File size: 2,894 Bytes
6384a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8146e8a
6384a5b
 
 
 
 
 
 
 
 
 
 
 
 
ecbadca
6384a5b
 
 
 
 
4e023e1
 
6384a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8146e8a
6384a5b
 
 
 
 
 
 
 
 
 
ecbadca
6384a5b
ecbadca
6384a5b
ecbadca
 
 
 
 
6384a5b
ecbadca
 
6384a5b
ecbadca
6384a5b
 
 
 
 
ecbadca
 
6384a5b
ecbadca
6384a5b
 
ecbadca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- image-classification
task_ids: []
pretty_name: ImageNet-O
tags:
- fiftyone
- image
- image-classification
dataset_summary: '




  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2000 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include ''max_samples'', etc

  dataset = fouh.load_from_hub("Voxel51/ImageNet-O")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for ImageNet-O

![image](ImageNet-O.png)



This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2000 samples.

The recipe notebook for creating this dataset can be found [here](https://colab.research.google.com/drive/1ScN-30Q-1ssAwuQYIbZ453h0vo0SAhz8).

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/ImageNet-O")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

The ImageNet-O dataset consists of images from classes not found in the standard ImageNet-1k dataset. It tests the robustness and out-of-distribution detection capabilities of computer vision models trained on ImageNet-1k.

Key points about ImageNet-O:

- Contains images from classes distinct from the 1,000 classes in ImageNet-1k
- Enables testing model performance on out-of-distribution samples, i.e. images that are semantically different from the training data
- Commonly used to evaluate out-of-distribution detection methods for models trained on ImageNet
- Reported using the Area Under the Precision-Recall curve (AUPR) metric
- Manually annotated, naturally diverse class distribution, and large scale

- **Curated by:** Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, Dawn Song
- **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** [MIT License](https://github.com/hendrycks/natural-adv-examples/blob/master/LICENSE)

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/hendrycks/natural-adv-examples
- **Paper:** https://arxiv.org/abs/1907.07174

## Citation

**BibTeX:**
```bibtex
@article{hendrycks2021nae,
  title={Natural Adversarial Examples},
  author={Dan Hendrycks and Kevin Zhao and Steven Basart and Jacob Steinhardt and Dawn Song},
  journal={CVPR},
  year={2021}
}
```