Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -11,8 +11,49 @@ datasets:
|
|
11 |
format: csv
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
| Unnamed: 0 | u | i | ts | label | idx |
|
17 |
| ---------- | ------------- | ------------- | ------------------ | ------------ | ---------------------- |
|
18 |
| `idx-1` | `source node` | `target node` | `interaction time` | `defalut: 0` | `from 1 to the #edges` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
format: csv
|
12 |
---
|
13 |
|
14 |
+
The dataset is dynamic graphs for paper [CrossLink](https://arxiv.org/pdf/2402.02168.pdf)
|
15 |
+
|
16 |
+
<h5 align="center">
|
17 |
+
<a href="https://arxiv.org/pdf/2402.02168.pdf"><img src="https://img.shields.io/badge/arXiv-2402.02168-b31b1b.svg" alt="arXiv"> </a>
|
18 |
+
<a href="https://github.com/weichow23/CrossLink"><img src="https://img.shields.io/github/stars/weichow23/CrossLink?style=social&logo=github" width="75pt"></a>
|
19 |
+
<a href="https://weichow23.github.io/CrossLink/"><img src="https://img.shields.io/badge/website-gold" alt="project website"> </a>
|
20 |
+
<a href="https://huggingface.co/MeissonFlow/Meissonic">
|
21 |
+
<img src="https://img.shields.io/badge/🤗-Model-blue.svg"> </a>
|
22 |
+
<a href="https://huggingface.co/datasets/WeiChow/DyGraphs">
|
23 |
+
<img src="https://img.shields.io/badge/🤗-Dataset-green.svg"> </a>
|
24 |
+
</h5>
|
25 |
+
|
26 |
+
## 🚀 Introduction
|
27 |
+
|
28 |
+
CrossLink learns the evolution pattern of a specific downstream graph and subsequently makes pattern-specific link predictions.
|
29 |
+
It employs a technique called *conditioned link generation*, which integrates both evolution and structure modeling to perform evolution-specific link prediction. This conditioned link generation is carried out by a transformer-decoder architecture, enabling efficient parallel training and inference. CrossLink is trained on extensive dynamic graphs across diverse domains, encompassing 6 million dynamic edges. Extensive experiments on eight untrained graphs demonstrate that CrossLink achieves state-of-the-art performance in cross-domain link prediction. Compared to advanced baselines under the same settings, CrossLink shows an average improvement of **11.40%** in Average Precision across eight graphs. Impressively, it surpasses the fully supervised performance of 8 advanced baselines on 6 untrained graphs.
|
30 |
+
|
31 |
+
![Architecture](./assets/model.png)
|
32 |
+
|
33 |
+
#### Format
|
34 |
+
|
35 |
+
Please keep the dataset in the fellow format:
|
36 |
|
37 |
| Unnamed: 0 | u | i | ts | label | idx |
|
38 |
| ---------- | ------------- | ------------- | ------------------ | ------------ | ---------------------- |
|
39 |
| `idx-1` | `source node` | `target node` | `interaction time` | `defalut: 0` | `from 1 to the #edges` |
|
40 |
+
|
41 |
+
You can prepare those data by the code in `preprocess_data` folder
|
42 |
+
|
43 |
+
You can also use our raw data in [huggingface](https://huggingface.co/datasets/WeiChow/DyGraphs_raw)
|
44 |
+
|
45 |
+
## 📚 Citation
|
46 |
+
|
47 |
+
If you find this work helpful, please consider citing:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{huang2024graphmodelcrossdomaindynamic,
|
51 |
+
title={One Graph Model for Cross-domain Dynamic Link Prediction},
|
52 |
+
author={Xuanwen Huang and Wei Chow and Yang Wang and Ziwei Chai and Chunping Wang and Lei Chen and Yang Yang},
|
53 |
+
year={2024},
|
54 |
+
eprint={2402.02168},
|
55 |
+
archivePrefix={arXiv},
|
56 |
+
primaryClass={cs.LG},
|
57 |
+
url={https://arxiv.org/abs/2402.02168},
|
58 |
+
}
|
59 |
+
```
|