Datasets:
yelp
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
ac93e45
1 Parent(s): bfd4401

Delete loading script

Browse files
Files changed (1) hide show
  1. yelp_review_full.py +0 -124
yelp_review_full.py DELETED
@@ -1,124 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """The Yelp Review Full dataset for text classification."""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
- from datasets.tasks import TextClassification
22
-
23
-
24
- _CITATION = """\
25
- @inproceedings{zhang2015character,
26
- title={Character-level convolutional networks for text classification},
27
- author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
28
- booktitle={Advances in neural information processing systems},
29
- pages={649--657},
30
- year={2015}
31
- }
32
- """
33
-
34
- _DESCRIPTION = """\
35
- The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data.
36
- The Yelp reviews full star dataset is constructed by Xiang Zhang ([email protected]) from the above dataset.
37
- It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun.
38
- Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
39
- """
40
-
41
- _HOMEPAGE = "https://www.yelp.com/dataset"
42
-
43
- _LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf"
44
-
45
- _URLs = {
46
- "yelp_review_full": "https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz",
47
- }
48
-
49
-
50
- class YelpReviewFullConfig(datasets.BuilderConfig):
51
- """BuilderConfig for YelpReviewFull."""
52
-
53
- def __init__(self, **kwargs):
54
- """BuilderConfig for YelpReviewFull.
55
-
56
- Args:
57
- **kwargs: keyword arguments forwarded to super.
58
- """
59
- super(YelpReviewFullConfig, self).__init__(**kwargs)
60
-
61
-
62
- class YelpReviewFull(datasets.GeneratorBasedBuilder):
63
- """Yelp Review Full Star Dataset 2015."""
64
-
65
- VERSION = datasets.Version("1.0.0")
66
-
67
- BUILDER_CONFIGS = [
68
- YelpReviewFullConfig(
69
- name="yelp_review_full", version=VERSION, description="Yelp Review Full Star Dataset 2015"
70
- ),
71
- ]
72
-
73
- def _info(self):
74
- features = datasets.Features(
75
- {
76
- "label": datasets.features.ClassLabel(
77
- names=[
78
- "1 star",
79
- "2 star",
80
- "3 stars",
81
- "4 stars",
82
- "5 stars",
83
- ]
84
- ),
85
- "text": datasets.Value("string"),
86
- }
87
- )
88
- return datasets.DatasetInfo(
89
- description=_DESCRIPTION,
90
- features=features,
91
- supervised_keys=None,
92
- homepage=_HOMEPAGE,
93
- license=_LICENSE,
94
- citation=_CITATION,
95
- task_templates=[TextClassification(text_column="text", label_column="label")],
96
- )
97
-
98
- def _split_generators(self, dl_manager):
99
- """Returns SplitGenerators."""
100
- my_urls = _URLs[self.config.name]
101
- archive = dl_manager.download(my_urls)
102
- return [
103
- datasets.SplitGenerator(
104
- name=datasets.Split.TRAIN,
105
- gen_kwargs={"filepath": "yelp_review_full_csv/train.csv", "files": dl_manager.iter_archive(archive)},
106
- ),
107
- datasets.SplitGenerator(
108
- name=datasets.Split.TEST,
109
- gen_kwargs={"filepath": "yelp_review_full_csv/test.csv", "files": dl_manager.iter_archive(archive)},
110
- ),
111
- ]
112
-
113
- def _generate_examples(self, filepath, files):
114
- """Yields examples."""
115
- for path, f in files:
116
- if path == filepath:
117
- csvfile = (line.decode("utf-8") for line in f)
118
- data = csv.reader(csvfile, delimiter=",", quoting=csv.QUOTE_NONNUMERIC)
119
- for id_, row in enumerate(data):
120
- yield id_, {
121
- "text": row[1],
122
- "label": int(row[0]) - 1,
123
- }
124
- break