Datasets:
yelp
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,724 Bytes
27da5b3
 
 
 
 
f9bdab7
27da5b3
f9bdab7
 
27da5b3
 
 
 
 
 
 
 
 
 
1d4b232
18a3aad
 
c1f9ee9
18a3aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f9ee9
18a3aad
c1f9ee9
 
 
 
 
 
 
 
6b4c8e6
 
 
 
 
 
 
 
 
 
 
c41606e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b4c8e6
27da5b3
 
 
 
 
 
 
c67052e
27da5b3
 
 
c67052e
 
27da5b3
 
 
 
 
 
 
 
 
 
 
 
 
df95f5c
27da5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b4c8e6
27da5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df95f5c
 
 
c41606e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: YelpReviewFull
license_details: yelp-licence
dataset_info:
  config_name: yelp_review_full
  features:
  - name: label
    dtype:
      class_label:
        names:
          '0': 1 star
          '1': 2 star
          '2': 3 stars
          '3': 4 stars
          '4': 5 stars
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 483811554
    num_examples: 650000
  - name: test
    num_bytes: 37271188
    num_examples: 50000
  download_size: 322952369
  dataset_size: 521082742
configs:
- config_name: yelp_review_full
  data_files:
  - split: train
    path: yelp_review_full/train-*
  - split: test
    path: yelp_review_full/test-*
  default: true
train-eval-index:
- config: yelp_review_full
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
---
---

# Dataset Card for YelpReviewFull

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Yelp](https://www.yelp.com/dataset)
- **Repository:** [Crepe](https://github.com/zhangxiangxiao/Crepe)
- **Paper:** [Character-level Convolutional Networks for Text Classification](https://arxiv.org/abs/1509.01626)
- **Point of Contact:** [Xiang Zhang](mailto:[email protected])

### Dataset Summary

The Yelp reviews dataset consists of reviews from Yelp.
It is extracted from the Yelp Dataset Challenge 2015 data.

### Supported Tasks and Leaderboards

- `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the text, predict the sentiment.

### Languages

The reviews were mainly written in english.

## Dataset Structure

### Data Instances

A typical data point, comprises of a text and the corresponding label.

An example from the YelpReviewFull test set looks as follows:
```
{
    'label': 0,
    'text': 'I got \'new\' tires from them and within two weeks got a flat. I took my car to a local mechanic to see if i could get the hole patched, but they said the reason I had a flat was because the previous patch had blown - WAIT, WHAT? I just got the tire and never needed to have it patched? This was supposed to be a new tire. \\nI took the tire over to Flynn\'s and they told me that someone punctured my tire, then tried to patch it. So there are resentful tire slashers? I find that very unlikely. After arguing with the guy and telling him that his logic was far fetched he said he\'d give me a new tire \\"this time\\". \\nI will never go back to Flynn\'s b/c of the way this guy treated me and the simple fact that they gave me a used tire!'
}
```

### Data Fields

- 'text': The review texts are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
- 'label': Corresponds to the score associated with the review (between 1 and 5).

### Data Splits

The Yelp reviews full star dataset is constructed by randomly taking 130,000 training samples and 10,000 testing samples for each review star from 1 to 5.
In total there are 650,000 trainig samples and 50,000 testing samples.

## Dataset Creation

### Curation Rationale

The Yelp reviews full star dataset is constructed by Xiang Zhang ([email protected]) from the Yelp Dataset Challenge 2015. It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

You can check the official [yelp-dataset-agreement](https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf).

### Citation Information

Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).

### Contributions

Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset.