VikramSingh178 commited on
Commit
0038eff
·
verified ·
1 Parent(s): c768c1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -24,3 +24,55 @@ tags:
24
  size_categories:
25
  - 1K<n<10K
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  size_categories:
25
  - 1K<n<10K
26
  ---
27
+
28
+ ---
29
+ datasets:
30
+ - VikramSingh178/Products-10k_sample-BLIP-captions
31
+ ---
32
+
33
+
34
+
35
+ ## Dataset Description
36
+
37
+ The **Products-10k** dataset consists of images of various products along with their automatically generated captions. The captions are generated using the BLIP (Bootstrapping Language-Image Pre-training) model. This dataset aims to aid in tasks related to image captioning, visual recognition, and product classification.
38
+
39
+ ## Dataset Summary
40
+
41
+ - **Dataset Name**: Products-10k
42
+ - **Generated Captions Model**: Salesforce/blip-image-captioning-large
43
+ - **Number of Images**: 10,000
44
+ - **Image Formats**: JPEG, PNG
45
+ - **Captioning Prompt**: "Photography of"
46
+ - **Source**: The images are sourced from a variety of product categories.
47
+
48
+ ## Dataset Structure
49
+
50
+ The dataset is structured as follows:
51
+
52
+ - **image**: Contains the product images in RGB format.
53
+ - **text**: Contains the generated captions for each product image.
54
+
55
+ ### Example Data
56
+
57
+ Here is an example of the data in this dataset:
58
+
59
+ | Image | Caption |
60
+ |--------------|-------------------------------|
61
+ | ![Example Image](https://via.placeholder.com/150) | Photography of a red shirt. |
62
+
63
+ ## Usage
64
+
65
+ You can load and use this dataset with the Hugging Face `datasets` library as follows:
66
+
67
+ ```python
68
+ from datasets import load_dataset
69
+
70
+ dataset = load_dataset("VikramSingh178/Products-10k_sample-BLIP-captions", split="train")
71
+
72
+ # Display an example
73
+ example = dataset[0]
74
+ image = example["image"]
75
+ caption = example["text"]
76
+ image.show()
77
+ print("Caption:", caption)
78
+ ```