File size: 35,111 Bytes
f998fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;
// Sources flattened with hardhat v2.12.5 https://hardhat.org
// File @openzeppelin/contracts/token/ERC20/[email protected]
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File @uniswap/v3-periphery/contracts/libraries/[email protected]
library TransferHelper {
/// @notice Transfers tokens from the targeted address to the given destination
/// @notice Errors with 'STF' if transfer fails
/// @param token The contract address of the token to be transferred
/// @param from The originating address from which the tokens will be transferred
/// @param to The destination address of the transfer
/// @param value The amount to be transferred
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
(bool success, bytes memory data) =
token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
}
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Errors with ST if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
}
/// @notice Approves the stipulated contract to spend the given allowance in the given token
/// @dev Errors with 'SA' if transfer fails
/// @param token The contract address of the token to be approved
/// @param to The target of the approval
/// @param value The amount of the given token the target will be allowed to spend
function safeApprove(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
}
/// @notice Transfers ETH to the recipient address
/// @dev Fails with `STE`
/// @param to The destination of the transfer
/// @param value The value to be transferred
function safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, 'STE');
}
}
// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// File @openzeppelin/contracts/utils/math/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// File contracts/Fraxferry/Fraxferry.sol
// ====================================================================
// | ______ _______ |
// | / _____________ __ __ / ____(_____ ____ _____ ________ |
// | / /_ / ___/ __ `| |/_/ / /_ / / __ \/ __ `/ __ \/ ___/ _ \ |
// | / __/ / / / /_/ _> < / __/ / / / / / /_/ / / / / /__/ __/ |
// | /_/ /_/ \__,_/_/|_| /_/ /_/_/ /_/\__,_/_/ /_/\___/\___/ |
// | |
// ====================================================================
// ============================ Fraxferry =============================
// ====================================================================
// Ferry that can be used to ship tokens between chains
// Frax Finance: https://github.com/FraxFinance
// Primary Author(s)
// Dennis: https://github.com/denett
/*
** Modus operandi:
** - User sends tokens to the contract. This transaction is stored in the contract.
** - Captain queries the source chain for transactions to ship.
** - Captain sends batch (start, end, hash) to start the trip,
** - Crewmembers check the batch and can dispute it if it is invalid.
** - Non disputed batches can be executed by the first officer by providing the transactions as calldata.
** - Hash of the transactions must be equal to the hash in the batch. User receives their tokens on the other chain.
** - In case there was a fraudulent transaction (a hacker for example), the owner can cancel a single transaction, such that it will not be executed.
** - The owner can manually manage the tokens in the contract and must make sure it has enough funds.
**
** What must happen for a false batch to be executed:
** - Captain is tricked into proposing a batch with a false hash
** - All crewmembers bots are offline/censured/compromised and no one disputes the proposal
**
** Other risks:
** - Reorgs on the source chain. Avoided, by only returning the transactions on the source chain that are at least one hour old.
** - Rollbacks of optimistic rollups. Avoided by running a node.
** - Operators do not have enough time to pause the chain after a fake proposal. Avoided by requiring a minimal amount of time between sending the proposal and executing it.
*/
contract Fraxferry {
IERC20 immutable public token;
IERC20 immutable public targetToken;
uint immutable public chainid;
uint immutable public targetChain;
address public owner;
address public nominatedOwner;
address public captain;
address public firstOfficer;
mapping(address => bool) public crewmembers;
bool public paused;
uint public MIN_WAIT_PERIOD_ADD=3600; // Minimal 1 hour waiting
uint public MIN_WAIT_PERIOD_EXECUTE=79200; // Minimal 22 hour waiting
uint public FEE_RATE=10; // 0.1% fee
uint public FEE_MIN=5*1e18; // 5 token min fee
uint public FEE_MAX=100*1e18; // 100 token max fee
uint constant MAX_FEE_RATE=100; // Max fee rate is 1%
uint constant MAX_FEE_MIN=100e18; // Max minimum fee is 100 tokens
uint constant MAX_FEE_MAX=1000e18; // Max fee is 1000 tokens
uint constant public REDUCED_DECIMALS=1e10;
Transaction[] public transactions;
mapping(uint => bool) public cancelled;
uint public executeIndex;
Batch[] public batches;
struct Transaction {
address user;
uint64 amount;
uint32 timestamp;
}
struct Batch {
uint64 start;
uint64 end;
uint64 departureTime;
uint64 status;
bytes32 hash;
}
struct BatchData {
uint startTransactionNo;
Transaction[] transactions;
}
constructor(address _token, uint _chainid, address _targetToken, uint _targetChain) {
//require (block.chainid==_chainid,"Wrong chain");
chainid=_chainid;
token = IERC20(_token);
targetToken = IERC20(_targetToken);
owner = msg.sender;
targetChain = _targetChain;
}
// ############## Events ##############
event Embark(address indexed sender, uint index, uint amount, uint amountAfterFee, uint timestamp);
event Disembark(uint start, uint end, bytes32 hash);
event Depart(uint batchNo,uint start,uint end,bytes32 hash);
event RemoveBatch(uint batchNo);
event DisputeBatch(uint batchNo, bytes32 hash);
event Cancelled(uint index, bool cancel);
event Pause(bool paused);
event OwnerNominated(address indexed newOwner);
event OwnerChanged(address indexed previousOwner,address indexed newOwner);
event SetCaptain(address indexed previousCaptain, address indexed newCaptain);
event SetFirstOfficer(address indexed previousFirstOfficer, address indexed newFirstOfficer);
event SetCrewmember(address indexed crewmember,bool set);
event SetFee(uint previousFeeRate, uint feeRate,uint previousFeeMin, uint feeMin,uint previousFeeMax, uint feeMax);
event SetMinWaitPeriods(uint previousMinWaitAdd,uint previousMinWaitExecute,uint minWaitAdd,uint minWaitExecute);
// ############## Modifiers ##############
modifier isOwner() {
require (msg.sender==owner,"Not owner");
_;
}
modifier isCaptain() {
require (msg.sender==captain,"Not captain");
_;
}
modifier isFirstOfficer() {
require (msg.sender==firstOfficer,"Not first officer");
_;
}
modifier isCrewmember() {
require (crewmembers[msg.sender] || msg.sender==owner || msg.sender==captain || msg.sender==firstOfficer,"Not crewmember");
_;
}
modifier notPaused() {
require (!paused,"Paused");
_;
}
// ############## Ferry actions ##############
function embarkWithRecipient(uint amount, address recipient) public notPaused {
amount = (amount/REDUCED_DECIMALS)*REDUCED_DECIMALS; // Round amount to fit in data structure
uint fee = Math.min(Math.max(FEE_MIN,amount*FEE_RATE/10000),FEE_MAX);
require (amount>fee,"Amount too low");
require (amount/REDUCED_DECIMALS<=type(uint64).max,"Amount too high");
TransferHelper.safeTransferFrom(address(token),msg.sender,address(this),amount);
uint64 amountAfterFee = uint64((amount-fee)/REDUCED_DECIMALS);
emit Embark(recipient,transactions.length,amount,amountAfterFee*REDUCED_DECIMALS,block.timestamp);
transactions.push(Transaction(recipient,amountAfterFee,uint32(block.timestamp)));
}
function embark(uint amount) public {
embarkWithRecipient(amount, msg.sender) ;
}
function embarkWithSignature(
uint256 _amount,
address recipient,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) public {
uint amount = approveMax ? type(uint256).max : _amount;
IERC20Permit(address(token)).permit(msg.sender, address(this), amount, deadline, v, r, s);
embarkWithRecipient(amount,recipient);
}
function depart(uint start, uint end, bytes32 hash) external notPaused isCaptain {
require ((batches.length==0 && start==0) || (batches.length>0 && start==batches[batches.length-1].end+1),"Wrong start");
require (end>=start && end<type(uint64).max,"Wrong end");
batches.push(Batch(uint64(start),uint64(end),uint64(block.timestamp),0,hash));
emit Depart(batches.length-1,start,end,hash);
}
function disembark(BatchData calldata batchData) external notPaused isFirstOfficer {
Batch memory batch = batches[executeIndex++];
require (batch.status==0,"Batch disputed");
require (batch.start==batchData.startTransactionNo,"Wrong start");
require (batch.start+batchData.transactions.length-1==batch.end,"Wrong size");
require (block.timestamp-batch.departureTime>=MIN_WAIT_PERIOD_EXECUTE,"Too soon");
bytes32 hash = keccak256(abi.encodePacked(targetChain, targetToken, chainid, token, batch.start));
for (uint i=0;i<batchData.transactions.length;++i) {
if (!cancelled[batch.start+i]) {
TransferHelper.safeTransfer(address(token),batchData.transactions[i].user,batchData.transactions[i].amount*REDUCED_DECIMALS);
}
hash = keccak256(abi.encodePacked(hash, batchData.transactions[i].user,batchData.transactions[i].amount));
}
require (batch.hash==hash,"Wrong hash");
emit Disembark(batch.start,batch.end,hash);
}
function removeBatches(uint batchNo) external isOwner {
require (executeIndex<=batchNo,"Batch already executed");
while (batches.length>batchNo) batches.pop();
emit RemoveBatch(batchNo);
}
function disputeBatch(uint batchNo, bytes32 hash) external isCrewmember {
require (batches[batchNo].hash==hash,"Wrong hash");
require (executeIndex<=batchNo,"Batch already executed");
require (batches[batchNo].status==0,"Batch already disputed");
batches[batchNo].status=1; // Set status on disputed
_pause(true);
emit DisputeBatch(batchNo,hash);
}
function pause() external isCrewmember {
_pause(true);
}
function unPause() external isOwner {
_pause(false);
}
function _pause(bool _paused) internal {
paused=_paused;
emit Pause(_paused);
}
function _jettison(uint index, bool cancel) internal {
require (executeIndex==0 || index>batches[executeIndex-1].end,"Transaction already executed");
cancelled[index]=cancel;
emit Cancelled(index,cancel);
}
function jettison(uint index, bool cancel) external isOwner {
_jettison(index,cancel);
}
function jettisonGroup(uint[] calldata indexes, bool cancel) external isOwner {
for (uint i=0;i<indexes.length;++i) {
_jettison(indexes[i],cancel);
}
}
// ############## Parameters management ##############
function setFee(uint _FEE_RATE, uint _FEE_MIN, uint _FEE_MAX) external isOwner {
require(_FEE_RATE<MAX_FEE_RATE);
require(_FEE_MIN<MAX_FEE_MIN);
require(_FEE_MAX<MAX_FEE_MAX);
emit SetFee(FEE_RATE,_FEE_RATE,FEE_MIN,_FEE_MIN,FEE_MAX,_FEE_MAX);
FEE_RATE=_FEE_RATE;
FEE_MIN=_FEE_MIN;
FEE_MAX=_FEE_MAX;
}
function setMinWaitPeriods(uint _MIN_WAIT_PERIOD_ADD, uint _MIN_WAIT_PERIOD_EXECUTE) external isOwner {
require(_MIN_WAIT_PERIOD_ADD>=3600 && _MIN_WAIT_PERIOD_EXECUTE>=3600,"Period too short");
emit SetMinWaitPeriods(MIN_WAIT_PERIOD_ADD, MIN_WAIT_PERIOD_EXECUTE,_MIN_WAIT_PERIOD_ADD, _MIN_WAIT_PERIOD_EXECUTE);
MIN_WAIT_PERIOD_ADD=_MIN_WAIT_PERIOD_ADD;
MIN_WAIT_PERIOD_EXECUTE=_MIN_WAIT_PERIOD_EXECUTE;
}
// ############## Roles management ##############
function nominateNewOwner(address newOwner) external isOwner {
nominatedOwner = newOwner;
emit OwnerNominated(newOwner);
}
function acceptOwnership() external {
require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
emit OwnerChanged(owner, nominatedOwner);
owner = nominatedOwner;
nominatedOwner = address(0);
}
function setCaptain(address newCaptain) external isOwner {
emit SetCaptain(captain,newCaptain);
captain=newCaptain;
}
function setFirstOfficer(address newFirstOfficer) external isOwner {
emit SetFirstOfficer(firstOfficer,newFirstOfficer);
firstOfficer=newFirstOfficer;
}
function setCrewmember(address crewmember, bool set) external isOwner {
crewmembers[crewmember]=set;
emit SetCrewmember(crewmember,set);
}
// ############## Token management ##############
function sendTokens(address receiver, uint amount) external isOwner {
require (receiver!=address(0),"Zero address not allowed");
TransferHelper.safeTransfer(address(token),receiver,amount);
}
// Generic proxy
function execute(address _to, uint256 _value, bytes calldata _data) external isOwner returns (bool, bytes memory) {
require(_data.length==0 || _to.code.length>0,"Can not call a function on a EOA");
(bool success, bytes memory result) = _to.call{value:_value}(_data);
return (success, result);
}
// ############## Views ##############
function getNextBatch(uint _start, uint max) public view returns (uint start, uint end, bytes32 hash) {
uint cutoffTime = block.timestamp-MIN_WAIT_PERIOD_ADD;
if (_start<transactions.length && transactions[_start].timestamp<cutoffTime) {
start=_start;
end=start+max-1;
if (end>=transactions.length) end=transactions.length-1;
while(transactions[end].timestamp>=cutoffTime) end--;
hash = getTransactionsHash(start,end);
}
}
function getBatchData(uint start, uint end) public view returns (BatchData memory data) {
data.startTransactionNo = start;
data.transactions = new Transaction[](end-start+1);
for (uint i=start;i<=end;++i) {
data.transactions[i-start]=transactions[i];
}
}
function getBatchAmount(uint start, uint end) public view returns (uint totalAmount) {
for (uint i=start;i<=end;++i) {
totalAmount+=transactions[i].amount;
}
totalAmount*=REDUCED_DECIMALS;
}
function getTransactionsHash(uint start, uint end) public view returns (bytes32) {
bytes32 result = keccak256(abi.encodePacked(chainid, token, targetChain, targetToken, uint64(start)));
for (uint i=start;i<=end;++i) {
result = keccak256(abi.encodePacked(result, transactions[i].user,transactions[i].amount));
}
return result;
}
function noTransactions() public view returns (uint) {
return transactions.length;
}
function noBatches() public view returns (uint) {
return batches.length;
}
} |