Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Replace yelp_review_full data url (#4018)
Browse files* replace yelp_review_full data url
* remove unused import
* update dummy data
Commit from https://github.com/huggingface/datasets/commit/03934c2c279e1d9e009bd6a16aed74f99fc678ba
- dataset_infos.json +1 -1
- dummy/yelp_review_full/1.0.0/dummy_data.zip +2 -2
- yelp_review_full.py +15 -17
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"yelp_review_full": {"description": "The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data.\nThe Yelp reviews full star dataset is constructed by Xiang Zhang ([email protected]) from the above dataset.\nIt is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun.\nCharacter-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).\n", "citation": "@inproceedings{zhang2015character,\n title={Character-level convolutional networks for text classification},\n author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},\n booktitle={Advances in neural information processing systems},\n pages={649--657},\n year={2015}\n}\n", "homepage": "https://www.yelp.com/dataset", "license": "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf", "features": {"label": {"num_classes": 5, "names": ["1 star", "2 star", "3 stars", "4 stars", "5 stars"], "
|
|
|
1 |
+
{"yelp_review_full": {"description": "The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data.\nThe Yelp reviews full star dataset is constructed by Xiang Zhang ([email protected]) from the above dataset.\nIt is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun.\nCharacter-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).\n", "citation": "@inproceedings{zhang2015character,\n title={Character-level convolutional networks for text classification},\n author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann},\n booktitle={Advances in neural information processing systems},\n pages={649--657},\n year={2015}\n}\n", "homepage": "https://www.yelp.com/dataset", "license": "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf", "features": {"label": {"num_classes": 5, "names": ["1 star", "2 star", "3 stars", "4 stars", "5 stars"], "id": null, "_type": "ClassLabel"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label"}], "builder_name": "yelp_review_full", "config_name": "yelp_review_full", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 483811554, "num_examples": 650000, "dataset_name": "yelp_review_full"}, "test": {"name": "test", "num_bytes": 37271188, "num_examples": 50000, "dataset_name": "yelp_review_full"}}, "download_checksums": {"https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz": {"num_bytes": 196146755, "checksum": "56006b0a17a370f1e366504b1f2c3e3754e4a3dda17d3e718a885c552869a559"}}, "download_size": 196146755, "post_processing_size": null, "dataset_size": 521082742, "size_in_bytes": 717229497}}
|
dummy/yelp_review_full/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63ceaf01c28d3e6e13130e75a5dbd9ea6517cc0ee803ed97a5b8b446f2f290ee
|
3 |
+
size 6088
|
yelp_review_full.py
CHANGED
@@ -16,7 +16,6 @@
|
|
16 |
|
17 |
|
18 |
import csv
|
19 |
-
import os
|
20 |
|
21 |
import datasets
|
22 |
from datasets.tasks import TextClassification
|
@@ -44,7 +43,7 @@ _HOMEPAGE = "https://www.yelp.com/dataset"
|
|
44 |
_LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf"
|
45 |
|
46 |
_URLs = {
|
47 |
-
"yelp_review_full": "https://
|
48 |
}
|
49 |
|
50 |
|
@@ -99,28 +98,27 @@ class YelpReviewFull(datasets.GeneratorBasedBuilder):
|
|
99 |
def _split_generators(self, dl_manager):
|
100 |
"""Returns SplitGenerators."""
|
101 |
my_urls = _URLs[self.config.name]
|
102 |
-
|
103 |
return [
|
104 |
datasets.SplitGenerator(
|
105 |
name=datasets.Split.TRAIN,
|
106 |
-
gen_kwargs={
|
107 |
-
"filepath": os.path.join(data_dir, "yelp_review_full_csv", "train.csv"),
|
108 |
-
"split": "train",
|
109 |
-
},
|
110 |
),
|
111 |
datasets.SplitGenerator(
|
112 |
name=datasets.Split.TEST,
|
113 |
-
gen_kwargs={"filepath":
|
114 |
),
|
115 |
]
|
116 |
|
117 |
-
def _generate_examples(self, filepath,
|
118 |
"""Yields examples."""
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
16 |
|
17 |
|
18 |
import csv
|
|
|
19 |
|
20 |
import datasets
|
21 |
from datasets.tasks import TextClassification
|
|
|
43 |
_LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf"
|
44 |
|
45 |
_URLs = {
|
46 |
+
"yelp_review_full": "https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz",
|
47 |
}
|
48 |
|
49 |
|
|
|
98 |
def _split_generators(self, dl_manager):
|
99 |
"""Returns SplitGenerators."""
|
100 |
my_urls = _URLs[self.config.name]
|
101 |
+
archive = dl_manager.download(my_urls)
|
102 |
return [
|
103 |
datasets.SplitGenerator(
|
104 |
name=datasets.Split.TRAIN,
|
105 |
+
gen_kwargs={"filepath": "yelp_review_full_csv/train.csv", "files": dl_manager.iter_archive(archive)},
|
|
|
|
|
|
|
106 |
),
|
107 |
datasets.SplitGenerator(
|
108 |
name=datasets.Split.TEST,
|
109 |
+
gen_kwargs={"filepath": "yelp_review_full_csv/test.csv", "files": dl_manager.iter_archive(archive)},
|
110 |
),
|
111 |
]
|
112 |
|
113 |
+
def _generate_examples(self, filepath, files):
|
114 |
"""Yields examples."""
|
115 |
+
for path, f in files:
|
116 |
+
if path == filepath:
|
117 |
+
csvfile = (line.decode("utf-8") for line in f)
|
118 |
+
data = csv.reader(csvfile, delimiter=",", quoting=csv.QUOTE_NONNUMERIC)
|
119 |
+
for id_, row in enumerate(data):
|
120 |
+
yield id_, {
|
121 |
+
"text": row[1],
|
122 |
+
"label": int(row[0]) - 1,
|
123 |
+
}
|
124 |
+
break
|