YaoMarkMu commited on
Commit
f66800c
1 Parent(s): 3fc8575

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +158 -3
README.md CHANGED
@@ -1,3 +1,158 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ <h1 align="center">
5
+ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins<br>
6
+ </h1>
7
+
8
+ <a href="https://yaomarkmu.github.io/">Yao Mu</a><sup>* †</sup>, <a href="https://tianxingchen.github.io">Tianxing Chen</a><sup>* </sup>, Zanxin Chen<sup>* </sup>, Shijia Peng<sup>*</sup>,<br>Zeyu Gao, Zhiqian Lan, Yude Zou, Lunkai Lin, Zhiqiang Xie, <a href="http://luoping.me/">Ping Luo</a><sup>†</sup>.
9
+ <br>
10
+
11
+ **RoboTwin**: [Webpage (Coming Soon)]() | [PDF (Coming Soon)]() | [arXiv (Coming Soon)]()<br>
12
+ **RoboTwin (early version)**, accepted to <i style="color: red; display: inline;"><b>ECCV Workshop 2024 (Oral)</b></i>: [Webpage](https://robotwin-benchmark.github.io/early-version) | [PDF](https://arxiv.org/pdf/2409.02920) | [arXiv](https://arxiv.org/abs/2409.02920)<br>
13
+ <a href="https://hits.seeyoufarm.com"><img src="https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FTianxingChen%2FRoboTwin&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Repo+Viewers&edge_flat=false"/></a>
14
+
15
+ # ⏱️ Coming Soon
16
+ 1. Task Code Generation Pipeline.
17
+ 2. RoboTwin (Final Version) will be released soon.
18
+ 3. Real Robot Data collected by teleoperation.
19
+ 4. More Tasks env.
20
+ 5. More baseline code will be integrated into this repository (RICE, ACT, Diffusion Policy).
21
+
22
+ # 📚 Overview
23
+ ![Expert Data Generation](./files/pipeline.png)
24
+ ![](./files/robotwin_task.png)
25
+
26
+ # 🛠️ Installation
27
+ See [INSTALLATION.md](./INSTALLATION.md) for installation instructions. It takes about 20 minutes for installation.
28
+
29
+ # ℹ️ Task Informaction
30
+ Coming Soon
31
+
32
+ # 🧑🏻‍💻 Usage
33
+ ## 1. Task Running and Data Collection
34
+ Run `run_task.sh` to run task:
35
+ ```
36
+ bash run_task.sh ${task_name} ${gpu_id}
37
+ ```
38
+ The default task running configurations can be found at `config/${task_name}.yml`, if you want to change some task setting, just modify the specific configuration file.
39
+
40
+ RoboTwin will run expert check first to make sure only successful data will be collect (by running seeds one by one first), this will not take too long.
41
+
42
+ The Data will be collect to `data` under the root directory, in the form of `.pkl` usually.
43
+
44
+ ## 2. Task Config
45
+ Data collection configurations are located in the `config` folder, corresponding to each task. Here is an explanation of the important parameters:
46
+
47
+ 1. **render_freq**: Set to 0 means no rendering. If you wish to see the rendering, it can be set to 10.
48
+ 2. **collect_data**: Data collection will only be enabled if set to True.
49
+ 3. **camera_w,h**: These are the camera parameters, with a total of 4 cameras - two on the wrist and two positioned as top and front views.
50
+ 4. **pcd_crop**: Determines whether the obtained point cloud data is cropped to remove elements like tables and walls.
51
+ 5. **pcd_down_sample_num**: The point cloud data is downsampled using the FPS (Farthest Point Sampling) method, set it to 0 to keep the raw point cloud data.
52
+ 6. **data_type/endpose**: The 6D pose of the end effector, which still has some minor issues.
53
+ 7. **data_type/qpos**: Represents the joint action.
54
+ 8. **observer**: Decides whether to save a observer-view photo for easy observation.
55
+
56
+ ## 3. Deploy your policy
57
+ See `envs/base_task.py`, search `TODO` and you may see the following code, make sure that `policy.get_action(obs)` will return action sequence (predicted actions).:
58
+ ```
59
+ actions = model.get_action(obs) # TODO, get actions according to your policy and current obs
60
+ ```
61
+
62
+ You need to modify `script/eval_policy.py` in the root directory to load your model for evaluation: Search `TODO`, modify the code to init your policy.
63
+
64
+ Run the follow command to run your policy in specific task env:
65
+ ```
66
+ bash script/run_eval_policy.sh ${task_name} ${gpu_id}
67
+ ```
68
+
69
+ ## 4. DP3 as baseline
70
+ The DP3 code can be found in `policy/3D-Diffusion-Policy`.
71
+
72
+ Process Data for DP3 training after collecting data (In root directory), and input the task name and the amount of data you want your policy to train with:
73
+ ```
74
+ python script/pkl2zarr_dp3.py
75
+ ```
76
+
77
+ Then, move to `policy/3D-Diffusion-Policy` first, and run the following code to train DP3 :
78
+ ```
79
+ bash train.sh ${task_name} ${expert_data_num} ${gpu_id}
80
+ ```
81
+
82
+ Run the following code to eval DP3 for specific task:
83
+ ```
84
+ bash eval.sh ${task_name} ${expert_data_num} ${gpu_id}
85
+ ```
86
+
87
+ Current leaderboard:
88
+ ```
89
+ Here's the revised table with the averages listed at the end:
90
+
91
+ | Task | Algorithm | 10 demos | 20 demos | 50 demos |
92
+ |--------------------------------|---------------------|--------------|--------------|--------------|
93
+ | Apple Cabinet Storage | DP3 (XYZ) | 41% | 59% | 75% |
94
+ | | DP3 (XYZ+RGB) | 22% | 41% | 60% |
95
+ | Block Handover | DP3 (XYZ) | 55% | 89% | 70% |
96
+ | | DP3 (XYZ+RGB) | 48% | 81% | 94% |
97
+ | Block Stack (Easy) | DP3 (XYZ) | / | / | / |
98
+ | | DP3 (XYZ+RGB) | 0% | 1% | 23% |
99
+ | Container Place | DP3 (XYZ) | 34% | 54% | 68% |
100
+ | | DP3 (XYZ+RGB) | 18% | 28% | 54% |
101
+ | Dual Bottles Pick (Easy) | DP3 (XYZ) | 10% | 48% | 78% |
102
+ | | DP3 (XYZ+RGB) | 9% | 41% | 75% |
103
+ | Empty Cup Place | DP3 (XYZ) | 3% | 30% | 73% |
104
+ | | DP3 (XYZ+RGB) | 7% | 23% | 82% |
105
+ | Pick Apple Messy | DP3 (XYZ) | 2% | 2% | 9% |
106
+ | | DP3 (XYZ+RGB) | 2% | 3% | 25% |
107
+ | Shoes Place | DP3 (XYZ) | 2% | 1% | 12% |
108
+ | | DP3 (XYZ+RGB) | 0% | 0% | 5% |
109
+ | Block Hammer Beat | DP3 (XYZ) | 37% | 45% | 60% |
110
+ | | DP3 (XYZ+RGB) | 36% | 41% | 73% |
111
+ | Block Sweep | DP3 (XYZ) | 49% | 80% | 96% |
112
+ | | DP3 (XYZ+RGB) | 70% | 98% | 99% |
113
+ | Block Stack (Hard) | DP3 (XYZ) | / | / | / |
114
+ | | DP3 (XYZ+RGB) | 0% | 0% | 3% |
115
+ | Diverse Bottles Pick | DP3 (XYZ) | 3% | 12% | 38% |
116
+ | | DP3 (XYZ+RGB) | 0% | 1% | 7% |
117
+ | Dual Bottles Pick (Hard) | DP3 (XYZ) | 13% | 29% | 46% |
118
+ | | DP3 (XYZ+RGB) | 11% | 26% | 48% |
119
+ | Mug Hanging | DP3 (XYZ) | 1% | 9% | 13% |
120
+ | | DP3 (XYZ+RGB) | 1% | 2% | 6% |
121
+ | Shoe Place | DP3 (XYZ) | 12% | 16% | 54% |
122
+ | | DP3 (XYZ+RGB) | 13% | 20% | 35% |
123
+ | Average | DP3 (XYZ) | 20.15% | 36.46% | 53.23% |
124
+ | | DP3 (XYZ+RGB) | 17.93% | 29.33% | 45.93% |
125
+
126
+ ```
127
+
128
+ # 🪄 Digital Twin Generation
129
+
130
+ Deemos Rodin: [https://hyperhuman.deemos.com/rodin](https://hyperhuman.deemos.com/rodin)
131
+
132
+ # ⁉️ Common Issues
133
+ If you find you fail to quit the running python process with `Crtl + C`, just try `Ctrl + \`.
134
+
135
+ We found Vulkan is not stable in someoff-screen devices, try reconnecting `ssh -X ...` if you meet any problem.
136
+
137
+ Other Common Issues can be found in [COMMON_ISSUE](./COMMON_ISSUE.md)
138
+
139
+ # 👍 Citation
140
+ If you find our work useful, please consider citing:
141
+
142
+ 1. RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins
143
+ ```
144
+ Coming Soon
145
+ ```
146
+
147
+ 2. RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (**early version**), accepted to <i style="color: red; display: inline;"><b>ECCV Workshop 2024 (Oral)</b></i>
148
+ ```
149
+ @article{mu2024robotwin,
150
+ title={RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version)},
151
+ author={Mu, Yao and Chen, Tianxing and Peng, Shijia and Chen, Zanxin and Gao, Zeyu and Zou, Yude and Lin, Lunkai and Xie, Zhiqiang and Luo, Ping},
152
+ journal={arXiv preprint arXiv:2409.02920},
153
+ year={2024}
154
+ }
155
+ ```
156
+
157
+ # 🏷️ License
158
+ This repository is released under the MIT license. See [LICENSE](./LICENSE) for additional details.