File size: 41,106 Bytes
f998fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
{
"language": "Solidity",
"sources": {
"@openzeppelin/contracts/access/Ownable.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n"
},
"@openzeppelin/contracts/proxy/utils/Initializable.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)\n\npragma solidity ^0.8.2;\n\nimport \"../../utils/Address.sol\";\n\n/**\n * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed\n * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an\n * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer\n * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.\n *\n * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be\n * reused. This mechanism prevents re-execution of each \"step\" but allows the creation of new initialization steps in\n * case an upgrade adds a module that needs to be initialized.\n *\n * For example:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * contract MyToken is ERC20Upgradeable {\n * function initialize() initializer public {\n * __ERC20_init(\"MyToken\", \"MTK\");\n * }\n * }\n * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {\n * function initializeV2() reinitializer(2) public {\n * __ERC20Permit_init(\"MyToken\");\n * }\n * }\n * ```\n *\n * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as\n * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.\n *\n * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure\n * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.\n *\n * [CAUTION]\n * ====\n * Avoid leaving a contract uninitialized.\n *\n * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation\n * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke\n * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * /// @custom:oz-upgrades-unsafe-allow constructor\n * constructor() {\n * _disableInitializers();\n * }\n * ```\n * ====\n */\nabstract contract Initializable {\n /**\n * @dev Indicates that the contract has been initialized.\n * @custom:oz-retyped-from bool\n */\n uint8 private _initialized;\n\n /**\n * @dev Indicates that the contract is in the process of being initialized.\n */\n bool private _initializing;\n\n /**\n * @dev Triggered when the contract has been initialized or reinitialized.\n */\n event Initialized(uint8 version);\n\n /**\n * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,\n * `onlyInitializing` functions can be used to initialize parent contracts.\n *\n * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a\n * constructor.\n *\n * Emits an {Initialized} event.\n */\n modifier initializer() {\n bool isTopLevelCall = !_initializing;\n require(\n (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),\n \"Initializable: contract is already initialized\"\n );\n _initialized = 1;\n if (isTopLevelCall) {\n _initializing = true;\n }\n _;\n if (isTopLevelCall) {\n _initializing = false;\n emit Initialized(1);\n }\n }\n\n /**\n * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the\n * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be\n * used to initialize parent contracts.\n *\n * A reinitializer may be used after the original initialization step. This is essential to configure modules that\n * are added through upgrades and that require initialization.\n *\n * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`\n * cannot be nested. If one is invoked in the context of another, execution will revert.\n *\n * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in\n * a contract, executing them in the right order is up to the developer or operator.\n *\n * WARNING: setting the version to 255 will prevent any future reinitialization.\n *\n * Emits an {Initialized} event.\n */\n modifier reinitializer(uint8 version) {\n require(!_initializing && _initialized < version, \"Initializable: contract is already initialized\");\n _initialized = version;\n _initializing = true;\n _;\n _initializing = false;\n emit Initialized(version);\n }\n\n /**\n * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the\n * {initializer} and {reinitializer} modifiers, directly or indirectly.\n */\n modifier onlyInitializing() {\n require(_initializing, \"Initializable: contract is not initializing\");\n _;\n }\n\n /**\n * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.\n * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized\n * to any version. It is recommended to use this to lock implementation contracts that are designed to be called\n * through proxies.\n *\n * Emits an {Initialized} event the first time it is successfully executed.\n */\n function _disableInitializers() internal virtual {\n require(!_initializing, \"Initializable: contract is initializing\");\n if (_initialized < type(uint8).max) {\n _initialized = type(uint8).max;\n emit Initialized(type(uint8).max);\n }\n }\n\n /**\n * @dev Internal function that returns the initialized version. Returns `_initialized`\n */\n function _getInitializedVersion() internal view returns (uint8) {\n return _initialized;\n }\n\n /**\n * @dev Internal function that returns the initialized version. Returns `_initializing`\n */\n function _isInitializing() internal view returns (bool) {\n return _initializing;\n }\n}\n"
},
"@openzeppelin/contracts/security/ReentrancyGuard.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Contract module that helps prevent reentrant calls to a function.\n *\n * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier\n * available, which can be applied to functions to make sure there are no nested\n * (reentrant) calls to them.\n *\n * Note that because there is a single `nonReentrant` guard, functions marked as\n * `nonReentrant` may not call one another. This can be worked around by making\n * those functions `private`, and then adding `external` `nonReentrant` entry\n * points to them.\n *\n * TIP: If you would like to learn more about reentrancy and alternative ways\n * to protect against it, check out our blog post\n * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].\n */\nabstract contract ReentrancyGuard {\n // Booleans are more expensive than uint256 or any type that takes up a full\n // word because each write operation emits an extra SLOAD to first read the\n // slot's contents, replace the bits taken up by the boolean, and then write\n // back. This is the compiler's defense against contract upgrades and\n // pointer aliasing, and it cannot be disabled.\n\n // The values being non-zero value makes deployment a bit more expensive,\n // but in exchange the refund on every call to nonReentrant will be lower in\n // amount. Since refunds are capped to a percentage of the total\n // transaction's gas, it is best to keep them low in cases like this one, to\n // increase the likelihood of the full refund coming into effect.\n uint256 private constant _NOT_ENTERED = 1;\n uint256 private constant _ENTERED = 2;\n\n uint256 private _status;\n\n constructor() {\n _status = _NOT_ENTERED;\n }\n\n /**\n * @dev Prevents a contract from calling itself, directly or indirectly.\n * Calling a `nonReentrant` function from another `nonReentrant`\n * function is not supported. It is possible to prevent this from happening\n * by making the `nonReentrant` function external, and making it call a\n * `private` function that does the actual work.\n */\n modifier nonReentrant() {\n _nonReentrantBefore();\n _;\n _nonReentrantAfter();\n }\n\n function _nonReentrantBefore() private {\n // On the first call to nonReentrant, _status will be _NOT_ENTERED\n require(_status != _ENTERED, \"ReentrancyGuard: reentrant call\");\n\n // Any calls to nonReentrant after this point will fail\n _status = _ENTERED;\n }\n\n function _nonReentrantAfter() private {\n // By storing the original value once again, a refund is triggered (see\n // https://eips.ethereum.org/EIPS/eip-2200)\n _status = _NOT_ENTERED;\n }\n}\n"
},
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n"
},
"@openzeppelin/contracts/token/ERC721/IERC721.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../../utils/introspection/IERC165.sol\";\n\n/**\n * @dev Required interface of an ERC721 compliant contract.\n */\ninterface IERC721 is IERC165 {\n /**\n * @dev Emitted when `tokenId` token is transferred from `from` to `to`.\n */\n event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);\n\n /**\n * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.\n */\n event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);\n\n /**\n * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.\n */\n event ApprovalForAll(address indexed owner, address indexed operator, bool approved);\n\n /**\n * @dev Returns the number of tokens in ``owner``'s account.\n */\n function balanceOf(address owner) external view returns (uint256 balance);\n\n /**\n * @dev Returns the owner of the `tokenId` token.\n *\n * Requirements:\n *\n * - `tokenId` must exist.\n */\n function ownerOf(uint256 tokenId) external view returns (address owner);\n\n /**\n * @dev Safely transfers `tokenId` token from `from` to `to`.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must exist and be owned by `from`.\n * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n *\n * Emits a {Transfer} event.\n */\n function safeTransferFrom(\n address from,\n address to,\n uint256 tokenId,\n bytes calldata data\n ) external;\n\n /**\n * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients\n * are aware of the ERC721 protocol to prevent tokens from being forever locked.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must exist and be owned by `from`.\n * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.\n * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n *\n * Emits a {Transfer} event.\n */\n function safeTransferFrom(\n address from,\n address to,\n uint256 tokenId\n ) external;\n\n /**\n * @dev Transfers `tokenId` token from `from` to `to`.\n *\n * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721\n * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must\n * understand this adds an external call which potentially creates a reentrancy vulnerability.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must be owned by `from`.\n * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 tokenId\n ) external;\n\n /**\n * @dev Gives permission to `to` to transfer `tokenId` token to another account.\n * The approval is cleared when the token is transferred.\n *\n * Only a single account can be approved at a time, so approving the zero address clears previous approvals.\n *\n * Requirements:\n *\n * - The caller must own the token or be an approved operator.\n * - `tokenId` must exist.\n *\n * Emits an {Approval} event.\n */\n function approve(address to, uint256 tokenId) external;\n\n /**\n * @dev Approve or remove `operator` as an operator for the caller.\n * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.\n *\n * Requirements:\n *\n * - The `operator` cannot be the caller.\n *\n * Emits an {ApprovalForAll} event.\n */\n function setApprovalForAll(address operator, bool _approved) external;\n\n /**\n * @dev Returns the account approved for `tokenId` token.\n *\n * Requirements:\n *\n * - `tokenId` must exist.\n */\n function getApproved(uint256 tokenId) external view returns (address operator);\n\n /**\n * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.\n *\n * See {setApprovalForAll}\n */\n function isApprovedForAll(address owner, address operator) external view returns (bool);\n}\n"
},
"@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @title ERC721 token receiver interface\n * @dev Interface for any contract that wants to support safeTransfers\n * from ERC721 asset contracts.\n */\ninterface IERC721Receiver {\n /**\n * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}\n * by `operator` from `from`, this function is called.\n *\n * It must return its Solidity selector to confirm the token transfer.\n * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.\n *\n * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.\n */\n function onERC721Received(\n address operator,\n address from,\n uint256 tokenId,\n bytes calldata data\n ) external returns (bytes4);\n}\n"
},
"@openzeppelin/contracts/utils/Address.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n *\n * [IMPORTANT]\n * ====\n * You shouldn't rely on `isContract` to protect against flash loan attacks!\n *\n * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n * constructor.\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies on extcodesize/address.code.length, which returns 0\n // for contracts in construction, since the code is only stored at the end\n // of the constructor execution.\n\n return account.code.length > 0;\n }\n\n /**\n * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n (bool success, ) = recipient.call{value: amount}(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain `call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value,\n string memory errorMessage\n ) internal returns (bytes memory) {\n require(address(this).balance >= value, \"Address: insufficient balance for call\");\n (bool success, bytes memory returndata) = target.call{value: value}(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n return functionStaticCall(target, data, \"Address: low-level static call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n (bool success, bytes memory returndata) = target.staticcall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionDelegateCall(target, data, \"Address: low-level delegate call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n (bool success, bytes memory returndata) = target.delegatecall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling\n * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.\n *\n * _Available since v4.8._\n */\n function verifyCallResultFromTarget(\n address target,\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n if (success) {\n if (returndata.length == 0) {\n // only check isContract if the call was successful and the return data is empty\n // otherwise we already know that it was a contract\n require(isContract(target), \"Address: call to non-contract\");\n }\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n /**\n * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the\n * revert reason or using the provided one.\n *\n * _Available since v4.3._\n */\n function verifyCallResult(\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal pure returns (bytes memory) {\n if (success) {\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n function _revert(bytes memory returndata, string memory errorMessage) private pure {\n // Look for revert reason and bubble it up if present\n if (returndata.length > 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n /// @solidity memory-safe-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n}\n"
},
"@openzeppelin/contracts/utils/Context.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n}\n"
},
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165 {\n /**\n * @dev Returns true if this contract implements the interface defined by\n * `interfaceId`. See the corresponding\n * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n * to learn more about how these ids are created.\n *\n * This function call must use less than 30 000 gas.\n */\n function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n"
},
"contracts/DCNTStaking.sol": {
"content": "// SPDX-License-Identifier: MIT LICENSE\npragma solidity ^0.8.0;\n\n/*\n ______ _______ _______ _______ _ _________\n( __ \\ ( ____ \\( ____ \\( ____ \\( ( /|\\__ __/\n| ( \\ )| ( \\/| ( \\/| ( \\/| \\ ( | ) (\n| | ) || (__ | | | (__ | \\ | | | |\n| | | || __) | | | __) | (\\ \\) | | |\n| | ) || ( | | | ( | | \\ | | |\n| (__/ )| (____/\\| (____/\\| (____/\\| ) \\ | | |\n(______/ (_______/(_______/(_______/|/ )_) )_(\n\n*/\n\n/// ============ Imports ============\n\nimport \"@openzeppelin/contracts/proxy/utils/Initializable.sol\";\nimport \"@openzeppelin/contracts/access/Ownable.sol\";\nimport \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\nimport \"@openzeppelin/contracts/token/ERC721/IERC721.sol\";\nimport \"@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol\";\nimport \"@openzeppelin/contracts/security/ReentrancyGuard.sol\";\n\ncontract DCNTStaking is\n Initializable,\n Ownable,\n ReentrancyGuard,\n IERC721Receiver\n{\n uint256 public totalStaked;\n\n // struct to store a stake's token, owner, and earning values\n struct Stake {\n uint24 tokenId;\n uint48 timestamp;\n address owner;\n }\n\n event NFTStaked(address owner, uint256 tokenId, uint256 value);\n event NFTUnstaked(address owner, uint256 tokenId, uint256 value);\n event Claimed(address owner, uint256 amount);\n\n address public nftAddress;\n address public erc20Address;\n uint256 public vaultStart;\n uint256 public vaultEnd;\n uint256 public totalClaimed;\n uint256 public totalSupply;\n\n // maps tokenId to stake\n mapping(uint256 => Stake) public vault;\n\n function initialize(\n address _owner,\n address _nft,\n address _token,\n uint256 _vaultDuration,\n uint256 _totalSupply\n ) public initializer {\n _transferOwnership(_owner);\n nftAddress = _nft;\n erc20Address = _token;\n vaultStart = block.timestamp;\n vaultEnd = vaultStart + (_vaultDuration * 1 days);\n totalSupply = _totalSupply;\n }\n\n function stake(uint256[] calldata tokenIds) external nonReentrant {\n uint256 tokenId;\n totalStaked += tokenIds.length;\n for (uint256 i; i != tokenIds.length; i++) {\n tokenId = tokenIds[i];\n require(vault[tokenId].owner == address(0), \"already staked\");\n require(\n IERC721(nftAddress).ownerOf(tokenId) == msg.sender,\n \"not your token\"\n );\n require(\n IERC721(nftAddress).getApproved(tokenId) == address(this)\n || IERC721(nftAddress).isApprovedForAll(msg.sender, address(this)),\n \"not approved for transfer\"\n );\n\n IERC721(nftAddress).safeTransferFrom(msg.sender, address(this), tokenId);\n emit NFTStaked(msg.sender, tokenId, block.timestamp);\n\n vault[tokenId] = Stake({\n owner: msg.sender,\n tokenId: uint24(tokenId),\n timestamp: uint48(min(block.timestamp, vaultEnd))\n });\n }\n }\n\n function _unstakeMany(address account, uint256[] calldata tokenIds) internal {\n uint256 tokenId;\n totalStaked -= tokenIds.length;\n for (uint256 i; i != tokenIds.length; i++) {\n tokenId = tokenIds[i];\n Stake memory staked = vault[tokenId];\n require(staked.owner == msg.sender, \"not an owner\");\n\n delete vault[tokenId];\n emit NFTUnstaked(account, tokenId, block.timestamp);\n IERC721(nftAddress).safeTransferFrom(address(this), account, tokenId);\n }\n }\n\n function claim(uint256[] calldata tokenIds) external nonReentrant {\n _claim(msg.sender, tokenIds, false);\n }\n\n function claimForAddress(address account, uint256[] calldata tokenIds)\n external\n nonReentrant\n {\n _claim(account, tokenIds, false);\n }\n\n function unstake(uint256[] calldata tokenIds) external nonReentrant {\n _claim(msg.sender, tokenIds, true);\n }\n\n function _claim(\n address account,\n uint256[] calldata tokenIds,\n bool _unstake\n ) internal {\n uint256 tokenId;\n uint256 earned = 0;\n\n for (uint256 i; i != tokenIds.length; i++) {\n tokenId = tokenIds[i];\n Stake memory staked = vault[tokenId];\n require(staked.owner == account, \"not an owner\");\n uint256 stakedAt = staked.timestamp;\n uint256 currentTime = min(block.timestamp, vaultEnd);\n\n earned += calculateEarn(stakedAt);\n\n vault[tokenId] = Stake({\n owner: account,\n tokenId: uint24(tokenId),\n timestamp: uint48(currentTime)\n });\n }\n if (earned > 0) {\n IERC20(erc20Address).transfer(account, earned);\n totalClaimed += earned;\n }\n if (_unstake) {\n _unstakeMany(account, tokenIds);\n }\n emit Claimed(account, earned);\n }\n\n function calculateEarn(uint256 stakedAt) internal view returns (uint256) {\n uint256 vaultBalance = IERC20(erc20Address).balanceOf(address(this));\n uint256 totalFunding = vaultBalance + totalClaimed;\n\n uint256 vaultDuration = vaultEnd - vaultStart;\n uint256 vaultDays = vaultDuration / 1 days;\n\n uint256 payout = totalFunding / totalSupply / vaultDays;\n uint256 stakeDuration = min(block.timestamp, vaultEnd) - stakedAt;\n\n return (payout * stakeDuration) / 1 days;\n }\n\n function earningInfo(address account, uint256[] calldata tokenIds)\n external\n view\n returns (uint256)\n {\n uint256 tokenId;\n uint256 earned = 0;\n\n for (uint256 i; i != tokenIds.length; i++) {\n tokenId = tokenIds[i];\n Stake memory staked = vault[tokenId];\n require(staked.owner == account, \"not an owner\");\n uint256 stakedAt = staked.timestamp;\n earned += calculateEarn(stakedAt);\n }\n return earned;\n }\n\n // get number of tokens staked in account\n function balanceOf(address account) external view returns (uint256) {\n uint256 balance = 0;\n\n for (uint256 i = 0; i <= totalSupply; i++) {\n if (vault[i].owner == account) {\n balance++;\n }\n }\n return balance;\n }\n\n // return nft tokens staked of owner\n function tokensOfOwner(address account)\n external\n view\n returns (uint256[] memory ownerTokens)\n {\n uint256[] memory tmp = new uint256[](totalSupply);\n\n uint256 index = 0;\n for (uint256 tokenId = 0; tokenId <= totalSupply; tokenId++) {\n if (vault[tokenId].owner == account) {\n tmp[index] = vault[tokenId].tokenId;\n index++;\n }\n }\n\n uint256[] memory tokens = new uint256[](index);\n for (uint256 i; i != index; i++) {\n tokens[i] = tmp[i];\n }\n\n return tokens;\n }\n\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a >= b ? b : a;\n }\n\n function onERC721Received(\n address,\n address,\n // address from,\n uint256,\n bytes calldata\n ) external pure override returns (bytes4) {\n // require(from == address(0x0), \"Cannot send nfts to Vault directly\");\n return IERC721Receiver.onERC721Received.selector;\n }\n\n function withdraw(uint256 amount) external onlyOwner {\n IERC20(erc20Address).transfer(address(this), amount);\n }\n\n // fallback\n fallback() external payable {}\n\n // receive eth\n receive() external payable {}\n}\n"
}
},
"settings": {
"optimizer": {
"enabled": true,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}
} |