Datasets:
Languages:
Javanese
Tags:
speech-recognition
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import os | |
from pathlib import Path | |
from typing import List | |
import datasets | |
from seacrowd.utils import schemas | |
from seacrowd.utils.configs import SEACrowdConfig | |
from seacrowd.utils.constants import Tasks | |
_CITATION = """\ | |
@inproceedings{kjartansson-etal-sltu2018, | |
title = {{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}}, | |
author = {Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha}, | |
booktitle = {Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU)}, | |
year = {2018}, | |
address = {Gurugram, India}, | |
month = aug, | |
pages = {52--55}, | |
URL = {http://dx.doi.org/10.21437/SLTU.2018-11}, | |
} | |
""" | |
_DATASETNAME = "jv_id_asr" | |
_DESCRIPTION = """\ | |
This data set contains transcribed audio data for Javanese. The data set consists of wave files, and a TSV file. | |
The file utt_spk_text.tsv contains a FileID, UserID and the transcription of audio in the file. | |
The data set has been manually quality checked, but there might still be errors. | |
This dataset was collected by Google in collaboration with Reykjavik University and Universitas Gadjah Mada in Indonesia. | |
""" | |
_HOMEPAGE = "http://openslr.org/35/" | |
_LANGUAGES = ["jav"] | |
_LOCAL = False | |
_LICENSE = "Attribution-ShareAlike 4.0 International" | |
_URLS = { | |
"jv_id_asr_train": "https://univindonesia-my.sharepoint.com/:u:/g/personal/winoto_hasyim_office_ui_ac_id/EYksRtR68-NKrmvUo2F2VUIBW6R8RsOEmLRN4YYxn1Fomw?e=4qn3Dj&download=1", | |
"jv_id_asr_val": "https://univindonesia-my.sharepoint.com/:u:/g/personal/winoto_hasyim_office_ui_ac_id/EbuZouiBsXVDk52LmealrJoBy5lrddZQu98n_dsbD5eUPA?e=B29e2H&download=1", | |
"jv_id_asr_test": "https://univindonesia-my.sharepoint.com/:u:/g/personal/winoto_hasyim_office_ui_ac_id/Ef15baDjx01Fs_BlBQSGuO8B9IFajFWi5vCajZqD7xLIwA?e=0OhSfx&download=1", | |
} | |
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] | |
_SOURCE_VERSION = "1.0.0" | |
_SEACROWD_VERSION = "2024.06.20" | |
class JvIdASR(datasets.GeneratorBasedBuilder): | |
"""Javanese ASR training data set containing ~185K utterances.""" | |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
BUILDER_CONFIGS = [ | |
SEACrowdConfig( | |
name="jv_id_asr_source", | |
version=SOURCE_VERSION, | |
description="jv_id_asr source schema", | |
schema="source", | |
subset_id="jv_id_asr", | |
), | |
SEACrowdConfig( | |
name="jv_id_asr_seacrowd_sptext", | |
version=SEACROWD_VERSION, | |
description="jv_id_asr Nusantara schema", | |
schema="seacrowd_sptext", | |
subset_id="jv_id_asr", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "jv_id_asr_source" | |
def _info(self) -> datasets.DatasetInfo: | |
if self.config.schema == "source": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"speaker_id": datasets.Value("string"), | |
"path": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=16_000), | |
"text": datasets.Value("string"), | |
} | |
) | |
elif self.config.schema == "seacrowd_sptext": | |
features = schemas.speech_text_features | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
# urls = _URLS[_DATASETNAME] | |
# base_path = {} | |
# for id in range(10): | |
# base_path[id] = dl_manager.download_and_extract(urls.format(str(id))) | |
# for id in ["a", "b", "c", "d", "e", "f"]: | |
# base_path[id] = dl_manager.download_and_extract(urls.format(str(id))) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLS["jv_id_asr_train"])}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLS["jv_id_asr_val"])}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLS["jv_id_asr_test"])}, | |
), | |
] | |
def _generate_examples(self, filepath: str): | |
tsv_file = os.path.join(filepath, "asr_javanese", "utt_spk_text.tsv") | |
with open(tsv_file, "r") as f: | |
tsv_file = csv.reader(f, delimiter="\t") | |
for line in tsv_file: | |
audio_id, sp_id, text = line[0], line[1], line[2] | |
wav_path = os.path.join(filepath, "asr_javanese", "data", "{}.flac".format(audio_id)) | |
if os.path.exists(wav_path): | |
if self.config.schema == "source": | |
ex = { | |
"id": audio_id, | |
"speaker_id": sp_id, | |
"path": wav_path, | |
"audio": wav_path, | |
"text": text, | |
} | |
yield audio_id, ex | |
elif self.config.schema == "seacrowd_sptext": | |
ex = { | |
"id": audio_id, | |
"speaker_id": sp_id, | |
"path": wav_path, | |
"audio": wav_path, | |
"text": text, | |
"metadata": { | |
"speaker_age": None, | |
"speaker_gender": None, | |
}, | |
} | |
yield audio_id, ex | |
f.close() |