File size: 20,603 Bytes
f998fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
{
  "language": "Solidity",
  "sources": {
    "lib/openzeppelin-contracts/contracts/access/Ownable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n    address private _owner;\n\n    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n    /**\n     * @dev Initializes the contract setting the deployer as the initial owner.\n     */\n    constructor() {\n        _transferOwnership(_msgSender());\n    }\n\n    /**\n     * @dev Throws if called by any account other than the owner.\n     */\n    modifier onlyOwner() {\n        _checkOwner();\n        _;\n    }\n\n    /**\n     * @dev Returns the address of the current owner.\n     */\n    function owner() public view virtual returns (address) {\n        return _owner;\n    }\n\n    /**\n     * @dev Throws if the sender is not the owner.\n     */\n    function _checkOwner() internal view virtual {\n        require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n    }\n\n    /**\n     * @dev Leaves the contract without owner. It will not be possible to call\n     * `onlyOwner` functions anymore. Can only be called by the current owner.\n     *\n     * NOTE: Renouncing ownership will leave the contract without an owner,\n     * thereby removing any functionality that is only available to the owner.\n     */\n    function renounceOwnership() public virtual onlyOwner {\n        _transferOwnership(address(0));\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`).\n     * Can only be called by the current owner.\n     */\n    function transferOwnership(address newOwner) public virtual onlyOwner {\n        require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n        _transferOwnership(newOwner);\n    }\n\n    /**\n     * @dev Transfers ownership of the contract to a new account (`newOwner`).\n     * Internal function without access restriction.\n     */\n    function _transferOwnership(address newOwner) internal virtual {\n        address oldOwner = _owner;\n        _owner = newOwner;\n        emit OwnershipTransferred(oldOwner, newOwner);\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/Context.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n    function _msgSender() internal view virtual returns (address) {\n        return msg.sender;\n    }\n\n    function _msgData() internal view virtual returns (bytes calldata) {\n        return msg.data;\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n    bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n    uint8 private constant _ADDRESS_LENGTH = 20;\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n     */\n    function toString(uint256 value) internal pure returns (string memory) {\n        unchecked {\n            uint256 length = Math.log10(value) + 1;\n            string memory buffer = new string(length);\n            uint256 ptr;\n            /// @solidity memory-safe-assembly\n            assembly {\n                ptr := add(buffer, add(32, length))\n            }\n            while (true) {\n                ptr--;\n                /// @solidity memory-safe-assembly\n                assembly {\n                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n                }\n                value /= 10;\n                if (value == 0) break;\n            }\n            return buffer;\n        }\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n     */\n    function toHexString(uint256 value) internal pure returns (string memory) {\n        unchecked {\n            return toHexString(value, Math.log256(value) + 1);\n        }\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n     */\n    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n        bytes memory buffer = new bytes(2 * length + 2);\n        buffer[0] = \"0\";\n        buffer[1] = \"x\";\n        for (uint256 i = 2 * length + 1; i > 1; --i) {\n            buffer[i] = _SYMBOLS[value & 0xf];\n            value >>= 4;\n        }\n        require(value == 0, \"Strings: hex length insufficient\");\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n     */\n    function toHexString(address addr) internal pure returns (string memory) {\n        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n    }\n}\n"
    },
    "lib/openzeppelin-contracts/contracts/utils/math/Math.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n    enum Rounding {\n        Down, // Toward negative infinity\n        Up, // Toward infinity\n        Zero // Toward zero\n    }\n\n    /**\n     * @dev Returns the largest of two numbers.\n     */\n    function max(uint256 a, uint256 b) internal pure returns (uint256) {\n        return a > b ? a : b;\n    }\n\n    /**\n     * @dev Returns the smallest of two numbers.\n     */\n    function min(uint256 a, uint256 b) internal pure returns (uint256) {\n        return a < b ? a : b;\n    }\n\n    /**\n     * @dev Returns the average of two numbers. The result is rounded towards\n     * zero.\n     */\n    function average(uint256 a, uint256 b) internal pure returns (uint256) {\n        // (a + b) / 2 can overflow.\n        return (a & b) + (a ^ b) / 2;\n    }\n\n    /**\n     * @dev Returns the ceiling of the division of two numbers.\n     *\n     * This differs from standard division with `/` in that it rounds up instead\n     * of rounding down.\n     */\n    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n        // (a + b - 1) / b can overflow on addition, so we distribute.\n        return a == 0 ? 0 : (a - 1) / b + 1;\n    }\n\n    /**\n     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n     * with further edits by Uniswap Labs also under MIT license.\n     */\n    function mulDiv(\n        uint256 x,\n        uint256 y,\n        uint256 denominator\n    ) internal pure returns (uint256 result) {\n        unchecked {\n            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n            // variables such that product = prod1 * 2^256 + prod0.\n            uint256 prod0; // Least significant 256 bits of the product\n            uint256 prod1; // Most significant 256 bits of the product\n            assembly {\n                let mm := mulmod(x, y, not(0))\n                prod0 := mul(x, y)\n                prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n            }\n\n            // Handle non-overflow cases, 256 by 256 division.\n            if (prod1 == 0) {\n                return prod0 / denominator;\n            }\n\n            // Make sure the result is less than 2^256. Also prevents denominator == 0.\n            require(denominator > prod1);\n\n            ///////////////////////////////////////////////\n            // 512 by 256 division.\n            ///////////////////////////////////////////////\n\n            // Make division exact by subtracting the remainder from [prod1 prod0].\n            uint256 remainder;\n            assembly {\n                // Compute remainder using mulmod.\n                remainder := mulmod(x, y, denominator)\n\n                // Subtract 256 bit number from 512 bit number.\n                prod1 := sub(prod1, gt(remainder, prod0))\n                prod0 := sub(prod0, remainder)\n            }\n\n            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n            // See https://cs.stackexchange.com/q/138556/92363.\n\n            // Does not overflow because the denominator cannot be zero at this stage in the function.\n            uint256 twos = denominator & (~denominator + 1);\n            assembly {\n                // Divide denominator by twos.\n                denominator := div(denominator, twos)\n\n                // Divide [prod1 prod0] by twos.\n                prod0 := div(prod0, twos)\n\n                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n                twos := add(div(sub(0, twos), twos), 1)\n            }\n\n            // Shift in bits from prod1 into prod0.\n            prod0 |= prod1 * twos;\n\n            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n            // four bits. That is, denominator * inv = 1 mod 2^4.\n            uint256 inverse = (3 * denominator) ^ 2;\n\n            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n            // in modular arithmetic, doubling the correct bits in each step.\n            inverse *= 2 - denominator * inverse; // inverse mod 2^8\n            inverse *= 2 - denominator * inverse; // inverse mod 2^16\n            inverse *= 2 - denominator * inverse; // inverse mod 2^32\n            inverse *= 2 - denominator * inverse; // inverse mod 2^64\n            inverse *= 2 - denominator * inverse; // inverse mod 2^128\n            inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n            // is no longer required.\n            result = prod0 * inverse;\n            return result;\n        }\n    }\n\n    /**\n     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n     */\n    function mulDiv(\n        uint256 x,\n        uint256 y,\n        uint256 denominator,\n        Rounding rounding\n    ) internal pure returns (uint256) {\n        uint256 result = mulDiv(x, y, denominator);\n        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n            result += 1;\n        }\n        return result;\n    }\n\n    /**\n     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n     *\n     * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n     */\n    function sqrt(uint256 a) internal pure returns (uint256) {\n        if (a == 0) {\n            return 0;\n        }\n\n        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n        //\n        // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n        //\n        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n        //\n        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n        uint256 result = 1 << (log2(a) >> 1);\n\n        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n        // into the expected uint128 result.\n        unchecked {\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            result = (result + a / result) >> 1;\n            return min(result, a / result);\n        }\n    }\n\n    /**\n     * @notice Calculates sqrt(a), following the selected rounding direction.\n     */\n    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = sqrt(a);\n            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 2, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log2(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >> 128 > 0) {\n                value >>= 128;\n                result += 128;\n            }\n            if (value >> 64 > 0) {\n                value >>= 64;\n                result += 64;\n            }\n            if (value >> 32 > 0) {\n                value >>= 32;\n                result += 32;\n            }\n            if (value >> 16 > 0) {\n                value >>= 16;\n                result += 16;\n            }\n            if (value >> 8 > 0) {\n                value >>= 8;\n                result += 8;\n            }\n            if (value >> 4 > 0) {\n                value >>= 4;\n                result += 4;\n            }\n            if (value >> 2 > 0) {\n                value >>= 2;\n                result += 2;\n            }\n            if (value >> 1 > 0) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log2(value);\n            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 10, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log10(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >= 10**64) {\n                value /= 10**64;\n                result += 64;\n            }\n            if (value >= 10**32) {\n                value /= 10**32;\n                result += 32;\n            }\n            if (value >= 10**16) {\n                value /= 10**16;\n                result += 16;\n            }\n            if (value >= 10**8) {\n                value /= 10**8;\n                result += 8;\n            }\n            if (value >= 10**4) {\n                value /= 10**4;\n                result += 4;\n            }\n            if (value >= 10**2) {\n                value /= 10**2;\n                result += 2;\n            }\n            if (value >= 10**1) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log10(value);\n            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);\n        }\n    }\n\n    /**\n     * @dev Return the log in base 256, rounded down, of a positive value.\n     * Returns 0 if given 0.\n     *\n     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n     */\n    function log256(uint256 value) internal pure returns (uint256) {\n        uint256 result = 0;\n        unchecked {\n            if (value >> 128 > 0) {\n                value >>= 128;\n                result += 16;\n            }\n            if (value >> 64 > 0) {\n                value >>= 64;\n                result += 8;\n            }\n            if (value >> 32 > 0) {\n                value >>= 32;\n                result += 4;\n            }\n            if (value >> 16 > 0) {\n                value >>= 16;\n                result += 2;\n            }\n            if (value >> 8 > 0) {\n                result += 1;\n            }\n        }\n        return result;\n    }\n\n    /**\n     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n     * Returns 0 if given 0.\n     */\n    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n        unchecked {\n            uint256 result = log256(value);\n            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);\n        }\n    }\n}\n"
    },
    "src/ShowReceiptTokenURI.sol": {
      "content": "// SPDX-License-Identifier: MIT\npragma solidity ^0.8.17;\n\nimport \"openzeppelin/access/Ownable.sol\";\nimport \"openzeppelin/utils/Strings.sol\";\n\n// This is a light \"token URI\" contract, to be used with a Fiefdom\ncontract ShowReceiptTokenURI is Ownable {\n    string public baseURI;\n\n    constructor(string memory _baseURI) {\n        baseURI = _baseURI;\n    }\n\n    // Admin functions\n    function setBaseURI(string memory _baseURI) external onlyOwner {\n        baseURI = _baseURI;\n    }\n\n    // View functions\n    function tokenURI(uint256 tokenID) public view returns (string memory) {\n        return string(abi.encodePacked(baseURI, Strings.toString(tokenID)));\n    }\n}\n"
    }
  },
  "settings": {
    "remappings": [
      "ERC721A/=lib/ERC721A/contracts/",
      "ds-test/=lib/ds-test/src/",
      "forge-std/=lib/forge-std/src/",
      "openzeppelin/=lib/openzeppelin-contracts/contracts/"
    ],
    "optimizer": {
      "enabled": true,
      "runs": 250000
    },
    "metadata": {
      "bytecodeHash": "ipfs"
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "evmVersion": "london",
    "libraries": {}
  }
}