Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
ArXiv:
File size: 2,894 Bytes
6384a5b 8146e8a 6384a5b ecbadca 6384a5b 4e023e1 6384a5b 8146e8a 6384a5b ecbadca 6384a5b ecbadca 6384a5b ecbadca 6384a5b ecbadca 6384a5b ecbadca 6384a5b ecbadca 6384a5b ecbadca 6384a5b ecbadca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
annotations_creators: []
language: en
size_categories:
- 1K<n<10K
task_categories:
- image-classification
task_ids: []
pretty_name: ImageNet-O
tags:
- fiftyone
- image
- image-classification
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2000 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = fouh.load_from_hub("Voxel51/ImageNet-O")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for ImageNet-O
![image](ImageNet-O.png)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2000 samples.
The recipe notebook for creating this dataset can be found [here](https://colab.research.google.com/drive/1ScN-30Q-1ssAwuQYIbZ453h0vo0SAhz8).
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/ImageNet-O")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
The ImageNet-O dataset consists of images from classes not found in the standard ImageNet-1k dataset. It tests the robustness and out-of-distribution detection capabilities of computer vision models trained on ImageNet-1k.
Key points about ImageNet-O:
- Contains images from classes distinct from the 1,000 classes in ImageNet-1k
- Enables testing model performance on out-of-distribution samples, i.e. images that are semantically different from the training data
- Commonly used to evaluate out-of-distribution detection methods for models trained on ImageNet
- Reported using the Area Under the Precision-Recall curve (AUPR) metric
- Manually annotated, naturally diverse class distribution, and large scale
- **Curated by:** Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, Dawn Song
- **Shared by:** [Harpreet Sahota](twitter.com/datascienceharp), Hacker-in-Residence at Voxel51
- **Language(s) (NLP):** en
- **License:** [MIT License](https://github.com/hendrycks/natural-adv-examples/blob/master/LICENSE)
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/hendrycks/natural-adv-examples
- **Paper:** https://arxiv.org/abs/1907.07174
## Citation
**BibTeX:**
```bibtex
@article{hendrycks2021nae,
title={Natural Adversarial Examples},
author={Dan Hendrycks and Kevin Zhao and Steven Basart and Jacob Steinhardt and Dawn Song},
journal={CVPR},
year={2021}
}
```
|