The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 535ead17-8279-4f25-a387-b3b4bbfa239a)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1731, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1688, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1067, in get_module data_files = DataFilesDict.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 721, in from_patterns else DataFilesList.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 634, in from_patterns origin_metadata = _get_origin_metadata(data_files, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 548, in _get_origin_metadata return thread_map( File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/std.py", line 1169, in __iter__ for obj in iterable: File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 609, in result_iterator yield fs.pop().result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 446, in result return self.__get_result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result raise self._exception File "/usr/local/lib/python3.9/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 527, in _get_single_origin_metadata resolved_path = fs.resolve_path(data_file) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist self._api.repo_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2704, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2561, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 535ead17-8279-4f25-a387-b3b4bbfa239a)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Comics: Pick-A-Panel
Updated val and test on 25/02/2025
This is the dataset for the ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models
The competition is hosted in the Robust Reading Competition website and the leaderboard is available here.
The dataset contains five subtask or skills:
Sequence Filling
Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to pick the panel that best fits the sequence.
Character Coherence, Visual Closure, Text Closure
These skills require understanding the context sequence to then pick the best panel to continue the story, focusing on the characters, the visual elements, and the text:
- Character Coherence: Given a sequence of comic panels, pick the panel from the two options that best continues the story in a coherent with the characters. Both options are the same panel, but the text in the speech bubbles has been swapped.
- Visual Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the visual elements.
- Text Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the text. All options are the same panel, but with text in the speech retrieved from different panels.
Caption Relevance
Given a caption from the previous panel, select the panel that best continues the story.
Loading the Data
from datasets import load_dataset
skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
split = "val" # "val", "test", "train"
dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split=split)
Map to single images
If your model can only process single images, you can render each sample as a single image:
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from datasets import Features, Value, Image as ImageFeature
class SingleImagePickAPanel:
def __init__(self, max_size=500, margin=10, label_space=20, font_path=None):
if font_path is None:
raise ValueError("Font path must be provided. Testing was done with 'Arial.ttf'")
self.max_size = max_size
self.margin = margin
self.label_space = label_space
# Add separate font sizes
self.label_font_size = 20
self.number_font_size = 24
self.font_path = font_path
def resize_image(self, img):
"""Resize image keeping aspect ratio if longest edge > max_size"""
if max(img.size) > self.max_size:
ratio = self.max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
return img.resize(new_size, Image.Resampling.LANCZOS)
return img
def create_mask_panel(self, width, height):
"""Create a question mark panel"""
mask_panel = Image.new("RGB", (width, height), (200, 200, 200))
draw = ImageDraw.Draw(mask_panel)
font_size = int(height * 0.8)
try:
font = ImageFont.truetype(self.font_path, font_size)
except:
raise ValueError("Font file not found")
text = "?"
bbox = draw.textbbox((0, 0), text, font=font)
text_x = (width - (bbox[2] - bbox[0])) // 2
text_y = (height - (bbox[3] - bbox[1])) // 2
draw.text((text_x, text_y), text, fill="black", font=font)
return mask_panel
def draw_number_on_panel(self, panel, number, font):
"""Draw number on the bottom of the panel with background"""
draw = ImageDraw.Draw(panel)
# Get text size
bbox = draw.textbbox((0, 0), str(number), font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
# Calculate position (bottom-right corner)
padding = 2
text_x = panel.size[0] - text_width - padding
text_y = panel.size[1] - text_height - padding
# Draw semi-transparent background
bg_rect = [(text_x - padding, text_y - padding),
(text_x + text_width + padding, text_y + text_height + padding)]
draw.rectangle(bg_rect, fill=(255, 255, 255, 180))
# Draw text
draw.text((text_x, text_y), str(number), fill="black", font=font)
return panel
def map_to_single_image(self, examples):
"""Process a batch of examples from a HuggingFace dataset"""
single_images = []
for i in range(len(examples['sample_id'])):
# Get context and options for current example
context = examples['context'][i] if len(examples['context'][i]) > 0 else []
options = examples['options'][i]
# Resize all images
context = [self.resize_image(img) for img in context]
options = [self.resize_image(img) for img in options]
# Calculate common panel size (use median size to avoid outliers)
all_panels = context + options
if len(all_panels) > 0:
widths = [img.size[0] for img in all_panels]
heights = [img.size[1] for img in all_panels]
panel_width = int(np.median(widths))
panel_height = int(np.median(heights))
# Resize all panels to common size
context = [img.resize((panel_width, panel_height)) for img in context]
options = [img.resize((panel_width, panel_height)) for img in options]
# Create mask panel for sequence filling tasks if needed
if 'index' in examples and len(context) > 0:
mask_idx = examples['index'][i]
mask_panel = self.create_mask_panel(panel_width, panel_height)
context.insert(mask_idx, mask_panel)
# Calculate canvas dimensions based on whether we have context
if len(context) > 0:
context_row_width = panel_width * len(context) + self.margin * (len(context) - 1)
options_row_width = panel_width * len(options) + self.margin * (len(options) - 1)
canvas_width = max(context_row_width, options_row_width)
canvas_height = (panel_height * 2 +
self.label_space * 2)
else:
# Only options row for caption_relevance
canvas_width = panel_width * len(options) + self.margin * (len(options) - 1)
canvas_height = (panel_height +
self.label_space)
# Create canvas
final_image = Image.new("RGB", (canvas_width, canvas_height), "white")
draw = ImageDraw.Draw(final_image)
try:
label_font = ImageFont.truetype(self.font_path, self.label_font_size)
number_font = ImageFont.truetype(self.font_path, self.number_font_size)
except:
raise ValueError("Font file not found")
current_y = 0
# Add context section if it exists
if len(context) > 0:
# Draw "Context" label
bbox = draw.textbbox((0, 0), "Context", font=label_font)
text_x = (canvas_width - (bbox[2] - bbox[0])) // 2
draw.text((text_x, current_y), "Context", fill="black", font=label_font)
current_y += self.label_space
# Paste context panels
x_offset = (canvas_width - (panel_width * len(context) +
self.margin * (len(context) - 1))) // 2
for panel in context:
final_image.paste(panel, (x_offset, current_y))
x_offset += panel_width + self.margin
current_y += panel_height
# Add "Options" label
bbox = draw.textbbox((0, 0), "Options", font=label_font)
text_x = (canvas_width - (bbox[2] - bbox[0])) // 2
draw.text((text_x, current_y), "Options", fill="black", font=label_font)
current_y += self.label_space
# Paste options with numbers on panels
x_offset = (canvas_width - (panel_width * len(options) +
self.margin * (len(options) - 1))) // 2
for idx, panel in enumerate(options):
# Create a copy of the panel to draw on
panel_with_number = panel.copy()
if panel_with_number.mode != 'RGBA':
panel_with_number = panel_with_number.convert('RGBA')
# Draw number on panel
panel_with_number = self.draw_number_on_panel(
panel_with_number,
idx,
number_font
)
# Paste the panel with number
final_image.paste(panel_with_number, (x_offset, current_y), panel_with_number)
x_offset += panel_width + self.margin
# Convert final_image to PIL Image format (instead of numpy array)
single_images.append(final_image)
# Prepare batch output
examples['single_image'] = single_images
return examples
from datasets import load_dataset
skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
split = "val" # "val", "test"
dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split=split)
processor = SingleImagePickAPanel()
dataset = dataset.map(
processor.map_to_single_image,
batched=True,
batch_size=32,
remove_columns=['context', 'options']
)
dataset.save_to_disk(f"ComicsPAP_{skill}_{split}_single_images")
Evaluation
The evaluation metric for all tasks is the accuracy of the model's predictions. The overall accuracy is calculated as the weighted average of the accuracy of each subtask, with the weights being the number of examples in each subtask.
To evaluate on the test set you must submit your predictions to the Robust Reading Competition website, as a json file with the following structure:
[
{ "sample_id" : "sample_id_0", "correct_panel_id" : 3},
{ "sample_id" : "sample_id_1", "correct_panel_id" : 1},
{ "sample_id" : "sample_id_2", "correct_panel_id" : 4},
...,
]
Where sample_id
is the id of the sample, correct_panel_id
is the prediction of your model as the index of the correct panel in the options.
Pseudocode for the evaluation on val set, adapt for your model:
skills = {
"sequence_filling": {
"num_examples": 262
},
"char_coherence": {
"num_examples": 143
},
"visual_closure": {
"num_examples": 300
},
"text_closure": {
"num_examples": 259
},
"caption_relevance": {
"num_examples": 262
}
}
for skill in skills:
dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split="val")
correct = 0
total = 0
for example in dataset:
# Your model prediction
prediction = model.generate(**example)
prediction = post_process(prediction)
if prediction == example["solution_index"]:
correct += 1
total += 1
accuracy = correct / total
print(f"Accuracy for {skill}: {accuracy}")
assert total == skills[skill]["num_examples"]
skills[skill]["accuracy"] = accuracy
# Calculate overall accuracy
total_examples = sum(skill["num_examples"] for skill in skills.values())
overall_accuracy = sum(skill["num_examples"] * skill["accuracy"] for skill in skills.values()) / total_examples
print(f"Overall accuracy: {overall_accuracy}")
Baselines
Find code for evaluation and training at: https://github.com/llabres/ComicsPAP
Baselines on the validation set using single images:
Model | Repo | Sequence Filling (%) | Character Coherence (%) | Visual Closure (%) | Text Closure (%) | Caption Relevance (%) | Total (%) |
---|---|---|---|---|---|---|---|
Random | 20.22 | 50.00 | 14.41 | 25.00 | 25.00 | 24.30 | |
Qwen2.5-VL-3B (Zero-Shot) | Qwen/Qwen2.5-VL-3B-Instruct | 27.48 | 48.95 | 21.33 | 27.41 | 32.82 | 29.61 |
Qwen2.5-VL-7B (Zero-Shot) | Qwen/Qwen2.5-VL-7B-Instruct | 30.53 | 54.55 | 22.00 | 37.45 | 40.84 | 34.91 |
Qwen2.5-VL-72B (Zero-Shot) | Qwen/Qwen2.5-VL-72B-Instruct | 46.88 | 53.84 | 23.66 | 55.60 | 38.17 | 41.27 |
Qwen2.5-VL-3B (Lora Fine-Tuned) | coming soon | 62.21 | 93.01 | 42.33 | 63.71 | 35.49 | 55.55 |
Qwen2.5-VL-7B (Lora Fine-Tuned) | coming soon | 69.08 | 93.01 | 42.00 | 74.90 | 49.62 | 62.31 |
Citation
coming soon
- Downloads last month
- 3,014