard division with `/` in that it rounds up instead | |
* of rounding down. | |
*/ | |
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { | |
// (a + b - 1) / b can overflow on addition, so we distribute. | |
return a == 0 ? 0 : (a - 1) / b + 1; | |
} | |
/** | |
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 | |
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) | |
* with further edits by Uniswap Labs also under MIT license. | |
*/ | |
function mulDiv( | |
uint256 x, | |
uint256 y, | |
uint256 denominator | |
) internal pure returns (uint256 result) { | |
unchecked { | |
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use | |
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 | |
// variables such that product = prod1 * 2^256 + prod0. | |
uint256 prod0; // Least significant 256 bits of the product | |
uint256 prod1; // Most significant 256 bits of the product | |
assembly { | |
let mm := mulmod(x, y, not(0)) | |
prod0 := mul(x, y) | |
prod1 := sub(sub(mm, prod0), lt(mm, prod0)) | |
} | |
// Handle non-overflow cases, 256 by 256 division. | |
if (prod1 == 0) { | |
return prod0 / denominator; | |
} | |
// Make sure the result is less than 2^256. Also prevents denominator == 0. | |
require(denominator > prod1); | |
/////////////////////////////////////////////// | |
// 512 by 256 division. | |
/////////////////////////////////////////////// | |
// Make division exact by subtracting the remainder from [prod1 prod0]. | |
uint256 remainder; | |
assembly { | |
// Compute remainder using mulmod. | |
remainder := mulmod(x, y, denominator) | |
// Subtract 256 bit number from 512 bit number. | |
prod1 := sub(prod1, gt(remainder, prod0)) | |
prod0 := sub(prod0, remainder) | |
} | |
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. | |
// See https://cs.stackexchange.com/q/138556/92363. | |
// Does not overflow because the denominator cannot be zero at this stage in the function. | |
uint256 twos = denominator & (~denominator + 1); | |
assembly { | |
// Divide denominator by twos. | |
denominator := div(denominator, twos) | |
// Divide [prod1 prod0] by twos. | |
prod0 := div(prod0, twos) | |
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. | |
twos := add(div(sub(0, twos), twos), 1) | |
} | |
// Shift in bits from prod1 into prod0. | |
prod0 |= prod1 * twos; | |
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such | |
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for | |
// four bits. That is, denominator * inv = 1 mod 2^4. | |
uint256 inverse = (3 * denominator) ^ 2; | |
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works | |
// in modular arithmetic, doubling the correct bits in each step. | |
inverse *= 2 - denominator * inverse; // inverse mod 2^8 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^16 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^32 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^64 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^128 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^256 | |
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator. | |
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is | |
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 | |
// is no longer required. | |
result = prod0 * inverse; | |
return result; | |
} | |
} | |
/** | |
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction. | |
*/ | |
function mulDiv( | |
uint256 x, | |
uint256 y, | |
uint256 denominator, | |
Rounding rounding | |
) internal pure returns (uint256) { | |
uint256 result = mulDiv(x, y, denominator); | |
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { | |
result += 1; | |
} | |
return result; | |
} | |
/** | |
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. | |
* | |
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). | |
*/ | |
function sqrt(uint256 a) internal pure returns (uint256) { | |
if (a == 0) { | |
return 0; | |
} | |
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. | |
// | |
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have | |
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. | |
// | |
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` | |
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` | |
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` | |
// | |
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. | |
uint256 result = 1 << (log2(a) >> 1); | |
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, | |
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at | |
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision | |
// into the expected uint128 result. | |
unchecked { | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
return min(result, a / result); | |
} | |
} | |
/** | |
* @notice Calculates sqrt(a), following the selected rounding direction. | |
*/ | |
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = sqrt(a); | |
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); | |
} | |
} | |
/** | |
* @dev Return the log in base 2, rounded down, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log2(uint256 value) internal pure returns (uint256) { | |
uint256 result = 0; | |
unchecked { | |
if (value >> 128 > 0) { | |
value >>= 128; | |
result += 128; | |
} | |
if (value >> 64 > 0) { | |
value >>= 64; | |
result += 64; | |
} | |
if (value >> 32 > 0) { | |
value >>= 32; | |
result += 32; | |
} | |
if (value >> 16 > 0) { | |
value >>= 16; | |
result += 16; | |
} | |
if (value >> 8 > 0) { | |
value >>= 8; | |
result += 8; | |
} | |
if (value >> 4 > 0) { | |
value >>= 4; | |
result += 4; | |
} | |
if (value >> 2 > 0) { | |
value >>= 2; | |
result += 2; | |
} | |
if (value >> 1 > 0) { | |
result += 1; | |
} | |
} | |
return result; | |
} | |
/** | |
* @dev Return the log in base 2, following the selected rounding direction, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = log2(value); | |
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); | |
} | |
} | |
/** | |
* @dev Return the log in base 10, rounded down, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log10(uint256 value) internal pure returns (uint256) { | |
uint256 result = 0; | |
unchecked { | |
if (value >= 10**64) { | |
value /= 10**64; | |
result += 64; | |
} | |
if (value >= 10**32) { | |
value /= 10**32; | |
result += 32; | |
} | |
if (value >= 10**16) { | |
value /= 10**16; | |
result += 16; | |
} | |
if (value >= 10**8) { | |
value /= 10**8; | |
result += 8; | |
} | |
if (value >= 10**4) { | |
value /= 10**4; | |
result += 4; | |
} | |
if (value >= 10**2) { | |
value /= 10**2; | |
result += 2; | |
} | |
if (value >= 10**1) { | |
result += 1; | |
} | |
} | |
return result; | |
} | |
/** | |
* @dev Return the log in base 10, following the selected rounding direction, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = log10(value); | |
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); | |
} | |
} | |
/** | |
* @dev Return the log in base 256, rounded down, of a positive value. | |
* Returns 0 if given 0. | |
* | |
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. | |
*/ | |
function log256(uint256 value) internal pure returns (uint256) { | |
uint256 result = 0; | |
unchecked { | |
if (value >> 128 > 0) { | |
value >>= 128; | |
result += 16; | |
} | |
if (value >> 64 > 0) { | |
value >>= 64; | |
result += 8; | |
} | |
if (value >> 32 > 0) { | |
value >>= 32; | |
result += 4; | |
} | |
if (value >> 16 > 0) { | |
value >>= 16; | |
result += 2; | |
} | |
if (value >> 8 > 0) { | |
result += 1; | |
} | |
} | |
return result; | |
} | |
/** | |
* @dev Return the log in base 10, following the selected rounding direction, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = log256(value); | |
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); | |
} | |
} | |
} | |
// File @openzeppelin/contracts/utils/[email protected] | |
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev String operations. | |
*/ | |
library Strings { | |
bytes16 private constant _SYMBOLS = "0123456789abcdef"; | |
uint8 private constant _ADDRESS_LENGTH = 20; | |
/** | |
* @dev Converts a `uint256` to its ASCII `string` decimal representation. | |
*/ | |
function toString(uint256 value) internal pure returns (string memory) { | |
unchecked { | |
uint256 length = Math.log10(value) + 1; | |
string memory buffer = new string(length); | |
uint256 ptr; | |
/// @solidity memory-safe-assembly | |
assembly { | |
ptr := add(buffer, add(32, length)) | |
} | |
while (true) { | |
ptr--; | |
/// @solidity memory-safe-assembly | |
assembly { | |
mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) | |
} | |
value /= 10; | |
if (value == 0) break; | |
} | |
return buffer; | |
} | |
} | |
/** | |
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. | |
*/ | |
function toHexString(uint256 value) internal pure returns (string memory) { | |
unchecked { | |
return toHexString(value, Math.log256(value) + 1); | |
} | |
} | |
/** | |
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. | |
*/ | |
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { | |
bytes memory buffer = new bytes(2 * length + 2); | |
buffer[0] = "0"; | |
buffer[1] = "x"; | |
for (uint256 i = 2 * length + 1; i > 1; --i) { | |
buffer[i] = _SYMBOLS[value & 0xf]; | |
value >>= 4; | |
} | |
require(value == 0, "Strings: hex length insufficient"); | |
return string(buffer); | |
} | |
/** | |
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. | |
*/ | |
function toHexString(address addr) internal pure returns (string memory) { | |
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); | |
} | |
} | |
// File @openzeppelin/contracts/utils/cryptography/[email protected] | |
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev These functions deal with verification of Merkle Tree proofs. | |
* | |
* The tree and the proofs can be generated using our | |
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. | |
* You will find a quickstart guide in the readme. | |
* | |
* WARNING: You should avoid using leaf values that are 64 bytes long prior to | |
* hashing, or use a hash function other than keccak256 for hashing leaves. | |
* This is because the concatenation of a sorted pair of internal nodes in | |
* the merkle tree could be reinterpreted as a leaf value. | |
* OpenZeppelin's JavaScript library generates merkle trees that are safe | |
* against this attack out of the box. | |
*/ | |
library MerkleProof { | |
/** | |
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree | |
* defined by `root`. For this, a `proof` must be provided, containing | |
* sibling hashes on the branch from the leaf to the root of the tree. Each | |
* pair of leaves and each pair of pre-images are assumed to be sorted. | |
*/ | |
function verify( | |
bytes32[] memory proof, | |
bytes32 root, | |
bytes32 leaf | |
) internal pure returns (bool) { | |
return processProof(proof, leaf) == root; | |
} | |
/** | |
* @dev Calldata version of {verify} | |
* | |
* _Available since v4.7._ | |
*/ | |
function verifyCalldata( | |
bytes32[] calldata proof, | |
bytes32 root, | |
bytes32 leaf | |
) internal pure returns (bool) { | |
return processProofCalldata(proof, leaf) == root; | |
} | |
/** | |
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up | |
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt | |
* hash matches the root of the tree. When processing the proof, the pairs | |
* of leafs & pre-images are assumed to be sorted. | |
* | |
* _Available since v4.4._ | |
*/ | |
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { | |
bytes32 computedHash = leaf; | |
for (uint256 i = 0; i < proof.length; i++) { | |
computedHash = _hashPair(computedHash, proof[i]); | |
} | |
return computedHash; | |
} | |
/** | |
* @dev Calldata version of {processProof} | |
* | |
* _Available since v4.7._ | |
*/ | |
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { | |
bytes32 computedHash = leaf; | |
for (uint256 i = 0; i < proof.length; i++) { | |
computedHash = _hashPair(computedHash, proof[i]); | |
} | |
return computedHash; | |
} | |
/** | |
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by | |
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. | |
* | |
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. | |
* | |
* _Available since v4.7._ | |
*/ | |
function multiProofVerify( | |
bytes32[] memory proof, | |
bool[] memory proofFlags, | |
bytes32 root, | |
bytes32[] memory leaves | |
) internal pure returns (bool) { | |
return processMultiProof(proof, proofFlags, leaves) == root; | |
} | |
/** | |
* @dev Calldata version of {multiProofVerify} | |
* | |
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. | |
* | |
* _Available since v4.7._ | |
*/ | |
function multiProofVerifyCalldata( | |
bytes32[] calldata proof, | |
bool[] calldata proofFlags, | |
bytes32 root, | |
bytes32[] memory leaves | |
) internal pure returns (bool) { | |
return processMultiProofCalldata(proof, proofFlags, leaves) == root; | |
} | |
/** | |
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction | |
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another | |
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false | |
* respectively. | |
* | |
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree | |
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the | |
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). | |
* | |
* _Available since v4.7._ | |
*/ | |
function processMultiProof( | |
bytes32[] memory proof, | |
bool[] memory proofFlags, | |
bytes32[] memory leaves | |
) internal pure returns (bytes32 merkleRoot) { | |
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by | |
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the | |
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of | |
// the merkle tree. | |
uint256 leavesLen = leaves.length; | |
uint256 totalHashes = proofFlags.length; | |
// Check proof validity. | |
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); | |
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using | |
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". | |
bytes32[] memory hashes = new bytes32[](totalHashes); | |
uint256 leafPos = 0; | |
uint256 hashPos = 0; | |
uint256 proofPos = 0; | |
// At each step, we compute the next hash using two values: | |
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we | |
// get the next hash. | |
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the | |
// `proof` array. | |
for (uint256 i = 0; i < totalHashes; i++) { | |
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; | |
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; | |
hashes[i] = _hashPair(a, b); | |
} | |
if (totalHashes > 0) { | |
return hashes[totalHashes - 1]; | |
} else if (leavesLen > 0) { | |
return leaves[0]; | |
} else { | |
return proof[0]; | |
} | |
} | |
/** | |
* @dev Calldata version of {processMultiProof}. | |
* | |
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. | |
* | |
* _Available since v4.7._ | |
*/ | |
function processMultiProofCalldata( | |
bytes32[] calldata proof, | |
bool[] calldata proofFlags, | |
bytes32[] memory leaves | |
) internal pure returns (bytes32 merkleRoot) { | |
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by | |
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the | |
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of | |
// the merkle tree. | |
uint256 leavesLen = leaves.length; | |
uint256 totalHashes = proofFlags.length; | |
// Check proof validity. | |
require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); | |
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using | |
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". | |
bytes32[] memory hashes = new bytes32[](totalHashes); | |
uint256 leafPos = 0; | |
uint256 hashPos = 0; | |
uint256 proofPos = 0; | |
// At each step, we compute the next hash using two values: | |
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we | |
// get the next hash. | |
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the | |
// `proof` array. | |
for (uint256 i = 0; i < totalHashes; i++) { | |
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; | |
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; | |
hashes[i] = _hashPair(a, b); | |
} | |
if (totalHashes > 0) { | |
return hashes[totalHashes - 1]; | |
} else if (leavesLen > 0) { | |
return leaves[0]; | |
} else { | |
return proof[0]; | |
} | |
} | |
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { | |
return a < b ? _efficientHash(a, b) : _efficientHash(b, a); | |
} | |
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { | |
/// @solidity memory-safe-assembly | |
assembly { | |
mstore(0x00, a) | |
mstore(0x20, b) | |
value := keccak256(0x00, 0x40) | |
} | |
} | |
} | |
// File contracts/ExceedRookieClass.sol | |
pragma solidity ^0.8.11; | |
contract ExceedRookieClass is ERC721A, Ownable { | |
uint256 private NFT_TYPE_UNCOMMON = 1; | |
uint256 private NFT_TYPE_RARE = 2; | |
uint256 private NFT_TYPE_LEGENDARY = 3; | |
/** | |
* @notice A mapping between token id and the token type, tokens with the same type will have the same URI | |
*/ | |
mapping(uint256 => uint256) private _tokenIdsToTokenTypes; | |
string baseUri; | |
struct TokenType { | |
uint256 id; | |
uint256 price; | |
uint256 maxSupply; | |
uint256 totalMinted; | |
} | |
TokenType public uncommonTokenType = TokenType(NFT_TYPE_UNCOMMON, 0 ether, 2000, 0); | |
TokenType public rareTokenType = TokenType(NFT_TYPE_RARE, 0 ether, 1000, 0); | |
TokenType public legendaryTokenType = TokenType(NFT_TYPE_LEGENDARY, 0 ether, 333, 0); | |
bool public isPublicSale = false; | |
bool public isOGFinish = false; | |
uint256 public MAX_SUPPLY = 3333; | |
uint256 public maxAllowedTokensPerWallet = 3; | |
bytes32 private ogWhitelistMerkleRoot = 0x86e5a310094f98e04b49ef75c05b0f49744aa999551c710a38b78225b8bb9a4b; | |
bytes32 private generalWhitelistMerkleRoot = 0xd1be75abf44c0140e8c62da24e82ae924d096e334f3d573b79664d456afac87f; | |
constructor(string memory baseUri_) ERC721A("Exceed Rookie Class", "EXC") { | |
baseUri = baseUri_; | |
} | |
modifier saleIsOpen() { | |
require(totalSupply() <= MAX_SUPPLY, "Sale has ended."); | |
_; | |
} | |
modifier onlyAuthorized() { | |
require(owner() == msg.sender); | |
_; | |
} | |
function setBaseUri(string memory uri) external onlyOwner { | |
baseUri = uri; | |
} | |
function setOgWhitelistMerkleRoot(bytes32 merkleRootHash) external onlyOwner{ | |
ogWhitelistMerkleRoot = merkleRootHash; | |
} | |
function setGeneralWhitelistMerkleRoot(bytes32 merkleRootHash) external onlyOwner{ | |
generalWhitelistMerkleRoot = merkleRootHash; | |
} | |
function toggleSale() public onlyAuthorized { | |
isPublicSale = !isPublicSale; | |
} | |
function setOGFinish() public onlyAuthorized { | |
isOGFinish = true; | |
} | |
function setMaximumAllowedTokensPerWallet(uint256 _count) public onlyAuthorized { | |
maxAllowedTokensPerWallet = _count; | |
} | |
function setMaxMintSupply(uint256 maxMintSupply) external onlyAuthorized { | |
MAX_SUPPLY = maxMintSupply; | |
} | |
function totalSupply() public view override returns (uint256) { | |
return uncommonTokenType.totalMinted + rareTokenType.totalMinted + legendaryTokenType.totalMinted; | |
} | |
function tokenURI(uint256 _tokenId) public view virtual override returns (string memory) { | |
require(_exists(_tokenId), "Token Id Non-existent"); | |
uint256 tokenType = _tokenIdsToTokenTypes[_tokenId]; | |
return bytes(baseUri).length > 0 ? string(abi.encodePacked(baseUri, "/", Strings.toString(tokenType), ".json")) : ""; | |
} | |
function mint(uint256 _count, uint256 tokenType, bytes32[] calldata merkleProof) public payable saleIsOpen { | |
uint256 mintIndexBeforeMint = totalSupply(); | |
if (msg.sender != owner()) { | |
require(balanceOf(msg.sender) + _count <= maxAllowedTokensPerWallet, "Exceeds maximum tokens allowed per wallet"); | |
require(mintIndexBeforeMint + _count <= MAX_SUPPLY, "Total supply exceeded."); | |
if (!isPublicSale) { | |
if ( mintIndexBeforeMint + _count <= 333 && !isOGFinish) { | |
require(_verifyAddressInOgWhiteList(merkleProof, msg.sender), "NFT:Sender is not OG whitelisted"); | |
} else { | |
require(_verifyAddressInGeneralWhiteList(merkleProof, msg.sender), "NFT:Sender is not whitelisted"); | |
} | |
} | |
if (tokenType == uncommonTokenType.id) { | |
require(uncommonTokenType.totalMinted + _count <= uncommonTokenType.maxSupply, "Total uncommon supply exceeded."); | |
} else if (tokenType == rareTokenType.id) { | |
require(rareTokenType.totalMinted + _count <= rareTokenType.maxSupply, "Total rare supply exceeded."); | |
} else if (tokenType == legendaryTokenType.id) { | |
require(legendaryTokenType.totalMinted + _count <= legendaryTokenType.maxSupply, "Total legendary supply exceeded."); | |
} | |
} | |
_safeMint(msg.sender, _count); | |
// update total after mint | |
if (tokenType == uncommonTokenType.id) { | |
uncommonTokenType.totalMinted += _count; | |
} else if (tokenType == rareTokenType.id) { | |
rareTokenType.totalMinted += _count; | |
} else if (tokenType == legendaryTokenType.id) { | |
legendaryTokenType.totalMinted += _count; | |
} | |
// update the mapping bwtween token id and token type | |
uint256 totalSupplyAfterMint = totalSupply(); | |
for (uint256 i = mintIndexBeforeMint; i < totalSupplyAfterMint; i++){ | |
_setTokenIdToTokenType(i, tokenType); | |
} | |
} | |
function withdraw() external onlyAuthorized { | |
uint256 balance = address(this).balance; | |
address payable to = payable(msg.sender); | |
to.transfer(balance); | |
} | |
function _setTokenIdToTokenType(uint256 tokenId, uint256 tokenType) internal { | |
require(_exists(tokenId), "token type mapping set of nonexistent token"); | |
_tokenIdsToTokenTypes[tokenId] = tokenType; | |
} | |
/** | |
* @notice Verify OG whitelist merkle proof of the address | |
*/ | |
function _verifyAddressInOgWhiteList(bytes32[] calldata merkleProof, address toAddress) private view returns (bool) { | |
bytes32 leaf = keccak256(abi.encodePacked(toAddress)); | |
return MerkleProof.verify(merkleProof, ogWhitelistMerkleRoot, leaf); | |
} | |
/** | |
* @notice Verify general whitelist merkle proof of the address | |
*/ | |
function _verifyAddressInGeneralWhiteList(bytes32[] calldata merkleProof, address toAddress) private view returns (bool) { | |
bytes32 leaf = keccak256(abi.encodePacked(toAddress)); | |
return MerkleProof.verify(merkleProof, generalWhitelistMerkleRoot, leaf); | |
} | |
} |