Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
Libraries:
Datasets
pandas
name
stringlengths
12
16
split
stringclasses
1 value
informal_prefix
stringlengths
50
384
formal_statement
stringlengths
55
344
goal
stringlengths
18
313
header
stringclasses
20 values
nl_statement
stringlengths
43
377
exercise_1_13a
valid
/-- Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.-/
theorem exercise_1_13a {f : ℂ → ℂ} (Ω : Set ℂ) (a b : Ω) (h : IsOpen Ω) (hf : DifferentiableOn ℂ f Ω) (hc : ∃ (c : ℝ), ∀ z ∈ Ω, (f z).re = c) : f a = f b:= sorry
f : ℂ → ℂ Ω : Set ℂ a b : ↑Ω h : IsOpen Ω hf : DifferentiableOn ℂ f Ω hc : ∃ c, ∀ z ∈ Ω, (f z).re = c ⊢ f ↑a = f ↑b
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology open scoped BigOperators Topology
Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.
exercise_1_13c
valid
/-- Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.-/
theorem exercise_1_13c {f : ℂ → ℂ} (Ω : Set ℂ) (a b : Ω) (h : IsOpen Ω) (hf : DifferentiableOn ℂ f Ω) (hc : ∃ (c : ℝ), ∀ z ∈ Ω, abs (f z) = c) : f a = f b:= sorry
f : ℂ → ℂ Ω : Set ℂ a b : ↑Ω h : IsOpen Ω hf : DifferentiableOn ℂ f Ω hc : ∃ c, ∀ z ∈ Ω, Complex.abs (f z) = c ⊢ f ↑a = f ↑b
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.
exercise_1_19b
valid
/-- Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.-/
theorem exercise_1_19b (z : ℂ) (hz : abs z = 1) (s : ℕ → ℂ) (h : s = (λ n => ∑ i in (range n), i * z / i ^ 2)) : ∃ y, Tendsto s atTop (𝓝 y):= sorry
z : ℂ hz : Complex.abs z = 1 s : ℕ → ℂ h : s = fun n => ∑ i ∈ range n, ↑i * z / ↑i ^ 2 ⊢ ∃ y, Tendsto s atTop (𝓝 y)
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.
exercise_1_26
valid
/-- Suppose $f$ is continuous in a region $\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.-/
theorem exercise_1_26 (f F₁ F₂ : ℂ → ℂ) (Ω : Set ℂ) (h1 : IsOpen Ω) (h2 : IsConnected Ω) (hF₁ : DifferentiableOn ℂ F₁ Ω) (hF₂ : DifferentiableOn ℂ F₂ Ω) (hdF₁ : ∀ x ∈ Ω, deriv F₁ x = f x) (hdF₂ : ∀ x ∈ Ω, deriv F₂ x = f x) : ∃ c : ℂ, ∀ x, F₁ x = F₂ x + c:= sorry
f F₁ F₂ : ℂ → ℂ Ω : Set ℂ h1 : IsOpen Ω h2 : IsConnected Ω hF₁ : DifferentiableOn ℂ F₁ Ω hF₂ : DifferentiableOn ℂ F₂ Ω hdF₁ : ∀ x ∈ Ω, deriv F₁ x = f x hdF₂ : ∀ x ∈ Ω, deriv F₂ x = f x ⊢ ∃ c, ∀ (x : ℂ), F₁ x = F₂ x + c
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Suppose $f$ is continuous in a region $\Omega$. Prove that any two primitives of $f$ (if they exist) differ by a constant.
exercise_2_9
valid
/-- Let $\Omega$ be a bounded open subset of $\mathbb{C}$, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \in \Omega$ such that $\varphi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \varphi^{\prime}\left(z_{0}\right)=1$ then $\varphi$ is linear.-/
theorem exercise_2_9 {f : ℂ → ℂ} (Ω : Set ℂ) (b : Bornology.IsBounded Ω) (h : IsOpen Ω) (hf : DifferentiableOn ℂ f Ω) (z : Ω) (hz : f z = z) (h'z : deriv f z = 1) : ∃ (f_lin : ℂ →L[ℂ] ℂ), ∀ x ∈ Ω, f x = f_lin x:= sorry
f : ℂ → ℂ Ω : Set ℂ b : Bornology.IsBounded Ω h : IsOpen Ω hf : DifferentiableOn ℂ f Ω z : ↑Ω hz : f ↑z = ↑z h'z : deriv f ↑z = 1 ⊢ ∃ f_lin, ∀ x ∈ Ω, f x = f_lin x
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Let $\Omega$ be a bounded open subset of $\mathbb{C}$, and $\varphi: \Omega \rightarrow \Omega$ a holomorphic function. Prove that if there exists a point $z_{0} \in \Omega$ such that $\varphi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \varphi^{\prime}\left(z_{0}\right)=1$ then $\varphi$ is linear.
exercise_3_3
valid
/-- Show that $ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for $a > 0$.-/
theorem exercise_3_3 (a : ℝ) (ha : 0 < a) : Tendsto (λ y => ∫ x in -y..y, Real.cos x / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * (Real.exp (-a) / a))):= sorry
a : ℝ ha : 0 < a ⊢ Tendsto (fun y => ∫ (x : ℝ) in -y..y, x.cos / (x ^ 2 + a ^ 2)) atTop (𝓝 (Real.pi * ((-a).exp / a)))
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Show that $ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for $a > 0$.
exercise_3_9
valid
/-- Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.-/
theorem exercise_3_9 : ∫ x in (0 : ℝ)..(1 : ℝ), Real.log (Real.sin (Real.pi * x)) = - Real.log 2:= sorry
⊢ ∫ (x : ℝ) in 0 ..1, (Real.pi * x).sin.log = -Real.log 2
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Show that $\int_0^1 \log(\sin \pi x) dx = - \log 2$.
exercise_3_22
valid
/-- Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\partial D$ such that $f(z) = 1/z$ for $z \in \partial D$.-/
theorem exercise_3_22 (D : Set ℂ) (hD : D = ball 0 1) (f : ℂ → ℂ) (hf : DifferentiableOn ℂ f D) (hfc : ContinuousOn f (closure D)) : ¬ ∀ z ∈ (sphere (0 : ℂ) 1), f z = 1 / z:= sorry
D : Set ℂ hD : D = ball 0 1 f : ℂ → ℂ hf : DifferentiableOn ℂ f D hfc : ContinuousOn f (closure D) ⊢ ¬∀ z ∈ sphere 0 1, f z = 1 / z
import Mathlib open Complex Filter Function Metric Finset open scoped BigOperators Topology
Show that there is no holomorphic function $f$ in the unit disc $D$ that extends continuously to $\partial D$ such that $f(z) = 1/z$ for $z \in \partial D$.
exercise_1_1a
valid
/-- If $r$ is rational $(r \neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.-/
theorem exercise_1_1a (x : ℝ) (y : ℚ) : ( Irrational x ) -> Irrational ( x + y ):= sorry
x : ℝ y : ℚ ⊢ Irrational x → Irrational (x + ↑y)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $r$ is rational $(r \neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.
exercise_1_2
valid
/-- Prove that there is no rational number whose square is $12$.-/
theorem exercise_1_2 : ¬ ∃ (x : ℚ), ( x ^ 2 = 12 ):= sorry
⊢ ¬∃ x, x ^ 2 = 12
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Prove that there is no rational number whose square is $12$.
exercise_1_5
valid
/-- Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.-/
theorem exercise_1_5 (A minus_A : Set ℝ) (hA : A.Nonempty) (hA_bdd_below : BddBelow A) (hminus_A : minus_A = {x | -x ∈ A}) : Inf A = Sup minus_A:= sorry
A minus_A : Set ℝ hA : A.Nonempty hA_bdd_below : BddBelow A hminus_A : minus_A = {x | -x ∈ A} ⊢ Inf ↑A = Sup ↑minus_A
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $A$ be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.
exercise_1_11a
valid
/-- If $z$ is a complex number, prove that there exists an $r\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.-/
theorem exercise_1_11a (z : ℂ) : ∃ (r : ℝ) (w : ℂ), abs w = 1 ∧ z = r * w:= sorry
z : ℂ ⊢ ∃ r w, Complex.abs w = 1 ∧ z = ↑r * w
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $z$ is a complex number, prove that there exists an $r\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.
exercise_1_13
valid
/-- If $x, y$ are complex, prove that $||x|-|y|| \leq |x-y|$.-/
theorem exercise_1_13 (x y : ℂ) : |(abs x) - (abs y)| ≤ abs (x - y):= sorry
x y : ℂ ⊢ |Complex.abs x - Complex.abs y| ≤ Complex.abs (x - y)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $x, y$ are complex, prove that $||x|-|y|| \leq |x-y|$.
exercise_1_16a
valid
/-- Suppose $k \geq 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \in \mathbb{R}^k$ such that $|z-x|=|z-y|=r$.-/
theorem exercise_1_16a (n : ℕ) (d r : ℝ) (x y z : EuclideanSpace ℝ (Fin n)) -- R^n (h₁ : n ≥ 3) (h₂ : ‖x - y‖ = d) (h₃ : d > 0) (h₄ : r > 0) (h₅ : 2 * r > d) : Set.Infinite {z : EuclideanSpace ℝ (Fin n) | ‖z - x‖ = r ∧ ‖z - y‖ = r}:= sorry
n : ℕ d r : ℝ x y z : EuclideanSpace ℝ (Fin n) h₁ : n ≥ 3 h₂ : ‖x - y‖ = d h₃ : d > 0 h₄ : r > 0 h₅ : 2 * r > d ⊢ {z | ‖z - x‖ = r ∧ ‖z - y‖ = r}.Infinite
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $k \geq 3, x, y \in \mathbb{R}^k, |x - y| = d > 0$, and $r > 0$. Prove that if $2r > d$, there are infinitely many $z \in \mathbb{R}^k$ such that $|z-x|=|z-y|=r$.
exercise_1_18a
valid
/-- If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$-/
theorem exercise_1_18a (n : ℕ) (h : n > 1) (x : EuclideanSpace ℝ (Fin n)) -- R^n : ∃ (y : EuclideanSpace ℝ (Fin n)), y ≠ 0 ∧ (inner x y) = (0 : ℝ):= sorry
n : ℕ h : n > 1 x : EuclideanSpace ℝ (Fin n) ⊢ ∃ y, y ≠ 0 ∧ ⟪x, y⟫_ℝ = 0
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $k \geq 2$ and $\mathbf{x} \in R^{k}$, prove that there exists $\mathbf{y} \in R^{k}$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y}=0$
exercise_1_19
valid
/-- Suppose $a, b \in R^k$. Find $c \in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.-/
theorem exercise_1_19 (n : ℕ) (a b c x : EuclideanSpace ℝ (Fin n)) (r : ℝ) (h₁ : r > 0) (h₂ : 3 • c = 4 • b - a) (h₃ : 3 * r = 2 * ‖x - b‖) : ‖x - a‖ = 2 * ‖x - b‖ ↔ ‖x - c‖ = r:= sorry
n : ℕ a b c x : EuclideanSpace ℝ (Fin n) r : ℝ h₁ : r > 0 h₂ : 3 • c = 4 • b - a h₃ : 3 * r = 2 * ‖x - b‖ ⊢ ‖x - a‖ = 2 * ‖x - b‖ ↔ ‖x - c‖ = r
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $a, b \in R^k$. Find $c \in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.
exercise_2_24
valid
/-- Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.-/
theorem exercise_2_24 {X : Type*} [MetricSpace X] (hX : ∀ (A : Set X), Infinite A → ∃ (x : X), x ∈ closure A) : SeparableSpace X:= sorry
X : Type u_1 inst✝ : MetricSpace X hX : ∀ (A : Set X), Infinite ↑A → ∃ x, x ∈ closure A ⊢ SeparableSpace X
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.
exercise_2_27a
valid
/-- Suppose $E\subset\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.-/
theorem exercise_2_27a (k : ℕ) (E P : Set (EuclideanSpace ℝ (Fin k))) (hE : E.Nonempty ∧ ¬ Set.Countable E) (hP : P = {x | ∀ U ∈ 𝓝 x, ¬ Set.Countable (P ∩ E)}) : IsClosed P ∧ P = {x | ClusterPt x (𝓟 P)}:= sorry
k : ℕ E P : Set (EuclideanSpace ℝ (Fin k)) hE : E.Nonempty ∧ ¬E.Countable hP : P = {x | ∀ U ∈ 𝓝 x, ¬(P ∩ E).Countable} ⊢ IsClosed P ∧ P = {x | ClusterPt x (𝓟 P)}
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $E\subset\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.
exercise_2_28
valid
/-- Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.-/
theorem exercise_2_28 (X : Type*) [MetricSpace X] [SeparableSpace X] (A : Set X) (hA : IsClosed A) : ∃ P₁ P₂ : Set X, A = P₁ ∪ P₂ ∧ IsClosed P₁ ∧ P₁ = {x | ClusterPt x (𝓟 P₁)} ∧ Set.Countable P₂:= sorry
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : SeparableSpace X A : Set X hA : IsClosed A ⊢ ∃ P₁ P₂, A = P₁ ∪ P₂ ∧ IsClosed P₁ ∧ P₁ = {x | ClusterPt x (𝓟 P₁)} ∧ P₂.Countable
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.
exercise_3_1a
valid
/-- Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$.-/
theorem exercise_3_1a (f : ℕ → ℝ) (h : ∃ (a : ℝ), Tendsto (λ (n : ℕ) => f n) atTop (𝓝 a)) : ∃ (a : ℝ), Tendsto (λ (n : ℕ) => |f n|) atTop (𝓝 a):= sorry
f : ℕ → ℝ h : ∃ a, Tendsto (fun n => f n) atTop (𝓝 a) ⊢ ∃ a, Tendsto (fun n => |f n|) atTop (𝓝 a)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Prove that convergence of $\left\{s_{n}\right\}$ implies convergence of $\left\{\left|s_{n}\right|\right\}$.
exercise_3_3
valid
/-- If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.-/
theorem exercise_3_3 : ∃ (x : ℝ), Tendsto f atTop (𝓝 x) ∧ ∀ n, f n < 2:= sorry
⊢ ∃ x, Tendsto f atTop (𝓝 x) ∧ ∀ (n : ℕ), f n < 2
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators noncomputable def f : ℕ → ℝ | 0 => sqrt 2 | (n + 1) => sqrt (2 + sqrt (f n))
If $s_{1}=\sqrt{2}$, and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}} \quad(n=1,2,3, \ldots),$ prove that $\left\{s_{n}\right\}$ converges, and that $s_{n}<2$ for $n=1,2,3, \ldots$.
exercise_3_6a
valid
/-- Prove that $\lim_{n \rightarrow \infty} \sum_{i<n} a_i = \infty$, where $a_i = \sqrt{i + 1} -\sqrt{i}$.-/
theorem exercise_3_6a : Tendsto (λ (n : ℕ) => (∑ i in range n, g i)) atTop atTop:= sorry
⊢ Tendsto (fun n => ∑ i ∈ range n, g i) atTop atTop
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators noncomputable section def g (n : ℕ) : ℝ := sqrt (n + 1) - sqrt n
Prove that $\lim_{n \rightarrow \infty} \sum_{i<n} a_i = \infty$, where $a_i = \sqrt{i + 1} -\sqrt{i}$.
exercise_3_8
valid
/-- If $\Sigma a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\Sigma a_{n} b_{n}$ converges.-/
theorem exercise_3_8 (a b : ℕ → ℝ) (h1 : ∃ y, (Tendsto (λ n => (∑ i in (range n), a i)) atTop (𝓝 y))) (h2 : Monotone b) (h3 : Bornology.IsBounded (Set.range b)) : ∃ y, Tendsto (λ n => (∑ i in (range n), (a i) * (b i))) atTop (𝓝 y):= sorry
a b : ℕ → ℝ h1 : ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i) atTop (𝓝 y) h2 : Monotone b h3 : Bornology.IsBounded (Set.range b) ⊢ ∃ y, Tendsto (fun n => ∑ i ∈ range n, a i * b i) atTop (𝓝 y)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $\Sigma a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\Sigma a_{n} b_{n}$ converges.
exercise_3_20
valid
/-- Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.-/
theorem exercise_3_20 {X : Type*} [MetricSpace X] (p : ℕ → X) (l : ℕ) (r : X) (hp : CauchySeq p) (hpl : Tendsto (λ n => p (l * n)) atTop (𝓝 r)) : Tendsto p atTop (𝓝 r):= sorry
X : Type u_1 inst✝ : MetricSpace X p : ℕ → X l : ℕ r : X hp : CauchySeq p hpl : Tendsto (fun n => p (l * n)) atTop (𝓝 r) ⊢ Tendsto p atTop (𝓝 r)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space $X$, and some sequence $\left\{p_{n l}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to $p$.
exercise_3_22
valid
/-- Suppose $X$ is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of dense open sets of $X$. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_{n}$ is not empty.-/
theorem exercise_3_22 (X : Type*) [MetricSpace X] [CompleteSpace X] (G : ℕ → Set X) (hG : ∀ n, IsOpen (G n) ∧ Dense (G n)) : ∃ x, ∀ n, x ∈ G n:= sorry
X : Type u_1 inst✝¹ : MetricSpace X inst✝ : CompleteSpace X G : ℕ → Set X hG : ∀ (n : ℕ), IsOpen (G n) ∧ Dense (G n) ⊢ ∃ x, ∀ (n : ℕ), x ∈ G n
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $X$ is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of dense open sets of $X$. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_{n}$ is not empty.
exercise_4_2a
valid
/-- If $f$ is a continuous mapping of a metric space $X$ into a metric space $Y$, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. ($\overline{E}$ denotes the closure of $E$).-/
theorem exercise_4_2a {α : Type} [MetricSpace α] {β : Type} [MetricSpace β] (f : α → β) (h₁ : Continuous f) : ∀ (x : Set α), f '' (closure x) ⊆ closure (f '' x):= sorry
α : Type inst✝¹ : MetricSpace α β : Type inst✝ : MetricSpace β f : α → β h₁ : Continuous f ⊢ ∀ (x : Set α), f '' closure x ⊆ closure (f '' x)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $f$ is a continuous mapping of a metric space $X$ into a metric space $Y$, prove that $f(\overline{E}) \subset \overline{f(E)}$ for every set $E \subset X$. ($\overline{E}$ denotes the closure of $E$).
exercise_4_4a
valid
/-- Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.-/
theorem exercise_4_4a {α : Type} [MetricSpace α] {β : Type} [MetricSpace β] (f : α → β) (s : Set α) (h₁ : Continuous f) (h₂ : Dense s) : f '' Set.univ ⊆ closure (f '' s):= sorry
α : Type inst✝¹ : MetricSpace α β : Type inst✝ : MetricSpace β f : α → β s : Set α h₁ : Continuous f h₂ : Dense s ⊢ f '' Set.univ ⊆ closure (f '' s)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $f$ and $g$ be continuous mappings of a metric space $X$ into a metric space $Y$, and let $E$ be a dense subset of $X$. Prove that $f(E)$ is dense in $f(X)$.
exercise_4_5a
valid
/-- If $f$ is a real continuous function defined on a closed set $E \subset \mathbb{R}$, prove that there exist continuous real functions $g$ on $\mathbb{R}$ such that $g(x)=f(x)$ for all $x \in E$.-/
theorem exercise_4_5a (f : ℝ → ℝ) (E : Set ℝ) (h₁ : IsClosed E) (h₂ : ContinuousOn f E) : ∃ (g : ℝ → ℝ), Continuous g ∧ ∀ x ∈ E, f x = g x:= sorry
f : ℝ → ℝ E : Set ℝ h₁ : IsClosed E h₂ : ContinuousOn f E ⊢ ∃ g, Continuous g ∧ ∀ x ∈ E, f x = g x
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $f$ is a real continuous function defined on a closed set $E \subset \mathbb{R}$, prove that there exist continuous real functions $g$ on $\mathbb{R}$ such that $g(x)=f(x)$ for all $x \in E$.
exercise_4_6
valid
/-- If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.-/
theorem exercise_4_6 (f : ℝ → ℝ) (E : Set ℝ) (G : Set (ℝ × ℝ)) (h₁ : IsCompact E) (h₂ : G = {(x, f x) | x ∈ E}) : ContinuousOn f E ↔ IsCompact G:= sorry
f : ℝ → ℝ E : Set ℝ G : Set (ℝ × ℝ) h₁ : IsCompact E h₂ : G = {x | ∃ x_1 ∈ E, (x_1, f x_1) = x} ⊢ ContinuousOn f E ↔ IsCompact G
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $f$ is defined on $E$, the graph of $f$ is the set of points $(x, f(x))$, for $x \in E$. In particular, if $E$ is a set of real numbers, and $f$ is real-valued, the graph of $f$ is a subset of the plane. Suppose $E$ is compact, and prove that $f$ is continuous on $E$ if and only if its graph is compact.
exercise_4_8b
valid
/-- Let $E$ be a bounded set in $R^{1}$. Prove that there exists a real function $f$ such that $f$ is uniformly continuous and is not bounded on $E$.-/
theorem exercise_4_8b (E : Set ℝ) : ∃ f : ℝ → ℝ, UniformContinuousOn f E ∧ ¬ Bornology.IsBounded (Set.image f E):= sorry
E : Set ℝ ⊢ ∃ f, UniformContinuousOn f E ∧ ¬Bornology.IsBounded (f '' E)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Let $E$ be a bounded set in $R^{1}$. Prove that there exists a real function $f$ such that $f$ is uniformly continuous and is not bounded on $E$.
exercise_4_12
valid
/-- A uniformly continuous function of a uniformly continuous function is uniformly continuous.-/
theorem exercise_4_12 {α β γ : Type*} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : α → β} {g : β → γ} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformContinuous (g ∘ f):= sorry
α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hf : UniformContinuous f hg : UniformContinuous g ⊢ UniformContinuous (g ∘ f)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
A uniformly continuous function of a uniformly continuous function is uniformly continuous.
exercise_4_19
valid
/-- Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.-/
theorem exercise_4_19 {f : ℝ → ℝ} (hf : ∀ a b c, a < b → f a < c → c < f b → ∃ x, a < x ∧ x < b ∧ f x = c) (hg : ∀ r : ℚ, IsClosed {x | f x = r}) : Continuous f:= sorry
f : ℝ → ℝ hf : ∀ (a b c : ℝ), a < b → f a < c → c < f b → ∃ x, a < x ∧ x < b ∧ f x = c hg : ∀ (r : ℚ), IsClosed {x | f x = ↑r} ⊢ Continuous f
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $f$ is a real function with domain $R^{1}$ which has the intermediate value property: if $f(a)<c<f(b)$, then $f(x)=c$ for some $x$ between $a$ and $b$. Suppose also, for every rational $r$, that the set of all $x$ with $f(x)=r$ is closed. Prove that $f$ is continuous.
exercise_4_24
valid
/-- Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in(a, b)$. Prove that $f$ is convex.-/
theorem exercise_4_24 {f : ℝ → ℝ} (hf : Continuous f) (a b : ℝ) (hab : a < b) (h : ∀ x y : ℝ, a < x → x < b → a < y → y < b → f ((x + y) / 2) ≤ (f x + f y) / 2) : ConvexOn ℝ (Set.Ioo a b) f:= sorry
f : ℝ → ℝ hf : Continuous f a b : ℝ hab : a < b h : ∀ (x y : ℝ), a < x → x < b → a < y → y < b → f ((x + y) / 2) ≤ (f x + f y) / 2 ⊢ ConvexOn ℝ (Set.Ioo a b) f
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in(a, b)$. Prove that $f$ is convex.
exercise_5_2
valid
/-- Suppose $f^{\prime}(x)>0$ in $(a, b)$. Prove that $f$ is strictly increasing in $(a, b)$, and let $g$ be its inverse function. Prove that $g$ is differentiable, and that $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad(a<x<b)$.-/
theorem exercise_5_2 {a b : ℝ} {f g : ℝ → ℝ} (hf : ∀ x ∈ Set.Ioo a b, deriv f x > 0) (hg : g = f⁻¹) (hg_diff : DifferentiableOn ℝ g (Set.Ioo a b)) : DifferentiableOn ℝ g (Set.Ioo a b) ∧ ∀ x ∈ Set.Ioo a b, deriv g x = 1 / deriv f x:= sorry
a b : ℝ f g : ℝ → ℝ hf : ∀ x ∈ Set.Ioo a b, deriv f x > 0 hg : g = f⁻¹ hg_diff : DifferentiableOn ℝ g (Set.Ioo a b) ⊢ DifferentiableOn ℝ g (Set.Ioo a b) ∧ ∀ x ∈ Set.Ioo a b, deriv g x = 1 / deriv f x
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $f^{\prime}(x)>0$ in $(a, b)$. Prove that $f$ is strictly increasing in $(a, b)$, and let $g$ be its inverse function. Prove that $g$ is differentiable, and that $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad(a<x<b)$.
exercise_5_4
valid
/-- If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.-/
theorem exercise_5_4 {n : ℕ} (C : ℕ → ℝ) (hC : ∑ i in (range (n + 1)), (C i) / (i + 1) = 0) : ∃ x, x ∈ (Set.Icc (0 : ℝ) 1) ∧ ∑ i in range (n + 1), (C i) * (x^i) = 0:= sorry
n : ℕ C : ℕ → ℝ hC : ∑ i ∈ range (n + 1), C i / (↑i + 1) = 0 ⊢ ∃ x ∈ Set.Icc 0 1, ∑ i ∈ range (n + 1), C i * x ^ i = 0
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.
exercise_5_6
valid
/-- Suppose (a) $f$ is continuous for $x \geq 0$, (b) $f^{\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x} \quad(x>0)$ and prove that $g$ is monotonically increasing.-/
theorem exercise_5_6 {f : ℝ → ℝ} (hf1 : Continuous f) (hf2 : ∀ x, DifferentiableAt ℝ f x) (hf3 : f 0 = 0) (hf4 : Monotone (deriv f)) : MonotoneOn (λ x => f x / x) (Set.Ioi 0):= sorry
f : ℝ → ℝ hf1 : Continuous f hf2 : ∀ (x : ℝ), DifferentiableAt ℝ f x hf3 : f 0 = 0 hf4 : Monotone (deriv f) ⊢ MonotoneOn (fun x => f x / x) (Set.Ioi 0)
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose (a) $f$ is continuous for $x \geq 0$, (b) $f^{\prime}(x)$ exists for $x>0$, (c) $f(0)=0$, (d) $f^{\prime}$ is monotonically increasing. Put $g(x)=\frac{f(x)}{x} \quad(x>0)$ and prove that $g$ is monotonically increasing.
exercise_5_15
valid
/-- Suppose $a \in R^{1}, f$ is a twice-differentiable real function on $(a, \infty)$, and $M_{0}, M_{1}, M_{2}$ are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on $(a, \infty)$. Prove that $M_{1}^{2} \leq 4 M_{0} M_{2} .$-/
theorem exercise_5_15 {f : ℝ → ℝ} (a M0 M1 M2 : ℝ) (hf' : DifferentiableOn ℝ f (Set.Ici a)) (hf'' : DifferentiableOn ℝ (deriv f) (Set.Ici a)) (hM0 : M0 = sSup {(|f x|) | x ∈ (Set.Ici a)}) (hM1 : M1 = sSup {(|deriv f x|) | x ∈ (Set.Ici a)}) (hM2 : M2 = sSup {(|deriv (deriv f) x|) | x ∈ (Set.Ici a)}) : (M1 ^ 2) ≤ 4 * M0 * M2:= sorry
f : ℝ → ℝ a M0 M1 M2 : ℝ hf' : DifferentiableOn ℝ f (Set.Ici a) hf'' : DifferentiableOn ℝ (deriv f) (Set.Ici a) hM0 : M0 = sSup {x | ∃ x_1 ∈ Set.Ici a, |f x_1| = x} hM1 : M1 = sSup {x | ∃ x_1 ∈ Set.Ici a, |deriv f x_1| = x} hM2 : M2 = sSup {x | ∃ x_1 ∈ Set.Ici a, |deriv (deriv f) x_1| = x} ⊢ M1 ^ 2 ≤ 4 * M0 * M2
import Mathlib open Topology Filter Real Complex TopologicalSpace Finset open scoped BigOperators
Suppose $a \in R^{1}, f$ is a twice-differentiable real function on $(a, \infty)$, and $M_{0}, M_{1}, M_{2}$ are the least upper bounds of $|f(x)|,\left|f^{\prime}(x)\right|,\left|f^{\prime \prime}(x)\right|$, respectively, on $(a, \infty)$. Prove that $M_{1}^{2} \leq 4 M_{0} M_{2} .$
exercise_2_1_21
valid
/-- Show that a group of order 5 must be abelian.-/
def exercise_2_1_21 (G : Type*) [Group G] [Fintype G] (hG : card G = 5) : CommGroup G:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 5 ⊢ CommGroup G
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that a group of order 5 must be abelian.
exercise_2_1_27
valid
/-- If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$.-/
theorem exercise_2_1_27 {G : Type*} [Group G] [Fintype G] : ∃ (m : ℕ), ∀ (a : G), a ^ m = 1:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G ⊢ ∃ m, ∀ (a : G), a ^ m = 1
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$.
exercise_2_2_5
valid
/-- Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that $G$ is abelian.-/
def exercise_2_2_5 {G : Type*} [Group G] (h : ∀ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5) : CommGroup G:= sorry
G : Type u_1 inst✝ : Group G h : ∀ (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 ∧ (a * b) ^ 5 = a ^ 5 * b ^ 5 ⊢ CommGroup G
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that $G$ is abelian.
exercise_2_3_17
valid
/-- If $G$ is a group and $a, x \in G$, prove that $C\left(x^{-1} a x\right)=x^{-1} C(a) x$-/
theorem exercise_2_3_17 {G : Type*} [Mul G] [Group G] (a x : G) : centralizer {x⁻¹*a*x} = (λ g : G => x⁻¹*g*x) '' (centralizer {a}):= sorry
G : Type u_1 inst✝¹ : Mul G inst✝ : Group G a x : G ⊢ {x⁻¹ * a * x}.centralizer = (fun g => x⁻¹ * g * x) '' {a}.centralizer
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is a group and $a, x \in G$, prove that $C\left(x^{-1} a x\right)=x^{-1} C(a) x$
exercise_2_4_36
valid
/-- If $a > 1$ is an integer, show that $n \mid \varphi(a^n - 1)$, where $\phi$ is the Euler $\varphi$-function.-/
theorem exercise_2_4_36 {a n : ℕ} (h : a > 1) : n ∣ (a ^ n - 1).totient:= sorry
a n : ℕ h : a > 1 ⊢ n ∣ (a ^ n - 1).totient
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $a > 1$ is an integer, show that $n \mid \varphi(a^n - 1)$, where $\phi$ is the Euler $\varphi$-function.
exercise_2_5_30
valid
/-- Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.-/
theorem exercise_2_5_30 {G : Type*} [Group G] [Fintype G] {p m : ℕ} (hp : Nat.Prime p) (hp1 : ¬ p ∣ m) (hG : card G = p*m) {H : Subgroup G} [Fintype H] [H.Normal] (hH : card H = p): Subgroup.Characteristic H:= sorry
G : Type u_1 inst✝³ : Group G inst✝² : Fintype G p m : ℕ hp : p.Prime hp1 : ¬p ∣ m hG : card G = p * m H : Subgroup G inst✝¹ : Fintype ↥H inst✝ : H.Normal hH : card ↥H = p ⊢ H.Characteristic
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.
exercise_2_5_37
valid
/-- If $G$ is a nonabelian group of order 6, prove that $G \simeq S_3$.-/
def exercise_2_5_37 (G : Type*) [Group G] [Fintype G] (hG : card G = 6) (hG' : IsEmpty (CommGroup G)) : G ≃* Equiv.Perm (Fin 3):= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : card G = 6 hG' : IsEmpty (CommGroup G) ⊢ G ≃* Equiv.Perm (Fin 3)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is a nonabelian group of order 6, prove that $G \simeq S_3$.
exercise_2_5_44
valid
/-- Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$.-/
theorem exercise_2_5_44 {G : Type*} [Group G] [Fintype G] {p : ℕ} (hp : Nat.Prime p) (hG : card G = p^2) : ∃ (N : Subgroup G) (Fin : Fintype N), @card N Fin = p ∧ N.Normal:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : p.Prime hG : card G = p ^ 2 ⊢ ∃ N Fin, card ↥N = p ∧ N.Normal
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$.
exercise_2_6_15
valid
/-- If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$.-/
theorem exercise_2_6_15 {G : Type*} [CommGroup G] {m n : ℕ} (hm : ∃ (g : G), orderOf g = m) (hn : ∃ (g : G), orderOf g = n) (hmn : m.Coprime n) : ∃ (g : G), orderOf g = m * n:= sorry
G : Type u_1 inst✝ : CommGroup G m n : ℕ hm : ∃ g, orderOf g = m hn : ∃ g, orderOf g = n hmn : m.Coprime n ⊢ ∃ g, orderOf g = m * n
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$.
exercise_2_8_12
valid
/-- Prove that any two nonabelian groups of order 21 are isomorphic.-/
def exercise_2_8_12 {G H : Type*} [Fintype G] [Fintype H] [Group G] [Group H] (hG : card G = 21) (hH : card H = 21) (hG1 : IsEmpty (CommGroup G)) (hH1 : IsEmpty (CommGroup H)) : G ≃* H:= sorry
G : Type u_1 H : Type u_2 inst✝³ : Fintype G inst✝² : Fintype H inst✝¹ : Group G inst✝ : Group H hG : card G = 21 hH : card H = 21 hG1 : IsEmpty (CommGroup G) hH1 : IsEmpty (CommGroup H) ⊢ G ≃* H
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that any two nonabelian groups of order 21 are isomorphic.
exercise_2_9_2
valid
/-- If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.-/
theorem exercise_2_9_2 {G H : Type*} [Fintype G] [Fintype H] [Group G] [Group H] (hG : IsCyclic G) (hH : IsCyclic H) : IsCyclic (G × H) ↔ (card G).Coprime (card H):= sorry
G : Type u_1 H : Type u_2 inst✝³ : Fintype G inst✝² : Fintype H inst✝¹ : Group G inst✝ : Group H hG : IsCyclic G hH : IsCyclic H ⊢ IsCyclic (G × H) ↔ (card G).Coprime (card H)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.
exercise_2_11_6
valid
/-- If $P$ is a $p$-Sylow subgroup of $G$ and $P \triangleleft G$, prove that $P$ is the only $p$-Sylow subgroup of $G$.-/
theorem exercise_2_11_6 {G : Type*} [Group G] {p : ℕ} (hp : Nat.Prime p) {P : Sylow p G} (hP : P.Normal) : ∀ (Q : Sylow p G), P = Q:= sorry
G : Type u_1 inst✝ : Group G p : ℕ hp : p.Prime P : Sylow p G hP : (↑P).Normal ⊢ ∀ (Q : Sylow p G), P = Q
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $P$ is a $p$-Sylow subgroup of $G$ and $P \triangleleft G$, prove that $P$ is the only $p$-Sylow subgroup of $G$.
exercise_2_11_22
valid
/-- Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$.-/
theorem exercise_2_11_22 {p : ℕ} {n : ℕ} {G : Type*} [Fintype G] [Group G] (hp : Nat.Prime p) (hG : card G = p ^ n) {K : Subgroup G} [Fintype K] (hK : card K = p ^ (n-1)) : K.Normal:= sorry
p n : ℕ G : Type u_1 inst✝² : Fintype G inst✝¹ : Group G hp : p.Prime hG : card G = p ^ n K : Subgroup G inst✝ : Fintype ↥K hK : card ↥K = p ^ (n - 1) ⊢ K.Normal
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$.
exercise_4_1_19
valid
/-- Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.-/
theorem exercise_4_1_19 : Infinite {x : Quaternion ℝ | x^2 = -1}:= sorry
⊢ Infinite ↑{x | x ^ 2 = -1}
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions.
exercise_4_2_5
valid
/-- Let $R$ be a ring in which $x^3 = x$ for every $x \in R$. Prove that $R$ is commutative.-/
def exercise_4_2_5 {R : Type*} [Ring R] (h : ∀ x : R, x ^ 3 = x) : CommRing R:= sorry
R : Type u_1 inst✝ : Ring R h : ∀ (x : R), x ^ 3 = x ⊢ CommRing R
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $R$ be a ring in which $x^3 = x$ for every $x \in R$. Prove that $R$ is commutative.
exercise_4_2_9
valid
/-- Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$.-/
theorem exercise_4_2_9 {p : ℕ} (hp : Nat.Prime p) (hp1 : Odd p) : ∃ (a b : ℤ), (a / b : ℚ) = ∑ i in Finset.range p, 1 / (i + 1) → ↑p ∣ a:= sorry
p : ℕ hp : p.Prime hp1 : Odd p ⊢ ∃ a b, ↑a / ↑b = ↑(∑ i ∈ Finset.range p, 1 / (i + 1)) → ↑p ∣ a
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$.
exercise_4_3_25
valid
/-- Let $R$ be the ring of $2 \times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$.-/
theorem exercise_4_3_25 (I : Ideal (Matrix (Fin 2) (Fin 2) ℝ)) : I = ⊥ ∨ I = ⊤:= sorry
I : Ideal (Matrix (Fin 2) (Fin 2) ℝ) ⊢ I = ⊥ ∨ I = ⊤
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $R$ be the ring of $2 \times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$.
exercise_4_5_16
valid
/-- Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.-/
theorem exercise_4_5_16 {p n: ℕ} (hp : Nat.Prime p) {q : Polynomial (ZMod p)} (hq : Irreducible q) (hn : q.degree = n) : ∃ is_fin : Fintype $ Polynomial (ZMod p) ⧸ span ({q} : Set (Polynomial $ ZMod p)), @card (Polynomial (ZMod p) ⧸ span {q}) is_fin = p ^ n ∧ IsField (Polynomial $ ZMod p):= sorry
p n : ℕ hp : p.Prime q : (ZMod p)[X] hq : Irreducible q hn : q.degree = ↑n ⊢ ∃ is_fin, card ((ZMod p)[X] ⧸ span {q}) = p ^ n ∧ IsField (ZMod p)[X]
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements.
exercise_4_5_25
valid
/-- If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \cdots x^{p - 1}$ is irreducible in $Q[x]$.-/
theorem exercise_4_5_25 {p : ℕ} (hp : Nat.Prime p) : Irreducible (∑ i : Finset.range p, X ^ p : Polynomial ℚ):= sorry
p : ℕ hp : p.Prime ⊢ Irreducible (∑ i : { x // x ∈ Finset.range p }, X ^ p)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \cdots x^{p - 1}$ is irreducible in $Q[x]$.
exercise_4_6_3
valid
/-- Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$.-/
theorem exercise_4_6_3 : Infinite {a : ℤ | Irreducible (X^7 + 15*X^2 - 30*X + (a : Polynomial ℚ) : Polynomial ℚ)}:= sorry
⊢ Infinite ↑{a | Irreducible (X ^ 7 + 15 * X ^ 2 - 30 * X + ↑a)}
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$.
exercise_5_2_20
valid
/-- Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$.-/
theorem exercise_5_2_20 {F V ι: Type*} [Infinite F] [Field F] [AddCommGroup V] [Module F V] {u : ι → Submodule F V} (hu : ∀ i : ι, u i ≠ ⊤) : (⋃ i : ι, (u i : Set V)) ≠ ⊤:= sorry
F : Type u_1 V : Type u_2 ι : Type u_3 inst✝³ : Infinite F inst✝² : Field F inst✝¹ : AddCommGroup V inst✝ : Module F V u : ι → Submodule F V hu : ∀ (i : ι), u i ≠ ⊤ ⊢ ⋃ i, ↑(u i) ≠ ⊤
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$.
exercise_5_3_10
valid
/-- Prove that $\cos 1^{\circ}$ is algebraic over $\mathbb{Q}$.-/
theorem exercise_5_3_10 : IsAlgebraic ℚ (cos (Real.pi / 180)):= sorry
⊢ IsAlgebraic ℚ (π / 180).cos
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that $\cos 1^{\circ}$ is algebraic over $\mathbb{Q}$.
exercise_5_5_2
valid
/-- Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$.-/
theorem exercise_5_5_2 : Irreducible (X^3 - 3*X - 1 : Polynomial ℚ):= sorry
⊢ Irreducible (X ^ 3 - 3 * X - 1)
import Mathlib open Fintype Set Real Ideal Polynomial open scoped BigOperators
Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$.
exercise_2_12a
valid
/-- Let $(p_n)$ be a sequence and $f:\mathbb{N}\to\mathbb{N}$. The sequence $(q_k)_{k\in\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.-/
theorem exercise_2_12a (f : ℕ → ℕ) (p : ℕ → ℝ) (a : ℝ) (hf : Injective f) (hp : Tendsto p atTop (𝓝 a)) : Tendsto (λ n => p (f n)) atTop (𝓝 a):= sorry
f : ℕ → ℕ p : ℕ → ℝ a : ℝ hf : Injective f hp : Tendsto p atTop (𝓝 a) ⊢ Tendsto (fun n => p (f n)) atTop (𝓝 a)
import Mathlib open Filter Real Function open scoped Topology
Let $(p_n)$ be a sequence and $f:\mathbb{N}\to\mathbb{N}$. The sequence $(q_k)_{k\in\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.
exercise_2_29
valid
/-- Let $\mathcal{T}$ be the collection of open subsets of a metric space $\mathrm{M}$, and $\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\mathcal{T}$ onto $\mathcal{K}$.-/
theorem exercise_2_29 (M : Type*) [MetricSpace M] (O C : Set (Set M)) (hO : O = {s | IsOpen s}) (hC : C = {s | IsClosed s}) : ∃ f : O → C, Bijective f:= sorry
M : Type u_1 inst✝ : MetricSpace M O C : Set (Set M) hO : O = {s | IsOpen s} hC : C = {s | IsClosed s} ⊢ ∃ f, Bijective f
import Mathlib open Filter Real Function open scoped Topology
Let $\mathcal{T}$ be the collection of open subsets of a metric space $\mathrm{M}$, and $\mathcal{K}$ the collection of closed subsets. Show that there is a bijection from $\mathcal{T}$ onto $\mathcal{K}$.
exercise_2_41
valid
/-- Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.-/
theorem exercise_2_41 (m : ℕ) {X : Type*} [NormedSpace ℝ ((Fin m) → ℝ)] : IsCompact (Metric.closedBall 0 1):= sorry
m : ℕ X : Type u_1 inst✝ : NormedSpace ℝ (Fin m → ℝ) ⊢ IsCompact (Metric.closedBall 0 1)
import Mathlib open Filter Real Function open scoped Topology
Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.
exercise_2_57
valid
/-- Show that if $S$ is connected, it is not true in general that its interior is connected.-/
theorem exercise_2_57 {X : Type*} [TopologicalSpace X] : ∃ (S : Set X), IsConnected S ∧ ¬ IsConnected (interior S):= sorry
X : Type u_1 inst✝ : TopologicalSpace X ⊢ ∃ S, IsConnected S ∧ ¬IsConnected (interior S)
import Mathlib open Filter Real Function open scoped Topology
Show that if $S$ is connected, it is not true in general that its interior is connected.
exercise_2_126
valid
/-- Suppose that $E$ is an uncountable subset of $\mathbb{R}$. Prove that there exists a point $p \in \mathbb{R}$ at which $E$ condenses.-/
theorem exercise_2_126 {E : Set ℝ} (hE : ¬ Set.Countable E) : ∃ (p : ℝ), ClusterPt p (𝓟 E):= sorry
E : Set ℝ hE : ¬E.Countable ⊢ ∃ p, ClusterPt p (𝓟 E)
import Mathlib open Filter Real Function open scoped Topology
Suppose that $E$ is an uncountable subset of $\mathbb{R}$. Prove that there exists a point $p \in \mathbb{R}$ at which $E$ condenses.
exercise_3_4
valid
/-- Prove that $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.-/
theorem exercise_3_4 (n : ℕ) : Tendsto (λ n => (sqrt (n + 1) - sqrt n)) atTop (𝓝 0):= sorry
n : ℕ ⊢ Tendsto (fun n => √(n + 1) - √n) atTop (𝓝 0)
import Mathlib open Filter Real Function open scoped Topology
Prove that $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.
exercise_3_63b
valid
/-- Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.-/
theorem exercise_3_63b (p : ℝ) (f : ℕ → ℝ) (hp : p ≤ 1) (h : f = λ (k : ℕ) => (1 : ℝ) / (k * (log k) ^ p)) : ¬ ∃ l, Tendsto f atTop (𝓝 l):= sorry
p : ℝ f : ℕ → ℝ hp : p ≤ 1 h : f = fun k => 1 / (↑k * (↑k).log ^ p) ⊢ ¬∃ l, Tendsto f atTop (𝓝 l)
import Mathlib open Filter Real Function open scoped Topology
Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.
exercise_2_2_9
valid
/-- Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.-/
theorem exercise_2_2_9 {G : Type} [Group G] {a b : G} (h : a * b = b * a) : ∀ x y : closure {x| x = a ∨ x = b}, x * y = y * x:= sorry
G : Type inst✝ : Group G a b : G h : a * b = b * a ⊢ ∀ (x y : ↥(Subgroup.closure {x | x = a ∨ x = b})), x * y = y * x
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.
exercise_2_4_19
valid
/-- Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.-/
theorem exercise_2_4_19 {G : Type*} [Group G] {x : G} (hx : orderOf x = 2) (hx1 : ∀ y, orderOf y = 2 → y = x) : x ∈ center G:= sorry
G : Type u_1 inst✝ : Group G x : G hx : orderOf x = 2 hx1 : ∀ (y : G), orderOf y = 2 → y = x ⊢ x ∈ center G
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group.
exercise_2_11_3
valid
/-- Prove that a group of even order contains an element of order $2 .$-/
theorem exercise_2_11_3 {G : Type*} [Group G] [Fintype G](hG : Even (card G)) : ∃ x : G, orderOf x = 2:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G hG : Even (card G) ⊢ ∃ x, orderOf x = 2
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that a group of even order contains an element of order $2 .$
exercise_3_5_6
valid
/-- Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.-/
theorem exercise_3_5_6 {K V : Type*} [Field K] [AddCommGroup V] [Module K V] {S : Set V} (hS : Set.Countable S) (hS1 : span K S = ⊤) {ι : Type*} (R : ι → V) (hR : LinearIndependent K R) : Countable ι:= sorry
K : Type u_1 V : Type u_2 inst✝² : Field K inst✝¹ : AddCommGroup V inst✝ : Module K V S : Set V hS : S.Countable hS1 : Submodule.span K S = ⊤ ι : Type u_3 R : ι → V hR : LinearIndependent K R ⊢ Countable ι
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.
exercise_6_1_14
valid
/-- Let $Z$ be the center of a group $G$. Prove that if $G / Z$ is a cyclic group, then $G$ is abelian and hence $G=Z$.-/
theorem exercise_6_1_14 (G : Type*) [Group G] (hG : IsCyclic $ G ⧸ (center G)) : center G = ⊤:= sorry
G : Type u_1 inst✝ : Group G hG : IsCyclic (G ⧸ center G) ⊢ center G = ⊤
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $Z$ be the center of a group $G$. Prove that if $G / Z$ is a cyclic group, then $G$ is abelian and hence $G=Z$.
exercise_6_4_3
valid
/-- Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple.-/
theorem exercise_6_4_3 {G : Type*} [Group G] [Fintype G] {p q : ℕ} (hp : Prime p) (hq : Prime q) (hG : card G = p^2 *q) : IsSimpleGroup G → false:= sorry
G : Type u_1 inst✝¹ : Group G inst✝ : Fintype G p q : ℕ hp : Prime p hq : Prime q hG : card G = p ^ 2 * q ⊢ IsSimpleGroup G → false = true
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple.
exercise_6_8_1
valid
/-- Prove that two elements $a, b$ of a group generate the same subgroup as $b a b^2, b a b^3$.-/
theorem exercise_6_8_1 {G : Type*} [Group G] (a b : G) : closure ({a, b} : Set G) = Subgroup.closure {b*a*b^2, b*a*b^3}:= sorry
G : Type u_1 inst✝ : Group G a b : G ⊢ Subgroup.closure {a, b} = Subgroup.closure {b * a * b ^ 2, b * a * b ^ 3}
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that two elements $a, b$ of a group generate the same subgroup as $b a b^2, b a b^3$.
exercise_10_2_4
valid
/-- Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.-/
theorem exercise_10_2_4 : span ({2} : Set $ Polynomial ℤ) ⊓ (span {X}) = span ({2 * X} : Set $ Polynomial ℤ):= sorry
⊢ Ideal.span {2} ⊓ Ideal.span {X} = Ideal.span {2 * X}
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.
exercise_10_4_6
valid
/-- Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \cap J$ in $R / I J$ is nilpotent.-/
theorem exercise_10_4_6 {R : Type*} [CommRing R] [NoZeroDivisors R] (I J : Ideal R) (x : ↑(I ⊓ J)) : IsNilpotent ((Ideal.Quotient.mk (I*J)) x):= sorry
R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroDivisors R I J : Ideal R x : ↥(I ⊓ J) ⊢ IsNilpotent ((Ideal.Quotient.mk (I * J)) ↑x)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \cap J$ in $R / I J$ is nilpotent.
exercise_10_7_10
valid
/-- Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$.-/
theorem exercise_10_7_10 {R : Type*} [Ring R] (M : Ideal R) (hM : ∀ (x : R), x ∉ M → IsUnit x) (hProper : ∃ x : R, x ∉ M) : IsMaximal M ∧ ∀ (N : Ideal R), IsMaximal N → N = M:= sorry
R : Type u_1 inst✝ : Ring R M : Ideal R hM : ∀ x ∉ M, IsUnit x hProper : ∃ x, x ∉ M ⊢ M.IsMaximal ∧ ∀ (N : Ideal R), N.IsMaximal → N = M
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$.
exercise_11_4_1b
valid
/-- Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$.-/
theorem exercise_11_4_1b {F : Type*} [Field F] [Fintype F] (hF : card F = 2) : Irreducible (12 + 6 * X + X ^ 3 : Polynomial F):= sorry
F : Type u_1 inst✝¹ : Field F inst✝ : Fintype F hF : card F = 2 ⊢ Irreducible (12 + 6 * X + X ^ 3)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$.
exercise_11_4_6b
valid
/-- Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$-/
theorem exercise_11_4_6b {F : Type*} [Field F] [Fintype F] (hF : card F = 31) : Irreducible (X ^ 3 - 9 : Polynomial F):= sorry
F : Type u_1 inst✝¹ : Field F inst✝ : Fintype F hF : card F = 31 ⊢ Irreducible (X ^ 3 - 9)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$
exercise_11_4_8
valid
/-- Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\mathbb{Q}[x]$.-/
theorem exercise_11_4_8 (p : ℕ) (hp : Prime p) (n : ℕ) : -- p ∈ ℕ can be written as p ∈ ℚ[X] Irreducible (X ^ n - (p : Polynomial ℚ) : Polynomial ℚ):= sorry
p : ℕ hp : Prime p n : ℕ ⊢ Irreducible (X ^ n - ↑p)
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\mathbb{Q}[x]$.
exercise_13_4_10
valid
/-- Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$.-/
theorem exercise_13_4_10 {p : ℕ} {hp : Nat.Prime p} (h : ∃ r : ℕ, p = 2 ^ r + 1) : ∃ (k : ℕ), p = 2 ^ (2 ^ k) + 1:= sorry
p : ℕ hp : p.Prime h : ∃ r, p = 2 ^ r + 1 ⊢ ∃ k, p = 2 ^ 2 ^ k + 1
import Mathlib open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd open scoped BigOperators
Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$.
exercise_1_3
valid
/-- Prove that $-(-v) = v$ for every $v \in V$.-/
theorem exercise_1_3 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] {v : V} : -(-v) = v:= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V v : V ⊢ - -v = v
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that $-(-v) = v$ for every $v \in V$.
exercise_1_6
valid
/-- Give an example of a nonempty subset $U$ of $\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but $U$ is not a subspace of $\mathbf{R}^2$.-/
theorem exercise_1_6 : ∃ U : Set (ℝ × ℝ), (U ≠ ∅) ∧ (∀ (u v : ℝ × ℝ), u ∈ U ∧ v ∈ U → u + v ∈ U) ∧ (∀ (u : ℝ × ℝ), u ∈ U → -u ∈ U) ∧ (∀ U' : Submodule ℝ (ℝ × ℝ), U ≠ ↑U'):= sorry
⊢ ∃ U, U ≠ ∅ ∧ (∀ (u v : ℝ × ℝ), u ∈ U ∧ v ∈ U → u + v ∈ U) ∧ (∀ u ∈ U, -u ∈ U) ∧ ∀ (U' : Submodule ℝ (ℝ × ℝ)), U ≠ ↑U'
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Give an example of a nonempty subset $U$ of $\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but $U$ is not a subspace of $\mathbf{R}^2$.
exercise_1_8
valid
/-- Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.-/
theorem exercise_1_8 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] {ι : Type*} (u : ι → Submodule F V) : ∃ U : Submodule F V, (⋂ (i : ι), (u i).carrier) = ↑U:= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V ι : Type u_3 u : ι → Submodule F V ⊢ ∃ U, ⋂ i, (u i).carrier = ↑U
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.
exercise_3_1
valid
/-- Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\operatorname{dim} V=1$ and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that $T v=a v$ for all $v \in V$.-/
theorem exercise_3_1 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] [FiniteDimensional F V] (T : V →ₗ[F] V) (hT : finrank F V = 1) : ∃ c : F, ∀ v : V, T v = c • v:= sorry
F : Type u_1 V : Type u_2 inst✝³ : AddCommGroup V inst✝² : Field F inst✝¹ : Module F V inst✝ : FiniteDimensional F V T : V →ₗ[F] V hT : finrank F V = 1 ⊢ ∃ c, ∀ (v : V), T v = c • v
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\operatorname{dim} V=1$ and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that $T v=a v$ for all $v \in V$.
exercise_4_4
valid
/-- Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree $m$. Prove that $p$ has $m$ distinct roots if and only if $p$ and its derivative $p^{\prime}$ have no roots in common.-/
theorem exercise_4_4 (p : Polynomial ℂ) : p.degree = @card (rootSet p ℂ) (rootSetFintype p ℂ) ↔ Disjoint (@card (rootSet (derivative p) ℂ) (rootSetFintype (derivative p) ℂ)) (@card (rootSet p ℂ) (rootSetFintype p ℂ)):= sorry
p : ℂ[X] ⊢ p.degree = ↑(card ↑(p.rootSet ℂ)) ↔ Disjoint (card ↑((derivative p).rootSet ℂ)) (card ↑(p.rootSet ℂ))
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree $m$. Prove that $p$ has $m$ distinct roots if and only if $p$ and its derivative $p^{\prime}$ have no roots in common.
exercise_5_4
valid
/-- Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$.-/
theorem exercise_5_4 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] (S T : V →ₗ[F] V) (hST : S ∘ T = T ∘ S) (c : F): Submodule.map S (ker (T - c • LinearMap.id)) = ker (T - c • LinearMap.id):= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V S T : V →ₗ[F] V hST : ⇑S ∘ ⇑T = ⇑T ∘ ⇑S c : F ⊢ Submodule.map S (ker (T - c • LinearMap.id)) = ker (T - c • LinearMap.id)
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$.
exercise_5_12
valid
/-- Suppose $T \in \mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator.-/
theorem exercise_5_12 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] {S : End F V} (hS : ∀ v : V, ∃ c : F, v ∈ eigenspace S c) : ∃ c : F, S = c • LinearMap.id:= sorry
F : Type u_1 V : Type u_2 inst✝² : AddCommGroup V inst✝¹ : Field F inst✝ : Module F V S : End F V hS : ∀ (v : V), ∃ c, v ∈ S.eigenspace c ⊢ ∃ c, S = c • LinearMap.id
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $T \in \mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator.
exercise_5_20
valid
/-- Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$.-/
theorem exercise_5_20 {F V : Type*} [AddCommGroup V] [Field F] [Module F V] [FiniteDimensional F V] {S T : End F V} (h1 : card (T.Eigenvalues) = finrank F V) (h2 : ∀ v : V, ∃ c : F, v ∈ eigenspace S c ↔ ∃ c : F, v ∈ eigenspace T c) : S * T = T * S:= sorry
F : Type u_1 V : Type u_2 inst✝³ : AddCommGroup V inst✝² : Field F inst✝¹ : Module F V inst✝ : FiniteDimensional F V S T : End F V h1 : card T.Eigenvalues = finrank F V h2 : ∀ (v : V), ∃ c, v ∈ S.eigenspace c ↔ ∃ c, v ∈ T.eigenspace c ⊢ S * T = T * S
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$.
exercise_6_2
valid
/-- Suppose $u, v \in V$. Prove that $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for all $a \in \mathbf{F}$.-/
theorem exercise_6_2 {V : Type*} [NormedAddCommGroup V] [Module ℂ V] [InnerProductSpace ℂ V] (u v : V) : ⟪u, v⟫_ℂ = 0 ↔ ∀ (a : ℂ), ‖u‖ ≤ ‖u + a • v‖:= sorry
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : Module ℂ V inst✝ : InnerProductSpace ℂ V u v : V ⊢ ⟪u, v⟫_ℂ = 0 ↔ ∀ (a : ℂ), ‖u‖ ≤ ‖u + a • v‖
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $u, v \in V$. Prove that $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for all $a \in \mathbf{F}$.
exercise_6_7
valid
/-- Prove that if $V$ is a complex inner-product space, then $\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4}$ for all $u, v \in V$.-/
theorem exercise_6_7 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace ℂ V] (u v : V) : ⟪u, v⟫_ℂ = (‖u + v‖^2 - ‖u - v‖^2 + I*‖u + I•v‖^2 - I*‖u-I•v‖^2) / 4:= sorry
V : Type u_1 inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace ℂ V u v : V ⊢ ⟪u, v⟫_ℂ = (↑‖u + v‖ ^ 2 - ↑‖u - v‖ ^ 2 + I * ↑‖u + I • v‖ ^ 2 - I * ↑‖u - I • v‖ ^ 2) / 4
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that if $V$ is a complex inner-product space, then $\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4}$ for all $u, v \in V$.
exercise_6_16
valid
/-- Suppose $U$ is a subspace of $V$. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$-/
theorem exercise_6_16 {K V : Type*} [RCLike K] [NormedAddCommGroup V] [InnerProductSpace K V] {U : Submodule K V} : U.orthogonal = ⊥ ↔ U = ⊤:= sorry
K : Type u_1 V : Type u_2 inst✝² : RCLike K inst✝¹ : NormedAddCommGroup V inst✝ : InnerProductSpace K V U : Submodule K V ⊢ Uᗮ = ⊥ ↔ U = ⊤
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $U$ is a subspace of $V$. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$
exercise_7_6
valid
/-- Prove that if $T \in \mathcal{L}(V)$ is normal, then $\operatorname{range} T=\operatorname{range} T^{*}.$-/
theorem exercise_7_6 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace ℂ V] [FiniteDimensional ℂ V] (T : End ℂ V) (hT : T * adjoint T = adjoint T * T) : range T = range (adjoint T):= sorry
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℂ V inst✝ : FiniteDimensional ℂ V T : End ℂ V hT : T * adjoint T = adjoint T * T ⊢ range T = range (adjoint T)
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Prove that if $T \in \mathcal{L}(V)$ is normal, then $\operatorname{range} T=\operatorname{range} T^{*}.$
exercise_7_10
valid
/-- Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.-/
theorem exercise_7_10 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace ℂ V] [FiniteDimensional ℂ V] (T : End ℂ V) (hT : T * adjoint T = adjoint T * T) (hT1 : T^9 = T^8) : IsSelfAdjoint T ∧ T^2 = T:= sorry
V : Type u_1 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace ℂ V inst✝ : FiniteDimensional ℂ V T : End ℂ V hT : T * adjoint T = adjoint T * T hT1 : T ^ 9 = T ^ 8 ⊢ IsSelfAdjoint T ∧ T ^ 2 = T
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.
exercise_7_14
valid
/-- Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and $\|T v-\lambda v\|<\epsilon,$ then $T$ has an eigenvalue $\lambda^{\prime}$ such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$.-/
theorem exercise_7_14 {𝕜 V : Type*} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] {T : Module.End 𝕜 V} (hT : IsSelfAdjoint T) {l : 𝕜} {ε : ℝ} (he : ε > 0) : ∃ v : V, ‖v‖= 1 ∧ (‖T v - l • v‖ < ε → (∃ l' : T.Eigenvalues, ‖l - l'‖ < ε)):= sorry
𝕜 : Type u_1 V : Type u_2 inst✝³ : RCLike 𝕜 inst✝² : NormedAddCommGroup V inst✝¹ : InnerProductSpace 𝕜 V inst✝ : FiniteDimensional 𝕜 V T : End 𝕜 V hT : IsSelfAdjoint T l : 𝕜 ε : ℝ he : ε > 0 ⊢ ∃ v, ‖v‖ = 1 ∧ (‖T v - l • v‖ < ε → ∃ l', ‖l - ↑T l'‖ < ε)
import Mathlib open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End open scoped BigOperators
Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and $\|T v-\lambda v\|<\epsilon,$ then $T$ has an eigenvalue $\lambda^{\prime}$ such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$.
exercise_1_1_3
valid
/-- Prove that the addition of residue classes $\mathbb{Z}/n\mathbb{Z}$ is associative.-/
theorem exercise_1_1_3 (n : ℤ) : ∀ (a b c : ℤ), (a+b)+c ≡ a+(b+c) [ZMOD n]:= sorry
n : ℤ ⊢ ∀ (a b c : ℤ), a + b + c ≡ a + (b + c) [ZMOD n]
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that the addition of residue classes $\mathbb{Z}/n\mathbb{Z}$ is associative.
exercise_1_1_5
valid
/-- Prove that for all $n>1$ that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.-/
theorem exercise_1_1_5 (n : ℕ) (hn : 1 < n) : IsEmpty (Group (ZMod n)):= sorry
n : ℕ hn : 1 < n ⊢ IsEmpty (Group (ZMod n))
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Prove that for all $n>1$ that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.
exercise_1_1_16
valid
/-- Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$.-/
theorem exercise_1_1_16 {G : Type*} [Group G] (x : G) (hx : x ^ 2 = 1) : orderOf x = 1 ∨ orderOf x = 2:= sorry
G : Type u_1 inst✝ : Group G x : G hx : x ^ 2 = 1 ⊢ orderOf x = 1 ∨ orderOf x = 2
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$.
exercise_1_1_18
valid
/-- Let $x$ and $y$ be elements of $G$. Prove that $xy=yx$ if and only if $y^{-1}xy=x$ if and only if $x^{-1}y^{-1}xy=1$.-/
theorem exercise_1_1_18 {G : Type*} [Group G] (x y : G) : (x * y = y * x ↔ y⁻¹ * x * y = x) ↔ (x⁻¹ * y⁻¹ * x * y = 1):= sorry
G : Type u_1 inst✝ : Group G x y : G ⊢ (x * y = y * x ↔ y⁻¹ * x * y = x) ↔ x⁻¹ * y⁻¹ * x * y = 1
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
Let $x$ and $y$ be elements of $G$. Prove that $xy=yx$ if and only if $y^{-1}xy=x$ if and only if $x^{-1}y^{-1}xy=1$.
exercise_1_1_22a
valid
/-- If $x$ and $g$ are elements of the group $G$, prove that $|x|=\left|g^{-1} x g\right|$.-/
theorem exercise_1_1_22a {G : Type*} [Group G] (x g : G) : orderOf x = orderOf (g⁻¹ * x * g):= sorry
G : Type u_1 inst✝ : Group G x g : G ⊢ orderOf x = orderOf (g⁻¹ * x * g)
import Mathlib open Fintype Subgroup Set Polynomial Ideal open scoped BigOperators
If $x$ and $g$ are elements of the group $G$, prove that $|x|=\left|g^{-1} x g\right|$.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

ProofNet Lean4 v2

A Lean 4 version of the ProofNet dataset.
We provide two splits: validation and test.

Adds a nl_statement field which is a cleaned version of the original informal_prefix.

Downloads last month
18