File size: 41,897 Bytes
f998fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
{
  "language": "Solidity",
  "sources": {
    "contracts/Slottery.sol": {
      "content": "// SPDX-License-Identifier: MIT\npragma solidity ^0.8.10;\n\nimport \"./lib/WattsBurnerUpgradable.sol\";\n\ncontract Slottery is WattsBurnerUpgradable {\n    struct SlotteryGame {\n        uint40 id;\n        uint40 deadline;\n        uint16 rounds;\n        uint16 spinNum;\n        uint104 entryPrice;\n        uint40 startTime;\n    }\n\n    mapping(uint256 => SlotteryGame) public slotteryGames;\n    mapping(address => mapping(uint256 => bool)) public userToGameEntries;\n    mapping(uint256 => uint256) public slotteryGameToPrizePool;\n\n    event GameCreated(uint256 indexed id, uint256 deadline, uint256 rounds, uint256 spinNum, uint256 entryPrice, uint256 startTime);\n    event GameModified(uint256 indexed id, uint256 deadline, uint256 rounds, uint256 spinNum, uint256 entryPrice, uint256 startTime);\n    event GameEntered(uint256 indexed gameId, address indexed user);\n\n    constructor(address[] memory _admins, address _watts, address _transferExtender)\n    WattsBurnerUpgradable(_admins, _watts, _transferExtender) {}\n\n    function initialize(address[] memory _admins, address _watts, address _transferExtender) public initializer {\n        watts_burner_initialize(_admins, _watts, _transferExtender);\n    }\n\n    function CreateGame(\n        uint40 id,\n        uint40 deadline,\n        uint16 rounds,\n        uint16 spinNum,\n        uint104 entryPrice,\n        uint40 startTime\n    ) external onlyRole(GameAdminRole) {\n        SlotteryGame storage game = slotteryGames[id];\n        require(game.id == 0, \"Game ID already in use\");\n\n        game.id = id;\n        game.deadline = deadline;\n        game.rounds = rounds;\n        game.spinNum = spinNum;\n        game.entryPrice = entryPrice;\n        game.startTime = startTime;\n\n        emit GameCreated(id, deadline, rounds, spinNum, entryPrice, startTime);\n    }\n\n    function ModifyGame(\n        uint40 id,\n        uint40 deadline,\n        uint16 rounds,\n        uint16 spinNum,\n        uint104 entryPrice,\n        uint40 startTime\n    ) external onlyRole(GameAdminRole) {\n        SlotteryGame storage game = slotteryGames[id];\n        require(game.id != 0, \"Cannot modify a non initialized game\");\n        require(block.timestamp < game.startTime, \"Cannot modify a started game\");\n\n        game.deadline = deadline;\n\n        game.rounds = rounds;\n        game.spinNum = spinNum;\n        game.entryPrice = entryPrice;\n        game.startTime = startTime;\n\n        emit GameModified(id, deadline, rounds, spinNum, entryPrice, startTime);\n    }\n\n    function EnterGame(uint256 id) external {\n        SlotteryGame memory game = slotteryGames[id];\n        require(game.id != 0, \"Cannot enter a non initialized game\");\n        require(block.timestamp < game.deadline, \"Cannot enter a finished game\");\n        require(!userToGameEntries[msg.sender][game.id], \"User already enter game\");\n        \n        slotteryGameToPrizePool[game.id] += game.entryPrice;\n        _collectWatts(game.entryPrice);\n\n        userToGameEntries[msg.sender][game.id] = true;\n\n        emit GameEntered(id, msg.sender);\n    }\n\n    function ReleasePrizePoolToWinner(uint256 gameId, address winner, uint256 amountFromPrizePool) external onlyRole(GameAdminRole) {\n        require(slotteryGameToPrizePool[gameId] >= amountFromPrizePool, \"Game prize pool insufficient\");\n        slotteryGameToPrizePool[gameId] -= amountFromPrizePool;\n        _releaseWatts(winner, amountFromPrizePool);\n    }\n\n    function BurnRemainingWattsInPrizePool(uint256 gameId) external onlyRole(GameAdminRole) {\n        uint256 burnAmount = slotteryGameToPrizePool[gameId];\n        delete slotteryGameToPrizePool[gameId];\n        _burnContractWatts(burnAmount);\n    }\n\n    function getPrizePoolForGames(uint256[] memory gameIds) external view returns(uint256[] memory) {\n        require(gameIds.length > 0);\n        uint256[] memory pools = new uint256[](gameIds.length);\n        for (uint i = 0; i < gameIds.length; i++) {\n            pools[i] = slotteryGameToPrizePool[gameIds[i]];\n        }\n        return pools;\n    }\n}"
    },
    "contracts/lib/WattsBurnerUpgradable.sol": {
      "content": "// SPDX-License-Identifier: MIT\npragma solidity ^0.8.10;\n\nimport \"@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol\";\n\ninterface IWATTs {\n\tfunction burn(address _from, uint256 _amount) external;\n    function burnClaimable(address _from, uint256 _amount) external;\n    function balanceOf(address user) external view returns (uint256);\n    function mintClaimable(address _to, uint256 _amount) external;\n}\n\ninterface ITransferExtenderV2 {\n    function WATTSOWNER_seeClaimableBalanceOfUser(address user) external view returns (uint256);\n    function transfer(\n        uint256 amount,\n        address recipient\n    ) external;\n}\n\ncontract WattsBurnerUpgradable is AccessControlUpgradeable {\n\n    IWATTs public watts;\n    ITransferExtenderV2 public transferExtender;\n    bytes32 public GameAdminRole;\n\n    constructor(address[] memory _admins, address _watts, address _transferExtender) {}\n\n    function watts_burner_initialize(address[] memory _admins, address _watts, address _transferExtender) public initializer {\n        __AccessControl_init();\n\n        watts = IWATTs(_watts);\n        transferExtender = ITransferExtenderV2(_transferExtender);\n\n        GameAdminRole = keccak256(\"GAME_ADMIN\");\n\n        for (uint i = 0; i < _admins.length; i++) {\n            _grantRole(GameAdminRole, _admins[i]);\n        }\n\n        _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);\n    }\n    \n    // Burns watts from users wallet\n    function _burnWatts(uint256 amount) internal {\n        require(watts.balanceOf(msg.sender) >= amount, \"User does not have enough balance\");\n        require(amount > 0, \"Cannot burn zero watts\");\n        \n        uint256 claimableBalance = transferExtender.WATTSOWNER_seeClaimableBalanceOfUser(msg.sender);\n        uint256 burnFromClaimable = claimableBalance >= amount ? amount : claimableBalance;\n        uint256 burnFromBalance = claimableBalance >= amount ? 0 : amount - claimableBalance;\n\n        if (claimableBalance > 0) {\n            watts.burnClaimable(msg.sender, burnFromClaimable);\n        }\n        \n        if (burnFromBalance > 0) {\n            watts.burn(msg.sender, burnFromBalance);\n        }\n    }\n    \n    // Burns watts from users wallet\n    // Mints it to contract\n    function _collectWatts(uint256 amount) internal {\n        require(watts.balanceOf(msg.sender) >= amount, \"User does not have enough balance\");\n        require(amount > 0, \"Cannot collect zero watts\");\n        \n        uint256 claimableBalance = transferExtender.WATTSOWNER_seeClaimableBalanceOfUser(msg.sender);\n        uint256 burnFromClaimable = claimableBalance >= amount ? amount : claimableBalance;\n        uint256 burnFromBalance = claimableBalance >= amount ? 0 : amount - claimableBalance;\n\n        if (claimableBalance > 0) {\n            watts.burnClaimable(msg.sender, burnFromClaimable);\n        }\n        \n        if (burnFromBalance > 0) {\n            watts.burn(msg.sender, burnFromBalance);\n        }\n\n        watts.mintClaimable(address(this), amount);\n    }\n\n    function _releaseWatts(address recipient, uint256 amount) internal {\n        transferExtender.transfer(amount, recipient);\n    }\n\n    function _burnRemainingWatts() internal {\n        uint256 balance = watts.balanceOf(address(this));\n        uint256 claimableBalance = transferExtender.WATTSOWNER_seeClaimableBalanceOfUser(address(this));\n        uint256 burnFromBalance = balance - claimableBalance;\n\n        require(balance > 0, \"Burn amount should be greater than zero\");\n     \n        if (claimableBalance > 0) {\n            watts.burnClaimable(address(this), claimableBalance);\n        }\n        \n        if (burnFromBalance > 0) {\n            watts.burn(address(this), burnFromBalance);\n        }\n    }\n\n    function _burnContractWatts(uint256 amount) internal {\n        require(watts.balanceOf(address(this)) >= amount, \"Contract does not have enough watts\");\n        require(amount > 0, \"Cannot burn zero watts\");\n        \n        uint256 claimableBalance = transferExtender.WATTSOWNER_seeClaimableBalanceOfUser(address(this));\n        uint256 burnFromClaimable = claimableBalance >= amount ? amount : claimableBalance;\n        uint256 burnFromBalance = claimableBalance >= amount ? 0 : amount - claimableBalance;\n\n        if (claimableBalance > 0) {\n            watts.burnClaimable(address(this), burnFromClaimable);\n        }\n        \n        if (burnFromBalance > 0) {\n            watts.burn(address(this), burnFromBalance);\n        }\n    }\n\n    function setContracts(address _watts, address _extender) external onlyRole(DEFAULT_ADMIN_ROLE) {\n        watts = IWATTs(_watts);\n        transferExtender = ITransferExtenderV2(_extender);\n    }\n}"
    },
    "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (access/AccessControl.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControlUpgradeable.sol\";\nimport \"../utils/ContextUpgradeable.sol\";\nimport \"../utils/StringsUpgradeable.sol\";\nimport \"../utils/introspection/ERC165Upgradeable.sol\";\nimport \"../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Contract module that allows children to implement role-based access\n * control mechanisms. This is a lightweight version that doesn't allow enumerating role\n * members except through off-chain means by accessing the contract event logs. Some\n * applications may benefit from on-chain enumerability, for those cases see\n * {AccessControlEnumerable}.\n *\n * Roles are referred to by their `bytes32` identifier. These should be exposed\n * in the external API and be unique. The best way to achieve this is by\n * using `public constant` hash digests:\n *\n * ```\n * bytes32 public constant MY_ROLE = keccak256(\"MY_ROLE\");\n * ```\n *\n * Roles can be used to represent a set of permissions. To restrict access to a\n * function call, use {hasRole}:\n *\n * ```\n * function foo() public {\n *     require(hasRole(MY_ROLE, msg.sender));\n *     ...\n * }\n * ```\n *\n * Roles can be granted and revoked dynamically via the {grantRole} and\n * {revokeRole} functions. Each role has an associated admin role, and only\n * accounts that have a role's admin role can call {grantRole} and {revokeRole}.\n *\n * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means\n * that only accounts with this role will be able to grant or revoke other\n * roles. More complex role relationships can be created by using\n * {_setRoleAdmin}.\n *\n * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to\n * grant and revoke this role. Extra precautions should be taken to secure\n * accounts that have been granted it.\n */\nabstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {\n    function __AccessControl_init() internal onlyInitializing {\n    }\n\n    function __AccessControl_init_unchained() internal onlyInitializing {\n    }\n    struct RoleData {\n        mapping(address => bool) members;\n        bytes32 adminRole;\n    }\n\n    mapping(bytes32 => RoleData) private _roles;\n\n    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;\n\n    /**\n     * @dev Modifier that checks that an account has a specific role. Reverts\n     * with a standardized message including the required role.\n     *\n     * The format of the revert reason is given by the following regular expression:\n     *\n     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n     *\n     * _Available since v4.1._\n     */\n    modifier onlyRole(bytes32 role) {\n        _checkRole(role);\n        _;\n    }\n\n    /**\n     * @dev See {IERC165-supportsInterface}.\n     */\n    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n        return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);\n    }\n\n    /**\n     * @dev Returns `true` if `account` has been granted `role`.\n     */\n    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {\n        return _roles[role].members[account];\n    }\n\n    /**\n     * @dev Revert with a standard message if `_msgSender()` is missing `role`.\n     * Overriding this function changes the behavior of the {onlyRole} modifier.\n     *\n     * Format of the revert message is described in {_checkRole}.\n     *\n     * _Available since v4.6._\n     */\n    function _checkRole(bytes32 role) internal view virtual {\n        _checkRole(role, _msgSender());\n    }\n\n    /**\n     * @dev Revert with a standard message if `account` is missing `role`.\n     *\n     * The format of the revert reason is given by the following regular expression:\n     *\n     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n     */\n    function _checkRole(bytes32 role, address account) internal view virtual {\n        if (!hasRole(role, account)) {\n            revert(\n                string(\n                    abi.encodePacked(\n                        \"AccessControl: account \",\n                        StringsUpgradeable.toHexString(uint160(account), 20),\n                        \" is missing role \",\n                        StringsUpgradeable.toHexString(uint256(role), 32)\n                    )\n                )\n            );\n        }\n    }\n\n    /**\n     * @dev Returns the admin role that controls `role`. See {grantRole} and\n     * {revokeRole}.\n     *\n     * To change a role's admin, use {_setRoleAdmin}.\n     */\n    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {\n        return _roles[role].adminRole;\n    }\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * If `account` had not been already granted `role`, emits a {RoleGranted}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     */\n    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n        _grantRole(role, account);\n    }\n\n    /**\n     * @dev Revokes `role` from `account`.\n     *\n     * If `account` had been granted `role`, emits a {RoleRevoked} event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     */\n    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n        _revokeRole(role, account);\n    }\n\n    /**\n     * @dev Revokes `role` from the calling account.\n     *\n     * Roles are often managed via {grantRole} and {revokeRole}: this function's\n     * purpose is to provide a mechanism for accounts to lose their privileges\n     * if they are compromised (such as when a trusted device is misplaced).\n     *\n     * If the calling account had been revoked `role`, emits a {RoleRevoked}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must be `account`.\n     */\n    function renounceRole(bytes32 role, address account) public virtual override {\n        require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\n\n        _revokeRole(role, account);\n    }\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * If `account` had not been already granted `role`, emits a {RoleGranted}\n     * event. Note that unlike {grantRole}, this function doesn't perform any\n     * checks on the calling account.\n     *\n     * [WARNING]\n     * ====\n     * This function should only be called from the constructor when setting\n     * up the initial roles for the system.\n     *\n     * Using this function in any other way is effectively circumventing the admin\n     * system imposed by {AccessControl}.\n     * ====\n     *\n     * NOTE: This function is deprecated in favor of {_grantRole}.\n     */\n    function _setupRole(bytes32 role, address account) internal virtual {\n        _grantRole(role, account);\n    }\n\n    /**\n     * @dev Sets `adminRole` as ``role``'s admin role.\n     *\n     * Emits a {RoleAdminChanged} event.\n     */\n    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {\n        bytes32 previousAdminRole = getRoleAdmin(role);\n        _roles[role].adminRole = adminRole;\n        emit RoleAdminChanged(role, previousAdminRole, adminRole);\n    }\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * Internal function without access restriction.\n     */\n    function _grantRole(bytes32 role, address account) internal virtual {\n        if (!hasRole(role, account)) {\n            _roles[role].members[account] = true;\n            emit RoleGranted(role, account, _msgSender());\n        }\n    }\n\n    /**\n     * @dev Revokes `role` from `account`.\n     *\n     * Internal function without access restriction.\n     */\n    function _revokeRole(bytes32 role, address account) internal virtual {\n        if (hasRole(role, account)) {\n            _roles[role].members[account] = false;\n            emit RoleRevoked(role, account, _msgSender());\n        }\n    }\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[49] private __gap;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev External interface of AccessControl declared to support ERC165 detection.\n */\ninterface IAccessControlUpgradeable {\n    /**\n     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`\n     *\n     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite\n     * {RoleAdminChanged} not being emitted signaling this.\n     *\n     * _Available since v3.1._\n     */\n    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);\n\n    /**\n     * @dev Emitted when `account` is granted `role`.\n     *\n     * `sender` is the account that originated the contract call, an admin role\n     * bearer except when using {AccessControl-_setupRole}.\n     */\n    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);\n\n    /**\n     * @dev Emitted when `account` is revoked `role`.\n     *\n     * `sender` is the account that originated the contract call:\n     *   - if using `revokeRole`, it is the admin role bearer\n     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)\n     */\n    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);\n\n    /**\n     * @dev Returns `true` if `account` has been granted `role`.\n     */\n    function hasRole(bytes32 role, address account) external view returns (bool);\n\n    /**\n     * @dev Returns the admin role that controls `role`. See {grantRole} and\n     * {revokeRole}.\n     *\n     * To change a role's admin, use {AccessControl-_setRoleAdmin}.\n     */\n    function getRoleAdmin(bytes32 role) external view returns (bytes32);\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * If `account` had not been already granted `role`, emits a {RoleGranted}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     */\n    function grantRole(bytes32 role, address account) external;\n\n    /**\n     * @dev Revokes `role` from `account`.\n     *\n     * If `account` had been granted `role`, emits a {RoleRevoked} event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     */\n    function revokeRole(bytes32 role, address account) external;\n\n    /**\n     * @dev Revokes `role` from the calling account.\n     *\n     * Roles are often managed via {grantRole} and {revokeRole}: this function's\n     * purpose is to provide a mechanism for accounts to lose their privileges\n     * if they are compromised (such as when a trusted device is misplaced).\n     *\n     * If the calling account had been granted `role`, emits a {RoleRevoked}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must be `account`.\n     */\n    function renounceRole(bytes32 role, address account) external;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\nimport \"../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract ContextUpgradeable is Initializable {\n    function __Context_init() internal onlyInitializing {\n    }\n\n    function __Context_init_unchained() internal onlyInitializing {\n    }\n    function _msgSender() internal view virtual returns (address) {\n        return msg.sender;\n    }\n\n    function _msgData() internal view virtual returns (bytes calldata) {\n        return msg.data;\n    }\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[50] private __gap;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/StringsUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev String operations.\n */\nlibrary StringsUpgradeable {\n    bytes16 private constant _HEX_SYMBOLS = \"0123456789abcdef\";\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n     */\n    function toString(uint256 value) internal pure returns (string memory) {\n        // Inspired by OraclizeAPI's implementation - MIT licence\n        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol\n\n        if (value == 0) {\n            return \"0\";\n        }\n        uint256 temp = value;\n        uint256 digits;\n        while (temp != 0) {\n            digits++;\n            temp /= 10;\n        }\n        bytes memory buffer = new bytes(digits);\n        while (value != 0) {\n            digits -= 1;\n            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));\n            value /= 10;\n        }\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n     */\n    function toHexString(uint256 value) internal pure returns (string memory) {\n        if (value == 0) {\n            return \"0x00\";\n        }\n        uint256 temp = value;\n        uint256 length = 0;\n        while (temp != 0) {\n            length++;\n            temp >>= 8;\n        }\n        return toHexString(value, length);\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n     */\n    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n        bytes memory buffer = new bytes(2 * length + 2);\n        buffer[0] = \"0\";\n        buffer[1] = \"x\";\n        for (uint256 i = 2 * length + 1; i > 1; --i) {\n            buffer[i] = _HEX_SYMBOLS[value & 0xf];\n            value >>= 4;\n        }\n        require(value == 0, \"Strings: hex length insufficient\");\n        return string(buffer);\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/introspection/ERC165Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC165Upgradeable.sol\";\nimport \"../../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Implementation of the {IERC165} interface.\n *\n * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check\n * for the additional interface id that will be supported. For example:\n *\n * ```solidity\n * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);\n * }\n * ```\n *\n * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.\n */\nabstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {\n    function __ERC165_init() internal onlyInitializing {\n    }\n\n    function __ERC165_init_unchained() internal onlyInitializing {\n    }\n    /**\n     * @dev See {IERC165-supportsInterface}.\n     */\n    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n        return interfaceId == type(IERC165Upgradeable).interfaceId;\n    }\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[50] private __gap;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (proxy/utils/Initializable.sol)\n\npragma solidity ^0.8.2;\n\nimport \"../../utils/AddressUpgradeable.sol\";\n\n/**\n * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed\n * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an\n * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer\n * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.\n *\n * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be\n * reused. This mechanism prevents re-execution of each \"step\" but allows the creation of new initialization steps in\n * case an upgrade adds a module that needs to be initialized.\n *\n * For example:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * contract MyToken is ERC20Upgradeable {\n *     function initialize() initializer public {\n *         __ERC20_init(\"MyToken\", \"MTK\");\n *     }\n * }\n * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {\n *     function initializeV2() reinitializer(2) public {\n *         __ERC20Permit_init(\"MyToken\");\n *     }\n * }\n * ```\n *\n * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as\n * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.\n *\n * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure\n * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.\n *\n * [CAUTION]\n * ====\n * Avoid leaving a contract uninitialized.\n *\n * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation\n * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke\n * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * /// @custom:oz-upgrades-unsafe-allow constructor\n * constructor() {\n *     _disableInitializers();\n * }\n * ```\n * ====\n */\nabstract contract Initializable {\n    /**\n     * @dev Indicates that the contract has been initialized.\n     * @custom:oz-retyped-from bool\n     */\n    uint8 private _initialized;\n\n    /**\n     * @dev Indicates that the contract is in the process of being initialized.\n     */\n    bool private _initializing;\n\n    /**\n     * @dev Triggered when the contract has been initialized or reinitialized.\n     */\n    event Initialized(uint8 version);\n\n    /**\n     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,\n     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.\n     */\n    modifier initializer() {\n        bool isTopLevelCall = _setInitializedVersion(1);\n        if (isTopLevelCall) {\n            _initializing = true;\n        }\n        _;\n        if (isTopLevelCall) {\n            _initializing = false;\n            emit Initialized(1);\n        }\n    }\n\n    /**\n     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the\n     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be\n     * used to initialize parent contracts.\n     *\n     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original\n     * initialization step. This is essential to configure modules that are added through upgrades and that require\n     * initialization.\n     *\n     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in\n     * a contract, executing them in the right order is up to the developer or operator.\n     */\n    modifier reinitializer(uint8 version) {\n        bool isTopLevelCall = _setInitializedVersion(version);\n        if (isTopLevelCall) {\n            _initializing = true;\n        }\n        _;\n        if (isTopLevelCall) {\n            _initializing = false;\n            emit Initialized(version);\n        }\n    }\n\n    /**\n     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the\n     * {initializer} and {reinitializer} modifiers, directly or indirectly.\n     */\n    modifier onlyInitializing() {\n        require(_initializing, \"Initializable: contract is not initializing\");\n        _;\n    }\n\n    /**\n     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.\n     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized\n     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called\n     * through proxies.\n     */\n    function _disableInitializers() internal virtual {\n        _setInitializedVersion(type(uint8).max);\n    }\n\n    function _setInitializedVersion(uint8 version) private returns (bool) {\n        // If the contract is initializing we ignore whether _initialized is set in order to support multiple\n        // inheritance patterns, but we only do this in the context of a constructor, and for the lowest level\n        // of initializers, because in other contexts the contract may have been reentered.\n        if (_initializing) {\n            require(\n                version == 1 && !AddressUpgradeable.isContract(address(this)),\n                \"Initializable: contract is already initialized\"\n            );\n            return false;\n        } else {\n            require(_initialized < version, \"Initializable: contract is already initialized\");\n            _initialized = version;\n            return true;\n        }\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary AddressUpgradeable {\n    /**\n     * @dev Returns true if `account` is a contract.\n     *\n     * [IMPORTANT]\n     * ====\n     * It is unsafe to assume that an address for which this function returns\n     * false is an externally-owned account (EOA) and not a contract.\n     *\n     * Among others, `isContract` will return false for the following\n     * types of addresses:\n     *\n     *  - an externally-owned account\n     *  - a contract in construction\n     *  - an address where a contract will be created\n     *  - an address where a contract lived, but was destroyed\n     * ====\n     *\n     * [IMPORTANT]\n     * ====\n     * You shouldn't rely on `isContract` to protect against flash loan attacks!\n     *\n     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n     * constructor.\n     * ====\n     */\n    function isContract(address account) internal view returns (bool) {\n        // This method relies on extcodesize/address.code.length, which returns 0\n        // for contracts in construction, since the code is only stored at the end\n        // of the constructor execution.\n\n        return account.code.length > 0;\n    }\n\n    /**\n     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n     * `recipient`, forwarding all available gas and reverting on errors.\n     *\n     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n     * of certain opcodes, possibly making contracts go over the 2300 gas limit\n     * imposed by `transfer`, making them unable to receive funds via\n     * `transfer`. {sendValue} removes this limitation.\n     *\n     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n     *\n     * IMPORTANT: because control is transferred to `recipient`, care must be\n     * taken to not create reentrancy vulnerabilities. Consider using\n     * {ReentrancyGuard} or the\n     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n     */\n    function sendValue(address payable recipient, uint256 amount) internal {\n        require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n        (bool success, ) = recipient.call{value: amount}(\"\");\n        require(success, \"Address: unable to send value, recipient may have reverted\");\n    }\n\n    /**\n     * @dev Performs a Solidity function call using a low level `call`. A\n     * plain `call` is an unsafe replacement for a function call: use this\n     * function instead.\n     *\n     * If `target` reverts with a revert reason, it is bubbled up by this\n     * function (like regular Solidity function calls).\n     *\n     * Returns the raw returned data. To convert to the expected return value,\n     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n     *\n     * Requirements:\n     *\n     * - `target` must be a contract.\n     * - calling `target` with `data` must not revert.\n     *\n     * _Available since v3.1._\n     */\n    function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n        return functionCall(target, data, \"Address: low-level call failed\");\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n     * `errorMessage` as a fallback revert reason when `target` reverts.\n     *\n     * _Available since v3.1._\n     */\n    function functionCall(\n        address target,\n        bytes memory data,\n        string memory errorMessage\n    ) internal returns (bytes memory) {\n        return functionCallWithValue(target, data, 0, errorMessage);\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n     * but also transferring `value` wei to `target`.\n     *\n     * Requirements:\n     *\n     * - the calling contract must have an ETH balance of at least `value`.\n     * - the called Solidity function must be `payable`.\n     *\n     * _Available since v3.1._\n     */\n    function functionCallWithValue(\n        address target,\n        bytes memory data,\n        uint256 value\n    ) internal returns (bytes memory) {\n        return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n     * with `errorMessage` as a fallback revert reason when `target` reverts.\n     *\n     * _Available since v3.1._\n     */\n    function functionCallWithValue(\n        address target,\n        bytes memory data,\n        uint256 value,\n        string memory errorMessage\n    ) internal returns (bytes memory) {\n        require(address(this).balance >= value, \"Address: insufficient balance for call\");\n        require(isContract(target), \"Address: call to non-contract\");\n\n        (bool success, bytes memory returndata) = target.call{value: value}(data);\n        return verifyCallResult(success, returndata, errorMessage);\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n     * but performing a static call.\n     *\n     * _Available since v3.3._\n     */\n    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n        return functionStaticCall(target, data, \"Address: low-level static call failed\");\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n     * but performing a static call.\n     *\n     * _Available since v3.3._\n     */\n    function functionStaticCall(\n        address target,\n        bytes memory data,\n        string memory errorMessage\n    ) internal view returns (bytes memory) {\n        require(isContract(target), \"Address: static call to non-contract\");\n\n        (bool success, bytes memory returndata) = target.staticcall(data);\n        return verifyCallResult(success, returndata, errorMessage);\n    }\n\n    /**\n     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the\n     * revert reason using the provided one.\n     *\n     * _Available since v4.3._\n     */\n    function verifyCallResult(\n        bool success,\n        bytes memory returndata,\n        string memory errorMessage\n    ) internal pure returns (bytes memory) {\n        if (success) {\n            return returndata;\n        } else {\n            // Look for revert reason and bubble it up if present\n            if (returndata.length > 0) {\n                // The easiest way to bubble the revert reason is using memory via assembly\n\n                assembly {\n                    let returndata_size := mload(returndata)\n                    revert(add(32, returndata), returndata_size)\n                }\n            } else {\n                revert(errorMessage);\n            }\n        }\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165Upgradeable {\n    /**\n     * @dev Returns true if this contract implements the interface defined by\n     * `interfaceId`. See the corresponding\n     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n     * to learn more about how these ids are created.\n     *\n     * This function call must use less than 30 000 gas.\n     */\n    function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n"
    }
  },
  "settings": {
    "optimizer": {
      "enabled": true,
      "runs": 1000
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "metadata": {
      "useLiteralContent": true
    },
    "libraries": {}
  }
}