File size: 35,111 Bytes
f998fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;

// Sources flattened with hardhat v2.12.5 https://hardhat.org

// File @openzeppelin/contracts/token/ERC20/[email protected]

// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)


/**

 * @dev Interface of the ERC20 standard as defined in the EIP.

 */
interface IERC20 {
    /**

     * @dev Emitted when `value` tokens are moved from one account (`from`) to

     * another (`to`).

     *

     * Note that `value` may be zero.

     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**

     * @dev Emitted when the allowance of a `spender` for an `owner` is set by

     * a call to {approve}. `value` is the new allowance.

     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**

     * @dev Returns the amount of tokens in existence.

     */
    function totalSupply() external view returns (uint256);

    /**

     * @dev Returns the amount of tokens owned by `account`.

     */
    function balanceOf(address account) external view returns (uint256);

    /**

     * @dev Moves `amount` tokens from the caller's account to `to`.

     *

     * Returns a boolean value indicating whether the operation succeeded.

     *

     * Emits a {Transfer} event.

     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**

     * @dev Returns the remaining number of tokens that `spender` will be

     * allowed to spend on behalf of `owner` through {transferFrom}. This is

     * zero by default.

     *

     * This value changes when {approve} or {transferFrom} are called.

     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**

     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.

     *

     * Returns a boolean value indicating whether the operation succeeded.

     *

     * IMPORTANT: Beware that changing an allowance with this method brings the risk

     * that someone may use both the old and the new allowance by unfortunate

     * transaction ordering. One possible solution to mitigate this race

     * condition is to first reduce the spender's allowance to 0 and set the

     * desired value afterwards:

     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

     *

     * Emits an {Approval} event.

     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**

     * @dev Moves `amount` tokens from `from` to `to` using the

     * allowance mechanism. `amount` is then deducted from the caller's

     * allowance.

     *

     * Returns a boolean value indicating whether the operation succeeded.

     *

     * Emits a {Transfer} event.

     */
    function transferFrom(

        address from,

        address to,

        uint256 amount

    ) external returns (bool);
}


// File @uniswap/v3-periphery/contracts/libraries/[email protected]


library TransferHelper {
    /// @notice Transfers tokens from the targeted address to the given destination
    /// @notice Errors with 'STF' if transfer fails
    /// @param token The contract address of the token to be transferred
    /// @param from The originating address from which the tokens will be transferred
    /// @param to The destination address of the transfer
    /// @param value The amount to be transferred
    function safeTransferFrom(

        address token,

        address from,

        address to,

        uint256 value

    ) internal {
        (bool success, bytes memory data) =
            token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
    }

    /// @notice Transfers tokens from msg.sender to a recipient
    /// @dev Errors with ST if transfer fails
    /// @param token The contract address of the token which will be transferred
    /// @param to The recipient of the transfer
    /// @param value The value of the transfer
    function safeTransfer(

        address token,

        address to,

        uint256 value

    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev Errors with 'SA' if transfer fails
    /// @param token The contract address of the token to be approved
    /// @param to The target of the approval
    /// @param value The amount of the given token the target will be allowed to spend
    function safeApprove(

        address token,

        address to,

        uint256 value

    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
    }

    /// @notice Transfers ETH to the recipient address
    /// @dev Fails with `STE`
    /// @param to The destination of the transfer
    /// @param value The value to be transferred
    function safeTransferETH(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, 'STE');
    }
}


// File @openzeppelin/contracts/token/ERC20/extensions/[email protected]

// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)


/**

 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in

 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].

 *

 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by

 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't

 * need to send a transaction, and thus is not required to hold Ether at all.

 */
interface IERC20Permit {
    /**

     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,

     * given ``owner``'s signed approval.

     *

     * IMPORTANT: The same issues {IERC20-approve} has related to transaction

     * ordering also apply here.

     *

     * Emits an {Approval} event.

     *

     * Requirements:

     *

     * - `spender` cannot be the zero address.

     * - `deadline` must be a timestamp in the future.

     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`

     * over the EIP712-formatted function arguments.

     * - the signature must use ``owner``'s current nonce (see {nonces}).

     *

     * For more information on the signature format, see the

     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP

     * section].

     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**

     * @dev Returns the current nonce for `owner`. This value must be

     * included whenever a signature is generated for {permit}.

     *

     * Every successful call to {permit} increases ``owner``'s nonce by one. This

     * prevents a signature from being used multiple times.

     */
    function nonces(address owner) external view returns (uint256);

    /**

     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.

     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}


// File @openzeppelin/contracts/utils/math/[email protected]

// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)


/**

 * @dev Standard math utilities missing in the Solidity language.

 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**

     * @dev Returns the largest of two numbers.

     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**

     * @dev Returns the smallest of two numbers.

     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**

     * @dev Returns the average of two numbers. The result is rounded towards

     * zero.

     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**

     * @dev Returns the ceiling of the division of two numbers.

     *

     * This differs from standard division with `/` in that it rounds up instead

     * of rounding down.

     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**

     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0

     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)

     * with further edits by Uniswap Labs also under MIT license.

     */
    function mulDiv(

        uint256 x,

        uint256 y,

        uint256 denominator

    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;



            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such

            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for

            // four bits. That is, denominator * inv = 1 mod 2^4.

            uint256 inverse = (3 * denominator) ^ 2;



            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works

            // in modular arithmetic, doubling the correct bits in each step.

            inverse *= 2 - denominator * inverse; // inverse mod 2^8

            inverse *= 2 - denominator * inverse; // inverse mod 2^16

            inverse *= 2 - denominator * inverse; // inverse mod 2^32

            inverse *= 2 - denominator * inverse; // inverse mod 2^64

            inverse *= 2 - denominator * inverse; // inverse mod 2^128

            inverse *= 2 - denominator * inverse; // inverse mod 2^256



            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.

            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is

            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1

            // is no longer required.

            result = prod0 * inverse;

            return result;

        }

    }



    /**

     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.

     */

    function mulDiv(

        uint256 x,

        uint256 y,

        uint256 denominator,

        Rounding rounding

    ) internal pure returns (uint256) {

        uint256 result = mulDiv(x, y, denominator);

        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {

            result += 1;

        }

        return result;

    }



    /**

     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.

     *

     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).

     */

    function sqrt(uint256 a) internal pure returns (uint256) {

        if (a == 0) {

            return 0;

        }



        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.

        //

        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have

        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.

        //

        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`

        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`

        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`

        //

        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.

        uint256 result = 1 << (log2(a) >> 1);



        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,

        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at

        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision

        // into the expected uint128 result.

        unchecked {

            result = (result + a / result) >> 1;

            result = (result + a / result) >> 1;

            result = (result + a / result) >> 1;

            result = (result + a / result) >> 1;

            result = (result + a / result) >> 1;

            result = (result + a / result) >> 1;

            result = (result + a / result) >> 1;

            return min(result, a / result);

        }

    }



    /**

     * @notice Calculates sqrt(a), following the selected rounding direction.

     */

    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {

        unchecked {

            uint256 result = sqrt(a);

            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);

        }

    }



    /**

     * @dev Return the log in base 2, rounded down, of a positive value.

     * Returns 0 if given 0.

     */

    function log2(uint256 value) internal pure returns (uint256) {

        uint256 result = 0;

        unchecked {

            if (value >> 128 > 0) {

                value >>= 128;

                result += 128;

            }

            if (value >> 64 > 0) {

                value >>= 64;

                result += 64;

            }

            if (value >> 32 > 0) {

                value >>= 32;

                result += 32;

            }

            if (value >> 16 > 0) {

                value >>= 16;

                result += 16;

            }

            if (value >> 8 > 0) {

                value >>= 8;

                result += 8;

            }

            if (value >> 4 > 0) {

                value >>= 4;

                result += 4;

            }

            if (value >> 2 > 0) {

                value >>= 2;

                result += 2;

            }

            if (value >> 1 > 0) {

                result += 1;

            }

        }

        return result;

    }



    /**

     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.

     * Returns 0 if given 0.

     */

    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {

        unchecked {

            uint256 result = log2(value);

            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);

        }

    }



    /**

     * @dev Return the log in base 10, rounded down, of a positive value.

     * Returns 0 if given 0.

     */

    function log10(uint256 value) internal pure returns (uint256) {

        uint256 result = 0;

        unchecked {

            if (value >= 10**64) {

                value /= 10**64;

                result += 64;

            }

            if (value >= 10**32) {

                value /= 10**32;

                result += 32;

            }

            if (value >= 10**16) {

                value /= 10**16;

                result += 16;

            }

            if (value >= 10**8) {

                value /= 10**8;

                result += 8;

            }

            if (value >= 10**4) {

                value /= 10**4;

                result += 4;

            }

            if (value >= 10**2) {

                value /= 10**2;

                result += 2;

            }

            if (value >= 10**1) {

                result += 1;

            }

        }

        return result;

    }



    /**

     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.

     * Returns 0 if given 0.

     */

    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {

        unchecked {

            uint256 result = log10(value);

            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);

        }

    }



    /**

     * @dev Return the log in base 256, rounded down, of a positive value.

     * Returns 0 if given 0.

     *

     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.

     */

    function log256(uint256 value) internal pure returns (uint256) {

        uint256 result = 0;

        unchecked {

            if (value >> 128 > 0) {

                value >>= 128;

                result += 16;

            }

            if (value >> 64 > 0) {

                value >>= 64;

                result += 8;

            }

            if (value >> 32 > 0) {

                value >>= 32;

                result += 4;

            }

            if (value >> 16 > 0) {

                value >>= 16;

                result += 2;

            }

            if (value >> 8 > 0) {

                result += 1;

            }

        }

        return result;

    }



    /**

     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.

     * Returns 0 if given 0.

     */

    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {

        unchecked {

            uint256 result = log256(value);

            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);

        }

    }

}





// File contracts/Fraxferry/Fraxferry.sol





// ====================================================================

// |     ______                   _______                             |

// |    / _____________ __  __   / ____(_____  ____ _____  ________   |

// |   / /_  / ___/ __ `| |/_/  / /_  / / __ \/ __ `/ __ \/ ___/ _ \  |

// |  / __/ / /  / /_/ _>  <   / __/ / / / / / /_/ / / / / /__/  __/  |

// | /_/   /_/   \__,_/_/|_|  /_/   /_/_/ /_/\__,_/_/ /_/\___/\___/   |

// |                                                                  |

// ====================================================================

// ============================ Fraxferry =============================

// ====================================================================

// Ferry that can be used to ship tokens between chains



// Frax Finance: https://github.com/FraxFinance



// Primary Author(s)

// Dennis: https://github.com/denett



/*

** Modus operandi:

** - User sends tokens to the contract. This transaction is stored in the contract.

** - Captain queries the source chain for transactions to ship.

** - Captain sends batch (start, end, hash) to start the trip,

** - Crewmembers check the batch and can dispute it if it is invalid.

** - Non disputed batches can be executed by the first officer by providing the transactions as calldata. 

** - Hash of the transactions must be equal to the hash in the batch. User receives their tokens on the other chain.

** - In case there was a fraudulent transaction (a hacker for example), the owner can cancel a single transaction, such that it will not be executed.

** - The owner can manually manage the tokens in the contract and must make sure it has enough funds.

**

** What must happen for a false batch to be executed:

** - Captain is tricked into proposing a batch with a false hash

** - All crewmembers bots are offline/censured/compromised and no one disputes the proposal

**

** Other risks:

** - Reorgs on the source chain. Avoided, by only returning the transactions on the source chain that are at least one hour old.

** - Rollbacks of optimistic rollups. Avoided by running a node.

** - Operators do not have enough time to pause the chain after a fake proposal. Avoided by requiring a minimal amount of time between sending the proposal and executing it.

*/









contract Fraxferry {

   IERC20 immutable public token;

   IERC20 immutable public targetToken;

   uint immutable public chainid;

   uint immutable public targetChain;   

   

   address public owner;

   address public nominatedOwner;

   address public captain;

   address public firstOfficer;

   mapping(address => bool) public crewmembers;

   bool public paused;
   
   uint public MIN_WAIT_PERIOD_ADD=3600; // Minimal 1 hour waiting
   uint public MIN_WAIT_PERIOD_EXECUTE=79200; // Minimal 22 hour waiting
   uint public FEE_RATE=10;      // 0.1% fee
   uint public FEE_MIN=5*1e18;   // 5 token min fee
   uint public FEE_MAX=100*1e18; // 100 token max fee
   
   uint constant MAX_FEE_RATE=100; // Max fee rate is 1%
   uint constant MAX_FEE_MIN=100e18; // Max minimum fee is 100 tokens
   uint constant MAX_FEE_MAX=1000e18; // Max fee is 1000 tokens
   
   uint constant public REDUCED_DECIMALS=1e10;
   
   Transaction[] public transactions;
   mapping(uint => bool) public cancelled;
   uint public executeIndex;
   Batch[] public batches;
   
   struct Transaction {
      address user;
      uint64 amount;
      uint32 timestamp;
   }
   
   struct Batch {
      uint64 start;
      uint64 end;
      uint64 departureTime;
      uint64 status;
      bytes32 hash;
   }
   
   struct BatchData {
      uint startTransactionNo;
      Transaction[] transactions;
   }

   constructor(address _token, uint _chainid, address _targetToken, uint _targetChain) {
      //require (block.chainid==_chainid,"Wrong chain");
      chainid=_chainid;
      token = IERC20(_token);
      targetToken = IERC20(_targetToken);
      owner = msg.sender;
      targetChain = _targetChain;
   }
   
   
   // ############## Events ##############
   
   event Embark(address indexed sender, uint index, uint amount, uint amountAfterFee, uint timestamp);
   event Disembark(uint start, uint end, bytes32 hash); 
   event Depart(uint batchNo,uint start,uint end,bytes32 hash); 
   event RemoveBatch(uint batchNo);
   event DisputeBatch(uint batchNo, bytes32 hash);
   event Cancelled(uint index, bool cancel);
   event Pause(bool paused);
   event OwnerNominated(address indexed newOwner);
   event OwnerChanged(address indexed previousOwner,address indexed newOwner);
   event SetCaptain(address indexed previousCaptain, address indexed newCaptain);   
   event SetFirstOfficer(address indexed previousFirstOfficer, address indexed newFirstOfficer);
   event SetCrewmember(address indexed crewmember,bool set); 
   event SetFee(uint previousFeeRate, uint feeRate,uint previousFeeMin, uint feeMin,uint previousFeeMax, uint feeMax);
   event SetMinWaitPeriods(uint previousMinWaitAdd,uint previousMinWaitExecute,uint minWaitAdd,uint minWaitExecute); 
   
   // ############## Modifiers ##############
   
   modifier isOwner() {
      require (msg.sender==owner,"Not owner");
      _;
   }
   
   modifier isCaptain() {
      require (msg.sender==captain,"Not captain");
      _;
   }
   
   modifier isFirstOfficer() {
      require (msg.sender==firstOfficer,"Not first officer");
      _;
   }   
    
   modifier isCrewmember() {
      require (crewmembers[msg.sender] || msg.sender==owner || msg.sender==captain || msg.sender==firstOfficer,"Not crewmember");
      _;
   }
   
   modifier notPaused() {
      require (!paused,"Paused");
      _;
   } 
   
   // ############## Ferry actions ##############
   
   function embarkWithRecipient(uint amount, address recipient) public notPaused {
      amount = (amount/REDUCED_DECIMALS)*REDUCED_DECIMALS; // Round amount to fit in data structure
      uint fee = Math.min(Math.max(FEE_MIN,amount*FEE_RATE/10000),FEE_MAX);
      require (amount>fee,"Amount too low");
      require (amount/REDUCED_DECIMALS<=type(uint64).max,"Amount too high");
      TransferHelper.safeTransferFrom(address(token),msg.sender,address(this),amount); 
      uint64 amountAfterFee = uint64((amount-fee)/REDUCED_DECIMALS);
      emit Embark(recipient,transactions.length,amount,amountAfterFee*REDUCED_DECIMALS,block.timestamp);
      transactions.push(Transaction(recipient,amountAfterFee,uint32(block.timestamp)));   
   }
   
   function embark(uint amount) public {
      embarkWithRecipient(amount, msg.sender) ;
   }

   function embarkWithSignature(

      uint256 _amount,

      address recipient,

      uint256 deadline,

      bool approveMax,

      uint8 v,

      bytes32 r,

      bytes32 s

   ) public {
      uint amount = approveMax ? type(uint256).max : _amount;
      IERC20Permit(address(token)).permit(msg.sender, address(this), amount, deadline, v, r, s);
      embarkWithRecipient(amount,recipient);
   }   
   
   function depart(uint start, uint end, bytes32 hash) external notPaused isCaptain {
      require ((batches.length==0 && start==0) || (batches.length>0 && start==batches[batches.length-1].end+1),"Wrong start");
      require (end>=start && end<type(uint64).max,"Wrong end");
      batches.push(Batch(uint64(start),uint64(end),uint64(block.timestamp),0,hash));
      emit Depart(batches.length-1,start,end,hash);
   }
   
   function disembark(BatchData calldata batchData) external notPaused isFirstOfficer {
      Batch memory batch = batches[executeIndex++];
      require (batch.status==0,"Batch disputed");
      require (batch.start==batchData.startTransactionNo,"Wrong start");
      require (batch.start+batchData.transactions.length-1==batch.end,"Wrong size");
      require (block.timestamp-batch.departureTime>=MIN_WAIT_PERIOD_EXECUTE,"Too soon");
      
      bytes32 hash = keccak256(abi.encodePacked(targetChain, targetToken, chainid, token, batch.start));
      for (uint i=0;i<batchData.transactions.length;++i) {
         if (!cancelled[batch.start+i]) {
            TransferHelper.safeTransfer(address(token),batchData.transactions[i].user,batchData.transactions[i].amount*REDUCED_DECIMALS);
         }
         hash = keccak256(abi.encodePacked(hash, batchData.transactions[i].user,batchData.transactions[i].amount));
      }
      require (batch.hash==hash,"Wrong hash");
      emit Disembark(batch.start,batch.end,hash);
   }
   
   function removeBatches(uint batchNo) external isOwner {
      require (executeIndex<=batchNo,"Batch already executed");
      while (batches.length>batchNo) batches.pop();
      emit RemoveBatch(batchNo);
   }
   
   function disputeBatch(uint batchNo, bytes32 hash) external isCrewmember {
      require (batches[batchNo].hash==hash,"Wrong hash");
      require (executeIndex<=batchNo,"Batch already executed");
      require (batches[batchNo].status==0,"Batch already disputed");
      batches[batchNo].status=1; // Set status on disputed
      _pause(true);
      emit DisputeBatch(batchNo,hash);
   }
   
   function pause() external isCrewmember {
      _pause(true);
   }
   
   function unPause() external isOwner {
      _pause(false);
   }   
   
   function _pause(bool _paused) internal {
      paused=_paused;
      emit Pause(_paused);
   } 
   
   function _jettison(uint index, bool cancel) internal {
      require (executeIndex==0 || index>batches[executeIndex-1].end,"Transaction already executed");
      cancelled[index]=cancel;
      emit Cancelled(index,cancel);
   }
   
   function jettison(uint index, bool cancel) external isOwner {
      _jettison(index,cancel);
   }
   
   function jettisonGroup(uint[] calldata indexes, bool cancel) external isOwner {
      for (uint i=0;i<indexes.length;++i) {
         _jettison(indexes[i],cancel);
      }
   }   
   
   // ############## Parameters management ##############
   
   function setFee(uint _FEE_RATE, uint _FEE_MIN, uint _FEE_MAX) external isOwner {
      require(_FEE_RATE<MAX_FEE_RATE);
      require(_FEE_MIN<MAX_FEE_MIN);
      require(_FEE_MAX<MAX_FEE_MAX);
      emit SetFee(FEE_RATE,_FEE_RATE,FEE_MIN,_FEE_MIN,FEE_MAX,_FEE_MAX);
      FEE_RATE=_FEE_RATE;
      FEE_MIN=_FEE_MIN;
      FEE_MAX=_FEE_MAX;
   }
   
   function setMinWaitPeriods(uint _MIN_WAIT_PERIOD_ADD, uint _MIN_WAIT_PERIOD_EXECUTE) external isOwner {
      require(_MIN_WAIT_PERIOD_ADD>=3600 && _MIN_WAIT_PERIOD_EXECUTE>=3600,"Period too short");
      emit SetMinWaitPeriods(MIN_WAIT_PERIOD_ADD, MIN_WAIT_PERIOD_EXECUTE,_MIN_WAIT_PERIOD_ADD, _MIN_WAIT_PERIOD_EXECUTE);
      MIN_WAIT_PERIOD_ADD=_MIN_WAIT_PERIOD_ADD;
      MIN_WAIT_PERIOD_EXECUTE=_MIN_WAIT_PERIOD_EXECUTE;
   }
   
   // ############## Roles management ##############
   
   function nominateNewOwner(address newOwner) external isOwner {
      nominatedOwner = newOwner;
      emit OwnerNominated(newOwner);
   }   
   
   function acceptOwnership() external {
      require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership");
      emit OwnerChanged(owner, nominatedOwner);
      owner = nominatedOwner;
      nominatedOwner = address(0);
   }
   
   function setCaptain(address newCaptain) external isOwner {
      emit SetCaptain(captain,newCaptain);
      captain=newCaptain;
   }
   
   function setFirstOfficer(address newFirstOfficer) external isOwner {
      emit SetFirstOfficer(firstOfficer,newFirstOfficer);
      firstOfficer=newFirstOfficer;
   }    
   
   function setCrewmember(address crewmember, bool set) external isOwner {
      crewmembers[crewmember]=set;
      emit SetCrewmember(crewmember,set);
   }   
  
   
   // ############## Token management ##############   
   
   function sendTokens(address receiver, uint amount) external isOwner {
      require (receiver!=address(0),"Zero address not allowed");
      TransferHelper.safeTransfer(address(token),receiver,amount);
   }   
   
   // Generic proxy
   function execute(address _to, uint256 _value, bytes calldata _data) external isOwner returns (bool, bytes memory) {
      require(_data.length==0 || _to.code.length>0,"Can not call a function on a EOA");
      (bool success, bytes memory result) = _to.call{value:_value}(_data);
      return (success, result);
   }   
   
   // ############## Views ##############
   function getNextBatch(uint _start, uint max) public view returns (uint start, uint end, bytes32 hash) {
      uint cutoffTime = block.timestamp-MIN_WAIT_PERIOD_ADD;
      if (_start<transactions.length && transactions[_start].timestamp<cutoffTime) {
         start=_start;
         end=start+max-1;
         if (end>=transactions.length) end=transactions.length-1;
         while(transactions[end].timestamp>=cutoffTime) end--;
         hash = getTransactionsHash(start,end);
      }
   }
   
   function getBatchData(uint start, uint end) public view returns (BatchData memory data) {
      data.startTransactionNo = start;
      data.transactions = new Transaction[](end-start+1);
      for (uint i=start;i<=end;++i) {
         data.transactions[i-start]=transactions[i];
      }
   }
   
   function getBatchAmount(uint start, uint end) public view returns (uint totalAmount) {
      for (uint i=start;i<=end;++i) {
         totalAmount+=transactions[i].amount;
      }
      totalAmount*=REDUCED_DECIMALS;
   }
   
   function getTransactionsHash(uint start, uint end) public view returns (bytes32) {
      bytes32 result = keccak256(abi.encodePacked(chainid, token, targetChain, targetToken, uint64(start)));
      for (uint i=start;i<=end;++i) {
         result = keccak256(abi.encodePacked(result, transactions[i].user,transactions[i].amount));
      }
      return result;
   }   
   
   function noTransactions() public view returns (uint) {
      return transactions.length;
   }
   
   function noBatches() public view returns (uint) {
      return batches.length;
   }
}