|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {facial_keypoint_detection}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset is designed for computer vision and machine learning tasks |
|
involving the identification and analysis of key points on a human face. |
|
It consists of images of human faces, each accompanied by key point |
|
annotations in XML format. |
|
""" |
|
_NAME = 'facial_keypoint_detection' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "cc-by-nc-nd-4.0" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class FacialKeypointDetection(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo(description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'image_id': datasets.Value('uint32'), |
|
'image': datasets.Image(), |
|
'mask': datasets.Image(), |
|
'key_points': datasets.Value('string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download(f"{_DATA}images.tar.gz") |
|
masks = dl_manager.download(f"{_DATA}masks.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
images = dl_manager.iter_archive(images) |
|
masks = dl_manager.iter_archive(masks) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
"masks": masks, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, images, masks, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=',') |
|
for idx, ((image_path, image), |
|
(mask_path, mask)) in enumerate(zip(images, masks)): |
|
yield idx, { |
|
'image_id': annotations_df['image_id'].iloc[idx], |
|
"image": { |
|
"path": image_path, |
|
"bytes": image.read() |
|
}, |
|
"mask": { |
|
"path": mask_path, |
|
"bytes": mask.read() |
|
}, |
|
'key_points': annotations_df['key_points'].iloc[idx] |
|
} |
|
|