Will-uob commited on
Commit
6cb7ca9
·
1 Parent(s): cc2afd6

ExampleLoadingOfDataset

Browse files
Files changed (1) hide show
  1. DatasetGenerator.py +48 -0
DatasetGenerator.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Example loading of the dataset
2
+
3
+ import torch
4
+ from torch.utils.data import Dataset
5
+ from torchvision import datasets
6
+ from torchvision.transforms import ToTensor
7
+ import matplotlib.pyplot as plt
8
+ import zipfile
9
+ import os
10
+ import pandas as pd
11
+ from torchvision.io import read_image
12
+
13
+ class CustomImageDataset(Dataset):
14
+ def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
15
+ self.img_labels = pd.read_csv(annotations_file)
16
+ self.img_dir = img_dir
17
+ self.transform = transform
18
+ self.target_transform = target_transform
19
+
20
+ def __len__(self):
21
+ return len(self.img_labels)
22
+
23
+ def __getitem__(self, idx):
24
+ img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, -1])
25
+ image = read_image(img_path)
26
+ label = self.img_labels.iloc[idx, 2]
27
+ if self.transform:
28
+ image = self.transform(image)
29
+ if self.target_transform:
30
+ label = self.target_transform(label)
31
+ return image, label
32
+
33
+ with zipfile.ZipFile("150_Dataset(1).zip", 'r') as zip_ref:
34
+ zip_ref.extractall(".")
35
+
36
+ train_dataset = CustomImageDataset(annotations_file="./images/train/train.csv",
37
+ img_dir="./images/train")
38
+
39
+ train_dataloader = DataLoader(train_dataset, batch_size=12, shuffle=True)
40
+
41
+ train_features, train_labels = next(iter(train_dataloader))
42
+ print(f"Feature batch shape: {train_features.size()}")
43
+ print(f"Labels batch shape: {len(train_labels)}")
44
+ img = train_features[0].squeeze()
45
+ label = train_labels[0]
46
+ plt.imshow(img, cmap="gray")
47
+ plt.show()
48
+ print(f"Label: {label}")