File size: 9,374 Bytes
f998fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.

// File: larpai.sol

pragma solidity 0.7.5;

library FullMath {
    function fullMul(uint256 x, uint256 y) private pure returns (uint256 l, uint256 h) {
        uint256 mm = mulmod(x, y, uint256(-1));
        l = x * y;
        h = mm - l;
        if (mm < l) h -= 1;
    }

    function fullDiv(

        uint256 l,

        uint256 h,

        uint256 d

    ) private pure returns (uint256) {
        uint256 pow2 = d & -d;
        d /= pow2;
        l /= pow2;
        l += h * ((-pow2) / pow2 + 1);
        uint256 r = 1;
        r *= 2 - d * r;
        r *= 2 - d * r;
        r *= 2 - d * r;
        r *= 2 - d * r;
        r *= 2 - d * r;
        r *= 2 - d * r;
        r *= 2 - d * r;
        r *= 2 - d * r;
        return l * r;
    }

    function mulDiv(

        uint256 x,

        uint256 y,

        uint256 d

    ) internal pure returns (uint256) {
        (uint256 l, uint256 h) = fullMul(x, y);
        uint256 mm = mulmod(x, y, d);
        if (mm > l) h -= 1;
        l -= mm;
        require(h < d, 'FullMath::mulDiv: overflow');
        return fullDiv(l, h, d);
    }
}

library Babylonian {

    function sqrt(uint256 x) internal pure returns (uint256) {
        if (x == 0) return 0;

        uint256 xx = x;
        uint256 r = 1;
        if (xx >= 0x100000000000000000000000000000000) {
            xx >>= 128;
            r <<= 64;
        }
        if (xx >= 0x10000000000000000) {
            xx >>= 64;
            r <<= 32;
        }
        if (xx >= 0x100000000) {
            xx >>= 32;
            r <<= 16;
        }
        if (xx >= 0x10000) {
            xx >>= 16;
            r <<= 8;
        }
        if (xx >= 0x100) {
            xx >>= 8;
            r <<= 4;
        }
        if (xx >= 0x10) {
            xx >>= 4;
            r <<= 2;
        }
        if (xx >= 0x8) {
            r <<= 1;
        }
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1;
        r = (r + x / r) >> 1; // Seven iterations should be enough
        uint256 r1 = x / r;
        return (r < r1 ? r : r1);
    }
}

library BitMath {

    function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
        require(x > 0, 'BitMath::mostSignificantBit: zero');

        if (x >= 0x100000000000000000000000000000000) {
            x >>= 128;
            r += 128;
        }
        if (x >= 0x10000000000000000) {
            x >>= 64;
            r += 64;
        }
        if (x >= 0x100000000) {
            x >>= 32;
            r += 32;
        }
        if (x >= 0x10000) {
            x >>= 16;
            r += 16;
        }
        if (x >= 0x100) {
            x >>= 8;
            r += 8;
        }
        if (x >= 0x10) {
            x >>= 4;
            r += 4;
        }
        if (x >= 0x4) {
            x >>= 2;
            r += 2;
        }
        if (x >= 0x2) r += 1;
    }
}

library FixedPoint {
    // range: [0, 2**112 - 1]
    // resolution: 1 / 2**112
    struct uq112x112 {
        uint224 _x;
    }

    // range: [0, 2**144 - 1]
    // resolution: 1 / 2**112
    struct uq144x112 {
        uint256 _x;
    }

    uint8 private constant RESOLUTION = 112;
    uint256 private constant Q112 = 0x10000000000000000000000000000;
    uint256 private constant Q224 = 0x100000000000000000000000000000000000000000000000000000000;
    uint256 private constant LOWER_MASK = 0xffffffffffffffffffffffffffff; // decimal of UQ*x112 (lower 112 bits)

    // decode a UQ112x112 into a uint112 by truncating after the radix point
    function decode(uq112x112 memory self) internal pure returns (uint112) {
        return uint112(self._x >> RESOLUTION);
    }

    // decode a uq112x112 into a uint with 18 decimals of precision
    function decode112with18(uq112x112 memory self) internal pure returns (uint) {
        return uint(self._x) / 5192296858534827;
    }

    function fraction(uint256 numerator, uint256 denominator) internal pure returns (uq112x112 memory) {
        require(denominator > 0, 'FixedPoint::fraction: division by zero');
        if (numerator == 0) return FixedPoint.uq112x112(0);

        if (numerator <= uint144(-1)) {
            uint256 result = (numerator << RESOLUTION) / denominator;
            require(result <= uint224(-1), 'FixedPoint::fraction: overflow');
            return uq112x112(uint224(result));
        } else {
            uint256 result = FullMath.mulDiv(numerator, Q112, denominator);
            require(result <= uint224(-1), 'FixedPoint::fraction: overflow');
            return uq112x112(uint224(result));
        }
    }

    // square root of a UQ112x112
    // lossy between 0/1 and 40 bits
    function sqrt(uq112x112 memory self) internal pure returns (uq112x112 memory) {
        if (self._x <= uint144(-1)) {
            return uq112x112(uint224(Babylonian.sqrt(uint256(self._x) << 112)));
        }

        uint8 safeShiftBits = 255 - BitMath.mostSignificantBit(self._x);
        safeShiftBits -= safeShiftBits % 2;
        return uq112x112(uint224(Babylonian.sqrt(uint256(self._x) << safeShiftBits) << ((112 - safeShiftBits) / 2)));
    }
}

library SafeMath {

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {

        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    function sqrrt(uint256 a) internal pure returns (uint c) {
        if (a > 3) {
            c = a;
            uint b = add( div( a, 2), 1 );
            while (b < c) {
                c = b;
                b = div( add( div( a, b ), b), 2 );
            }
        } else if (a != 0) {
            c = 1;
        }
    }
}

interface IERC20 {
    function decimals() external view returns (uint8);
}

interface IUniswapV2ERC20 {
    function totalSupply() external view returns (uint);
}

interface IUniswapV2Pair is IUniswapV2ERC20 {
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function token0() external view returns ( address );
    function token1() external view returns ( address );
}

interface IBondingCalculator {
  function valuation( address pair_, uint amount_ ) external view returns ( uint _value );
}

contract BondingCalculator is IBondingCalculator {

    using FixedPoint for *;
    using SafeMath for uint;
    using SafeMath for uint112;

    address public immutable LAI;

    constructor( address _LAI ) {
        require( _LAI != address(0) );
        LAI = _LAI;
    }

    function getKValue( address _pair ) public view returns( uint k_ ) {
        uint token0 = IERC20( IUniswapV2Pair( _pair ).token0() ).decimals();
        uint token1 = IERC20( IUniswapV2Pair( _pair ).token1() ).decimals();
        uint decimals = token0.add( token1 ).sub( IERC20( _pair ).decimals() );

        (uint reserve0, uint reserve1, ) = IUniswapV2Pair( _pair ).getReserves();
        k_ = reserve0.mul(reserve1).div( 10 ** decimals );
    }

    function getTotalValue( address _pair ) public view returns ( uint _value ) {
        _value = getKValue( _pair ).sqrrt().mul(2);
    }

    function valuation( address _pair, uint amount_ ) external view override returns ( uint _value ) {
        uint totalValue = getTotalValue( _pair );
        uint totalSupply = IUniswapV2Pair( _pair ).totalSupply();

        _value = totalValue.mul( FixedPoint.fraction( amount_, totalSupply ).decode112with18() ).div( 1e18 );
    }

    function markdown( address _pair ) external view returns ( uint ) {
        ( uint reserve0, uint reserve1, ) = IUniswapV2Pair( _pair ).getReserves();

        uint reserve;
        if ( IUniswapV2Pair( _pair ).token0() == LAI ) {
            reserve = reserve1;
        } else {
            reserve = reserve0;
        }
        return reserve.mul( 2 * ( 10 ** IERC20( LAI ).decimals() ) ).div( getTotalValue( _pair ) );
    }
}